workqueue.c 107.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44 45

#include "workqueue_sched.h"
L
Linus Torvalds 已提交
46

T
Tejun Heo 已提交
47
enum {
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	/*
	 * global_cwq flags
	 *
	 * A bound gcwq is either associated or disassociated with its CPU.
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
	 * be executing on any CPU.  The gcwq behaves as an unbound one.
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
	 * managership of all pools on the gcwq to avoid changing binding
	 * state while create_worker() is in progress.
	 */
64 65 66 67 68
	GCWQ_DISASSOCIATED	= 1 << 0,	/* cpu can't serve workers */
	GCWQ_FREEZING		= 1 << 1,	/* freeze in progress */

	/* pool flags */
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74 75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78

79 80
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
				  WORKER_CPU_INTENSIVE,
81

82
	NR_WORKER_POOLS		= 2,		/* # worker pools per gcwq */
83

T
Tejun Heo 已提交
84 85 86
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
87

88 89 90
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

91 92 93
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
94 95 96 97 98 99 100 101
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
102
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
103
};
L
Linus Torvalds 已提交
104 105

/*
T
Tejun Heo 已提交
106 107
 * Structure fields follow one of the following exclusion rules.
 *
108 109
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
110
 *
111 112 113
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
114
 * L: gcwq->lock protected.  Access with gcwq->lock held.
T
Tejun Heo 已提交
115
 *
116 117 118
 * X: During normal operation, modification requires gcwq->lock and
 *    should be done only from local cpu.  Either disabling preemption
 *    on local cpu or grabbing gcwq->lock is enough for read access.
119
 *    If GCWQ_DISASSOCIATED is set, it's identical to L.
120
 *
121 122
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
123
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
124 125
 */

126
struct global_cwq;
127
struct worker_pool;
128
struct idle_rebind;
L
Linus Torvalds 已提交
129

130 131 132 133
/*
 * The poor guys doing the actual heavy lifting.  All on-duty workers
 * are either serving the manager role, on idle list or on busy hash.
 */
T
Tejun Heo 已提交
134
struct worker {
T
Tejun Heo 已提交
135 136 137 138 139
	/* on idle list while idle, on busy hash table while busy */
	union {
		struct list_head	entry;	/* L: while idle */
		struct hlist_node	hentry;	/* L: while busy */
	};
L
Linus Torvalds 已提交
140

T
Tejun Heo 已提交
141
	struct work_struct	*current_work;	/* L: work being processed */
142
	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
143
	struct list_head	scheduled;	/* L: scheduled works */
T
Tejun Heo 已提交
144
	struct task_struct	*task;		/* I: worker task */
145
	struct worker_pool	*pool;		/* I: the associated pool */
146 147 148
	/* 64 bytes boundary on 64bit, 32 on 32bit */
	unsigned long		last_active;	/* L: last active timestamp */
	unsigned int		flags;		/* X: flags */
T
Tejun Heo 已提交
149
	int			id;		/* I: worker id */
150 151 152 153

	/* for rebinding worker to CPU */
	struct idle_rebind	*idle_rebind;	/* L: for idle worker */
	struct work_struct	rebind_work;	/* L: for busy worker */
T
Tejun Heo 已提交
154 155
};

156 157
struct worker_pool {
	struct global_cwq	*gcwq;		/* I: the owning gcwq */
158
	unsigned int		flags;		/* X: flags */
159 160 161 162 163 164 165 166 167

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

168
	struct mutex		manager_mutex;	/* mutex manager should hold */
169 170 171
	struct ida		worker_ida;	/* L: for worker IDs */
};

172
/*
173 174 175
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
176 177 178 179
 */
struct global_cwq {
	spinlock_t		lock;		/* the gcwq lock */
	unsigned int		cpu;		/* I: the associated cpu */
180
	unsigned int		flags;		/* L: GCWQ_* flags */
T
Tejun Heo 已提交
181

182
	/* workers are chained either in busy_hash or pool idle_list */
T
Tejun Heo 已提交
183 184 185
	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
						/* L: hash of busy workers */

186
	struct worker_pool	pools[2];	/* normal and highpri pools */
187

188
	wait_queue_head_t	rebind_hold;	/* rebind hold wait */
189 190
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
191
/*
192
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
193 194
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
195 196
 */
struct cpu_workqueue_struct {
197
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
198
	struct workqueue_struct *wq;		/* I: the owning workqueue */
199 200 201 202
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
203
	int			nr_active;	/* L: nr of active works */
204
	int			max_active;	/* L: max active works */
205
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
206
};
L
Linus Torvalds 已提交
207

208 209 210 211 212 213 214 215 216
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

217 218 219 220 221 222 223 224 225 226
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
227
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
228 229 230 231 232 233 234 235 236
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
237 238 239 240 241 242

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
243
	unsigned int		flags;		/* W: WQ_* flags */
244 245 246 247 248
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
249
	struct list_head	list;		/* W: list of all workqueues */
250 251 252 253 254 255 256 257 258

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

259
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
260 261
	struct worker		*rescuer;	/* I: rescue worker */

262
	int			nr_drainers;	/* W: drain in progress */
263
	int			saved_max_active; /* W: saved cwq max_active */
264
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
265
	struct lockdep_map	lockdep_map;
266
#endif
267
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
268 269
};

270 271 272
struct workqueue_struct *system_wq __read_mostly;
struct workqueue_struct *system_long_wq __read_mostly;
struct workqueue_struct *system_nrt_wq __read_mostly;
273
struct workqueue_struct *system_unbound_wq __read_mostly;
274
struct workqueue_struct *system_freezable_wq __read_mostly;
275
struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
276 277 278
EXPORT_SYMBOL_GPL(system_wq);
EXPORT_SYMBOL_GPL(system_long_wq);
EXPORT_SYMBOL_GPL(system_nrt_wq);
279
EXPORT_SYMBOL_GPL(system_unbound_wq);
280
EXPORT_SYMBOL_GPL(system_freezable_wq);
281
EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
282

283 284 285
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

286
#define for_each_worker_pool(pool, gcwq)				\
287 288
	for ((pool) = &(gcwq)->pools[0];				\
	     (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
289

290 291 292 293
#define for_each_busy_worker(worker, i, pos, gcwq)			\
	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * CPU iterators
 *
 * An extra gcwq is defined for an invalid cpu number
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 * specific CPU.  The following iterators are similar to
 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 *
 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

343 344 345 346
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

347 348 349 350 351
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
387
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
423
	.debug_hint	= work_debug_hint,
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

459 460
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
461
static LIST_HEAD(workqueues);
462
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
463

464 465 466 467 468
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
469
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
470
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
471

472 473 474 475 476 477
/*
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The
 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
 * workers have WORKER_UNBOUND set.
 */
static struct global_cwq unbound_global_cwq;
478 479 480
static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
	[0 ... NR_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
};
481

T
Tejun Heo 已提交
482
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
483

484 485 486 487 488
static int worker_pool_pri(struct worker_pool *pool)
{
	return pool - pool->gcwq->pools;
}

489 490
static struct global_cwq *get_gcwq(unsigned int cpu)
{
491 492 493 494
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
495 496
}

497
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
498
{
499
	int cpu = pool->gcwq->cpu;
500
	int idx = worker_pool_pri(pool);
501

502
	if (cpu != WORK_CPU_UNBOUND)
503
		return &per_cpu(pool_nr_running, cpu)[idx];
504
	else
505
		return &unbound_pool_nr_running[idx];
506 507
}

T
Tejun Heo 已提交
508 509
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
510
{
511
	if (!(wq->flags & WQ_UNBOUND)) {
512
		if (likely(cpu < nr_cpu_ids))
513 514 515 516
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
517 518
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
534

