workqueue.c 140.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67 68
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
69
	 * create_worker() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
73

T
Tejun Heo 已提交
74 75 76
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
77
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
78
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
79
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
80
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
81

82 83
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
84

85
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
86

87
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
88
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
89

90 91 92
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

93 94 95
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
96 97 98 99 100 101 102 103
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
104
	HIGHPRI_NICE_LEVEL	= -20,
105 106

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
107
};
L
Linus Torvalds 已提交
108 109

/*
T
Tejun Heo 已提交
110 111
 * Structure fields follow one of the following exclusion rules.
 *
112 113
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
114
 *
115 116 117
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
118
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
119
 *
120 121 122 123
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
124
 *
125
 * M: pool->manager_mutex protected.
126
 *
127
 * PL: wq_pool_mutex protected.
128
 *
129
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
130
 *
131 132
 * WQ: wq->mutex protected.
 *
133
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
134 135
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
136 137
 */

138
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
139

140
struct worker_pool {
141
	spinlock_t		lock;		/* the pool lock */
142
	int			cpu;		/* I: the associated cpu */
143
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
144
	int			id;		/* I: pool ID */
145
	unsigned int		flags;		/* X: flags */
146 147 148

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
149 150

	/* nr_idle includes the ones off idle_list for rebinding */
151 152 153 154 155 156
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

157
	/* a workers is either on busy_hash or idle_list, or the manager */
158 159 160
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

161
	/* see manage_workers() for details on the two manager mutexes */
162
	struct mutex		manager_arb;	/* manager arbitration */
163
	struct mutex		manager_mutex;	/* manager exclusion */
164
	struct idr		worker_idr;	/* M: worker IDs and iteration */
165
	struct completion	*detach_completion; /* all workers detached */
166

T
Tejun Heo 已提交
167
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
168 169
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
170

171 172 173 174 175 176
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
177 178 179 180 181 182

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
183 184
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
185
/*
186 187 188 189
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
190
 */
191
struct pool_workqueue {
192
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
193
	struct workqueue_struct *wq;		/* I: the owning workqueue */
194 195
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
196
	int			refcnt;		/* L: reference count */
197 198
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
199
	int			nr_active;	/* L: nr of active works */
200
	int			max_active;	/* L: max active works */
201
	struct list_head	delayed_works;	/* L: delayed works */
202
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
203
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
204 205 206 207 208

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
209
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
210 211 212
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
213
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
214

215 216 217 218
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
219 220
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
221 222 223
	struct completion	done;		/* flush completion */
};

224 225
struct wq_device;

L
Linus Torvalds 已提交
226
/*
227 228
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
229 230
 */
struct workqueue_struct {
231
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
232
	struct list_head	list;		/* PL: list of all workqueues */
233

234 235 236
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
237
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
238 239 240
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
241

242
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
243 244
	struct worker		*rescuer;	/* I: rescue worker */

245
	int			nr_drainers;	/* WQ: drain in progress */
246
	int			saved_max_active; /* WQ: saved pwq max_active */
247

248
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
249
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
250

251 252 253
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
254
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
255
	struct lockdep_map	lockdep_map;
256
#endif
257
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
258 259 260 261

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
262
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
263 264
};

265 266
static struct kmem_cache *pwq_cache;

267 268 269 270
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

271 272 273
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

274 275 276 277 278 279 280 281 282
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

283 284
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

285 286 287
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

288
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
289
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
290

291 292
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
293 294 295 296 297

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

298
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
299

300
/* PL: hash of all unbound pools keyed by pool->attrs */
301 302
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

303
/* I: attributes used when instantiating standard unbound pools on demand */
304 305
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

306 307 308
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

309
struct workqueue_struct *system_wq __read_mostly;
310
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
311
struct workqueue_struct *system_highpri_wq __read_mostly;
312
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
313
struct workqueue_struct *system_long_wq __read_mostly;
314
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
315
struct workqueue_struct *system_unbound_wq __read_mostly;
316
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
317
struct workqueue_struct *system_freezable_wq __read_mostly;
318
EXPORT_SYMBOL_GPL(system_freezable_wq);
319 320 321 322
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
323

324 325 326 327
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

328 329 330
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

331
#define assert_rcu_or_pool_mutex()					\
332
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
333 334
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
335

336
#define assert_rcu_or_wq_mutex(wq)					\
337
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
338
			   lockdep_is_held(&wq->mutex),			\
339
			   "sched RCU or wq->mutex should be held")
340

341 342 343
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
344
	     (pool)++)
345

T
Tejun Heo 已提交
346 347 348
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
349
 * @pi: integer used for iteration
350
 *
351 352 353
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
354 355 356
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
357
 */
358 359
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
360
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
361
		else
T
Tejun Heo 已提交
362

363 364 365 366 367 368
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
369
 * This must be called with @pool->manager_mutex.
370 371 372 373 374 375
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
376
		if (({ lockdep_assert_held(&pool->manager_mutex); false; })) { } \
377 378
		else

379 380 381 382
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
383
 *
384
 * This must be called either with wq->mutex held or sched RCU read locked.
385 386
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
387 388 389
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
390 391
 */
#define for_each_pwq(pwq, wq)						\
392
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
393
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
394
		else
395

396 397 398 399
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

400 401 402 403 404
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
440
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
476
	.debug_hint	= work_debug_hint,
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

507 508 509 510 511 512 513
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

514 515 516 517 518
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

519 520 521 522 523 524 525
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
526 527 528 529
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

530
	lockdep_assert_held(&wq_pool_mutex);
531

532 533
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
534
	if (ret >= 0) {
T
Tejun Heo 已提交
535
		pool->id = ret;
536 537
		return 0;
	}
538
	return ret;
539 540
}

541 542 543 544 545 546 547 548
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
549 550
 *
 * Return: The unbound pool_workqueue for @node.
551 552 553 554 555 556 557 558
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
574

575
/*
576 577
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
578
 * is cleared and the high bits contain OFFQ flags and pool ID.
579
 *
580 581
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
582 583
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
584
 *
585
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
586
 * corresponding to a work.  Pool is available once the work has been
587
 * queued anywhere after initialization until it is sync canceled.  pwq is
588
 * available only while the work item is queued.
589
 *
590 591 592 593
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
594
 */
595 596
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
597
{
598
	WARN_ON_ONCE(!work_pending(work));
599 600
	atomic_long_set(&work->data, data | flags | work_static(work));
}
601

602
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
603 604
			 unsigned long extra_flags)
{
605 606
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
607 608
}

609 610 611 612 613 614 615
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

616 617
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
618
{
619 620 621 622 623 624 625
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
626
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
627
}
628

629
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
630
{
631 632
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
633 634
}

635
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
636
{
637
	unsigned long data = atomic_long_read(&work->data);
638

639
	if (data & WORK_STRUCT_PWQ)
640 641 642
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
643 644
}

645 646 647 648
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
649 650 651
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
652 653 654 655 656
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
657 658
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
659 660
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
661
{
662
	unsigned long data = atomic_long_read(&work->data);
663
	int pool_id;
664

665
	assert_rcu_or_pool_mutex();
666

667 668
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
669
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
670

671 672
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
673 674
		return NULL;

675
	return idr_find(&worker_pool_idr, pool_id);
676 677 678 679 680 681
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
682
 * Return: The worker_pool ID @work was last associated with.
683 684 685 686
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
687 688
	unsigned long data = atomic_long_read(&work->data);

689 690
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
691
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
692

693
	return data >> WORK_OFFQ_POOL_SHIFT;
694 695
}

696 697
static void mark_work_canceling(struct work_struct *work)
{
698
	unsigned long pool_id = get_work_pool_id(work);
699

700 701
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
702 703 704 705 706 707
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

708
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
709 710
}

711
/*
712 713
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
714
 * they're being called with pool->lock held.
715 716
 */

717
static bool __need_more_worker(struct worker_pool *pool)
718
{
719
	return !atomic_read(&pool->nr_running);
720 721
}

722
/*
723 724
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
725 726
 *
 * Note that, because unbound workers never contribute to nr_running, this
727
 * function will always return %true for unbound pools as long as the
728
 * worklist isn't empty.
729
 */
730
static bool need_more_worker(struct worker_pool *pool)
731
{
732
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
733
}
734

735
/* Can I start working?  Called from busy but !running workers. */
736
static bool may_start_working(struct worker_pool *pool)
737
{
738
	return pool->nr_idle;
739 740 741
}

/* Do I need to keep working?  Called from currently running workers. */
742
static bool keep_working(struct worker_pool *pool)
743
{
744 745
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
746 747 748
}

/* Do we need a new worker?  Called from manager. */
749
static bool need_to_create_worker(struct worker_pool *pool)
750
{
751
	return need_more_worker(pool) && !may_start_working(pool);
752
}
753

