workqueue.c 137.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/jhash.h>
45
#include <linux/hashtable.h>
46
#include <linux/rculist.h>
47
#include <linux/nodemask.h>
48
#include <linux/moduleparam.h>
49
#include <linux/uaccess.h>
50

51
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
52

T
Tejun Heo 已提交
53
enum {
54 55
	/*
	 * worker_pool flags
56
	 *
57
	 * A bound pool is either associated or disassociated with its CPU.
58 59 60 61 62 63
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
64
	 * be executing on any CPU.  The pool behaves as an unbound one.
65
	 *
66 67
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
68
	 * create_worker() is in progress.
69
	 */
70
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
73

T
Tejun Heo 已提交
74 75 76 77
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
78
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82

83 84
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
85

86
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87

88
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
89
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90

91 92 93
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

94 95 96
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
97 98 99 100 101 102 103 104
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
105
	HIGHPRI_NICE_LEVEL	= -20,
106 107

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
108
};
L
Linus Torvalds 已提交
109 110

/*
T
Tejun Heo 已提交
111 112
 * Structure fields follow one of the following exclusion rules.
 *
113 114
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
115
 *
116 117 118
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
119
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
120
 *
121 122 123 124
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
125
 *
126 127 128
 * MG: pool->manager_mutex and pool->lock protected.  Writes require both
 *     locks.  Reads can happen under either lock.
 *
129
 * PL: wq_pool_mutex protected.
130
 *
131
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
132
 *
133 134
 * WQ: wq->mutex protected.
 *
135
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
136 137
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
138 139
 */

140
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
141

142
struct worker_pool {
143
	spinlock_t		lock;		/* the pool lock */
144
	int			cpu;		/* I: the associated cpu */
145
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
146
	int			id;		/* I: pool ID */
147
	unsigned int		flags;		/* X: flags */
148 149 150

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
151 152

	/* nr_idle includes the ones off idle_list for rebinding */
153 154 155 156 157 158
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

159
	/* a workers is either on busy_hash or idle_list, or the manager */
160 161 162
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

163
	/* see manage_workers() for details on the two manager mutexes */
164
	struct mutex		manager_arb;	/* manager arbitration */
165
	struct mutex		manager_mutex;	/* manager exclusion */
166
	struct idr		worker_idr;	/* MG: worker IDs and iteration */
167

T
Tejun Heo 已提交
168
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 170
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
171

172 173 174 175 176 177
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 179 180 181 182 183

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
184 185
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
186
/*
187 188 189 190
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
191
 */
192
struct pool_workqueue {
193
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
194
	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 196
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
197
	int			refcnt;		/* L: reference count */
198 199
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
200
	int			nr_active;	/* L: nr of active works */
201
	int			max_active;	/* L: max active works */
202
	struct list_head	delayed_works;	/* L: delayed works */
203
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
205 206 207 208 209

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
210
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
211 212 213
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
214
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
215

216 217 218 219
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
220 221
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
222 223 224
	struct completion	done;		/* flush completion */
};

225 226
struct wq_device;

L
Linus Torvalds 已提交
227
/*
228 229
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
230 231
 */
struct workqueue_struct {
232
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233
	struct list_head	list;		/* PL: list of all workqueues */
234

235 236 237
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
238
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 240 241
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242

243
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 245
	struct worker		*rescuer;	/* I: rescue worker */

246
	int			nr_drainers;	/* WQ: drain in progress */
247
	int			saved_max_active; /* WQ: saved pwq max_active */
248

249
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251

252 253 254
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
255
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
256
	struct lockdep_map	lockdep_map;
257
#endif
258
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 260 261 262

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
264 265
};

266 267
static struct kmem_cache *pwq_cache;

268 269 270 271
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

272 273 274
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

275 276
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

277 278 279
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

280
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
281
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
282

283 284
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
285 286 287 288 289

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

290
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
291

292
/* PL: hash of all unbound pools keyed by pool->attrs */
293 294
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

295
/* I: attributes used when instantiating standard unbound pools on demand */
296 297
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

298
struct workqueue_struct *system_wq __read_mostly;
299
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
300
struct workqueue_struct *system_highpri_wq __read_mostly;
301
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
302
struct workqueue_struct *system_long_wq __read_mostly;
303
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
304
struct workqueue_struct *system_unbound_wq __read_mostly;
305
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
306
struct workqueue_struct *system_freezable_wq __read_mostly;
307
EXPORT_SYMBOL_GPL(system_freezable_wq);
308

309 310 311 312
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

313 314 315
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

316
#define assert_rcu_or_pool_mutex()					\
317
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
318 319
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
320

321
#define assert_rcu_or_wq_mutex(wq)					\
322
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
323
			   lockdep_is_held(&wq->mutex),			\
324
			   "sched RCU or wq->mutex should be held")
325

326 327
#ifdef CONFIG_LOCKDEP
#define assert_manager_or_pool_lock(pool)				\
328 329
	WARN_ONCE(debug_locks &&					\
		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
330 331 332 333 334 335
		  !lockdep_is_held(&(pool)->lock),			\
		  "pool->manager_mutex or ->lock should be held")
#else
#define assert_manager_or_pool_lock(pool)	do { } while (0)
#endif

336 337 338
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
339
	     (pool)++)
340

T
Tejun Heo 已提交
341 342 343
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
344
 * @pi: integer used for iteration
345
 *
346 347 348
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
349 350 351
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
352
 */
353 354
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
355
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
356
		else
T
Tejun Heo 已提交
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
 * This must be called with either @pool->manager_mutex or ->lock held.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
		else

374 375 376 377
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
378
 *
379
 * This must be called either with wq->mutex held or sched RCU read locked.
380 381
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
382 383 384
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
385 386
 */
#define for_each_pwq(pwq, wq)						\
387
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
388
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
389
		else
390

391 392 393 394
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

395 396 397 398 399
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
435
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
471
	.debug_hint	= work_debug_hint,
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

T
Tejun Heo 已提交
507 508 509 510 511
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

512
	lockdep_assert_held(&wq_pool_mutex);
513

T
Tejun Heo 已提交
514
	ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
515
	if (ret >= 0) {
T
Tejun Heo 已提交
516
		pool->id = ret;
517 518
		return 0;
	}
519
	return ret;
520 521
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
553

554
/*
555 556
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
557
 * is cleared and the high bits contain OFFQ flags and pool ID.
558
 *
559 560
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
561 562
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
563
 *
564
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
565
 * corresponding to a work.  Pool is available once the work has been
566
 * queued anywhere after initialization until it is sync canceled.  pwq is
567
 * available only while the work item is queued.
568
 *
569 570 571 572
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
573
 */
574 575
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
576
{
577
	WARN_ON_ONCE(!work_pending(work));
578 579
	atomic_long_set(&work->data, data | flags | work_static(work));
}
580

581
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
582 583
			 unsigned long extra_flags)
{
584 585
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
586 587
}

588 589 590 591 592 593 594
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

595 596
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
597
{
598 599 600 601 602 603 604
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
605
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
606
}
607

608
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
609
{
610 611
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
612 613
}

614
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
615
{
616
	unsigned long data = atomic_long_read(&work->data);
617

618
	if (data & WORK_STRUCT_PWQ)
619 620 621
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
622 623
}

624 625 626 627 628
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
629
 *
630 631 632
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
633 634 635 636 637
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
638 639
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
640
{
641
	unsigned long data = atomic_long_read(&work->data);
642
	int pool_id;
643

644
	assert_rcu_or_pool_mutex();
645

646 647
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
648
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
649

650 651
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
652 653
		return NULL;

654
	return idr_find(&worker_pool_idr, pool_id);
655 656 657 658 659 660 661 662 663 664 665
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
666 667
	unsigned long data = atomic_long_read(&work->data);

668 669
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
670
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
671

672
	return data >> WORK_OFFQ_POOL_SHIFT;
673 674
}

675 676
static void mark_work_canceling(struct work_struct *work)
{
677
	unsigned long pool_id = get_work_pool_id(work);
678

679 680
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
681 682 683 684 685 686
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

687
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
688 689
}

690
/*
691 692
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
693
 * they're being called with pool->lock held.
694 695
 */

696
static bool __need_more_worker(struct worker_pool *pool)
697
{
698
	return !atomic_read(&pool->nr_running);
699 700
}

701
/*
702 703
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
704 705
 *
 * Note that, because unbound workers never contribute to nr_running, this
706
 * function will always return %true for unbound pools as long as the
707
 * worklist isn't empty.
708
 */
709
static bool need_more_worker(struct worker_pool *pool)
710
{
711
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
712
}
713