535
/*
536 537 538
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
 * is cleared and the high bits contain OFFQ flags and CPU number.
539
 *
540 541 542 543 544 545 546 547 548 549 550 551 552 553
 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, cpu or clear
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
 *
 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
 * a work.  gcwq is available once the work has been queued anywhere after
 * initialization until it is sync canceled.  cwq is available only while
 * the work item is queued.
 *
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
554
 */
555 556
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
557
{
558
	BUG_ON(!work_pending(work));
559 560
	atomic_long_set(&work->data, data | flags | work_static(work));
}
561

562 563 564 565 566
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
567
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
568 569
}

570 571
static void set_work_cpu_and_clear_pending(struct work_struct *work,
					   unsigned int cpu)
572
{
573
	set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
574
}
575

576
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
577
{
578
	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
L
Linus Torvalds 已提交
579 580
}

581
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
582
{
583
	unsigned long data = atomic_long_read(&work->data);
584

585 586 587 588
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
589 590
}

591
static struct global_cwq *get_work_gcwq(struct work_struct *work)
592
{
593
	unsigned long data = atomic_long_read(&work->data);
594 595
	unsigned int cpu;

596 597
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
598
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
599

600
	cpu = data >> WORK_OFFQ_CPU_SHIFT;
601
	if (cpu == WORK_CPU_NONE)
602 603
		return NULL;

604
	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
605
	return get_gcwq(cpu);
606 607
}

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static void mark_work_canceling(struct work_struct *work)
{
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;

	set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
		      WORK_STRUCT_PENDING);
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

624
/*
625 626 627
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
 * they're being called with gcwq->lock held.
628 629
 */

630
static bool __need_more_worker(struct worker_pool *pool)
631
{
632
	return !atomic_read(get_pool_nr_running(pool));
633 634
}

635
/*
636 637
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
638 639 640 641
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound gcwq as long as the
 * worklist isn't empty.
642
 */
643
static bool need_more_worker(struct worker_pool *pool)
644
{
645
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
646
}
647

648
/* Can I start working?  Called from busy but !running workers. */
649
static bool may_start_working(struct worker_pool *pool)
650
{
651
	return pool->nr_idle;
652 653 654
}

/* Do I need to keep working?  Called from currently running workers. */
655
static bool keep_working(struct worker_pool *pool)
656
{
657
	atomic_t *nr_running = get_pool_nr_running(pool);
658

659
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
660 661 662
}

/* Do we need a new worker?  Called from manager. */
663
static bool need_to_create_worker(struct worker_pool *pool)
664
{
665
	return need_more_worker(pool) && !may_start_working(pool);
666
}
667

668
/* Do I need to be the manager? */
669
static bool need_to_manage_workers(struct worker_pool *pool)
670
{
671
	return need_to_create_worker(pool) ||
672
		(pool->flags & POOL_MANAGE_WORKERS);
673 674 675
}

/* Do we have too many workers and should some go away? */
676
static bool too_many_workers(struct worker_pool *pool)
677
{
678
	bool managing = mutex_is_locked(&pool->manager_mutex);
679 680
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
681 682

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
683 684
}

685
/*
686 687 688
 * Wake up functions.
 */

689
/* Return the first worker.  Safe with preemption disabled */
690
static struct worker *first_worker(struct worker_pool *pool)
691
{
692
	if (unlikely(list_empty(&pool->idle_list)))
693 694
		return NULL;

695
	return list_first_entry(&pool->idle_list, struct worker, entry);
696 697 698 699
}

/**
 * wake_up_worker - wake up an idle worker
700
 * @pool: worker pool to wake worker from
701
 *
702
 * Wake up the first idle worker of @pool.
703 704 705 706
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
707
static void wake_up_worker(struct worker_pool *pool)
708
{
709
	struct worker *worker = first_worker(pool);
710 711 712 713 714

	if (likely(worker))
		wake_up_process(worker->task);
}

715
/**
716 717 718 719 720 721 722 723 724 725 726 727 728 729
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

730
	if (!(worker->flags & WORKER_NOT_RUNNING))
731
		atomic_inc(get_pool_nr_running(worker->pool));
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
753
	struct worker_pool *pool = worker->pool;
754
	atomic_t *nr_running = get_pool_nr_running(pool);
755

756
	if (worker->flags & WORKER_NOT_RUNNING)
757 758 759 760 761 762 763 764 765 766
		return NULL;

	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
767 768 769 770 771
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
	 * manipulating idle_list, so dereferencing idle_list without gcwq
	 * lock is safe.
772
	 */
773
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
774
		to_wakeup = first_worker(pool);
775 776 777 778 779
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
780
 * @worker: self
781 782 783
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
784 785 786
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
787
 *
788 789
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
790 791 792 793
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
794
	struct worker_pool *pool = worker->pool;
795

796 797
	WARN_ON_ONCE(worker->task != current);

798 799 800 801 802 803 804
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
805
		atomic_t *nr_running = get_pool_nr_running(pool);
806 807 808

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
809
			    !list_empty(&pool->worklist))
810
				wake_up_worker(pool);
811 812 813 814
		} else
			atomic_dec(nr_running);
	}

815 816 817 818
	worker->flags |= flags;
}

/**
819
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
820
 * @worker: self
821 822
 * @flags: flags to clear
 *
823
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
824
 *
825 826
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
827 828 829
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
830
	struct worker_pool *pool = worker->pool;
831 832
	unsigned int oflags = worker->flags;

833 834
	WARN_ON_ONCE(worker->task != current);

835
	worker->flags &= ~flags;
836

837 838 839 840 841
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
842 843
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
844
			atomic_inc(get_pool_nr_running(pool));
845 846
}

T
Tejun Heo 已提交
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
/**
 * busy_worker_head - return the busy hash head for a work
 * @gcwq: gcwq of interest
 * @work: work to be hashed
 *
 * Return hash head of @gcwq for @work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to the hash head.
 */
static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
					   struct work_struct *work)
{
	const int base_shift = ilog2(sizeof(struct work_struct));
	unsigned long v = (unsigned long)work;

	/* simple shift and fold hash, do we need something better? */
	v >>= base_shift;
	v += v >> BUSY_WORKER_HASH_ORDER;
	v &= BUSY_WORKER_HASH_MASK;

	return &gcwq->busy_hash[v];
}

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
/**
 * __find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @bwh: hash head as returned by busy_worker_head()
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  @bwh should be
 * the hash head obtained by calling busy_worker_head() with the same
 * work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
 */
static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
						   struct hlist_head *bwh,
						   struct work_struct *work)
{
	struct worker *worker;
	struct hlist_node *tmp;

	hlist_for_each_entry(worker, tmp, bwh, hentry)
		if (worker->current_work == work)
			return worker;
	return NULL;
}

/**
 * find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  This function is
 * identical to __find_worker_executing_work() except that this
 * function calculates @bwh itself.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
919
 */
920 921
static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
						 struct work_struct *work)
922
{
923 924
	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
					    work);
925 926
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 * @delayed: for a delayed work
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
				 bool delayed)
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

	if (!delayed) {
		cwq->nr_active--;
		if (!list_empty(&cwq->delayed_works)) {
			/* one down, submit a delayed one */
			if (cwq->nr_active < cwq->max_active)
				cwq_activate_first_delayed(cwq);
		}
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1028
/**
1029
 * try_to_grab_pending - steal work item from worklist and disable irq
1030 1031
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1032
 * @flags: place to store irq state
1033 1034 1035 1036 1037 1038 1039
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1040 1041
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1042
 *
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
 * preempted while holding PENDING and @work off queue, preemption must be
 * disabled on entry.  This ensures that we don't return -EAGAIN while
 * another task is preempted in this function.
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
 * This function is safe to call from any context other than IRQ handler.
 * An IRQ handler may run on top of delayed_work_timer_fn() which can make
 * this function return -EAGAIN perpetually.
1054
 */
1055 1056
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1057 1058 1059
{
	struct global_cwq *gcwq;