754
/* Do we have too many workers and should some go away? */
755
static bool too_many_workers(struct worker_pool *pool)
756
{
757
	bool managing = mutex_is_locked(&pool->manager_arb);
758 759
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
760

761 762 763 764 765 766 767
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

768
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
769 770
}

771
/*
772 773 774
 * Wake up functions.
 */

775
/* Return the first worker.  Safe with preemption disabled */
776
static struct worker *first_worker(struct worker_pool *pool)
777
{
778
	if (unlikely(list_empty(&pool->idle_list)))
779 780
		return NULL;

781
	return list_first_entry(&pool->idle_list, struct worker, entry);
782 783 784 785
}

/**
 * wake_up_worker - wake up an idle worker
786
 * @pool: worker pool to wake worker from
787
 *
788
 * Wake up the first idle worker of @pool.
789 790
 *
 * CONTEXT:
791
 * spin_lock_irq(pool->lock).
792
 */
793
static void wake_up_worker(struct worker_pool *pool)
794
{
795
	struct worker *worker = first_worker(pool);
796 797 798 799 800

	if (likely(worker))
		wake_up_process(worker->task);
}

801
/**
802 803 804 805 806 807 808 809 810 811
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
812
void wq_worker_waking_up(struct task_struct *task, int cpu)
813 814 815
{
	struct worker *worker = kthread_data(task);

816
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
817
		WARN_ON_ONCE(worker->pool->cpu != cpu);
818
		atomic_inc(&worker->pool->nr_running);
819
	}
820 821 822 823 824 825 826 827 828 829 830 831 832 833
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
834
 * Return:
835 836
 * Worker task on @cpu to wake up, %NULL if none.
 */
837
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
838 839
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
840
	struct worker_pool *pool;
841

842 843 844 845 846
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
847
	if (worker->flags & WORKER_NOT_RUNNING)
848 849
		return NULL;

850 851
	pool = worker->pool;

852
	/* this can only happen on the local cpu */
853 854
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
855 856 857 858 859 860

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
861 862 863
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
864
	 * manipulating idle_list, so dereferencing idle_list without pool
865
	 * lock is safe.
866
	 */
867 868
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
869
		to_wakeup = first_worker(pool);
870 871 872 873 874
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
875
 * @worker: self
876 877 878
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
879 880 881
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
882
 *
883
 * CONTEXT:
884
 * spin_lock_irq(pool->lock)
885 886 887 888
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
889
	struct worker_pool *pool = worker->pool;
890

891 892
	WARN_ON_ONCE(worker->task != current);

893 894 895 896 897 898 899 900
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
901
			if (atomic_dec_and_test(&pool->nr_running) &&
902
			    !list_empty(&pool->worklist))
903
				wake_up_worker(pool);
904
		} else
905
			atomic_dec(&pool->nr_running);
906 907
	}

908 909 910 911
	worker->flags |= flags;
}

/**
912
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
913
 * @worker: self
914 915
 * @flags: flags to clear
 *
916
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
917
 *
918
 * CONTEXT:
919
 * spin_lock_irq(pool->lock)
920 921 922
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
923
	struct worker_pool *pool = worker->pool;
924 925
	unsigned int oflags = worker->flags;

926 927
	WARN_ON_ONCE(worker->task != current);

928
	worker->flags &= ~flags;
929

930 931 932 933 934
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
935 936
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
937
			atomic_inc(&pool->nr_running);
938 939
}

940 941
/**
 * find_worker_executing_work - find worker which is executing a work
942
 * @pool: pool of interest
943 944
 * @work: work to find worker for
 *
945 946
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
947 948 949 950 951 952 953 954 955 956 957 958
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
959 960 961 962 963 964
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
965 966
 *
 * CONTEXT:
967
 * spin_lock_irq(pool->lock).
968
 *
969 970
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
971
 * otherwise.
972
 */
973
static struct worker *find_worker_executing_work(struct worker_pool *pool,
974
						 struct work_struct *work)
975
{
976 977
	struct worker *worker;

978
	hash_for_each_possible(pool->busy_hash, worker, hentry,
979 980 981
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
982 983 984
			return worker;

	return NULL;
985 986
}

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1002
 * spin_lock_irq(pool->lock).
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1086
static void pwq_activate_delayed_work(struct work_struct *work)
1087
{
1088
	struct pool_workqueue *pwq = get_work_pwq(work);
1089 1090

	trace_workqueue_activate_work(work);
1091
	move_linked_works(work, &pwq->pool->worklist, NULL);
1092
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1093
	pwq->nr_active++;
1094 1095
}

1096
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1097
{
1098
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1099 1100
						    struct work_struct, entry);

1101
	pwq_activate_delayed_work(work);
1102 1103
}

1104
/**
1105 1106
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1107 1108 1109
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1110
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1111 1112
 *
 * CONTEXT:
1113
 * spin_lock_irq(pool->lock).
1114
 */
1115
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1116
{
T
Tejun Heo 已提交
1117
	/* uncolored work items don't participate in flushing or nr_active */
1118
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1119
		goto out_put;
1120

1121
	pwq->nr_in_flight[color]--;
1122

1123 1124
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1125
		/* one down, submit a delayed one */
1126 1127
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1128 1129 1130
	}

	/* is flush in progress and are we at the flushing tip? */
1131
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1132
		goto out_put;
1133 1134

	/* are there still in-flight works? */
1135
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1136
		goto out_put;
1137

1138 1139
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1140 1141

	/*
1142
	 * If this was the last pwq, wake up the first flusher.  It
1143 1144
	 * will handle the rest.
	 */
1145 1146
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1147 1148
out_put:
	put_pwq(pwq);
1149 1150
}

1151
/**
1152
 * try_to_grab_pending - steal work item from worklist and disable irq
1153 1154
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1155
 * @flags: place to store irq state
1156 1157
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1158
 * stable state - idle, on timer or on worklist.
1159
 *
1160
 * Return:
1161 1162 1163
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1164 1165
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1166
 *
1167
 * Note:
1168
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1169 1170 1171
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1172 1173 1174 1175
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1176
 * This function is safe to call from any context including IRQ handler.
1177
 */
1178 1179
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1180
{
1181
	struct worker_pool *pool;
1182
	struct pool_workqueue *pwq;
1183

1184 1185
	local_irq_save(*flags);

1186 1187 1188 1189
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1190 1191 1192 1193 1194
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1195 1196 1197 1198 1199
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1200 1201 1202 1203 1204 1205 1206
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1207 1208
	pool = get_work_pool(work);
	if (!pool)
1209
		goto fail;
1210

1211
	spin_lock(&pool->lock);
1212
	/*
1213 1214 1215 1216 1217
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1218 1219
	 * item is currently queued on that pool.
	 */
1220 1221
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1222 1223 1224 1225 1226
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1227
		 * on the delayed_list, will confuse pwq->nr_active
1228 1229 1230 1231
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1232
			pwq_activate_delayed_work(work);
1233 1234

		list_del_init(&work->entry);
1235
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1236

1237
		/* work->data points to pwq iff queued, point to pool */
1238 1239 1240 1241
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1242
	}
1243
	spin_unlock(&pool->lock);
1244 1245 1246 1247 1248
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1249
	return -EAGAIN;
1250 1251
}

T
Tejun Heo 已提交
1252
/**
1253
 * insert_work - insert a work into a pool
1254
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1255 1256 1257 1258
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1259
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1260
 * work_struct flags.
T
Tejun Heo 已提交
1261 1262
 *
 * CONTEXT:
1263
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1264
 */
1265 1266
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1267
{
1268
	struct worker_pool *pool = pwq->pool;
1269

T
Tejun Heo 已提交
1270
	/* we own @work, set data and link */
1271
	set_work_pwq(work, pwq, extra_flags);
1272
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1273
	get_pwq(pwq);
1274 1275

	/*
1276 1277 1278
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1279 1280 1281
	 */
	smp_mb();

1282 1283
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1284 1285
}

1286 1287
/*
 * Test whether @work is being queued from another work executing on the
1288
 * same workqueue.
1289 1290 1291
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1292 1293 1294 1295 1296 1297 1298
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1299
	return worker && worker->current_pwq->wq == wq;
1300 1301
}

1302
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1303 1304
			 struct work_struct *work)
{
1305
	struct pool_workqueue *pwq;
1306
	struct worker_pool *last_pool;
1307
	struct list_head *worklist;
1308
	unsigned int work_flags;
1309
	unsigned int req_cpu = cpu;
1310 1311 1312 1313 1314 1315 1316 1317