714
/* Can I start working?  Called from busy but !running workers. */
715
static bool may_start_working(struct worker_pool *pool)
716
{
717
	return pool->nr_idle;
718 719 720
}

/* Do I need to keep working?  Called from currently running workers. */
721
static bool keep_working(struct worker_pool *pool)
722
{
723 724
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
725 726 727
}

/* Do we need a new worker?  Called from manager. */
728
static bool need_to_create_worker(struct worker_pool *pool)
729
{
730
	return need_more_worker(pool) && !may_start_working(pool);
731
}
732

733
/* Do I need to be the manager? */
734
static bool need_to_manage_workers(struct worker_pool *pool)
735
{
736
	return need_to_create_worker(pool) ||
737
		(pool->flags & POOL_MANAGE_WORKERS);
738 739 740
}

/* Do we have too many workers and should some go away? */
741
static bool too_many_workers(struct worker_pool *pool)
742
{
743
	bool managing = mutex_is_locked(&pool->manager_arb);
744 745
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
746

747 748 749 750 751 752 753
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

754
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
755 756
}

757
/*
758 759 760
 * Wake up functions.
 */

761
/* Return the first worker.  Safe with preemption disabled */
762
static struct worker *first_worker(struct worker_pool *pool)
763
{
764
	if (unlikely(list_empty(&pool->idle_list)))
765 766
		return NULL;

767
	return list_first_entry(&pool->idle_list, struct worker, entry);
768 769 770 771
}

/**
 * wake_up_worker - wake up an idle worker
772
 * @pool: worker pool to wake worker from
773
 *
774
 * Wake up the first idle worker of @pool.
775 776
 *
 * CONTEXT:
777
 * spin_lock_irq(pool->lock).
778
 */
779
static void wake_up_worker(struct worker_pool *pool)
780
{
781
	struct worker *worker = first_worker(pool);
782 783 784 785 786

	if (likely(worker))
		wake_up_process(worker->task);
}

787
/**
788 789 790 791 792 793 794 795 796 797
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
798
void wq_worker_waking_up(struct task_struct *task, int cpu)
799 800 801
{
	struct worker *worker = kthread_data(task);

802
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
803
		WARN_ON_ONCE(worker->pool->cpu != cpu);
804
		atomic_inc(&worker->pool->nr_running);
805
	}
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
823
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
824 825
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
826
	struct worker_pool *pool;
827

828 829 830 831 832
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
833
	if (worker->flags & WORKER_NOT_RUNNING)
834 835
		return NULL;

836 837
	pool = worker->pool;

838
	/* this can only happen on the local cpu */
839 840
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
841 842 843 844 845 846

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
847 848 849
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
850
	 * manipulating idle_list, so dereferencing idle_list without pool
851
	 * lock is safe.
852
	 */
853 854
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
855
		to_wakeup = first_worker(pool);
856 857 858 859 860
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
861
 * @worker: self
862 863 864
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
865 866 867
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
868
 *
869
 * CONTEXT:
870
 * spin_lock_irq(pool->lock)
871 872 873 874
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
875
	struct worker_pool *pool = worker->pool;
876

877 878
	WARN_ON_ONCE(worker->task != current);

879 880 881 882 883 884 885 886
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
887
			if (atomic_dec_and_test(&pool->nr_running) &&
888
			    !list_empty(&pool->worklist))
889
				wake_up_worker(pool);
890
		} else
891
			atomic_dec(&pool->nr_running);
892 893
	}

894 895 896 897
	worker->flags |= flags;
}

/**
898
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
899
 * @worker: self
900 901
 * @flags: flags to clear
 *
902
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
903
 *
904
 * CONTEXT:
905
 * spin_lock_irq(pool->lock)
906 907 908
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
909
	struct worker_pool *pool = worker->pool;
910 911
	unsigned int oflags = worker->flags;

912 913
	WARN_ON_ONCE(worker->task != current);

914
	worker->flags &= ~flags;
915

916 917 918 919 920
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
921 922
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
923
			atomic_inc(&pool->nr_running);
924 925
}

926 927
/**
 * find_worker_executing_work - find worker which is executing a work
928
 * @pool: pool of interest
929 930
 * @work: work to find worker for
 *
931 932
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
933 934 935 936 937 938 939 940 941 942 943 944
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
945 946 947 948 949 950
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
951 952
 *
 * CONTEXT:
953
 * spin_lock_irq(pool->lock).
954 955 956 957
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
958
 */
959
static struct worker *find_worker_executing_work(struct worker_pool *pool,
960
						 struct work_struct *work)
961
{
962 963
	struct worker *worker;

964
	hash_for_each_possible(pool->busy_hash, worker, hentry,
965 966 967
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
968 969 970
			return worker;

	return NULL;
971 972
}

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
988
 * spin_lock_irq(pool->lock).
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1072
static void pwq_activate_delayed_work(struct work_struct *work)
1073
{
1074
	struct pool_workqueue *pwq = get_work_pwq(work);
1075 1076

	trace_workqueue_activate_work(work);
1077
	move_linked_works(work, &pwq->pool->worklist, NULL);
1078
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1079
	pwq->nr_active++;
1080 1081
}

1082
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1083
{
1084
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1085 1086
						    struct work_struct, entry);

1087
	pwq_activate_delayed_work(work);
1088 1089
}

1090
/**
1091 1092
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1093 1094 1095
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1096
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1097 1098
 *
 * CONTEXT:
1099
 * spin_lock_irq(pool->lock).
1100
 */
1101
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1102
{
T
Tejun Heo 已提交
1103
	/* uncolored work items don't participate in flushing or nr_active */
1104
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1105
		goto out_put;
1106

1107
	pwq->nr_in_flight[color]--;
1108

1109 1110
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1111
		/* one down, submit a delayed one */
1112 1113
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1114 1115 1116
	}

	/* is flush in progress and are we at the flushing tip? */
1117
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1118
		goto out_put;
1119 1120

	/* are there still in-flight works? */
1121
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1122
		goto out_put;
1123

1124 1125
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1126 1127

	/*
1128
	 * If this was the last pwq, wake up the first flusher.  It
1129 1130
	 * will handle the rest.
	 */
1131 1132
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1133 1134
out_put:
	put_pwq(pwq);
1135 1136
}

1137
/**
1138
 * try_to_grab_pending - steal work item from worklist and disable irq
1139 1140
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1141
 * @flags: place to store irq state
1142 1143 1144 1145 1146 1147 1148
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1149 1150
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1151
 *
1152
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1153 1154 1155
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1156 1157 1158 1159
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1160
 * This function is safe to call from any context including IRQ handler.
1161
 */
1162 1163
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1164
{
1165
	struct worker_pool *pool;
1166
	struct pool_workqueue *pwq;
1167

1168 1169
	local_irq_save(*flags);

1170 1171 1172 1173
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1174 1175 1176 1177 1178
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1179 1180 1181 1182 1183
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1184 1185 1186 1187 1188 1189 1190
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1191 1192
	pool = get_work_pool(work);
	if (!pool)
1193
		goto fail;
1194

1195
	spin_lock(&pool->lock);
1196
	/*
1197 1198 1199 1200 1201
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1202 1203
	 * item is currently queued on that pool.
	 */
1204 1205
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1206 1207 1208 1209 1210
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1211
		 * on the delayed_list, will confuse pwq->nr_active
1212 1213 1214 1215
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1216
			pwq_activate_delayed_work(work);
1217 1218

		list_del_init(&work->entry);
1219
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1220

1221
		/* work->data points to pwq iff queued, point to pool */
1222 1223 1224 1225
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1226
	}
1227
	spin_unlock(&pool->lock);
1228 1229 1230 1231 1232
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1233
	return -EAGAIN;
1234 1235
}

T
Tejun Heo 已提交
1236
/**
1237
 * insert_work - insert a work into a pool
1238
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1239 1240 1241 1242
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1243
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1244
 * work_struct flags.
T
Tejun Heo 已提交
1245 1246
 *
 * CONTEXT:
1247
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1248
 */
1249 1250
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1251
{
1252
	struct worker_pool *pool = pwq->pool;
1253

T
Tejun Heo 已提交
1254
	/* we own @work, set data and link */
1255
	set_work_pwq(work, pwq, extra_flags);
1256
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1257
	get_pwq(pwq);
1258 1259

	/*
1260 1261 1262
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1263 1264 1265
	 */
	smp_mb();