1060 1061 1062 1063
	WARN_ON_ONCE(in_irq());

	local_irq_save(*flags);

1064 1065 1066 1067 1068 1069 1070 1071 1072
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1073 1074 1075 1076 1077 1078 1079 1080 1081
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
	gcwq = get_work_gcwq(work);
	if (!gcwq)
1082
		goto fail;
1083

1084
	spin_lock(&gcwq->lock);
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	if (!list_empty(&work->entry)) {
		/*
		 * This work is queued, but perhaps we locked the wrong gcwq.
		 * In that case we must see the new value after rmb(), see
		 * insert_work()->wmb().
		 */
		smp_rmb();
		if (gcwq == get_work_gcwq(work)) {
			debug_work_deactivate(work);
			list_del_init(&work->entry);
			cwq_dec_nr_in_flight(get_work_cwq(work),
				get_work_color(work),
				*work_data_bits(work) & WORK_STRUCT_DELAYED);
1098

1099
			spin_unlock(&gcwq->lock);
1100
			return 1;
1101 1102
		}
	}
1103 1104 1105 1106 1107 1108
	spin_unlock(&gcwq->lock);
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1109
	return -EAGAIN;
1110 1111
}

T
Tejun Heo 已提交
1112
/**
1113
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
1114 1115 1116 1117 1118
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1119 1120
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
1121 1122
 *
 * CONTEXT:
1123
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1124
 */
O
Oleg Nesterov 已提交
1125
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1126 1127
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1128
{
1129
	struct worker_pool *pool = cwq->pool;
1130

T
Tejun Heo 已提交
1131
	/* we own @work, set data and link */
1132
	set_work_cwq(work, cwq, extra_flags);
1133

1134 1135 1136 1137 1138
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
1139

1140
	list_add_tail(&work->entry, head);
1141 1142 1143 1144 1145 1146 1147 1148

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1149 1150
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1151 1152
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

	for_each_gcwq_cpu(cpu) {
		struct global_cwq *gcwq = get_gcwq(cpu);
		struct worker *worker;
		struct hlist_node *pos;
		int i;

		spin_lock_irqsave(&gcwq->lock, flags);
		for_each_busy_worker(worker, i, pos, gcwq) {
			if (worker->task != current)
				continue;
			spin_unlock_irqrestore(&gcwq->lock, flags);
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
		spin_unlock_irqrestore(&gcwq->lock, flags);
	}
	return false;
}

T
Tejun Heo 已提交
1185
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1186 1187
			 struct work_struct *work)
{
1188 1189
	struct global_cwq *gcwq;
	struct cpu_workqueue_struct *cwq;
1190
	struct list_head *worklist;
1191
	unsigned int work_flags;
1192 1193 1194 1195 1196 1197 1198 1199

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1200

1201
	debug_work_activate(work);
1202

1203
	/* if dying, only works from the same workqueue are allowed */
1204
	if (unlikely(wq->flags & WQ_DRAINING) &&
1205
	    WARN_ON_ONCE(!is_chained_work(wq)))
1206 1207
		return;

1208 1209
	/* determine gcwq to use */
	if (!(wq->flags & WQ_UNBOUND)) {
1210 1211
		struct global_cwq *last_gcwq;

1212
		if (cpu == WORK_CPU_UNBOUND)
1213 1214
			cpu = raw_smp_processor_id();

1215 1216 1217 1218 1219 1220
		/*
		 * It's multi cpu.  If @wq is non-reentrant and @work
		 * was previously on a different cpu, it might still
		 * be running there, in which case the work needs to
		 * be queued on that cpu to guarantee non-reentrance.
		 */
1221
		gcwq = get_gcwq(cpu);
1222 1223 1224 1225
		if (wq->flags & WQ_NON_REENTRANT &&
		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
			struct worker *worker;

1226
			spin_lock(&last_gcwq->lock);
1227 1228 1229 1230 1231 1232 1233

			worker = find_worker_executing_work(last_gcwq, work);

			if (worker && worker->current_cwq->wq == wq)
				gcwq = last_gcwq;
			else {
				/* meh... not running there, queue here */
1234 1235
				spin_unlock(&last_gcwq->lock);
				spin_lock(&gcwq->lock);
1236
			}
1237 1238 1239
		} else {
			spin_lock(&gcwq->lock);
		}
1240 1241
	} else {
		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1242
		spin_lock(&gcwq->lock);
1243 1244 1245 1246
	}

	/* gcwq determined, get cwq and queue */
	cwq = get_cwq(gcwq->cpu, wq);
1247
	trace_workqueue_queue_work(cpu, cwq, work);
1248

1249
	if (WARN_ON(!list_empty(&work->entry))) {
1250
		spin_unlock(&gcwq->lock);
1251 1252
		return;
	}
1253

1254
	cwq->nr_in_flight[cwq->work_color]++;
1255
	work_flags = work_color_to_flags(cwq->work_color);
1256 1257

	if (likely(cwq->nr_active < cwq->max_active)) {
1258
		trace_workqueue_activate_work(work);
1259
		cwq->nr_active++;
1260
		worklist = &cwq->pool->worklist;
1261 1262
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1263
		worklist = &cwq->delayed_works;
1264
	}
1265

1266
	insert_work(cwq, work, worklist, work_flags);
1267

1268
	spin_unlock(&gcwq->lock);
L
Linus Torvalds 已提交
1269 1270
}

1271 1272 1273 1274 1275 1276
/**
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @work: work to queue
 *
1277
 * Returns %false if @work was already on a queue, %true otherwise.
1278 1279 1280 1281
 *
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
 */
1282 1283
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
1284
{
1285
	bool ret = false;
1286 1287 1288
	unsigned long flags;

	local_irq_save(flags);
1289

1290
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1291
		__queue_work(cpu, wq, work);
1292
		ret = true;
1293
	}
1294 1295

	local_irq_restore(flags);
1296 1297 1298 1299
	return ret;
}
EXPORT_SYMBOL_GPL(queue_work_on);

1300
/**
1301
 * queue_work - queue work on a workqueue
1302
 * @wq: workqueue to use
1303
 * @work: work to queue
1304
 *
1305
 * Returns %false if @work was already on a queue, %true otherwise.
1306 1307 1308
 *
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1309
 */
1310
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
L
Linus Torvalds 已提交
1311
{
1312
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1313 1314 1315
}
EXPORT_SYMBOL_GPL(queue_work);

1316
void delayed_work_timer_fn(unsigned long __data)
1317 1318 1319 1320
{
	struct delayed_work *dwork = (struct delayed_work *)__data;
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);

1321
	local_irq_disable();
1322
	__queue_work(WORK_CPU_UNBOUND, cwq->wq, &dwork->work);
1323
	local_irq_enable();
L
Linus Torvalds 已提交
1324
}
1325
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1326

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
{
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
	unsigned int lcpu;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
	BUG_ON(timer_pending(timer));
	BUG_ON(!list_empty(&work->entry));

	timer_stats_timer_set_start_info(&dwork->timer);

	/*
	 * This stores cwq for the moment, for the timer_fn.  Note that the
	 * work's gcwq is preserved to allow reentrance detection for
	 * delayed works.
	 */
	if (!(wq->flags & WQ_UNBOUND)) {
		struct global_cwq *gcwq = get_work_gcwq(work);

		if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
			lcpu = gcwq->cpu;
		else
			lcpu = raw_smp_processor_id();
	} else {
		lcpu = WORK_CPU_UNBOUND;
	}

	set_work_cwq(work, get_cwq(lcpu, wq), 0);

	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
}

1367 1368 1369 1370
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1371
 * @dwork: work to queue
1372 1373
 * @delay: number of jiffies to wait before queueing
 *
1374 1375 1376
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1377
 */
1378 1379
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1380
{
1381
	struct work_struct *work = &dwork->work;
1382
	bool ret = false;
1383 1384
	unsigned long flags;