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1318

1319
	debug_work_activate(work);
1320

1321
	/* if draining, only works from the same workqueue are allowed */
1322
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1323
	    WARN_ON_ONCE(!is_chained_work(wq)))
1324
		return;
1325
retry:
1326 1327 1328
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1329
	/* pwq which will be used unless @work is executing elsewhere */
1330
	if (!(wq->flags & WQ_UNBOUND))
1331
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1332 1333
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1334

1335 1336 1337 1338 1339 1340 1341 1342
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1343

1344
		spin_lock(&last_pool->lock);
1345

1346
		worker = find_worker_executing_work(last_pool, work);
1347

1348 1349
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1350
		} else {
1351 1352
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1353
			spin_lock(&pwq->pool->lock);
1354
		}
1355
	} else {
1356
		spin_lock(&pwq->pool->lock);
1357 1358
	}

1359 1360 1361 1362
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1363 1364
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1378 1379
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1380

1381
	if (WARN_ON(!list_empty(&work->entry))) {
1382
		spin_unlock(&pwq->pool->lock);
1383 1384
		return;
	}
1385

1386 1387
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1388

1389
	if (likely(pwq->nr_active < pwq->max_active)) {
1390
		trace_workqueue_activate_work(work);
1391 1392
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1393 1394
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1395
		worklist = &pwq->delayed_works;
1396
	}
1397

1398
	insert_work(pwq, work, worklist, work_flags);
1399

1400
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1401 1402
}

1403
/**
1404 1405
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1406 1407 1408
 * @wq: workqueue to use
 * @work: work to queue
 *
1409 1410
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1411 1412
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1413
 */
1414 1415
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1416
{
1417
	bool ret = false;
1418
	unsigned long flags;
1419

1420
	local_irq_save(flags);
1421

1422
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1423
		__queue_work(cpu, wq, work);
1424
		ret = true;
1425
	}
1426

1427
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1428 1429
	return ret;
}
1430
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1431

1432
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1433
{
1434
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1435

1436
	/* should have been called from irqsafe timer with irq already off */
1437
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1438
}
1439
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1440

1441 1442
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1443
{
1444 1445 1446 1447 1448
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1449 1450
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1451

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1463
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1464

1465
	dwork->wq = wq;
1466
	dwork->cpu = cpu;
1467 1468 1469 1470 1471 1472
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1473 1474
}

1475 1476 1477 1478
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1479
 * @dwork: work to queue
1480 1481
 * @delay: number of jiffies to wait before queueing
 *
1482
 * Return: %false if @work was already on a queue, %true otherwise.  If
1483 1484
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1485
 */
1486 1487
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1488
{
1489
	struct work_struct *work = &dwork->work;
1490
	bool ret = false;
1491
	unsigned long flags;
1492

1493 1494
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1495

1496
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1497
		__queue_delayed_work(cpu, wq, dwork, delay);
1498
		ret = true;
1499
	}
1500

1501
	local_irq_restore(flags);
1502 1503
	return ret;
}
1504
EXPORT_SYMBOL(queue_delayed_work_on);
1505

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1518
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1519 1520
 * pending and its timer was modified.
 *
1521
 * This function is safe to call from any context including IRQ handler.
1522 1523 1524 1525 1526 1527 1528
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1529

1530 1531 1532
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1533

1534 1535 1536
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1537
	}
1538 1539

	/* -ENOENT from try_to_grab_pending() becomes %true */
1540 1541
	return ret;
}
1542 1543
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1544 1545 1546 1547 1548 1549 1550 1551
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1552
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1553 1554
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1555
{
1556
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1557

1558 1559 1560 1561
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1562

1563 1564
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1565
	pool->nr_idle++;
1566
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1567 1568

	/* idle_list is LIFO */
1569
	list_add(&worker->entry, &pool->idle_list);
1570

1571 1572
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1573

1574
	/*
1575
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1576
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1577 1578
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1579
	 */
1580
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1581
		     pool->nr_workers == pool->nr_idle &&
1582
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1592
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1593 1594 1595
 */
static void worker_leave_idle(struct worker *worker)
{
1596
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1597

1598 1599
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1600
	worker_clr_flags(worker, WORKER_IDLE);
1601
	pool->nr_idle--;
T
Tejun Heo 已提交
1602 1603 1604
	list_del_init(&worker->entry);
}

1605
/**
1606 1607 1608 1609
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1610 1611 1612 1613 1614 1615
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1616
 * This function is to be used by unbound workers and rescuers to bind
1617 1618 1619
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1620
 * verbatim as it's best effort and blocking and pool may be
1621 1622
 * [dis]associated in the meantime.
 *
1623
 * This function tries set_cpus_allowed() and locks pool and verifies the
1624
 * binding against %POOL_DISASSOCIATED which is set during
1625 1626 1627
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1628 1629
 *
 * CONTEXT:
1630
 * Might sleep.  Called without any lock but returns with pool->lock
1631 1632
 * held.
 *
1633
 * Return:
1634
 * %true if the associated pool is online (@worker is successfully
1635 1636
 * bound), %false if offline.
 */
1637
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1638
__acquires(&pool->lock)
1639 1640
{
	while (true) {
1641
		/*
1642 1643 1644
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1645
		 * against POOL_DISASSOCIATED.
1646
		 */
1647
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1648
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1649

1650
		spin_lock_irq(&pool->lock);
1651
		if (pool->flags & POOL_DISASSOCIATED)
1652
			return false;
1653
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1654
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1655
			return true;
1656
		spin_unlock_irq(&pool->lock);
1657

1658 1659 1660 1661 1662 1663
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1664
		cpu_relax();
1665
		cond_resched();
1666 1667 1668
	}
}

T
Tejun Heo 已提交
1669 1670 1671 1672 1673
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1674 1675
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1676
		INIT_LIST_HEAD(&worker->scheduled);
1677 1678
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1679
	}
T
Tejun Heo 已提交
1680 1681 1682
	return worker;
}

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
 * Undo the attaching which had been done in create_worker().  The caller
 * worker shouldn't access to the pool after detached except it has other
 * reference to the pool.
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

	mutex_lock(&pool->manager_mutex);
	idr_remove(&pool->worker_idr, worker->id);
	if (idr_is_empty(&pool->worker_idr))
		detach_completion = pool->detach_completion;
	mutex_unlock(&pool->manager_mutex);

	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1707 1708
/**
 * create_worker - create a new workqueue worker
1709
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1710
 *
1711 1712
 * Create a new worker which is attached to @pool.  The new worker must be
 * started by start_worker().
T
Tejun Heo 已提交
1713 1714 1715 1716
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1717
 * Return:
T
Tejun Heo 已提交
1718 1719
 * Pointer to the newly created worker.
 */
1720
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1721 1722
{
	struct worker *worker = NULL;
1723
	int id = -1;
1724
	char id_buf[16];
T
Tejun Heo 已提交
1725

1726 1727
	lockdep_assert_held(&pool->manager_mutex);

1728 1729 1730 1731
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
1732
	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_KERNEL);
1733 1734
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1735 1736 1737 1738 1739

	worker = alloc_worker();
	if (!worker)
		goto fail;

1740
	worker->pool = pool;
T
Tejun Heo 已提交
1741 1742
	worker->id = id;

1743
	if (pool->cpu >= 0)
1744 1745
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1746
	else
1747 1748
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1749
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1750
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1751 1752 1753
	if (IS_ERR(worker->task))
		goto fail;

1754 1755 1756 1757 1758
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1759 1760 1761 1762
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1763
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1764

T
Tejun Heo 已提交
1765 1766 1767 1768 1769 1770
	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1771
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1772

1773 1774 1775
	/* successful, commit the pointer to idr */
	idr_replace(&pool->worker_idr, worker, worker->id);

T
Tejun Heo 已提交
1776
	return worker;
1777

T
Tejun Heo 已提交
1778
fail:
1779
	if (id >= 0)
1780
		idr_remove(&pool->worker_idr, id);
T
Tejun Heo 已提交
1781 1782 1783 1784 1785 1786 1787 1788
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1789
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1790 1791
 *
 * CONTEXT:
1792
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1793 1794 1795
 */
static void start_worker(struct worker *worker)
{
1796
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1797
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1798 1799 1800
	wake_up_process(worker->task);
}

1801 1802 1803 1804
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1805
 * Grab the managership of @pool and create and start a new worker for it.
1806 1807
 *
 * Return: 0 on success. A negative error code otherwise.
1808 1809 1810 1811 1812
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1813 1814
	mutex_lock(&pool->manager_mutex);

1815 1816 1817 1818 1819 1820 1821
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1822 1823
	mutex_unlock(&pool->manager_mutex);

1824 1825 1826
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1827 1828 1829 1830
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1831 1832
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1833 1834
 *
 * CONTEXT:
1835
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1836 1837 1838
 */
static void destroy_worker(struct worker *worker)
{
1839
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1840