1266 1267
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1268 1269
}

1270 1271
/*
 * Test whether @work is being queued from another work executing on the
1272
 * same workqueue.
1273 1274 1275
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1276 1277 1278 1279 1280 1281 1282
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1283
	return worker && worker->current_pwq->wq == wq;
1284 1285
}

1286
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1287 1288
			 struct work_struct *work)
{
1289
	struct pool_workqueue *pwq;
1290
	struct worker_pool *last_pool;
1291
	struct list_head *worklist;
1292
	unsigned int work_flags;
1293
	unsigned int req_cpu = cpu;
1294 1295 1296 1297 1298 1299 1300 1301

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1302

1303
	debug_work_activate(work);
1304

1305
	/* if dying, only works from the same workqueue are allowed */
1306
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1307
	    WARN_ON_ONCE(!is_chained_work(wq)))
1308
		return;
1309
retry:
1310 1311 1312
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1313
	/* pwq which will be used unless @work is executing elsewhere */
1314
	if (!(wq->flags & WQ_UNBOUND))
1315
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1316 1317
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1318

1319 1320 1321 1322 1323 1324 1325 1326
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1327

1328
		spin_lock(&last_pool->lock);
1329

1330
		worker = find_worker_executing_work(last_pool, work);
1331

1332 1333
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1334
		} else {
1335 1336
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1337
			spin_lock(&pwq->pool->lock);
1338
		}
1339
	} else {
1340
		spin_lock(&pwq->pool->lock);
1341 1342
	}

1343 1344 1345 1346
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1347 1348
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1362 1363
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1364

1365
	if (WARN_ON(!list_empty(&work->entry))) {
1366
		spin_unlock(&pwq->pool->lock);
1367 1368
		return;
	}
1369

1370 1371
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1372

1373
	if (likely(pwq->nr_active < pwq->max_active)) {
1374
		trace_workqueue_activate_work(work);
1375 1376
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1377 1378
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1379
		worklist = &pwq->delayed_works;
1380
	}
1381

1382
	insert_work(pwq, work, worklist, work_flags);
1383

1384
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1385 1386
}

1387
/**
1388 1389
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1390 1391 1392
 * @wq: workqueue to use
 * @work: work to queue
 *
1393
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1394
 *
1395 1396
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1397
 */
1398 1399
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1400
{
1401
	bool ret = false;
1402
	unsigned long flags;
1403

1404
	local_irq_save(flags);
1405

1406
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1407
		__queue_work(cpu, wq, work);
1408
		ret = true;
1409
	}
1410

1411
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1412 1413
	return ret;
}
1414
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1415

1416
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1417
{
1418
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1419

1420
	/* should have been called from irqsafe timer with irq already off */
1421
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1422
}
1423
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1424

1425 1426
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1427
{
1428 1429 1430 1431 1432
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1433 1434
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1435

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1447
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1448

1449
	dwork->wq = wq;
1450
	dwork->cpu = cpu;
1451 1452 1453 1454 1455 1456
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1457 1458
}

1459 1460 1461 1462
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1463
 * @dwork: work to queue
1464 1465
 * @delay: number of jiffies to wait before queueing
 *
1466 1467 1468
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1469
 */
1470 1471
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1472
{
1473
	struct work_struct *work = &dwork->work;
1474
	bool ret = false;
1475
	unsigned long flags;
1476

1477 1478
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1479

1480
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1481
		__queue_delayed_work(cpu, wq, dwork, delay);
1482
		ret = true;
1483
	}
1484

1485
	local_irq_restore(flags);
1486 1487
	return ret;
}
1488
EXPORT_SYMBOL(queue_delayed_work_on);
1489

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1505
 * This function is safe to call from any context including IRQ handler.
1506 1507 1508 1509 1510 1511 1512
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1513

1514 1515 1516
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1517

1518 1519 1520
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1521
	}
1522 1523

	/* -ENOENT from try_to_grab_pending() becomes %true */
1524 1525
	return ret;
}
1526 1527
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1528 1529 1530 1531 1532 1533 1534 1535
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1536
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1537 1538
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1539
{
1540
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1541

1542 1543 1544 1545
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1546

1547 1548
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1549
	pool->nr_idle++;
1550
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1551 1552

	/* idle_list is LIFO */
1553
	list_add(&worker->entry, &pool->idle_list);
1554

1555 1556
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1557

1558
	/*
1559
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1560
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1561 1562
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1563
	 */
1564
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1565
		     pool->nr_workers == pool->nr_idle &&
1566
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1576
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1577 1578 1579
 */
static void worker_leave_idle(struct worker *worker)
{
1580
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1581

1582 1583
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1584
	worker_clr_flags(worker, WORKER_IDLE);
1585
	pool->nr_idle--;
T
Tejun Heo 已提交
1586 1587 1588
	list_del_init(&worker->entry);
}

1589
/**
1590 1591 1592 1593
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1594 1595 1596 1597 1598 1599
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1600
 * This function is to be used by unbound workers and rescuers to bind
1601 1602 1603
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1604
 * verbatim as it's best effort and blocking and pool may be
1605 1606
 * [dis]associated in the meantime.
 *
1607
 * This function tries set_cpus_allowed() and locks pool and verifies the
1608
 * binding against %POOL_DISASSOCIATED which is set during
1609 1610 1611
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1612 1613
 *
 * CONTEXT:
1614
 * Might sleep.  Called without any lock but returns with pool->lock
1615 1616 1617
 * held.
 *
 * RETURNS:
1618
 * %true if the associated pool is online (@worker is successfully
1619 1620
 * bound), %false if offline.
 */
1621
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1622
__acquires(&pool->lock)
1623 1624
{
	while (true) {
1625
		/*
1626 1627 1628
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1629
		 * against POOL_DISASSOCIATED.
1630
		 */
1631
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1632
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1633

1634
		spin_lock_irq(&pool->lock);
1635
		if (pool->flags & POOL_DISASSOCIATED)
1636
			return false;
1637
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1638
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1639
			return true;
1640
		spin_unlock_irq(&pool->lock);
1641

1642 1643 1644 1645 1646 1647
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1648
		cpu_relax();
1649
		cond_resched();
1650 1651 1652
	}
}

T
Tejun Heo 已提交
1653 1654 1655 1656 1657
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1658 1659
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1660
		INIT_LIST_HEAD(&worker->scheduled);
1661 1662
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1663
	}
T
Tejun Heo 已提交
1664 1665 1666 1667 1668
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1669
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1670
 *
1671
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1681
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1682 1683
{
	struct worker *worker = NULL;
1684
	int id = -1;
1685
	char id_buf[16];
T
Tejun Heo 已提交
1686

1687 1688
	lockdep_assert_held(&pool->manager_mutex);

1689 1690 1691 1692 1693
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
	idr_preload(GFP_KERNEL);
1694
	spin_lock_irq(&pool->lock);
1695 1696 1697

	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);

1698
	spin_unlock_irq(&pool->lock);
1699 1700 1701
	idr_preload_end();
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1702 1703 1704 1705 1706

	worker = alloc_worker();
	if (!worker)
		goto fail;

1707
	worker->pool = pool;
T
Tejun Heo 已提交
1708 1709
	worker->id = id;

1710
	if (pool->cpu >= 0)
1711 1712
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1713
	else
1714 1715
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1716
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1717
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1718 1719 1720
	if (IS_ERR(worker->task))
		goto fail;

1721 1722 1723 1724
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1725 1726
	set_user_nice(worker->task, pool->attrs->nice);
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1727

1728 1729
	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;
T
Tejun Heo 已提交
1730 1731 1732 1733 1734 1735 1736

	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1737
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1738

1739 1740 1741 1742 1743
	/* successful, commit the pointer to idr */
	spin_lock_irq(&pool->lock);
	idr_replace(&pool->worker_idr, worker, worker->id);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1744
	return worker;
1745

T
Tejun Heo 已提交
1746 1747
fail:
	if (id >= 0) {
1748
		spin_lock_irq(&pool->lock);
1749
		idr_remove(&pool->worker_idr, id);
1750
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1760
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1761 1762
 *
 * CONTEXT:
1763
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1764 1765 1766
 */
static void start_worker(struct worker *worker)
{
1767
	worker->flags |= WORKER_STARTED;
1768
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1769
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1770 1771 1772
	wake_up_process(worker->task);
}

1773 1774 1775 1776
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1777
 * Grab the managership of @pool and create and start a new worker for it.
1778 1779 1780 1781 1782
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1783 1784
	mutex_lock(&pool->manager_mutex);

1785 1786 1787 1788 1789 1790 1791
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1792 1793
	mutex_unlock(&pool->manager_mutex);