1385 1386 1387
	if (!delay)
		return queue_work_on(cpu, wq, &dwork->work);

1388 1389
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1390

1391
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1392
		__queue_delayed_work(cpu, wq, dwork, delay);
1393
		ret = true;
1394
	}
1395 1396

	local_irq_restore(flags);
1397 1398
	return ret;
}
1399
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
L
Linus Torvalds 已提交
1400

1401 1402 1403 1404 1405 1406
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1407
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1408
 */
1409
bool queue_delayed_work(struct workqueue_struct *wq,
1410 1411
			struct delayed_work *dwork, unsigned long delay)
{
1412
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1413 1414 1415
}
EXPORT_SYMBOL_GPL(queue_delayed_work);

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
 * This function is safe to call from any context other than IRQ handler.
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
	}

	/* -ENOENT from try_to_grab_pending() becomes %true */
	return ret;
}
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);

T
Tejun Heo 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1480
{
1481 1482
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1483 1484 1485 1486 1487

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1488 1489
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1490
	pool->nr_idle++;
1491
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1492 1493

	/* idle_list is LIFO */
1494
	list_add(&worker->entry, &pool->idle_list);
1495

1496 1497
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1498

1499
	/*
1500 1501 1502 1503
	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1504
	 */
1505
	WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1506
		     pool->nr_workers == pool->nr_idle &&
1507
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_leave_idle(struct worker *worker)
{
1521
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1522 1523

	BUG_ON(!(worker->flags & WORKER_IDLE));
1524
	worker_clr_flags(worker, WORKER_IDLE);
1525
	pool->nr_idle--;
T
Tejun Heo 已提交
1526 1527 1528
	list_del_init(&worker->entry);
}

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
1545 1546 1547 1548 1549
 * This function tries set_cpus_allowed() and locks gcwq and verifies the
 * binding against %GCWQ_DISASSOCIATED which is set during
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
 *
 * CONTEXT:
 * Might sleep.  Called without any lock but returns with gcwq->lock
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1560
__acquires(&gcwq->lock)
1561
{
1562
	struct global_cwq *gcwq = worker->pool->gcwq;
1563 1564 1565
	struct task_struct *task = worker->task;

	while (true) {
1566
		/*
1567 1568 1569 1570
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
		 * against GCWQ_DISASSOCIATED.
1571
		 */
1572 1573
		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

		spin_lock_irq(&gcwq->lock);
		if (gcwq->flags & GCWQ_DISASSOCIATED)
			return false;
		if (task_cpu(task) == gcwq->cpu &&
		    cpumask_equal(&current->cpus_allowed,
				  get_cpu_mask(gcwq->cpu)))
			return true;
		spin_unlock_irq(&gcwq->lock);

1584 1585 1586 1587 1588 1589
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1590
		cpu_relax();
1591
		cond_resched();
1592 1593 1594
	}
}

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
struct idle_rebind {
	int			cnt;		/* # workers to be rebound */
	struct completion	done;		/* all workers rebound */
};

/*
 * Rebind an idle @worker to its CPU.  During CPU onlining, this has to
 * happen synchronously for idle workers.  worker_thread() will test
 * %WORKER_REBIND before leaving idle and call this function.
 */
static void idle_worker_rebind(struct worker *worker)
{
	struct global_cwq *gcwq = worker->pool->gcwq;

	/* CPU must be online at this point */
	WARN_ON(!worker_maybe_bind_and_lock(worker));
	if (!--worker->idle_rebind->cnt)
		complete(&worker->idle_rebind->done);
	spin_unlock_irq(&worker->pool->gcwq->lock);

	/* we did our part, wait for rebind_workers() to finish up */
	wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
}

1619
/*
1620
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1621 1622 1623
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1624
 */
1625
static void busy_worker_rebind_fn(struct work_struct *work)
1626 1627
{
	struct worker *worker = container_of(work, struct worker, rebind_work);
1628
	struct global_cwq *gcwq = worker->pool->gcwq;
1629 1630 1631 1632 1633 1634 1635

	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_REBIND);

	spin_unlock_irq(&gcwq->lock);
}

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
/**
 * rebind_workers - rebind all workers of a gcwq to the associated CPU
 * @gcwq: gcwq of interest
 *
 * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
 * is different for idle and busy ones.
 *
 * The idle ones should be rebound synchronously and idle rebinding should
 * be complete before any worker starts executing work items with
 * concurrency management enabled; otherwise, scheduler may oops trying to
 * wake up non-local idle worker from wq_worker_sleeping().
 *
 * This is achieved by repeatedly requesting rebinding until all idle
 * workers are known to have been rebound under @gcwq->lock and holding all
 * idle workers from becoming busy until idle rebinding is complete.
 *
 * Once idle workers are rebound, busy workers can be rebound as they
 * finish executing their current work items.  Queueing the rebind work at
 * the head of their scheduled lists is enough.  Note that nr_running will
 * be properbly bumped as busy workers rebind.
 *
 * On return, all workers are guaranteed to either be bound or have rebind
 * work item scheduled.
 */
static void rebind_workers(struct global_cwq *gcwq)
	__releases(&gcwq->lock) __acquires(&gcwq->lock)
{
	struct idle_rebind idle_rebind;
	struct worker_pool *pool;
	struct worker *worker;
	struct hlist_node *pos;
	int i;

	lockdep_assert_held(&gcwq->lock);

	for_each_worker_pool(pool, gcwq)
		lockdep_assert_held(&pool->manager_mutex);

	/*
	 * Rebind idle workers.  Interlocked both ways.  We wait for
	 * workers to rebind via @idle_rebind.done.  Workers will wait for
	 * us to finish up by watching %WORKER_REBIND.
	 */
	init_completion(&idle_rebind.done);
retry:
	idle_rebind.cnt = 1;
	INIT_COMPLETION(idle_rebind.done);

	/* set REBIND and kick idle ones, we'll wait for these later */
	for_each_worker_pool(pool, gcwq) {
		list_for_each_entry(worker, &pool->idle_list, entry) {
			if (worker->flags & WORKER_REBIND)
				continue;

			/* morph UNBOUND to REBIND */
			worker->flags &= ~WORKER_UNBOUND;
			worker->flags |= WORKER_REBIND;

			idle_rebind.cnt++;
			worker->idle_rebind = &idle_rebind;

			/* worker_thread() will call idle_worker_rebind() */
			wake_up_process(worker->task);
		}
	}

	if (--idle_rebind.cnt) {
		spin_unlock_irq(&gcwq->lock);
		wait_for_completion(&idle_rebind.done);
		spin_lock_irq(&gcwq->lock);
		/* busy ones might have become idle while waiting, retry */
		goto retry;
	}

	/*
	 * All idle workers are rebound and waiting for %WORKER_REBIND to
	 * be cleared inside idle_worker_rebind().  Clear and release.
	 * Clearing %WORKER_REBIND from this foreign context is safe
	 * because these workers are still guaranteed to be idle.
	 */
	for_each_worker_pool(pool, gcwq)
		list_for_each_entry(worker, &pool->idle_list, entry)
			worker->flags &= ~WORKER_REBIND;

	wake_up_all(&gcwq->rebind_hold);

	/* rebind busy workers */
	for_each_busy_worker(worker, i, pos, gcwq) {
		struct work_struct *rebind_work = &worker->rebind_work;

		/* morph UNBOUND to REBIND */
		worker->flags &= ~WORKER_UNBOUND;
		worker->flags |= WORKER_REBIND;

		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;

		/* wq doesn't matter, use the default one */
		debug_work_activate(rebind_work);
		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
	}
}