1841 1842
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1843
	/* sanity check frenzy */
1844
	if (WARN_ON(worker->current_work) ||
1845 1846
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1847
		return;
T
Tejun Heo 已提交
1848

1849 1850
	pool->nr_workers--;
	pool->nr_idle--;
T
Tejun Heo 已提交
1851 1852

	list_del_init(&worker->entry);
1853
	worker->flags |= WORKER_DIE;
1854
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1855 1856
}

1857
static void idle_worker_timeout(unsigned long __pool)
1858
{
1859
	struct worker_pool *pool = (void *)__pool;
1860

1861
	spin_lock_irq(&pool->lock);
1862

1863
	while (too_many_workers(pool)) {
1864 1865 1866 1867
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1868
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1869 1870
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1871
		if (time_before(jiffies, expires)) {
1872
			mod_timer(&pool->idle_timer, expires);
1873
			break;
1874
		}
1875 1876

		destroy_worker(worker);
1877 1878
	}

1879
	spin_unlock_irq(&pool->lock);
1880
}
1881

1882
static void send_mayday(struct work_struct *work)
1883
{
1884 1885
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1886

1887
	lockdep_assert_held(&wq_mayday_lock);
1888

1889
	if (!wq->rescuer)
1890
		return;
1891 1892

	/* mayday mayday mayday */
1893
	if (list_empty(&pwq->mayday_node)) {
1894 1895 1896 1897 1898 1899
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1900
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1901
		wake_up_process(wq->rescuer->task);
1902
	}
1903 1904
}

1905
static void pool_mayday_timeout(unsigned long __pool)
1906
{
1907
	struct worker_pool *pool = (void *)__pool;
1908 1909
	struct work_struct *work;

1910
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1911
	spin_lock(&pool->lock);
1912

1913
	if (need_to_create_worker(pool)) {
1914 1915 1916 1917 1918 1919
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1920
		list_for_each_entry(work, &pool->worklist, entry)
1921
			send_mayday(work);
L
Linus Torvalds 已提交
1922
	}
1923

1924
	spin_unlock(&pool->lock);
1925
	spin_unlock_irq(&wq_mayday_lock);
1926

1927
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1928 1929
}

1930 1931
/**
 * maybe_create_worker - create a new worker if necessary
1932
 * @pool: pool to create a new worker for
1933
 *
1934
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1935 1936
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1937
 * sent to all rescuers with works scheduled on @pool to resolve
1938 1939
 * possible allocation deadlock.
 *
1940 1941
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1942 1943
 *
 * LOCKING:
1944
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1945 1946 1947
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1948
 * Return:
1949
 * %false if no action was taken and pool->lock stayed locked, %true
1950 1951
 * otherwise.
 */
1952
static bool maybe_create_worker(struct worker_pool *pool)
1953 1954
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1955
{
1956
	if (!need_to_create_worker(pool))
1957 1958
		return false;
restart:
1959
	spin_unlock_irq(&pool->lock);
1960

1961
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1962
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1963 1964 1965 1966

	while (true) {
		struct worker *worker;

1967
		worker = create_worker(pool);
1968
		if (worker) {
1969
			del_timer_sync(&pool->mayday_timer);
1970
			spin_lock_irq(&pool->lock);
1971
			start_worker(worker);
1972 1973
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1974 1975 1976
			return true;
		}

1977
		if (!need_to_create_worker(pool))
1978
			break;
L
Linus Torvalds 已提交
1979

1980 1981
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1982

1983
		if (!need_to_create_worker(pool))
1984 1985 1986
			break;
	}

1987
	del_timer_sync(&pool->mayday_timer);
1988
	spin_lock_irq(&pool->lock);
1989
	if (need_to_create_worker(pool))
1990 1991 1992 1993
		goto restart;
	return true;
}

1994
/**
1995 1996
 * manage_workers - manage worker pool
 * @worker: self
1997
 *
1998
 * Assume the manager role and manage the worker pool @worker belongs
1999
 * to.  At any given time, there can be only zero or one manager per
2000
 * pool.  The exclusion is handled automatically by this function.
2001 2002 2003 2004
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2005 2006
 *
 * CONTEXT:
2007
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2008 2009
 * multiple times.  Does GFP_KERNEL allocations.
 *
2010
 * Return:
2011 2012 2013 2014 2015
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
2016
 */
2017
static bool manage_workers(struct worker *worker)
2018
{
2019
	struct worker_pool *pool = worker->pool;
2020
	bool ret = false;
2021

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2043
	if (!mutex_trylock(&pool->manager_arb))
2044
		return ret;
2045

2046
	/*
2047 2048
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2049
	 */
2050
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2051
		spin_unlock_irq(&pool->lock);
2052
		mutex_lock(&pool->manager_mutex);
2053
		spin_lock_irq(&pool->lock);
2054 2055
		ret = true;
	}
2056

2057
	ret |= maybe_create_worker(pool);
2058

2059
	mutex_unlock(&pool->manager_mutex);
2060
	mutex_unlock(&pool->manager_arb);
2061
	return ret;
2062 2063
}

2064 2065
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2066
 * @worker: self
2067 2068 2069 2070 2071 2072 2073 2074 2075
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2076
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2077
 */
T
Tejun Heo 已提交
2078
static void process_one_work(struct worker *worker, struct work_struct *work)
2079 2080
__releases(&pool->lock)
__acquires(&pool->lock)
2081
{
2082
	struct pool_workqueue *pwq = get_work_pwq(work);
2083
	struct worker_pool *pool = worker->pool;
2084
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2085
	int work_color;
2086
	struct worker *collision;
2087 2088 2089 2090 2091 2092 2093 2094
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2095 2096 2097
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2098
#endif
2099 2100 2101
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2102
	 * unbound or a disassociated pool.
2103
	 */
2104
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2105
		     !(pool->flags & POOL_DISASSOCIATED) &&
2106
		     raw_smp_processor_id() != pool->cpu);
2107

2108 2109 2110 2111 2112 2113
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2114
	collision = find_worker_executing_work(pool, work);
2115 2116 2117 2118 2119
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2120
	/* claim and dequeue */
2121
	debug_work_deactivate(work);
2122
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2123
	worker->current_work = work;
2124
	worker->current_func = work->func;
2125
	worker->current_pwq = pwq;
2126
	work_color = get_work_color(work);
2127

2128 2129
	list_del_init(&work->entry);

2130 2131 2132 2133 2134 2135 2136
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2137
	/*
2138
	 * Unbound pool isn't concurrency managed and work items should be
2139 2140
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2141 2142
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2143

2144
	/*
2145
	 * Record the last pool and clear PENDING which should be the last
2146
	 * update to @work.  Also, do this inside @pool->lock so that
2147 2148
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2149
	 */
2150
	set_work_pool_and_clear_pending(work, pool->id);
2151

2152
	spin_unlock_irq(&pool->lock);
2153

2154
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2155
	lock_map_acquire(&lockdep_map);
2156
	trace_workqueue_execute_start(work);
2157
	worker->current_func(work);
2158 2159 2160 2161 2162
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2163
	lock_map_release(&lockdep_map);
2164
	lock_map_release(&pwq->wq->lockdep_map);
2165 2166

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2167 2168
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2169 2170
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2171 2172 2173 2174
		debug_show_held_locks(current);
		dump_stack();
	}

2175 2176 2177 2178 2179 2180 2181 2182 2183
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2184
	spin_lock_irq(&pool->lock);
2185

2186 2187 2188 2189
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2190
	/* we're done with it, release */
2191
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2192
	worker->current_work = NULL;
2193
	worker->current_func = NULL;
2194
	worker->current_pwq = NULL;
2195
	worker->desc_valid = false;
2196
	pwq_dec_nr_in_flight(pwq, work_color);
2197 2198
}

2199 2200 2201 2202 2203 2204 2205 2206 2207
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2208
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2209 2210 2211
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2212
{
2213 2214
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2215
						struct work_struct, entry);
T
Tejun Heo 已提交
2216
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2217 2218 2219
	}
}

T
Tejun Heo 已提交
2220 2221
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2222
 * @__worker: self
T
Tejun Heo 已提交
2223
 *
2224 2225 2226 2227 2228
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2229 2230
 *
 * Return: 0
T
Tejun Heo 已提交
2231
 */
T
Tejun Heo 已提交
2232
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2233
{
T
Tejun Heo 已提交
2234
	struct worker *worker = __worker;
2235
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2236

2237 2238
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2239
woke_up:
2240
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2241

2242 2243
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2244
		spin_unlock_irq(&pool->lock);
2245 2246
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2247 2248 2249 2250

		set_task_comm(worker->task, "kworker/dying");
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2251
		return 0;
T
Tejun Heo 已提交
2252
	}
2253