1794 1795 1796
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1797 1798 1799 1800
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1801
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1802 1803
 *
 * CONTEXT:
1804
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1805 1806 1807
 */
static void destroy_worker(struct worker *worker)
{
1808
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1809

1810 1811 1812
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1813
	/* sanity check frenzy */
1814 1815 1816
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1817

T
Tejun Heo 已提交
1818
	if (worker->flags & WORKER_STARTED)
1819
		pool->nr_workers--;
T
Tejun Heo 已提交
1820
	if (worker->flags & WORKER_IDLE)
1821
		pool->nr_idle--;
T
Tejun Heo 已提交
1822 1823

	list_del_init(&worker->entry);
1824
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1825

1826 1827
	idr_remove(&pool->worker_idr, worker->id);

1828
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1829

T
Tejun Heo 已提交
1830 1831 1832
	kthread_stop(worker->task);
	kfree(worker);

1833
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1834 1835
}

1836
static void idle_worker_timeout(unsigned long __pool)
1837
{
1838
	struct worker_pool *pool = (void *)__pool;
1839

1840
	spin_lock_irq(&pool->lock);
1841

1842
	if (too_many_workers(pool)) {
1843 1844 1845 1846
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1847
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1848 1849 1850
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1851
			mod_timer(&pool->idle_timer, expires);
1852 1853
		else {
			/* it's been idle for too long, wake up manager */
1854
			pool->flags |= POOL_MANAGE_WORKERS;
1855
			wake_up_worker(pool);
1856
		}
1857 1858
	}

1859
	spin_unlock_irq(&pool->lock);
1860
}
1861

1862
static void send_mayday(struct work_struct *work)
1863
{
1864 1865
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1866

1867
	lockdep_assert_held(&wq_mayday_lock);
1868

1869
	if (!wq->rescuer)
1870
		return;
1871 1872

	/* mayday mayday mayday */
1873 1874
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1875
		wake_up_process(wq->rescuer->task);
1876
	}
1877 1878
}

1879
static void pool_mayday_timeout(unsigned long __pool)
1880
{
1881
	struct worker_pool *pool = (void *)__pool;
1882 1883
	struct work_struct *work;

1884
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1885
	spin_lock(&pool->lock);
1886

1887
	if (need_to_create_worker(pool)) {
1888 1889 1890 1891 1892 1893
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1894
		list_for_each_entry(work, &pool->worklist, entry)
1895
			send_mayday(work);
L
Linus Torvalds 已提交
1896
	}
1897

1898
	spin_unlock(&pool->lock);
1899
	spin_unlock_irq(&wq_mayday_lock);
1900

1901
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1902 1903
}

1904 1905
/**
 * maybe_create_worker - create a new worker if necessary
1906
 * @pool: pool to create a new worker for
1907
 *
1908
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1909 1910
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1911
 * sent to all rescuers with works scheduled on @pool to resolve
1912 1913
 * possible allocation deadlock.
 *
1914 1915
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1916 1917
 *
 * LOCKING:
1918
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1919 1920 1921 1922
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1923
 * %false if no action was taken and pool->lock stayed locked, %true
1924 1925
 * otherwise.
 */
1926
static bool maybe_create_worker(struct worker_pool *pool)
1927 1928
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1929
{
1930
	if (!need_to_create_worker(pool))
1931 1932
		return false;
restart:
1933
	spin_unlock_irq(&pool->lock);
1934

1935
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1936
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1937 1938 1939 1940

	while (true) {
		struct worker *worker;

1941
		worker = create_worker(pool);
1942
		if (worker) {
1943
			del_timer_sync(&pool->mayday_timer);
1944
			spin_lock_irq(&pool->lock);
1945
			start_worker(worker);
1946 1947
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1948 1949 1950
			return true;
		}

1951
		if (!need_to_create_worker(pool))
1952
			break;
L
Linus Torvalds 已提交
1953

1954 1955
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1956

1957
		if (!need_to_create_worker(pool))
1958 1959 1960
			break;
	}

1961
	del_timer_sync(&pool->mayday_timer);
1962
	spin_lock_irq(&pool->lock);
1963
	if (need_to_create_worker(pool))
1964 1965 1966 1967 1968 1969
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1970
 * @pool: pool to destroy workers for
1971
 *
1972
 * Destroy @pool workers which have been idle for longer than
1973 1974 1975
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1976
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1977 1978 1979
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1980
 * %false if no action was taken and pool->lock stayed locked, %true
1981 1982
 * otherwise.
 */
1983
static bool maybe_destroy_workers(struct worker_pool *pool)
1984 1985
{
	bool ret = false;
L
Linus Torvalds 已提交
1986

1987
	while (too_many_workers(pool)) {
1988 1989
		struct worker *worker;
		unsigned long expires;
1990

1991
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1992
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1993

1994
		if (time_before(jiffies, expires)) {
1995
			mod_timer(&pool->idle_timer, expires);
1996
			break;
1997
		}
L
Linus Torvalds 已提交
1998

1999 2000
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2001
	}
2002

2003
	return ret;
2004 2005
}

2006
/**
2007 2008
 * manage_workers - manage worker pool
 * @worker: self
2009
 *
2010
 * Assume the manager role and manage the worker pool @worker belongs
2011
 * to.  At any given time, there can be only zero or one manager per
2012
 * pool.  The exclusion is handled automatically by this function.
2013 2014 2015 2016
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2017 2018
 *
 * CONTEXT:
2019
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2020 2021 2022
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2023 2024
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2025
 */
2026
static bool manage_workers(struct worker *worker)
2027
{
2028
	struct worker_pool *pool = worker->pool;
2029
	bool ret = false;
2030

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2052
	if (!mutex_trylock(&pool->manager_arb))
2053
		return ret;
2054

2055
	/*
2056 2057
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2058
	 */
2059
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2060
		spin_unlock_irq(&pool->lock);
2061
		mutex_lock(&pool->manager_mutex);
2062
		spin_lock_irq(&pool->lock);
2063 2064
		ret = true;
	}
2065

2066
	pool->flags &= ~POOL_MANAGE_WORKERS;
2067 2068

	/*
2069 2070
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2071
	 */
2072 2073
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2074

2075
	mutex_unlock(&pool->manager_mutex);
2076
	mutex_unlock(&pool->manager_arb);
2077
	return ret;
2078 2079
}

2080 2081
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2082
 * @worker: self
2083 2084 2085 2086 2087 2088 2089 2090 2091
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2092
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2093
 */
T
Tejun Heo 已提交
2094
static void process_one_work(struct worker *worker, struct work_struct *work)
2095 2096
__releases(&pool->lock)
__acquires(&pool->lock)
2097
{
2098
	struct pool_workqueue *pwq = get_work_pwq(work);
2099
	struct worker_pool *pool = worker->pool;
2100
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2101
	int work_color;
2102
	struct worker *collision;
2103 2104 2105 2106 2107 2108 2109 2110
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2111 2112 2113
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2114
#endif
2115 2116 2117
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2118
	 * unbound or a disassociated pool.
2119
	 */
2120
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2121
		     !(pool->flags & POOL_DISASSOCIATED) &&
2122
		     raw_smp_processor_id() != pool->cpu);
2123

2124 2125 2126 2127 2128 2129
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2130
	collision = find_worker_executing_work(pool, work);
2131 2132 2133 2134 2135
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2136
	/* claim and dequeue */
2137
	debug_work_deactivate(work);
2138
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2139
	worker->current_work = work;
2140
	worker->current_func = work->func;
2141
	worker->current_pwq = pwq;
2142
	work_color = get_work_color(work);
2143

2144 2145
	list_del_init(&work->entry);

2146 2147 2148 2149 2150 2151 2152
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2153
	/*
2154
	 * Unbound pool isn't concurrency managed and work items should be
2155 2156
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2157 2158
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2159

2160
	/*
2161
	 * Record the last pool and clear PENDING which should be the last
2162
	 * update to @work.  Also, do this inside @pool->lock so that
2163 2164
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2165
	 */
2166
	set_work_pool_and_clear_pending(work, pool->id);
2167

2168
	spin_unlock_irq(&pool->lock);
2169

2170
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2171
	lock_map_acquire(&lockdep_map);
2172
	trace_workqueue_execute_start(work);
2173
	worker->current_func(work);
2174 2175 2176 2177 2178
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2179
	lock_map_release(&lockdep_map);
2180
	lock_map_release(&pwq->wq->lockdep_map);
2181 2182

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2183 2184
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2185 2186
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2187 2188 2189 2190
		debug_show_held_locks(current);
		dump_stack();
	}