T
Tejun Heo 已提交
1742 1743 1744 1745 1746
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1747 1748
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1749
		INIT_LIST_HEAD(&worker->scheduled);
1750
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1751 1752
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1753
	}
T
Tejun Heo 已提交
1754 1755 1756 1757 1758
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1759
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1760
 *
1761
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1771
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1772
{
1773
	struct global_cwq *gcwq = pool->gcwq;
1774
	const char *pri = worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1775
	struct worker *worker = NULL;
1776
	int id = -1;
T
Tejun Heo 已提交
1777

1778
	spin_lock_irq(&gcwq->lock);
1779
	while (ida_get_new(&pool->worker_ida, &id)) {
1780
		spin_unlock_irq(&gcwq->lock);
1781
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1782
			goto fail;
1783
		spin_lock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1784
	}
1785
	spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1786 1787 1788 1789 1790

	worker = alloc_worker();
	if (!worker)
		goto fail;

1791
	worker->pool = pool;
T
Tejun Heo 已提交
1792 1793
	worker->id = id;

1794
	if (gcwq->cpu != WORK_CPU_UNBOUND)
1795
		worker->task = kthread_create_on_node(worker_thread,
1796 1797
					worker, cpu_to_node(gcwq->cpu),
					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1798 1799
	else
		worker->task = kthread_create(worker_thread, worker,
1800
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1801 1802 1803
	if (IS_ERR(worker->task))
		goto fail;

1804 1805 1806
	if (worker_pool_pri(pool))
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1807
	/*
1808 1809 1810 1811 1812 1813 1814
	 * Determine CPU binding of the new worker depending on
	 * %GCWQ_DISASSOCIATED.  The caller is responsible for ensuring the
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1815
	 */
1816
	if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1817
		kthread_bind(worker->task, gcwq->cpu);
1818
	} else {
1819
		worker->task->flags |= PF_THREAD_BOUND;
1820
		worker->flags |= WORKER_UNBOUND;
1821
	}
T
Tejun Heo 已提交
1822 1823 1824 1825

	return worker;
fail:
	if (id >= 0) {
1826
		spin_lock_irq(&gcwq->lock);
1827
		ida_remove(&pool->worker_ida, id);
1828
		spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1838
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1839 1840
 *
 * CONTEXT:
1841
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1842 1843 1844
 */
static void start_worker(struct worker *worker)
{
1845
	worker->flags |= WORKER_STARTED;
1846
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1847
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1848 1849 1850 1851 1852 1853 1854
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1855 1856 1857 1858
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1859 1860 1861
 */
static void destroy_worker(struct worker *worker)
{
1862 1863
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1864 1865 1866 1867
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1868
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1869

T
Tejun Heo 已提交
1870
	if (worker->flags & WORKER_STARTED)
1871
		pool->nr_workers--;
T
Tejun Heo 已提交
1872
	if (worker->flags & WORKER_IDLE)
1873
		pool->nr_idle--;
T
Tejun Heo 已提交
1874 1875

	list_del_init(&worker->entry);
1876
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1877 1878 1879

	spin_unlock_irq(&gcwq->lock);

T
Tejun Heo 已提交
1880 1881 1882
	kthread_stop(worker->task);
	kfree(worker);

1883
	spin_lock_irq(&gcwq->lock);
1884
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1885 1886
}

1887
static void idle_worker_timeout(unsigned long __pool)
1888
{
1889 1890
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1891 1892 1893

	spin_lock_irq(&gcwq->lock);

1894
	if (too_many_workers(pool)) {
1895 1896 1897 1898
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1899
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1900 1901 1902
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1903
			mod_timer(&pool->idle_timer, expires);
1904 1905
		else {
			/* it's been idle for too long, wake up manager */
1906
			pool->flags |= POOL_MANAGE_WORKERS;
1907
			wake_up_worker(pool);
1908
		}
1909 1910 1911 1912
	}

	spin_unlock_irq(&gcwq->lock);
}
1913

1914 1915 1916 1917
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1918
	unsigned int cpu;
1919 1920 1921 1922 1923

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1924
	cpu = cwq->pool->gcwq->cpu;
1925 1926 1927
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1928
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1929 1930 1931 1932
		wake_up_process(wq->rescuer->task);
	return true;
}

1933
static void gcwq_mayday_timeout(unsigned long __pool)
1934
{
1935 1936
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1937 1938 1939 1940
	struct work_struct *work;

	spin_lock_irq(&gcwq->lock);

1941
	if (need_to_create_worker(pool)) {
1942 1943 1944 1945 1946 1947
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1948
		list_for_each_entry(work, &pool->worklist, entry)
1949
			send_mayday(work);
L
Linus Torvalds 已提交
1950
	}
1951 1952 1953

	spin_unlock_irq(&gcwq->lock);

1954
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1955 1956
}

1957 1958
/**
 * maybe_create_worker - create a new worker if necessary
1959
 * @pool: pool to create a new worker for
1960
 *
1961
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1962 1963
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1964
 * sent to all rescuers with works scheduled on @pool to resolve
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
1979
static bool maybe_create_worker(struct worker_pool *pool)
1980 1981
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
L
Linus Torvalds 已提交
1982
{
1983 1984 1985
	struct global_cwq *gcwq = pool->gcwq;

	if (!need_to_create_worker(pool))
1986 1987
		return false;
restart:
1988 1989
	spin_unlock_irq(&gcwq->lock);

1990
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1991
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1992 1993 1994 1995

	while (true) {
		struct worker *worker;

1996
		worker = create_worker(pool);
1997
		if (worker) {
1998
			del_timer_sync(&pool->mayday_timer);
1999 2000
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
2001
			BUG_ON(need_to_create_worker(pool));
2002 2003 2004
			return true;
		}

2005
		if (!need_to_create_worker(pool))
2006
			break;
L
Linus Torvalds 已提交
2007

2008 2009
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
2010

2011
		if (!need_to_create_worker(pool))
2012 2013 2014
			break;
	}

2015
	del_timer_sync(&pool->mayday_timer);
2016
	spin_lock_irq(&gcwq->lock);
2017
	if (need_to_create_worker(pool))
2018 2019 2020 2021 2022 2023
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2024
 * @pool: pool to destroy workers for
2025
 *
2026
 * Destroy @pool workers which have been idle for longer than
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Called only from manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
2037
static bool maybe_destroy_workers(struct worker_pool *pool)
2038 2039
{
	bool ret = false;
L
Linus Torvalds 已提交
2040

2041
	while (too_many_workers(pool)) {
2042 2043
		struct worker *worker;
		unsigned long expires;
2044

2045
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2046
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2047

2048
		if (time_before(jiffies, expires)) {
2049
			mod_timer(&pool->idle_timer, expires);
2050
			break;
2051
		}
L
Linus Torvalds 已提交
2052

2053 2054
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2055
	}
2056

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	return ret;
}

/**
 * manage_workers - manage worker pool
 * @worker: self
 *
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true if
 * some action was taken.
 */
static bool manage_workers(struct worker *worker)
{
2082
	struct worker_pool *pool = worker->pool;
2083 2084
	bool ret = false;

2085
	if (!mutex_trylock(&pool->manager_mutex))
2086 2087
		return ret;

2088
	pool->flags &= ~POOL_MANAGE_WORKERS;
2089 2090 2091 2092 2093

	/*
	 * Destroy and then create so that may_start_working() is true
	 * on return.
	 */
2094 2095
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2096

2097
	mutex_unlock(&pool->manager_mutex);
2098 2099 2100
	return ret;
}

2101 2102
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2103
 * @worker: self
2104 2105 2106 2107 2108 2109 2110 2111 2112
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2113
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2114
 */
T
Tejun Heo 已提交
2115
static void process_one_work(struct worker *worker, struct work_struct *work)
2116 2117
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
2118
{
2119
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2120 2121
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
2122
	struct hlist_head *bwh = busy_worker_head(gcwq, work);
2123
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2124
	work_func_t f = work->func;
2125
	int work_color;
2126
	struct worker *collision;
2127 2128 2129 2130 2131 2132 2133 2134
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2135 2136 2137
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2138
#endif
2139 2140 2141 2142 2143
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
	 * unbound or a disassociated gcwq.
	 */
2144
	WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
2145
		     !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2146 2147
		     raw_smp_processor_id() != gcwq->cpu);