T
Tejun Heo 已提交
2254
	worker_leave_idle(worker);
2255
recheck:
2256
	/* no more worker necessary? */
2257
	if (!need_more_worker(pool))
2258 2259 2260
		goto sleep;

	/* do we need to manage? */
2261
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2262 2263
		goto recheck;

T
Tejun Heo 已提交
2264 2265 2266 2267 2268
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2269
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2270

2271
	/*
2272 2273 2274 2275 2276
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2277
	 */
2278
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2279 2280

	do {
T
Tejun Heo 已提交
2281
		struct work_struct *work =
2282
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2283 2284 2285 2286 2287 2288
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2289
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2290 2291 2292
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2293
		}
2294
	} while (keep_working(pool));
2295 2296

	worker_set_flags(worker, WORKER_PREP, false);
2297
sleep:
T
Tejun Heo 已提交
2298
	/*
2299 2300 2301 2302 2303
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2304 2305 2306
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2307
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2308 2309
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2310 2311
}

2312 2313
/**
 * rescuer_thread - the rescuer thread function
2314
 * @__rescuer: self
2315 2316
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2317
 * workqueue which has WQ_MEM_RECLAIM set.
2318
 *
2319
 * Regular work processing on a pool may block trying to create a new
2320 2321 2322 2323 2324
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2325 2326
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2327 2328 2329
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2330 2331
 *
 * Return: 0
2332
 */
2333
static int rescuer_thread(void *__rescuer)
2334
{
2335 2336
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2337
	struct list_head *scheduled = &rescuer->scheduled;
2338
	bool should_stop;
2339 2340

	set_user_nice(current, RESCUER_NICE_LEVEL);
2341 2342 2343 2344 2345 2346

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2347 2348 2349
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2350 2351 2352 2353 2354 2355 2356 2357 2358
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2359

2360
	/* see whether any pwq is asking for help */
2361
	spin_lock_irq(&wq_mayday_lock);
2362 2363 2364 2365

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2366
		struct worker_pool *pool = pwq->pool;
2367 2368 2369
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2370 2371
		list_del_init(&pwq->mayday_node);

2372
		spin_unlock_irq(&wq_mayday_lock);
2373 2374

		/* migrate to the target cpu if possible */
2375
		worker_maybe_bind_and_lock(pool);
2376
		rescuer->pool = pool;
2377 2378 2379 2380 2381

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2382
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2383
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2384
			if (get_work_pwq(work) == pwq)
2385 2386 2387
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2388

2389 2390 2391 2392 2393 2394
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
		 * go away while we're holding its lock.
		 */
		put_pwq(pwq);

2395
		/*
2396
		 * Leave this pool.  If keep_working() is %true, notify a
2397 2398 2399
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2400 2401
		if (keep_working(pool))
			wake_up_worker(pool);
2402

2403
		rescuer->pool = NULL;
2404
		spin_unlock(&pool->lock);
2405
		spin_lock(&wq_mayday_lock);
2406 2407
	}

2408
	spin_unlock_irq(&wq_mayday_lock);
2409

2410 2411 2412 2413 2414 2415
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2416 2417
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2418 2419
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2420 2421
}

O
Oleg Nesterov 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2433 2434
/**
 * insert_wq_barrier - insert a barrier work
2435
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2436
 * @barr: wq_barrier to insert
2437 2438
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2439
 *
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2452
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2453 2454
 *
 * CONTEXT:
2455
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2456
 */
2457
static void insert_wq_barrier(struct pool_workqueue *pwq,
2458 2459
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2460
{
2461 2462 2463
	struct list_head *head;
	unsigned int linked = 0;

2464
	/*
2465
	 * debugobject calls are safe here even with pool->lock locked
2466 2467 2468 2469
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2470
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2471
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2472
	init_completion(&barr->done);
2473

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2489
	debug_work_activate(&barr->work);
2490
	insert_work(pwq, &barr->work, head,
2491
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2492 2493
}

2494
/**
2495
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2496 2497 2498 2499
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2500
 * Prepare pwqs for workqueue flushing.
2501
 *
2502 2503 2504 2505 2506
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2507 2508 2509 2510 2511 2512 2513
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2514
 * If @work_color is non-negative, all pwqs should have the same
2515 2516 2517 2518
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2519
 * mutex_lock(wq->mutex).
2520
 *
2521
 * Return:
2522 2523 2524
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2525
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2526
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2527
{
2528
	bool wait = false;
2529
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2530

2531
	if (flush_color >= 0) {
2532
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2533
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2534
	}
2535

2536
	for_each_pwq(pwq, wq) {
2537
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2538

2539
		spin_lock_irq(&pool->lock);
2540

2541
		if (flush_color >= 0) {
2542
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2543

2544 2545 2546
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2547 2548 2549
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2550

2551
		if (work_color >= 0) {
2552
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2553
			pwq->work_color = work_color;
2554
		}
L
Linus Torvalds 已提交
2555

2556
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2557
	}
2558

2559
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2560
		complete(&wq->first_flusher->done);
2561

2562
	return wait;
L
Linus Torvalds 已提交
2563 2564
}

2565
/**
L
Linus Torvalds 已提交
2566
 * flush_workqueue - ensure that any scheduled work has run to completion.
2567
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2568
 *
2569 2570
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2571
 */
2572
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2573
{
2574 2575 2576 2577 2578 2579
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2580

2581 2582
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2583

2584
	mutex_lock(&wq->mutex);
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2597
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2598 2599 2600 2601 2602
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2603
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2604 2605 2606

			wq->first_flusher = &this_flusher;

2607
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2608 2609 2610 2611 2612 2613 2614 2615
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2616
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2617
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2618
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2629
	mutex_unlock(&wq->mutex);
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2642
	mutex_lock(&wq->mutex);
2643

2644 2645 2646 2647
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2648 2649
	wq->first_flusher = NULL;

2650 2651
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2664 2665
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2685
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2686 2687 2688
		}

		if (list_empty(&wq->flusher_queue)) {
2689
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2690 2691 2692 2693 2694
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2695
		 * the new first flusher and arm pwqs.
2696
		 */
2697 2698
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2699 2700 2701 2702

		list_del_init(&next->list);
		wq->first_flusher = next;

2703
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2714
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2715
}
2716
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2717

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2732
	struct pool_workqueue *pwq;
2733 2734 2735 2736

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2737
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2738
	 */
2739
	mutex_lock(&wq->mutex);
2740
	if (!wq->nr_drainers++)
2741
		wq->flags |= __WQ_DRAINING;
2742
	mutex_unlock(&wq->mutex);
2743 2744 2745
reflush:
	flush_workqueue(wq);

2746
	mutex_lock(&wq->mutex);
2747

2748
	for_each_pwq(pwq, wq) {
2749
		bool drained;
2750

2751
		spin_lock_irq(&pwq->pool->lock);
2752
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2753
		spin_unlock_irq(&pwq->pool->lock);
2754 2755

		if (drained)
2756 2757 2758 2759
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2760
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2761
				wq->name, flush_cnt);
2762

2763
		mutex_unlock(&wq->mutex);
2764 2765 2766 2767
		goto reflush;
	}

	if (!--wq->nr_drainers)
2768
		wq->flags &= ~__WQ_DRAINING;
2769
	mutex_unlock(&wq->mutex);
2770 2771 2772
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2773
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2774
{
2775
	struct worker *worker = NULL;
2776
	struct worker_pool *pool;
2777
	struct pool_workqueue *pwq;
2778 2779

	might_sleep();
2780 2781

	local_irq_disable();
2782
	pool = get_work_pool(work);
2783 2784
	if (!pool) {
		local_irq_enable();
2785
		return false;
2786
	}
2787

2788
	spin_lock(&pool->lock);
2789
	/* see the comment in try_to_grab_pending() with the same code */
2790 2791 2792
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2793
			goto already_gone;
2794
	} else {
2795
		worker = find_worker_executing_work(pool, work);
2796
		if (!worker)
T
Tejun Heo 已提交
2797
			goto already_gone;
2798
		pwq = worker->current_pwq;
2799
	}
2800

2801
	insert_wq_barrier(pwq, barr, work, worker);
2802
	spin_unlock_irq(&pool->lock);
2803

2804 2805 2806 2807 2808 2809
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2810
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2811
		lock_map_acquire(&pwq->wq->lockdep_map);
2812
	else
2813 2814
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2815

2816
	return true;
T
Tejun Heo 已提交
2817
already_gone:
2818
	spin_unlock_irq(&pool->lock);
2819
	return false;
2820
}
2821 2822 2823 2824 2825

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2826 2827
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2828
 *
2829
 * Return:
2830 2831 2832 2833 2834
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2835 2836
	struct wq_barrier barr;

2837 2838 2839
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2840 2841 2842 2843 2844 2845 2846
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2847
}
2848
EXPORT_SYMBOL_GPL(flush_work);
2849