2191
	spin_lock_irq(&pool->lock);
2192

2193 2194 2195 2196
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2197
	/* we're done with it, release */
2198
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2199
	worker->current_work = NULL;
2200
	worker->current_func = NULL;
2201
	worker->current_pwq = NULL;
2202
	worker->desc_valid = false;
2203
	pwq_dec_nr_in_flight(pwq, work_color);
2204 2205
}

2206 2207 2208 2209 2210 2211 2212 2213 2214
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2215
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2216 2217 2218
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2219
{
2220 2221
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2222
						struct work_struct, entry);
T
Tejun Heo 已提交
2223
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2224 2225 2226
	}
}

T
Tejun Heo 已提交
2227 2228
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2229
 * @__worker: self
T
Tejun Heo 已提交
2230
 *
2231 2232 2233 2234 2235
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
T
Tejun Heo 已提交
2236
 */
T
Tejun Heo 已提交
2237
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2238
{
T
Tejun Heo 已提交
2239
	struct worker *worker = __worker;
2240
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2241

2242 2243
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2244
woke_up:
2245
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2246

2247 2248
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2249
		spin_unlock_irq(&pool->lock);
2250 2251 2252
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
		return 0;
T
Tejun Heo 已提交
2253
	}
2254

T
Tejun Heo 已提交
2255
	worker_leave_idle(worker);
2256
recheck:
2257
	/* no more worker necessary? */
2258
	if (!need_more_worker(pool))
2259 2260 2261
		goto sleep;

	/* do we need to manage? */
2262
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2263 2264
		goto recheck;

T
Tejun Heo 已提交
2265 2266 2267 2268 2269
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2270
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2271

2272
	/*
2273 2274 2275 2276 2277
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2278
	 */
2279
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2280 2281

	do {
T
Tejun Heo 已提交
2282
		struct work_struct *work =
2283
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2284 2285 2286 2287 2288 2289
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2290
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2291 2292 2293
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2294
		}
2295
	} while (keep_working(pool));
2296 2297

	worker_set_flags(worker, WORKER_PREP, false);
2298
sleep:
2299
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2300
		goto recheck;
2301

T
Tejun Heo 已提交
2302
	/*
2303 2304 2305 2306 2307
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2308 2309 2310
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2311
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2312 2313
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2314 2315
}

2316 2317
/**
 * rescuer_thread - the rescuer thread function
2318
 * @__rescuer: self
2319 2320
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2321
 * workqueue which has WQ_MEM_RECLAIM set.
2322
 *
2323
 * Regular work processing on a pool may block trying to create a new
2324 2325 2326 2327 2328
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2329 2330
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2331 2332 2333 2334
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2335
static int rescuer_thread(void *__rescuer)
2336
{
2337 2338
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2339 2340 2341
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2342 2343 2344 2345 2346 2347

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2348 2349 2350
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2351 2352
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2353
		rescuer->task->flags &= ~PF_WQ_WORKER;
2354
		return 0;
2355
	}
2356

2357
	/* see whether any pwq is asking for help */
2358
	spin_lock_irq(&wq_mayday_lock);
2359 2360 2361 2362

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2363
		struct worker_pool *pool = pwq->pool;
2364 2365 2366
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2367 2368
		list_del_init(&pwq->mayday_node);

2369
		spin_unlock_irq(&wq_mayday_lock);
2370 2371

		/* migrate to the target cpu if possible */
2372
		worker_maybe_bind_and_lock(pool);
2373
		rescuer->pool = pool;
2374 2375 2376 2377 2378

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2379
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2380
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2381
			if (get_work_pwq(work) == pwq)
2382 2383 2384
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2385 2386

		/*
2387
		 * Leave this pool.  If keep_working() is %true, notify a
2388 2389 2390
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2391 2392
		if (keep_working(pool))
			wake_up_worker(pool);
2393

2394
		rescuer->pool = NULL;
2395
		spin_unlock(&pool->lock);
2396
		spin_lock(&wq_mayday_lock);
2397 2398
	}

2399
	spin_unlock_irq(&wq_mayday_lock);
2400

2401 2402
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2403 2404
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2405 2406
}

O
Oleg Nesterov 已提交
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2418 2419
/**
 * insert_wq_barrier - insert a barrier work
2420
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2421
 * @barr: wq_barrier to insert
2422 2423
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2424
 *
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2437
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2438 2439
 *
 * CONTEXT:
2440
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2441
 */
2442
static void insert_wq_barrier(struct pool_workqueue *pwq,
2443 2444
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2445
{
2446 2447 2448
	struct list_head *head;
	unsigned int linked = 0;

2449
	/*
2450
	 * debugobject calls are safe here even with pool->lock locked
2451 2452 2453 2454
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2455
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2456
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2457
	init_completion(&barr->done);
2458

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2474
	debug_work_activate(&barr->work);
2475
	insert_work(pwq, &barr->work, head,
2476
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2477 2478
}

2479
/**
2480
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2481 2482 2483 2484
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2485
 * Prepare pwqs for workqueue flushing.
2486
 *
2487 2488 2489 2490 2491
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2492 2493 2494 2495 2496 2497 2498
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2499
 * If @work_color is non-negative, all pwqs should have the same
2500 2501 2502 2503
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2504
 * mutex_lock(wq->mutex).
2505 2506 2507 2508 2509
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2510
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2511
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2512
{
2513
	bool wait = false;
2514
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2515

2516
	if (flush_color >= 0) {
2517
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2518
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2519
	}
2520

2521
	for_each_pwq(pwq, wq) {
2522
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2523

2524
		spin_lock_irq(&pool->lock);
2525

2526
		if (flush_color >= 0) {
2527
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2528

2529 2530 2531
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2532 2533 2534
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2535

2536
		if (work_color >= 0) {
2537
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2538
			pwq->work_color = work_color;
2539
		}
L
Linus Torvalds 已提交
2540

2541
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2542
	}
2543

2544
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2545
		complete(&wq->first_flusher->done);
2546

2547
	return wait;
L
Linus Torvalds 已提交
2548 2549
}

2550
/**
L
Linus Torvalds 已提交
2551
 * flush_workqueue - ensure that any scheduled work has run to completion.
2552
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2553
 *
2554 2555
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2556
 */
2557
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2558
{
2559 2560 2561 2562 2563 2564
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2565

2566 2567
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2568

2569
	mutex_lock(&wq->mutex);
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2582
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2583 2584 2585 2586 2587
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2588
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2589 2590 2591

			wq->first_flusher = &this_flusher;

2592
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2593 2594 2595 2596 2597 2598 2599 2600
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2601
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2602
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2603
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2614
	mutex_unlock(&wq->mutex);
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2627
	mutex_lock(&wq->mutex);
2628

2629 2630 2631 2632
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2633 2634
	wq->first_flusher = NULL;

2635 2636
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2649 2650
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2670
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2671 2672 2673
		}

		if (list_empty(&wq->flusher_queue)) {
2674
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2675 2676 2677 2678 2679
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2680
		 * the new first flusher and arm pwqs.
2681
		 */
2682 2683
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2684 2685 2686 2687

		list_del_init(&next->list);
		wq->first_flusher = next;

2688
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2699
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2700
}
2701
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2702

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2717
	struct pool_workqueue *pwq;
2718 2719 2720 2721

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2722
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2723
	 */
2724
	mutex_lock(&wq->mutex);
2725
	if (!wq->nr_drainers++)
2726
		wq->flags |= __WQ_DRAINING;
2727
	mutex_unlock(&wq->mutex);
2728 2729 2730
reflush:
	flush_workqueue(wq);

2731
	mutex_lock(&wq->mutex);
2732

2733
	for_each_pwq(pwq, wq) {
2734
		bool drained;
2735

2736
		spin_lock_irq(&pwq->pool->lock);
2737
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2738
		spin_unlock_irq(&pwq->pool->lock);
2739 2740

		if (drained)
2741 2742 2743 2744
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2745
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2746
				wq->name, flush_cnt);
2747

2748
		mutex_unlock(&wq->mutex);
2749 2750 2751 2752
		goto reflush;
	}

	if (!--wq->nr_drainers)
2753
		wq->flags &= ~__WQ_DRAINING;
2754
	mutex_unlock(&wq->mutex);
2755 2756 2757
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2758
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2759
{
2760
	struct worker *worker = NULL;
2761
	struct worker_pool *pool;
2762
	struct pool_workqueue *pwq;
2763 2764

	might_sleep();
2765 2766

	local_irq_disable();
2767
	pool = get_work_pool(work);
2768 2769
	if (!pool) {
		local_irq_enable();
2770
		return false;
2771
	}
2772