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
	collision = __find_worker_executing_work(gcwq, bwh, work);
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2160
	/* claim and dequeue */
2161
	debug_work_deactivate(work);
T
Tejun Heo 已提交
2162
	hlist_add_head(&worker->hentry, bwh);
T
Tejun Heo 已提交
2163
	worker->current_work = work;
2164
	worker->current_cwq = cwq;
2165
	work_color = get_work_color(work);
2166

2167 2168
	list_del_init(&work->entry);

2169 2170 2171 2172 2173 2174 2175
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2176 2177 2178 2179
	/*
	 * Unbound gcwq isn't concurrency managed and work items should be
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2180 2181
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2182

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	/*
	 * Record the last CPU and clear PENDING.  The following wmb is
	 * paired with the implied mb in test_and_set_bit(PENDING) and
	 * ensures all updates to @work made here are visible to and
	 * precede any updates by the next PENDING owner.  Also, clear
	 * PENDING inside @gcwq->lock so that PENDING and queued state
	 * changes happen together while IRQ is disabled.
	 */
	smp_wmb();
	set_work_cpu_and_clear_pending(work, gcwq->cpu);
2193

2194
	spin_unlock_irq(&gcwq->lock);
2195

2196
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2197
	lock_map_acquire(&lockdep_map);
2198
	trace_workqueue_execute_start(work);
2199
	f(work);
2200 2201 2202 2203 2204
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
		       "%s/0x%08x/%d\n",
		       current->comm, preempt_count(), task_pid_nr(current));
		printk(KERN_ERR "    last function: ");
		print_symbol("%s\n", (unsigned long)f);
		debug_show_held_locks(current);
		dump_stack();
	}

2218
	spin_lock_irq(&gcwq->lock);
2219

2220 2221 2222 2223
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2224
	/* we're done with it, release */
T
Tejun Heo 已提交
2225
	hlist_del_init(&worker->hentry);
T
Tejun Heo 已提交
2226
	worker->current_work = NULL;
2227
	worker->current_cwq = NULL;
2228
	cwq_dec_nr_in_flight(cwq, work_color, false);
2229 2230
}

2231 2232 2233 2234 2235 2236 2237 2238 2239
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2240
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2241 2242 2243
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2244
{
2245 2246
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2247
						struct work_struct, entry);
T
Tejun Heo 已提交
2248
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2249 2250 2251
	}
}

T
Tejun Heo 已提交
2252 2253
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2254
 * @__worker: self
T
Tejun Heo 已提交
2255
 *
2256 2257 2258 2259 2260
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2261
 */
T
Tejun Heo 已提交
2262
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2263
{
T
Tejun Heo 已提交
2264
	struct worker *worker = __worker;
2265 2266
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
L
Linus Torvalds 已提交
2267

2268 2269
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2270 2271
woke_up:
	spin_lock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2272

2273 2274 2275 2276 2277
	/*
	 * DIE can be set only while idle and REBIND set while busy has
	 * @worker->rebind_work scheduled.  Checking here is enough.
	 */
	if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
T
Tejun Heo 已提交
2278
		spin_unlock_irq(&gcwq->lock);
2279 2280 2281 2282 2283 2284 2285 2286

		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2287
	}
2288

T
Tejun Heo 已提交
2289
	worker_leave_idle(worker);
2290
recheck:
2291
	/* no more worker necessary? */
2292
	if (!need_more_worker(pool))
2293 2294 2295
		goto sleep;

	/* do we need to manage? */
2296
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2297 2298
		goto recheck;

T
Tejun Heo 已提交
2299 2300 2301 2302 2303 2304 2305
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2306 2307 2308 2309 2310 2311 2312 2313
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2314
		struct work_struct *work =
2315
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2316 2317 2318 2319 2320 2321
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2322
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2323 2324 2325
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2326
		}
2327
	} while (keep_working(pool));
2328 2329

	worker_set_flags(worker, WORKER_PREP, false);
2330
sleep:
2331
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2332
		goto recheck;
2333

T
Tejun Heo 已提交
2334
	/*
2335 2336 2337 2338 2339
	 * gcwq->lock is held and there's no work to process and no
	 * need to manage, sleep.  Workers are woken up only while
	 * holding gcwq->lock or from local cpu, so setting the
	 * current state before releasing gcwq->lock is enough to
	 * prevent losing any event.
T
Tejun Heo 已提交
2340 2341 2342 2343 2344 2345
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
	spin_unlock_irq(&gcwq->lock);
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2346 2347
}

2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
/**
 * rescuer_thread - the rescuer thread function
 * @__wq: the associated workqueue
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
static int rescuer_thread(void *__wq)
{
	struct workqueue_struct *wq = __wq;
	struct worker *rescuer = wq->rescuer;
	struct list_head *scheduled = &rescuer->scheduled;
2372
	bool is_unbound = wq->flags & WQ_UNBOUND;
2373 2374 2375 2376 2377 2378 2379 2380 2381
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

	if (kthread_should_stop())
		return 0;

2382 2383 2384 2385
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2386
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2387 2388
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2389 2390
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
2391 2392 2393
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2394
		mayday_clear_cpu(cpu, wq->mayday_mask);
2395 2396

		/* migrate to the target cpu if possible */
2397
		rescuer->pool = pool;
2398 2399 2400 2401 2402 2403 2404
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2405
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2406 2407 2408 2409
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2410 2411 2412 2413 2414 2415

		/*
		 * Leave this gcwq.  If keep_working() is %true, notify a
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2416 2417
		if (keep_working(pool))
			wake_up_worker(pool);
2418

2419 2420 2421 2422 2423
		spin_unlock_irq(&gcwq->lock);
	}

	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2424 2425
}

O
Oleg Nesterov 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2437 2438 2439 2440
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2441 2442
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2443
 *
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2457 2458
 *
 * CONTEXT:
2459
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
2460
 */
2461
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2462 2463
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2464
{
2465 2466 2467
	struct list_head *head;
	unsigned int linked = 0;

2468
	/*
2469
	 * debugobject calls are safe here even with gcwq->lock locked
2470 2471 2472 2473
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2474
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2475
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2476
	init_completion(&barr->done);
2477

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2493
	debug_work_activate(&barr->work);
2494 2495
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2496 2497
}

2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2531
{
2532 2533
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2534

2535 2536 2537
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2538
	}
2539

2540
	for_each_cwq_cpu(cpu, wq) {
2541
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2542
		struct global_cwq *gcwq = cwq->pool->gcwq;
O
Oleg Nesterov 已提交
2543

2544
		spin_lock_irq(&gcwq->lock);
2545

2546 2547
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2548

2549 2550 2551 2552 2553 2554
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2555

2556 2557 2558 2559
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2560

2561
		spin_unlock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2562
	}
2563

2564 2565
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2566

2567
	return wait;
L
Linus Torvalds 已提交
2568 2569
}

2570
/**
L
Linus Torvalds 已提交
2571
 * flush_workqueue - ensure that any scheduled work has run to completion.
2572
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2573 2574 2575 2576
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2577 2578
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2579
 */
2580
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2581
{
2582 2583 2584 2585 2586 2587
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2588

2589 2590
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2652 2653 2654 2655
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2723
}
2724
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2725