2850
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2851
{
2852
	unsigned long flags;
2853 2854 2855
	int ret;

	do {
2856 2857 2858 2859 2860 2861
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2862
			flush_work(work);
2863 2864
	} while (unlikely(ret < 0));

2865 2866 2867 2868
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2869
	flush_work(work);
2870
	clear_work_data(work);
2871 2872 2873
	return ret;
}

2874
/**
2875 2876
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2877
 *
2878 2879 2880 2881
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2882
 *
2883 2884
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2885
 *
2886
 * The caller must ensure that the workqueue on which @work was last
2887
 * queued can't be destroyed before this function returns.
2888
 *
2889
 * Return:
2890
 * %true if @work was pending, %false otherwise.
2891
 */
2892
bool cancel_work_sync(struct work_struct *work)
2893
{
2894
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2895
}
2896
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2897

2898
/**
2899 2900
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2901
 *
2902 2903 2904
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2905
 *
2906
 * Return:
2907 2908
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2909
 */
2910 2911
bool flush_delayed_work(struct delayed_work *dwork)
{
2912
	local_irq_disable();
2913
	if (del_timer_sync(&dwork->timer))
2914
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2915
	local_irq_enable();
2916 2917 2918 2919
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2920
/**
2921 2922
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2923
 *
2924 2925 2926 2927 2928 2929 2930 2931 2932
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2933
 *
2934
 * This function is safe to call from any context including IRQ handler.
2935
 */
2936
bool cancel_delayed_work(struct delayed_work *dwork)
2937
{
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2948 2949
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2950
	local_irq_restore(flags);
2951
	return ret;
2952
}
2953
EXPORT_SYMBOL(cancel_delayed_work);
2954

2955 2956 2957 2958 2959 2960
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2961
 * Return:
2962 2963 2964
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2965
{
2966
	return __cancel_work_timer(&dwork->work, true);
2967
}
2968
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2969

2970
/**
2971
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2972 2973
 * @func: the function to call
 *
2974 2975
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2976
 * schedule_on_each_cpu() is very slow.
2977
 *
2978
 * Return:
2979
 * 0 on success, -errno on failure.
2980
 */
2981
int schedule_on_each_cpu(work_func_t func)
2982 2983
{
	int cpu;
2984
	struct work_struct __percpu *works;
2985

2986 2987
	works = alloc_percpu(struct work_struct);
	if (!works)
2988
		return -ENOMEM;
2989

2990 2991
	get_online_cpus();

2992
	for_each_online_cpu(cpu) {
2993 2994 2995
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2996
		schedule_work_on(cpu, work);
2997
	}
2998 2999 3000 3001

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3002
	put_online_cpus();
3003
	free_percpu(works);
3004 3005 3006
	return 0;
}

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3031 3032
void flush_scheduled_work(void)
{
3033
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3034
}
3035
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3036

3037 3038 3039 3040 3041 3042 3043 3044 3045
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3046
 * Return:	0 - function was executed
3047 3048
 *		1 - function was scheduled for execution
 */
3049
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3050 3051
{
	if (!in_interrupt()) {
3052
		fn(&ew->work);
3053 3054 3055
		return 0;
	}

3056
	INIT_WORK(&ew->work, fn);
3057 3058 3059 3060 3061 3062
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3090 3091
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3092 3093 3094 3095 3096
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3097
static DEVICE_ATTR_RO(per_cpu);
3098

3099 3100
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3101 3102 3103 3104 3105 3106
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3107 3108 3109
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3120
static DEVICE_ATTR_RW(max_active);
3121

3122 3123 3124 3125
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3126
};
3127
ATTRIBUTE_GROUPS(wq_sysfs);
3128

3129 3130
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3131 3132
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3133 3134
	const char *delim = "";
	int node, written = 0;
3135 3136

	rcu_read_lock_sched();
3137 3138 3139 3140 3141 3142 3143
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3155 3156 3157
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3171 3172 3173
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3189
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3204 3205 3206
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3267
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3268
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3269 3270
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3271
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3272 3273 3274 3275 3276
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3277
	.dev_groups			= wq_sysfs_groups,
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3306
 * Return: 0 on success, -errno on failure.
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3399 3400 3401
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3413
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3414 3415 3416 3417 3418 3419
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3420 3421 3422 3423 3424
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3425 3426 3427 3428 3429 3430
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3431 3432 3433 3434 3435 3436 3437 3438
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3439 3440
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3455 3456 3457 3458 3459
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3460 3461
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3462 3463
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3464 3465
 */
static int init_worker_pool(struct worker_pool *pool)
3466 3467
{
	spin_lock_init(&pool->lock);
3468 3469
	pool->id = -1;
	pool->cpu = -1;
3470
	pool->node = NUMA_NO_NODE;
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3484
	mutex_init(&pool->manager_mutex);
3485
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3486

3487 3488 3489 3490
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3491 3492 3493 3494
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3495 3496
}

3497 3498 3499 3500
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3501
	idr_destroy(&pool->worker_idr);
3502 3503 3504 3505 3506 3507 3508 3509 3510
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3511 3512 3513
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3514 3515
 *
 * Should be called with wq_pool_mutex held.
3516 3517 3518
 */
static void put_unbound_pool(struct worker_pool *pool)
{
3519
	DECLARE_COMPLETION_ONSTACK(detach_completion);
3520 3521
	struct worker *worker;

3522 3523 3524
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3525 3526 3527 3528
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3529
	    WARN_ON(!list_empty(&pool->worklist)))
3530 3531 3532 3533 3534 3535 3536
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3537 3538 3539 3540 3541
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3542 3543
	mutex_lock(&pool->manager_arb);

3544
	spin_lock_irq(&pool->lock);
3545 3546 3547 3548
	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3549 3550 3551 3552

	mutex_lock(&pool->manager_mutex);
	if (!idr_is_empty(&pool->worker_idr))
		pool->detach_completion = &detach_completion;
3553
	mutex_unlock(&pool->manager_mutex);
3554 3555 3556 3557

	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3575
 * create a new one.
3576 3577
 *
 * Should be called with wq_pool_mutex held.
3578 3579 3580
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3581 3582 3583 3584 3585
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3586
	int node;
3587

3588
	lockdep_assert_held(&wq_pool_mutex);
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3603 3604 3605
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3606
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3607 3608
	copy_workqueue_attrs(pool->attrs, attrs);

3609 3610 3611 3612 3613 3614
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3626 3627 3628 3629
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3630
	if (create_and_start_worker(pool) < 0)
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3659
	bool is_last;
T
Tejun Heo 已提交
3660 3661 3662 3663

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3664
	/*
3665
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3666 3667 3668
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3669
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3670
	list_del_rcu(&pwq->pwqs_node);
3671
	is_last = list_empty(&wq->pwqs);
3672
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3673

3674
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3675
	put_unbound_pool(pool);
3676 3677
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3678 3679 3680 3681 3682 3683
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3684 3685
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3686
		kfree(wq);
3687
	}
T
Tejun Heo 已提交
3688 3689
}

3690
/**
3691
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3692 3693
 * @pwq: target pool_workqueue
 *
3694 3695 3696
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3697
 */
3698
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3699
{
3700 3701 3702 3703
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3704
	lockdep_assert_held(&wq->mutex);
3705 3706 3707 3708 3709

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3710
	spin_lock_irq(&pwq->pool->lock);
3711 3712 3713

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3714

3715 3716 3717
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3718 3719 3720 3721 3722 3723

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3724 3725 3726 3727
	} else {
		pwq->max_active = 0;
	}

3728
	spin_unlock_irq(&pwq->pool->lock);
3729 3730
}

3731
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3732 3733
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3734 3735 3736
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3737 3738
	memset(pwq, 0, sizeof(*pwq));

3739 3740 3741
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3742
	pwq->refcnt = 1;
3743
	INIT_LIST_HEAD(&pwq->delayed_works);
3744
	INIT_LIST_HEAD(&pwq->pwqs_node);
3745
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3746
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3747
}
3748

3749
/* sync @pwq with the current state of its associated wq and link it */
3750
static void link_pwq(struct pool_workqueue *pwq)
3751 3752 3753 3754
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3755

3756 3757 3758 3759
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3760 3761
	/*
	 * Set the matching work_color.  This is synchronized with
3762
	 * wq->mutex to avoid confusing flush_workqueue().
3763
	 */
3764
	pwq->work_color = wq->work_color;
3765 3766 3767 3768 3769

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3770
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3771
}
3772

3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3786
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3787 3788 3789
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3790
	}
3791