2773
	spin_lock(&pool->lock);
2774
	/* see the comment in try_to_grab_pending() with the same code */
2775 2776 2777
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2778
			goto already_gone;
2779
	} else {
2780
		worker = find_worker_executing_work(pool, work);
2781
		if (!worker)
T
Tejun Heo 已提交
2782
			goto already_gone;
2783
		pwq = worker->current_pwq;
2784
	}
2785

2786
	insert_wq_barrier(pwq, barr, work, worker);
2787
	spin_unlock_irq(&pool->lock);
2788

2789 2790 2791 2792 2793 2794
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2795
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2796
		lock_map_acquire(&pwq->wq->lockdep_map);
2797
	else
2798 2799
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2800

2801
	return true;
T
Tejun Heo 已提交
2802
already_gone:
2803
	spin_unlock_irq(&pool->lock);
2804
	return false;
2805
}
2806 2807 2808 2809 2810

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2811 2812
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2813 2814 2815 2816 2817 2818 2819 2820 2821
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2822 2823 2824
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2825
	if (start_flush_work(work, &barr)) {
2826 2827 2828
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2829
	} else {
2830
		return false;
2831 2832
	}
}
2833
EXPORT_SYMBOL_GPL(flush_work);
2834

2835
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2836
{
2837
	unsigned long flags;
2838 2839 2840
	int ret;

	do {
2841 2842 2843 2844 2845 2846
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2847
			flush_work(work);
2848 2849
	} while (unlikely(ret < 0));

2850 2851 2852 2853
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2854
	flush_work(work);
2855
	clear_work_data(work);
2856 2857 2858
	return ret;
}

2859
/**
2860 2861
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2862
 *
2863 2864 2865 2866
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2867
 *
2868 2869
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2870
 *
2871
 * The caller must ensure that the workqueue on which @work was last
2872
 * queued can't be destroyed before this function returns.
2873 2874 2875
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2876
 */
2877
bool cancel_work_sync(struct work_struct *work)
2878
{
2879
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2880
}
2881
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2882

2883
/**
2884 2885
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2886
 *
2887 2888 2889
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2890
 *
2891 2892 2893
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2894
 */
2895 2896
bool flush_delayed_work(struct delayed_work *dwork)
{
2897
	local_irq_disable();
2898
	if (del_timer_sync(&dwork->timer))
2899
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2900
	local_irq_enable();
2901 2902 2903 2904
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2905
/**
2906 2907
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2908
 *
2909 2910 2911 2912 2913
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2914
 *
2915
 * This function is safe to call from any context including IRQ handler.
2916
 */
2917
bool cancel_delayed_work(struct delayed_work *dwork)
2918
{
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2929 2930
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2931
	local_irq_restore(flags);
2932
	return ret;
2933
}
2934
EXPORT_SYMBOL(cancel_delayed_work);
2935

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2946
{
2947
	return __cancel_work_timer(&dwork->work, true);
2948
}
2949
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2950

2951
/**
2952
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2953 2954
 * @func: the function to call
 *
2955 2956
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2957
 * schedule_on_each_cpu() is very slow.
2958 2959 2960
 *
 * RETURNS:
 * 0 on success, -errno on failure.
2961
 */
2962
int schedule_on_each_cpu(work_func_t func)
2963 2964
{
	int cpu;
2965
	struct work_struct __percpu *works;
2966

2967 2968
	works = alloc_percpu(struct work_struct);
	if (!works)
2969
		return -ENOMEM;
2970

2971 2972
	get_online_cpus();

2973
	for_each_online_cpu(cpu) {
2974 2975 2976
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2977
		schedule_work_on(cpu, work);
2978
	}
2979 2980 2981 2982

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2983
	put_online_cpus();
2984
	free_percpu(works);
2985 2986 2987
	return 0;
}

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3012 3013
void flush_scheduled_work(void)
{
3014
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3015
}
3016
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3017

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3030
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3031 3032
{
	if (!in_interrupt()) {
3033
		fn(&ew->work);
3034 3035 3036
		return 0;
	}

3037
	INIT_WORK(&ew->work, fn);
3038 3039 3040 3041 3042 3043
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t wq_per_cpu_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}

static ssize_t wq_max_active_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t wq_max_active_store(struct device *dev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}

static struct device_attribute wq_sysfs_attrs[] = {
	__ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
	__ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
	__ATTR_NULL,
};

3107 3108
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3109 3110
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3111 3112
	const char *delim = "";
	int node, written = 0;
3113 3114

	rcu_read_lock_sched();
3115 3116 3117 3118 3119 3120 3121
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3133 3134 3135
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3149 3150 3151
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= -20 && attrs->nice <= 19)
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3182 3183 3184
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3245
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3246
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3247 3248
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3249
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_attrs			= wq_sysfs_attrs,
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Returns 0 on success, -errno on failure.
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.  Returns NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3389
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3390 3391 3392 3393 3394 3395
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3409 3410
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3425 3426 3427 3428 3429
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3430 3431 3432
 * Returns 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3433 3434
 */
static int init_worker_pool(struct worker_pool *pool)
3435 3436
{
	spin_lock_init(&pool->lock);
3437 3438
	pool->id = -1;
	pool->cpu = -1;
3439
	pool->node = NUMA_NO_NODE;
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3453
	mutex_init(&pool->manager_mutex);
3454
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3455

3456 3457 3458 3459
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3460 3461 3462 3463
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3464 3465
}

3466 3467 3468 3469
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3470
	idr_destroy(&pool->worker_idr);
3471 3472 3473 3474 3475 3476 3477 3478 3479
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3480 3481 3482
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3483 3484
 *
 * Should be called with wq_pool_mutex held.
3485 3486 3487 3488 3489
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3490 3491 3492
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3493 3494 3495 3496
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3497
	    WARN_ON(!list_empty(&pool->worklist)))
3498 3499 3500 3501 3502 3503 3504
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3505 3506 3507 3508 3509
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3510
	mutex_lock(&pool->manager_arb);
3511
	mutex_lock(&pool->manager_mutex);
3512 3513 3514 3515 3516 3517 3518
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3519
	mutex_unlock(&pool->manager_mutex);
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.  On failure, returns NULL.
3538 3539
 *
 * Should be called with wq_pool_mutex held.
3540 3541 3542 3543 3544
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3545
	int node;
3546

3547
	lockdep_assert_held(&wq_pool_mutex);
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3562 3563 3564
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3565
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3566 3567
	copy_workqueue_attrs(pool->attrs, attrs);

3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3579 3580 3581 3582
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3583
	if (create_and_start_worker(pool) < 0)
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3612
	bool is_last;
T
Tejun Heo 已提交
3613 3614 3615 3616

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3617
	/*
3618
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3619 3620 3621
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3622
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3623
	list_del_rcu(&pwq->pwqs_node);
3624
	is_last = list_empty(&wq->pwqs);
3625
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3626

3627
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3628
	put_unbound_pool(pool);
3629 3630
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3631 3632 3633 3634 3635 3636
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3637 3638
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3639
		kfree(wq);
3640
	}
T
Tejun Heo 已提交
3641 3642
}

3643
/**
3644
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3645 3646
 * @pwq: target pool_workqueue
 *
3647 3648 3649
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3650
 */
3651
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3652
{
3653 3654 3655 3656
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3657
	lockdep_assert_held(&wq->mutex);
3658 3659 3660 3661 3662

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3663
	spin_lock_irq(&pwq->pool->lock);
3664 3665 3666

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3667

3668 3669 3670
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3671 3672 3673 3674 3675 3676

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3677 3678 3679 3680
	} else {
		pwq->max_active = 0;
	}

3681
	spin_unlock_irq(&pwq->pool->lock);
3682 3683
}

3684
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3685 3686
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3687 3688 3689
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3690 3691
	memset(pwq, 0, sizeof(*pwq));

3692 3693 3694
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3695
	pwq->refcnt = 1;
3696
	INIT_LIST_HEAD(&pwq->delayed_works);
3697
	INIT_LIST_HEAD(&pwq->pwqs_node);
3698
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3699
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3700
}
3701

3702
/* sync @pwq with the current state of its associated wq and link it */
3703
static void link_pwq(struct pool_workqueue *pwq)
3704 3705 3706 3707
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3708

3709 3710 3711 3712
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3713 3714
	/*
	 * Set the matching work_color.  This is synchronized with
3715
	 * wq->mutex to avoid confusing flush_workqueue().
3716
	 */
3717
	pwq->work_color = wq->work_color;
3718 3719 3720 3721 3722