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2756
		bool drained;
2757

2758
		spin_lock_irq(&cwq->pool->gcwq->lock);
2759
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2760
		spin_unlock_irq(&cwq->pool->gcwq->lock);
2761 2762

		if (drained)
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
			pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
				   wq->name, flush_cnt);
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2779 2780
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
			     bool wait_executing)
2781
{
2782
	struct worker *worker = NULL;
2783
	struct global_cwq *gcwq;
2784 2785 2786
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2787 2788
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2789
		return false;
2790

2791
	spin_lock_irq(&gcwq->lock);
2792 2793 2794
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2795 2796
		 * If it was re-queued to a different gcwq under us, we
		 * are not going to wait.
2797 2798
		 */
		smp_rmb();
2799
		cwq = get_work_cwq(work);
2800
		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
T
Tejun Heo 已提交
2801
			goto already_gone;
2802
	} else if (wait_executing) {
2803
		worker = find_worker_executing_work(gcwq, work);
2804
		if (!worker)
T
Tejun Heo 已提交
2805
			goto already_gone;
2806
		cwq = worker->current_cwq;
2807 2808
	} else
		goto already_gone;
2809

2810
	insert_wq_barrier(cwq, barr, work, worker);
2811
	spin_unlock_irq(&gcwq->lock);
2812

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2823
	lock_map_release(&cwq->wq->lockdep_map);
2824

2825
	return true;
T
Tejun Heo 已提交
2826
already_gone:
2827
	spin_unlock_irq(&gcwq->lock);
2828
	return false;
2829
}
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
 * Wait until @work has finished execution.  This function considers
 * only the last queueing instance of @work.  If @work has been
 * enqueued across different CPUs on a non-reentrant workqueue or on
 * multiple workqueues, @work might still be executing on return on
 * some of the CPUs from earlier queueing.
 *
 * If @work was queued only on a non-reentrant, ordered or unbound
 * workqueue, @work is guaranteed to be idle on return if it hasn't
 * been requeued since flush started.
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2853 2854 2855
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2856 2857 2858 2859 2860 2861 2862
	if (start_flush_work(work, &barr, true)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else
		return false;
}
2863 2864
EXPORT_SYMBOL_GPL(flush_work);

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
{
	struct wq_barrier barr;
	struct worker *worker;

	spin_lock_irq(&gcwq->lock);

	worker = find_worker_executing_work(gcwq, work);
	if (unlikely(worker))
		insert_wq_barrier(worker->current_cwq, &barr, work, worker);

	spin_unlock_irq(&gcwq->lock);

	if (unlikely(worker)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else
		return false;
}

static bool wait_on_work(struct work_struct *work)
{
	bool ret = false;
	int cpu;

	might_sleep();

	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

	for_each_gcwq_cpu(cpu)
		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
	return ret;
}

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
/**
 * flush_work_sync - wait until a work has finished execution
 * @work: the work to flush
 *
 * Wait until @work has finished execution.  On return, it's
 * guaranteed that all queueing instances of @work which happened
 * before this function is called are finished.  In other words, if
 * @work hasn't been requeued since this function was called, @work is
 * guaranteed to be idle on return.
 *
 * RETURNS:
 * %true if flush_work_sync() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work_sync(struct work_struct *work)
{
	struct wq_barrier barr;
	bool pending, waited;

	/* we'll wait for executions separately, queue barr only if pending */
	pending = start_flush_work(work, &barr, false);

	/* wait for executions to finish */
	waited = wait_on_work(work);

	/* wait for the pending one */
	if (pending) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
	}

	return pending || waited;
}
EXPORT_SYMBOL_GPL(flush_work_sync);

2936
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2937
{
2938
	unsigned long flags;
2939 2940 2941
	int ret;

	do {
2942 2943 2944 2945 2946 2947 2948
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
			wait_on_work(work);
2949 2950
	} while (unlikely(ret < 0));

2951 2952 2953 2954 2955
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

	wait_on_work(work);
2956
	clear_work_data(work);
2957 2958 2959
	return ret;
}

2960
/**
2961 2962
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2963
 *
2964 2965 2966 2967
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2968
 *
2969 2970
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2971
 *
2972
 * The caller must ensure that the workqueue on which @work was last
2973
 * queued can't be destroyed before this function returns.
2974 2975 2976
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2977
 */
2978
bool cancel_work_sync(struct work_struct *work)
2979
{
2980
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2981
}
2982
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2983

2984
/**
2985 2986
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2987
 *
2988 2989 2990
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2991
 *
2992 2993 2994
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2995
 */
2996 2997
bool flush_delayed_work(struct delayed_work *dwork)
{
2998
	local_irq_disable();
2999
	if (del_timer_sync(&dwork->timer))
3000
		__queue_work(WORK_CPU_UNBOUND,
3001
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
3002
	local_irq_enable();
3003 3004 3005 3006
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
/**
 * flush_delayed_work_sync - wait for a dwork to finish
 * @dwork: the delayed work to flush
 *
 * Delayed timer is cancelled and the pending work is queued for
 * execution immediately.  Other than timer handling, its behavior
 * is identical to flush_work_sync().
 *
 * RETURNS:
 * %true if flush_work_sync() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_delayed_work_sync(struct delayed_work *dwork)
{
3021
	local_irq_disable();
3022
	if (del_timer_sync(&dwork->timer))
3023
		__queue_work(WORK_CPU_UNBOUND,
3024
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
3025
	local_irq_enable();
3026 3027 3028 3029
	return flush_work_sync(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work_sync);

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3040
{
3041
	return __cancel_work_timer(&dwork->work, true);
3042
}
3043
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3044

3045
/**
3046 3047 3048 3049 3050 3051
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
3052
bool schedule_work_on(int cpu, struct work_struct *work)
3053 3054 3055 3056 3057
{
	return queue_work_on(cpu, system_wq, work);
}
EXPORT_SYMBOL(schedule_work_on);

3058 3059 3060 3061
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
3062 3063
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
3064 3065 3066 3067
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
3068
 */
3069
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3070
{
3071
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3072
}
3073
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3074

3075 3076 3077 3078 3079
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
 * @dwork: job to be done
 * @delay: number of jiffies to wait
3080
 *
3081 3082
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
3083
 */
3084 3085
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
3086
{
3087
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3088
}
3089
EXPORT_SYMBOL(schedule_delayed_work_on);
3090

3091 3092
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3093 3094
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3095 3096 3097 3098
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3099
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3100
{
3101
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3102
}
3103
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3104

3105
/**
3106
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3107 3108
 * @func: the function to call
 *
3109 3110
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3111
 * schedule_on_each_cpu() is very slow.
3112 3113 3114
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3115
 */
3116
int schedule_on_each_cpu(work_func_t func)
3117 3118
{
	int cpu;
3119
	struct work_struct __percpu *works;
3120

3121 3122
	works = alloc_percpu(struct work_struct);
	if (!works)
3123
		return -ENOMEM;
3124

3125 3126
	get_online_cpus();

3127
	for_each_online_cpu(cpu) {
3128 3129 3130
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3131
		schedule_work_on(cpu, work);
3132
	}
3133 3134 3135 3136

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3137
	put_online_cpus();
3138
	free_percpu(works);
3139 3140 3141
	return 0;
}

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3166 3167
void flush_scheduled_work(void)
{
3168
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3169
}
3170
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3171

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3184
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3185 3186
{
	if (!in_interrupt()) {
3187
		fn(&ew->work);
3188 3189 3190
		return 0;
	}

3191
	INIT_WORK(&ew->work, fn);
3192 3193 3194 3195 3196 3197
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3198 3199
int keventd_up(void)
{
3200
	return system_wq != NULL;
L
Linus Torvalds 已提交
3201 3202
}

3203
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3204
{
3205
	/*
T
Tejun Heo 已提交
3206 3207 3208
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3209
	 */
T
Tejun Heo 已提交
3210 3211 3212
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3213

3214
	if (!(wq->flags & WQ_UNBOUND))
3215
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3216
	else {
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3229
	}
3230