3792 3793
	init_pwq(pwq, wq, pool);
	return pwq;
3794 3795
}

3796 3797 3798 3799 3800 3801 3802
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3803
		kmem_cache_free(pwq_cache, pwq);
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3816
 * calculation.  The result is stored in @cpumask.
3817 3818 3819 3820 3821 3822 3823 3824
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3825 3826 3827
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3828 3829 3830 3831
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3832
	if (!wq_numa_enabled || attrs->no_numa)
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3869 3870 3871 3872 3873
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3874 3875 3876 3877 3878 3879
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3880
 *
3881 3882 3883
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3884 3885 3886 3887
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3888 3889
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3890
	int node, ret;
3891

3892
	/* only unbound workqueues can change attributes */
3893 3894 3895
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3896 3897 3898 3899
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3900
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3901
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3902 3903
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3904 3905
		goto enomem;

3906
	/* make a copy of @attrs and sanitize it */
3907 3908 3909
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3924
	mutex_lock(&wq_pool_mutex);
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3946
	mutex_unlock(&wq_pool_mutex);
3947

3948
	/* all pwqs have been created successfully, let's install'em */
3949
	mutex_lock(&wq->mutex);
3950

3951
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3952 3953

	/* save the previous pwq and install the new one */
3954
	for_each_node(node)
3955 3956 3957 3958 3959
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3960 3961

	mutex_unlock(&wq->mutex);
3962

3963 3964 3965 3966 3967 3968
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3969 3970 3971
	ret = 0;
	/* fall through */
out_free:
3972
	free_workqueue_attrs(tmp_attrs);
3973
	free_workqueue_attrs(new_attrs);
3974
	kfree(pwq_tbl);
3975
	return ret;
3976

3977 3978 3979 3980 3981 3982 3983
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3984
enomem:
3985 3986
	ret = -ENOMEM;
	goto out_free;
3987 3988
}

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
4034 4035
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
4036 4037 4038 4039 4040 4041 4042 4043

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
4044
	 * wq's, the default pwq should be used.
4045 4046 4047 4048 4049
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
4050
		goto use_dfl_pwq;
4051 4052 4053 4054 4055 4056 4057
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
4058 4059
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
4060 4061
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4084
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4085
{
4086
	bool highpri = wq->flags & WQ_HIGHPRI;
4087
	int cpu, ret;
4088 4089

	if (!(wq->flags & WQ_UNBOUND)) {
4090 4091
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4092 4093 4094
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4095 4096
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4097
			struct worker_pool *cpu_pools =
4098
				per_cpu(cpu_worker_pools, cpu);
4099

4100 4101 4102
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4103
			link_pwq(pwq);
4104
			mutex_unlock(&wq->mutex);
4105
		}
4106
		return 0;
4107 4108 4109 4110 4111 4112 4113
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4114
	} else {
4115
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4116
	}
T
Tejun Heo 已提交
4117 4118
}

4119 4120
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4121
{
4122 4123 4124
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4125 4126
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4127

4128
	return clamp_val(max_active, 1, lim);
4129 4130
}

4131
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4132 4133 4134
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4135
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4136
{
4137
	size_t tbl_size = 0;
4138
	va_list args;
L
Linus Torvalds 已提交
4139
	struct workqueue_struct *wq;
4140
	struct pool_workqueue *pwq;
4141

4142 4143 4144 4145
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4146
	/* allocate wq and format name */
4147 4148 4149 4150
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4151
	if (!wq)
4152
		return NULL;
4153

4154 4155 4156 4157 4158 4159
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4160 4161
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4162
	va_end(args);
L
Linus Torvalds 已提交
4163

4164
	max_active = max_active ?: WQ_DFL_ACTIVE;
4165
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4166

4167
	/* init wq */
4168
	wq->flags = flags;
4169
	wq->saved_max_active = max_active;
4170
	mutex_init(&wq->mutex);
4171
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4172
	INIT_LIST_HEAD(&wq->pwqs);
4173 4174
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4175
	INIT_LIST_HEAD(&wq->maydays);
4176

4177
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4178
	INIT_LIST_HEAD(&wq->list);
4179

4180
	if (alloc_and_link_pwqs(wq) < 0)
4181
		goto err_free_wq;
T
Tejun Heo 已提交
4182

4183 4184 4185 4186 4187
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4188 4189
		struct worker *rescuer;

4190
		rescuer = alloc_worker();
4191
		if (!rescuer)
4192
			goto err_destroy;
4193

4194 4195
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4196
					       wq->name);
4197 4198 4199 4200
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4201

4202
		wq->rescuer = rescuer;
4203
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4204
		wake_up_process(rescuer->task);
4205 4206
	}

4207 4208 4209
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4210
	/*
4211 4212 4213
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4214
	 */
4215
	mutex_lock(&wq_pool_mutex);
4216

4217
	mutex_lock(&wq->mutex);
4218 4219
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4220
	mutex_unlock(&wq->mutex);
4221

T
Tejun Heo 已提交
4222
	list_add(&wq->list, &workqueues);
4223

4224
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4225

4226
	return wq;
4227 4228

err_free_wq:
4229
	free_workqueue_attrs(wq->unbound_attrs);
4230 4231 4232 4233
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4234
	return NULL;
4235
}
4236
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4237

4238 4239 4240 4241 4242 4243 4244 4245
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4246
	struct pool_workqueue *pwq;
4247
	int node;
4248

4249 4250
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4251

4252
	/* sanity checks */
4253
	mutex_lock(&wq->mutex);
4254
	for_each_pwq(pwq, wq) {
4255 4256
		int i;

4257 4258
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4259
				mutex_unlock(&wq->mutex);
4260
				return;
4261 4262 4263
			}
		}

4264
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4265
		    WARN_ON(pwq->nr_active) ||
4266
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4267
			mutex_unlock(&wq->mutex);
4268
			return;
4269
		}
4270
	}
4271
	mutex_unlock(&wq->mutex);
4272

4273 4274 4275 4276
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4277
	mutex_lock(&wq_pool_mutex);
4278
	list_del_init(&wq->list);
4279
	mutex_unlock(&wq_pool_mutex);
4280

4281 4282
	workqueue_sysfs_unregister(wq);

4283
	if (wq->rescuer) {
4284
		kthread_stop(wq->rescuer->task);
4285
		kfree(wq->rescuer);
4286
		wq->rescuer = NULL;
4287 4288
	}

T
Tejun Heo 已提交
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4299 4300
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4301
		 */
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4314
		put_pwq_unlocked(pwq);
4315
	}
4316 4317 4318
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4331
	struct pool_workqueue *pwq;
4332

4333 4334 4335 4336
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4337
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4338

4339
	mutex_lock(&wq->mutex);
4340 4341 4342

	wq->saved_max_active = max_active;

4343 4344
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4345

4346
	mutex_unlock(&wq->mutex);
4347
}
4348
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4349

4350 4351 4352 4353 4354
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4355 4356
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4357 4358 4359 4360 4361
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4362
	return worker && worker->rescue_wq;
4363 4364
}

4365
/**
4366 4367 4368
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4369
 *
4370 4371 4372
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4373
 *
4374 4375 4376 4377 4378 4379
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4380
 * Return:
4381
 * %true if congested, %false otherwise.
4382
 */
4383
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4384
{
4385
	struct pool_workqueue *pwq;
4386 4387
	bool ret;

4388
	rcu_read_lock_sched();
4389

4390 4391 4392
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4393 4394 4395
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4396
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4397

4398
	ret = !list_empty(&pwq->delayed_works);
4399
	rcu_read_unlock_sched();
4400 4401

	return ret;
L
Linus Torvalds 已提交
4402
}
4403
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4404

4405 4406 4407 4408 4409 4410 4411 4412
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4413
 * Return:
4414 4415 4416
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4417
{
4418
	struct worker_pool *pool;
4419 4420
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4421

4422 4423
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4424

4425 4426
	local_irq_save(flags);
	pool = get_work_pool(work);
4427
	if (pool) {
4428
		spin_lock(&pool->lock);
4429 4430
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4431
		spin_unlock(&pool->lock);
4432
	}
4433
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4434

4435
	return ret;
L
Linus Torvalds 已提交
4436
}
4437
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4438

4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
4509
		pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
4510 4511 4512 4513 4514 4515
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4516 4517 4518
/*
 * CPU hotplug.
 *
4519
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4520
 * are a lot of assumptions on strong associations among work, pwq and
4521
 * pool which make migrating pending and scheduled works very
4522
 * difficult to implement without impacting hot paths.  Secondly,
4523
 * worker pools serve mix of short, long and very long running works making
4524 4525
 * blocked draining impractical.
 *
4526
 * This is solved by allowing the pools to be disassociated from the CPU
4527 4528
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4529
 */
L
Linus Torvalds 已提交
4530

4531
static void wq_unbind_fn(struct work_struct *work)
4532
{
4533
	int cpu = smp_processor_id();
4534
	struct worker_pool *pool;
4535
	struct worker *worker;
4536
	int wi;
4537