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3723
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3724
}
3725

3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3739
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3740 3741 3742
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3743
	}
3744

3745 3746
	init_pwq(pwq, wq, pool);
	return pwq;
3747 3748
}

3749 3750 3751 3752 3753 3754 3755
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3756
		kmem_cache_free(pwq_cache, pwq);
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
 * calculation.  The result is stored in @cpumask.  This function returns
 * %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3784
	if (!wq_numa_enabled || attrs->no_numa)
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3821 3822 3823 3824 3825
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3826 3827 3828 3829 3830 3831
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3832 3833 3834 3835 3836 3837 3838
 *
 * Performs GFP_KERNEL allocations.  Returns 0 on success and -errno on
 * failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3839 3840
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3841
	int node, ret;
3842

3843
	/* only unbound workqueues can change attributes */
3844 3845 3846
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3847 3848 3849 3850
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3851
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3852
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3853 3854
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3855 3856
		goto enomem;

3857
	/* make a copy of @attrs and sanitize it */
3858 3859 3860
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3875
	mutex_lock(&wq_pool_mutex);
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3897
	mutex_unlock(&wq_pool_mutex);
3898

3899
	/* all pwqs have been created successfully, let's install'em */
3900
	mutex_lock(&wq->mutex);
3901

3902
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3903 3904

	/* save the previous pwq and install the new one */
3905
	for_each_node(node)
3906 3907 3908 3909 3910
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3911 3912

	mutex_unlock(&wq->mutex);
3913

3914 3915 3916 3917 3918 3919
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3920 3921 3922
	ret = 0;
	/* fall through */
out_free:
3923
	free_workqueue_attrs(tmp_attrs);
3924
	free_workqueue_attrs(new_attrs);
3925
	kfree(pwq_tbl);
3926
	return ret;
3927

3928 3929 3930 3931 3932 3933 3934
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3935
enomem:
3936 3937
	ret = -ENOMEM;
	goto out_free;
3938 3939
}

3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
3985 3986
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
	 * wq's, the default pwq should be used.  If @pwq is already the
	 * default one, nothing to do; otherwise, install the default one.
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
		if (pwq == wq->dfl_pwq)
			goto out_unlock;
		else
			goto use_dfl_pwq;
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			   wq->name);
		goto out_unlock;
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4038
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4039
{
4040
	bool highpri = wq->flags & WQ_HIGHPRI;
4041 4042 4043
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
4044 4045
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4046 4047 4048
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4049 4050
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4051
			struct worker_pool *cpu_pools =
4052
				per_cpu(cpu_worker_pools, cpu);
4053

4054 4055 4056
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4057
			link_pwq(pwq);
4058
			mutex_unlock(&wq->mutex);
4059
		}
4060
		return 0;
4061
	} else {
4062
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4063
	}
T
Tejun Heo 已提交
4064 4065
}

4066 4067
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4068
{
4069 4070 4071
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4072 4073
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4074

4075
	return clamp_val(max_active, 1, lim);
4076 4077
}

4078
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4079 4080 4081
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4082
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4083
{
4084
	size_t tbl_size = 0;
4085
	va_list args;
L
Linus Torvalds 已提交
4086
	struct workqueue_struct *wq;
4087
	struct pool_workqueue *pwq;
4088

4089
	/* allocate wq and format name */
4090 4091 4092 4093
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4094
	if (!wq)
4095
		return NULL;
4096

4097 4098 4099 4100 4101 4102
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4103 4104
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4105
	va_end(args);
L
Linus Torvalds 已提交
4106

4107
	max_active = max_active ?: WQ_DFL_ACTIVE;
4108
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4109

4110
	/* init wq */
4111
	wq->flags = flags;
4112
	wq->saved_max_active = max_active;
4113
	mutex_init(&wq->mutex);
4114
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4115
	INIT_LIST_HEAD(&wq->pwqs);
4116 4117
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4118
	INIT_LIST_HEAD(&wq->maydays);
4119

4120
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4121
	INIT_LIST_HEAD(&wq->list);
4122

4123
	if (alloc_and_link_pwqs(wq) < 0)
4124
		goto err_free_wq;
T
Tejun Heo 已提交
4125

4126 4127 4128 4129 4130
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4131 4132
		struct worker *rescuer;

4133
		rescuer = alloc_worker();
4134
		if (!rescuer)
4135
			goto err_destroy;
4136

4137 4138
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4139
					       wq->name);
4140 4141 4142 4143
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4144

4145
		wq->rescuer = rescuer;
4146
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4147
		wake_up_process(rescuer->task);
4148 4149
	}

4150 4151 4152
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4153
	/*
4154 4155 4156
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4157
	 */
4158
	mutex_lock(&wq_pool_mutex);
4159

4160
	mutex_lock(&wq->mutex);
4161 4162
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4163
	mutex_unlock(&wq->mutex);
4164

T
Tejun Heo 已提交
4165
	list_add(&wq->list, &workqueues);
4166

4167
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4168

4169
	return wq;
4170 4171

err_free_wq:
4172
	free_workqueue_attrs(wq->unbound_attrs);
4173 4174 4175 4176
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4177
	return NULL;
4178
}
4179
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4180

4181 4182 4183 4184 4185 4186 4187 4188
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4189
	struct pool_workqueue *pwq;
4190
	int node;
4191

4192 4193
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4194

4195
	/* sanity checks */
4196
	mutex_lock(&wq->mutex);
4197
	for_each_pwq(pwq, wq) {
4198 4199
		int i;

4200 4201
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4202
				mutex_unlock(&wq->mutex);
4203
				return;
4204 4205 4206
			}
		}

4207
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4208
		    WARN_ON(pwq->nr_active) ||
4209
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4210
			mutex_unlock(&wq->mutex);
4211
			return;
4212
		}
4213
	}
4214
	mutex_unlock(&wq->mutex);
4215

4216 4217 4218 4219
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4220
	mutex_lock(&wq_pool_mutex);
4221
	list_del_init(&wq->list);
4222
	mutex_unlock(&wq_pool_mutex);
4223

4224 4225
	workqueue_sysfs_unregister(wq);

4226
	if (wq->rescuer) {
4227
		kthread_stop(wq->rescuer->task);
4228
		kfree(wq->rescuer);
4229
		wq->rescuer = NULL;
4230 4231
	}

T
Tejun Heo 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4242 4243
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4244
		 */
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4257
		put_pwq_unlocked(pwq);
4258
	}
4259 4260 4261
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4274
	struct pool_workqueue *pwq;
4275

4276 4277 4278 4279
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4280
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4281

4282
	mutex_lock(&wq->mutex);
4283 4284 4285

	wq->saved_max_active = max_active;

4286 4287
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4288

4289
	mutex_unlock(&wq->mutex);
4290
}
4291
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4292

4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4303
	return worker && worker->rescue_wq;
4304 4305
}

4306
/**
4307 4308 4309
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4310
 *
4311 4312 4313
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4314
 *
4315 4316 4317 4318 4319 4320
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4321 4322
 * RETURNS:
 * %true if congested, %false otherwise.
4323
 */
4324
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4325
{
4326
	struct pool_workqueue *pwq;
4327 4328
	bool ret;

4329
	rcu_read_lock_sched();
4330

4331 4332 4333
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4334 4335 4336
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4337
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4338

4339
	ret = !list_empty(&pwq->delayed_works);
4340
	rcu_read_unlock_sched();
4341 4342

	return ret;
L
Linus Torvalds 已提交
4343
}
4344
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4345

4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4358
{
4359
	struct worker_pool *pool;
4360 4361
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4362

4363 4364
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4365

4366 4367
	local_irq_save(flags);
	pool = get_work_pool(work);
4368
	if (pool) {
4369
		spin_lock(&pool->lock);
4370 4371
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4372
		spin_unlock(&pool->lock);
4373
	}
4374
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4375

4376
	return ret;
L
Linus Torvalds 已提交
4377
}
4378
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4379

4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4457 4458 4459
/*
 * CPU hotplug.
 *
4460
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4461
 * are a lot of assumptions on strong associations among work, pwq and
4462
 * pool which make migrating pending and scheduled works very
4463
 * difficult to implement without impacting hot paths.  Secondly,
4464
 * worker pools serve mix of short, long and very long running works making
4465 4466
 * blocked draining impractical.
 *
4467
 * This is solved by allowing the pools to be disassociated from the CPU
4468 4469
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4470
 */
L
Linus Torvalds 已提交
4471

4472
static void wq_unbind_fn(struct work_struct *work)
4473
{
4474
	int cpu = smp_processor_id();
4475
	struct worker_pool *pool;
4476
	struct worker *worker;
4477
	int wi;
4478

4479
	for_each_cpu_worker_pool(pool, cpu) {
4480
		WARN_ON_ONCE(cpu != smp_processor_id());
4481

4482
		mutex_lock(&pool->manager_mutex);
4483
		spin_lock_irq(&pool->lock);
4484

4485
		/*
4486
		 * We've blocked all manager operations.  Make all workers
4487 4488 4489 4490 4491
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4492
		for_each_pool_worker(worker, wi, pool)
4493
			worker->flags |= WORKER_UNBOUND;
4494

4495
		pool->flags |= POOL_DISASSOCIATED;
4496

4497
		spin_unlock_irq(&pool->lock);
4498
		mutex_unlock(&pool->manager_mutex);
4499

4500 4501 4502 4503 4504 4505 4506
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4507

4508 4509 4510 4511 4512 4513 4514 4515
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4516
		atomic_set(&pool->nr_running, 0);
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4527 4528
}

T
Tejun Heo 已提交
4529 4530 4531 4532
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4533
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4534 4535 4536
 */
static void rebind_workers(struct worker_pool *pool)
{
4537 4538
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4539 4540 4541

	lockdep_assert_held(&pool->manager_mutex);

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4552

4553
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4554

4555 4556
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4557 4558

		/*
4559 4560 4561 4562 4563 4564
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4565
		 */
4566 4567
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4568

4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4588
	}
4589 4590

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4591 4592
}

4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4626 4627 4628 4629
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4630
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4631 4632
					       unsigned long action,
					       void *hcpu)
4633
{
4634
	int cpu = (unsigned long)hcpu;
4635
	struct worker_pool *pool;
4636
	struct workqueue_struct *wq;
4637
	int pi;
4638

T
Tejun Heo 已提交
4639
	switch (action & ~CPU_TASKS_FROZEN) {
4640
	case CPU_UP_PREPARE:
4641
		for_each_cpu_worker_pool(pool, cpu) {
4642 4643
			if (pool->nr_workers)
				continue;
4644
			if (create_and_start_worker(pool) < 0)
4645
				return NOTIFY_BAD;
4646
		}
T
Tejun Heo 已提交
4647
		break;
4648

4649 4650
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4651
		mutex_lock(&wq_pool_mutex);
4652 4653

		for_each_pool(pool, pi) {
4654
			mutex_lock(&pool->manager_mutex);
4655

4656 4657 4658 4659
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4660

4661 4662 4663 4664
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4665

4666
			mutex_unlock(&pool->manager_mutex);
4667
		}
4668

4669 4670 4671 4672
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4673
		mutex_unlock(&wq_pool_mutex);
4674
		break;
4675
	}
4676 4677 4678 4679 4680 4681 4682
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4683
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4684 4685 4686
						 unsigned long action,
						 void *hcpu)
{
4687
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4688
	struct work_struct unbind_work;
4689
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4690

4691 4692
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4693
		/* unbinding per-cpu workers should happen on the local CPU */
4694
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4695
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4696 4697 4698 4699 4700 4701 4702 4703

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4704 4705
		flush_work(&unbind_work);
		break;
4706 4707 4708 4709
	}
	return NOTIFY_OK;
}

4710
#ifdef CONFIG_SMP
4711

4712
struct work_for_cpu {
4713
	struct work_struct work;
4714 4715 4716 4717 4718
	long (*fn)(void *);
	void *arg;
	long ret;
};

4719
static void work_for_cpu_fn(struct work_struct *work)
4720
{
4721 4722
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4723 4724 4725 4726 4727 4728 4729 4730 4731
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4732 4733
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
4734
 * The caller must not hold any locks which would prevent @fn from completing.
4735
 */
4736
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4737
{
4738
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4739

4740 4741 4742
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
4743 4744 4745 4746 4747
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4748 4749 4750 4751 4752
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4753
 * Start freezing workqueues.  After this function returns, all freezable
4754
 * workqueues will queue new works to their delayed_works list instead of
4755
 * pool->worklist.
4756 4757
 *
 * CONTEXT:
4758
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4759 4760 4761
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4762
	struct worker_pool *pool;
4763 4764
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4765
	int pi;
4766

4767
	mutex_lock(&wq_pool_mutex);
4768

4769
	WARN_ON_ONCE(workqueue_freezing);
4770 4771
	workqueue_freezing = true;

4772
	/* set FREEZING */
4773
	for_each_pool(pool, pi) {
4774
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4775 4776
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4777
		spin_unlock_irq(&pool->lock);
4778
	}
4779

4780
	list_for_each_entry(wq, &workqueues, list) {
4781
		mutex_lock(&wq->mutex);
4782 4783
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4784
		mutex_unlock(&wq->mutex);
4785
	}
4786

4787
	mutex_unlock(&wq_pool_mutex);
4788 4789 4790
}

/**
4791
 * freeze_workqueues_busy - are freezable workqueues still busy?
4792 4793 4794 4795 4796
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4797
 * Grabs and releases wq_pool_mutex.
4798 4799
 *
 * RETURNS:
4800 4801
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4802 4803 4804 4805
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4806 4807
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4808

4809
	mutex_lock(&wq_pool_mutex);
4810

4811
	WARN_ON_ONCE(!workqueue_freezing);
4812

4813 4814 4815
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4816 4817 4818 4819
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4820
		rcu_read_lock_sched();
4821
		for_each_pwq(pwq, wq) {
4822
			WARN_ON_ONCE(pwq->nr_active < 0);
4823
			if (pwq->nr_active) {
4824
				busy = true;
4825
				rcu_read_unlock_sched();
4826 4827 4828
				goto out_unlock;
			}
		}
4829
		rcu_read_unlock_sched();
4830 4831
	}
out_unlock:
4832
	mutex_unlock(&wq_pool_mutex);
4833 4834 4835 4836 4837 4838 4839
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4840
 * frozen works are transferred to their respective pool worklists.
4841 4842
 *
 * CONTEXT:
4843
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4844 4845 4846
 */
void thaw_workqueues(void)
{
4847 4848 4849
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4850
	int pi;
4851

4852
	mutex_lock(&wq_pool_mutex);
4853 4854 4855 4856

	if (!workqueue_freezing)
		goto out_unlock;

4857
	/* clear FREEZING */
4858
	for_each_pool(pool, pi) {
4859
		spin_lock_irq(&pool->lock);
4860 4861
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4862
		spin_unlock_irq(&pool->lock);
4863
	}
4864

4865 4866
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4867
		mutex_lock(&wq->mutex);
4868 4869
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4870
		mutex_unlock(&wq->mutex);
4871 4872 4873 4874
	}

	workqueue_freezing = false;
out_unlock:
4875
	mutex_unlock(&wq_pool_mutex);
4876 4877 4878
}
#endif /* CONFIG_FREEZER */

4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4891 4892 4893 4894 4895
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4896 4897 4898
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, node));

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4924
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4925
{
T
Tejun Heo 已提交
4926 4927
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4928

4929 4930
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4931
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4932

4933 4934 4935 4936
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4937
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4938
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4939

4940 4941
	wq_numa_init();

4942
	/* initialize CPU pools */
4943
	for_each_possible_cpu(cpu) {
4944
		struct worker_pool *pool;
4945

T
Tejun Heo 已提交
4946
		i = 0;
4947
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4948
			BUG_ON(init_worker_pool(pool));
4949
			pool->cpu = cpu;
4950
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4951
			pool->attrs->nice = std_nice[i++];
4952
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
4953

T
Tejun Heo 已提交
4954
			/* alloc pool ID */
4955
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4956
			BUG_ON(worker_pool_assign_id(pool));
4957
			mutex_unlock(&wq_pool_mutex);
4958
		}
4959 4960
	}

4961
	/* create the initial worker */
4962
	for_each_online_cpu(cpu) {
4963
		struct worker_pool *pool;
4964

4965
		for_each_cpu_worker_pool(pool, cpu) {
4966
			pool->flags &= ~POOL_DISASSOCIATED;
4967
			BUG_ON(create_and_start_worker(pool) < 0);
4968
		}
4969 4970
	}

4971 4972 4973 4974 4975 4976 4977 4978 4979
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
	}

4980
	system_wq = alloc_workqueue("events", 0, 0);
4981
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4982
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4983 4984
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4985 4986
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4987
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4988
	       !system_unbound_wq || !system_freezable_wq);
4989
	return 0;
L
Linus Torvalds 已提交
4990
}
4991
early_initcall(init_workqueues);