4538
	for_each_cpu_worker_pool(pool, cpu) {
4539
		WARN_ON_ONCE(cpu != smp_processor_id());
4540

4541
		mutex_lock(&pool->manager_mutex);
4542
		spin_lock_irq(&pool->lock);
4543

4544
		/*
4545
		 * We've blocked all manager operations.  Make all workers
4546 4547 4548 4549 4550
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4551
		for_each_pool_worker(worker, wi, pool)
4552
			worker->flags |= WORKER_UNBOUND;
4553

4554
		pool->flags |= POOL_DISASSOCIATED;
4555

4556
		spin_unlock_irq(&pool->lock);
4557
		mutex_unlock(&pool->manager_mutex);
4558

4559 4560 4561 4562 4563 4564 4565
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4566

4567 4568 4569 4570 4571 4572 4573 4574
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4575
		atomic_set(&pool->nr_running, 0);
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4586 4587
}

T
Tejun Heo 已提交
4588 4589 4590 4591
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4592
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4593 4594 4595
 */
static void rebind_workers(struct worker_pool *pool)
{
4596 4597
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4598 4599 4600

	lockdep_assert_held(&pool->manager_mutex);

4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4611

4612
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4613

4614 4615
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4616 4617

		/*
4618 4619 4620 4621 4622 4623
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4624
		 */
4625 4626
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4627

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4647
	}
4648 4649

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4650 4651
}

4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4685 4686 4687 4688
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4689
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4690 4691
					       unsigned long action,
					       void *hcpu)
4692
{
4693
	int cpu = (unsigned long)hcpu;
4694
	struct worker_pool *pool;
4695
	struct workqueue_struct *wq;
4696
	int pi;
4697

T
Tejun Heo 已提交
4698
	switch (action & ~CPU_TASKS_FROZEN) {
4699
	case CPU_UP_PREPARE:
4700
		for_each_cpu_worker_pool(pool, cpu) {
4701 4702
			if (pool->nr_workers)
				continue;
4703
			if (create_and_start_worker(pool) < 0)
4704
				return NOTIFY_BAD;
4705
		}
T
Tejun Heo 已提交
4706
		break;
4707

4708 4709
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4710
		mutex_lock(&wq_pool_mutex);
4711 4712

		for_each_pool(pool, pi) {
4713
			mutex_lock(&pool->manager_mutex);
4714

4715 4716 4717 4718
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4719

4720 4721 4722 4723
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4724

4725
			mutex_unlock(&pool->manager_mutex);
4726
		}
4727

4728 4729 4730 4731
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4732
		mutex_unlock(&wq_pool_mutex);
4733
		break;
4734
	}
4735 4736 4737 4738 4739 4740 4741
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4742
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4743 4744 4745
						 unsigned long action,
						 void *hcpu)
{
4746
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4747
	struct work_struct unbind_work;
4748
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4749

4750 4751
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4752
		/* unbinding per-cpu workers should happen on the local CPU */
4753
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4754
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4755 4756 4757 4758 4759 4760 4761 4762

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4763
		flush_work(&unbind_work);
4764
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4765
		break;
4766 4767 4768 4769
	}
	return NOTIFY_OK;
}

4770
#ifdef CONFIG_SMP
4771

4772
struct work_for_cpu {
4773
	struct work_struct work;
4774 4775 4776 4777 4778
	long (*fn)(void *);
	void *arg;
	long ret;
};

4779
static void work_for_cpu_fn(struct work_struct *work)
4780
{
4781 4782
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4783 4784 4785 4786 4787 4788 4789 4790 4791
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4792
 * It is up to the caller to ensure that the cpu doesn't go offline.
4793
 * The caller must not hold any locks which would prevent @fn from completing.
4794 4795
 *
 * Return: The value @fn returns.
4796
 */
4797
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4798
{
4799
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4800

4801 4802
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4803
	flush_work(&wfc.work);
4804
	destroy_work_on_stack(&wfc.work);
4805 4806 4807 4808 4809
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4810 4811 4812 4813 4814
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4815
 * Start freezing workqueues.  After this function returns, all freezable
4816
 * workqueues will queue new works to their delayed_works list instead of
4817
 * pool->worklist.
4818 4819
 *
 * CONTEXT:
4820
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4821 4822 4823
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4824
	struct worker_pool *pool;
4825 4826
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4827
	int pi;
4828

4829
	mutex_lock(&wq_pool_mutex);
4830

4831
	WARN_ON_ONCE(workqueue_freezing);
4832 4833
	workqueue_freezing = true;

4834
	/* set FREEZING */
4835
	for_each_pool(pool, pi) {
4836
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4837 4838
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4839
		spin_unlock_irq(&pool->lock);
4840
	}
4841

4842
	list_for_each_entry(wq, &workqueues, list) {
4843
		mutex_lock(&wq->mutex);
4844 4845
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4846
		mutex_unlock(&wq->mutex);
4847
	}
4848

4849
	mutex_unlock(&wq_pool_mutex);
4850 4851 4852
}

/**
4853
 * freeze_workqueues_busy - are freezable workqueues still busy?
4854 4855 4856 4857 4858
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4859
 * Grabs and releases wq_pool_mutex.
4860
 *
4861
 * Return:
4862 4863
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4864 4865 4866 4867
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4868 4869
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4870

4871
	mutex_lock(&wq_pool_mutex);
4872

4873
	WARN_ON_ONCE(!workqueue_freezing);
4874

4875 4876 4877
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4878 4879 4880 4881
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4882
		rcu_read_lock_sched();
4883
		for_each_pwq(pwq, wq) {
4884
			WARN_ON_ONCE(pwq->nr_active < 0);
4885
			if (pwq->nr_active) {
4886
				busy = true;
4887
				rcu_read_unlock_sched();
4888 4889 4890
				goto out_unlock;
			}
		}
4891
		rcu_read_unlock_sched();
4892 4893
	}
out_unlock:
4894
	mutex_unlock(&wq_pool_mutex);
4895 4896 4897 4898 4899 4900 4901
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4902
 * frozen works are transferred to their respective pool worklists.
4903 4904
 *
 * CONTEXT:
4905
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4906 4907 4908
 */
void thaw_workqueues(void)
{
4909 4910 4911
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4912
	int pi;
4913

4914
	mutex_lock(&wq_pool_mutex);
4915 4916 4917 4918

	if (!workqueue_freezing)
		goto out_unlock;

4919
	/* clear FREEZING */
4920
	for_each_pool(pool, pi) {
4921
		spin_lock_irq(&pool->lock);
4922 4923
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4924
		spin_unlock_irq(&pool->lock);
4925
	}
4926

4927 4928
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4929
		mutex_lock(&wq->mutex);
4930 4931
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4932
		mutex_unlock(&wq->mutex);
4933 4934 4935 4936
	}

	workqueue_freezing = false;
out_unlock:
4937
	mutex_unlock(&wq_pool_mutex);
4938 4939 4940
}
#endif /* CONFIG_FREEZER */

4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4953 4954 4955 4956 4957
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4958 4959 4960
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4961 4962 4963 4964 4965 4966 4967 4968 4969
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
4970 4971
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4987
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4988
{
T
Tejun Heo 已提交
4989 4990
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4991

4992 4993 4994 4995
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4996
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4997
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4998

4999 5000
	wq_numa_init();

5001
	/* initialize CPU pools */
5002
	for_each_possible_cpu(cpu) {
5003
		struct worker_pool *pool;
5004

T
Tejun Heo 已提交
5005
		i = 0;
5006
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5007
			BUG_ON(init_worker_pool(pool));
5008
			pool->cpu = cpu;
5009
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5010
			pool->attrs->nice = std_nice[i++];
5011
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5012

T
Tejun Heo 已提交
5013
			/* alloc pool ID */
5014
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5015
			BUG_ON(worker_pool_assign_id(pool));
5016
			mutex_unlock(&wq_pool_mutex);
5017
		}
5018 5019
	}

5020
	/* create the initial worker */
5021
	for_each_online_cpu(cpu) {
5022
		struct worker_pool *pool;
5023

5024
		for_each_cpu_worker_pool(pool, cpu) {
5025
			pool->flags &= ~POOL_DISASSOCIATED;
5026
			BUG_ON(create_and_start_worker(pool) < 0);
5027
		}
5028 5029
	}

5030
	/* create default unbound and ordered wq attrs */
5031 5032 5033 5034 5035 5036
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5047 5048
	}

5049
	system_wq = alloc_workqueue("events", 0, 0);
5050
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5051
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5052 5053
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5054 5055
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5056 5057 5058 5059 5060
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5061
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5062 5063 5064
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5065
	return 0;
L
Linus Torvalds 已提交
5066
}
5067
early_initcall(init_workqueues);