3231
	/* just in case, make sure it's actually aligned */
3232 3233
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3234 3235
}

3236
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3237
{
3238
	if (!(wq->flags & WQ_UNBOUND))
3239 3240 3241
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3242
		kfree(*(void **)(wq->cpu_wq.single + 1));
3243
	}
T
Tejun Heo 已提交
3244 3245
}

3246 3247
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3248
{
3249 3250 3251
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
3252 3253
		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
		       "is out of range, clamping between %d and %d\n",
3254
		       max_active, name, 1, lim);
3255

3256
	return clamp_val(max_active, 1, lim);
3257 3258
}

3259
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3260 3261 3262
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3263
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3264
{
3265
	va_list args, args1;
L
Linus Torvalds 已提交
3266
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3267
	unsigned int cpu;
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3282

3283 3284 3285 3286 3287 3288 3289
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3290
	max_active = max_active ?: WQ_DFL_ACTIVE;
3291
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3292

3293
	/* init wq */
3294
	wq->flags = flags;
3295
	wq->saved_max_active = max_active;
3296 3297 3298 3299
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3300

3301
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3302
	INIT_LIST_HEAD(&wq->list);
3303

3304 3305 3306
	if (alloc_cwqs(wq) < 0)
		goto err;

3307
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3308
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3309
		struct global_cwq *gcwq = get_gcwq(cpu);
3310
		int pool_idx = (bool)(flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3311

T
Tejun Heo 已提交
3312
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3313
		cwq->pool = &gcwq->pools[pool_idx];
T
Tejun Heo 已提交
3314
		cwq->wq = wq;
3315
		cwq->flush_color = -1;
3316 3317
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3318
	}
T
Tejun Heo 已提交
3319

3320 3321 3322
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3323
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3324 3325 3326 3327 3328 3329
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3330 3331
		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
					       wq->name);
3332 3333 3334 3335 3336
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3337 3338
	}

3339 3340 3341 3342 3343
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3344
	spin_lock(&workqueue_lock);
3345

3346
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3347
		for_each_cwq_cpu(cpu, wq)
3348 3349
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3350
	list_add(&wq->list, &workqueues);
3351

T
Tejun Heo 已提交
3352 3353
	spin_unlock(&workqueue_lock);

3354
	return wq;
T
Tejun Heo 已提交
3355 3356
err:
	if (wq) {
3357
		free_cwqs(wq);
3358
		free_mayday_mask(wq->mayday_mask);
3359
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3360 3361 3362
		kfree(wq);
	}
	return NULL;
3363
}
3364
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3365

3366 3367 3368 3369 3370 3371 3372 3373
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3374
	unsigned int cpu;
3375

3376 3377
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3378

3379 3380 3381 3382
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3383
	spin_lock(&workqueue_lock);
3384
	list_del(&wq->list);
3385
	spin_unlock(&workqueue_lock);
3386

3387
	/* sanity check */
3388
	for_each_cwq_cpu(cpu, wq) {
3389 3390 3391 3392 3393
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3394 3395
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3396
	}
3397

3398 3399
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3400
		free_mayday_mask(wq->mayday_mask);
3401
		kfree(wq->rescuer);
3402 3403
	}

3404
	free_cwqs(wq);
3405 3406 3407 3408
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3423
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3424 3425 3426 3427 3428

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3429
	for_each_cwq_cpu(cpu, wq) {
3430 3431 3432 3433
		struct global_cwq *gcwq = get_gcwq(cpu);

		spin_lock_irq(&gcwq->lock);

3434
		if (!(wq->flags & WQ_FREEZABLE) ||
3435 3436
		    !(gcwq->flags & GCWQ_FREEZING))
			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3437

3438
		spin_unlock_irq(&gcwq->lock);
3439
	}
3440

3441
	spin_unlock(&workqueue_lock);
3442
}
3443
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3444

3445
/**
3446 3447 3448
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3449
 *
3450 3451 3452
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3453
 *
3454 3455
 * RETURNS:
 * %true if congested, %false otherwise.
3456
 */
3457
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3458
{
3459 3460 3461
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3462
}
3463
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3464

3465
/**
3466 3467
 * work_cpu - return the last known associated cpu for @work
 * @work: the work of interest
3468
 *
3469
 * RETURNS:
3470
 * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3471
 */
3472
unsigned int work_cpu(struct work_struct *work)
3473
{
3474
	struct global_cwq *gcwq = get_work_gcwq(work);
3475

3476
	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3477
}
3478
EXPORT_SYMBOL_GPL(work_cpu);
3479

3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3494
{
3495 3496 3497
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3498

3499 3500
	if (!gcwq)
		return false;
L
Linus Torvalds 已提交
3501

3502
	spin_lock_irqsave(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3503

3504 3505 3506 3507
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
	if (find_worker_executing_work(gcwq, work))
		ret |= WORK_BUSY_RUNNING;
L
Linus Torvalds 已提交
3508

3509
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3510

3511
	return ret;
L
Linus Torvalds 已提交
3512
}
3513
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3514

3515 3516 3517
/*
 * CPU hotplug.
 *
3518 3519 3520 3521 3522 3523 3524
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
 * gcwqs serve mix of short, long and very long running works making
 * blocked draining impractical.
 *
3525 3526 3527
 * This is solved by allowing a gcwq to be disassociated from the CPU
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3528
 */
L
Linus Torvalds 已提交
3529

3530
/* claim manager positions of all pools */
T
Tejun Heo 已提交
3531
static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
3532 3533 3534 3535 3536
{
	struct worker_pool *pool;

	for_each_worker_pool(pool, gcwq)
		mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
T
Tejun Heo 已提交
3537
	spin_lock_irq(&gcwq->lock);
3538 3539 3540
}

/* release manager positions */
T
Tejun Heo 已提交
3541
static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
3542 3543 3544
{
	struct worker_pool *pool;

T
Tejun Heo 已提交
3545
	spin_unlock_irq(&gcwq->lock);
3546 3547 3548 3549
	for_each_worker_pool(pool, gcwq)
		mutex_unlock(&pool->manager_mutex);
}

3550
static void gcwq_unbind_fn(struct work_struct *work)
3551
{
3552
	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3553
	struct worker_pool *pool;
3554 3555 3556
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3557

3558 3559
	BUG_ON(gcwq->cpu != smp_processor_id());

T
Tejun Heo 已提交
3560
	gcwq_claim_management_and_lock(gcwq);
3561

3562 3563 3564 3565 3566 3567
	/*
	 * We've claimed all manager positions.  Make all workers unbound
	 * and set DISASSOCIATED.  Before this, all workers except for the
	 * ones which are still executing works from before the last CPU
	 * down must be on the cpu.  After this, they may become diasporas.
	 */
3568
	for_each_worker_pool(pool, gcwq)
3569
		list_for_each_entry(worker, &pool->idle_list, entry)
3570
			worker->flags |= WORKER_UNBOUND;
3571

3572
	for_each_busy_worker(worker, i, pos, gcwq)
3573
		worker->flags |= WORKER_UNBOUND;
3574

3575 3576
	gcwq->flags |= GCWQ_DISASSOCIATED;

T
Tejun Heo 已提交
3577
	gcwq_release_management_and_unlock(gcwq);
3578

3579
	/*
3580
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3581 3582
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3583 3584
	 */
	schedule();
3585

3586
	/*
3587 3588 3589 3590 3591 3592 3593 3594 3595
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
	 * are always true as long as the worklist is not empty.  @gcwq now
	 * behaves as unbound (in terms of concurrency management) gcwq
	 * which is served by workers tied to the CPU.
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3596
	 */
3597 3598
	for_each_worker_pool(pool, gcwq)
		atomic_set(get_pool_nr_running(pool), 0);
3599 3600
}

T
Tejun Heo 已提交
3601 3602 3603 3604 3605 3606 3607
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
					       unsigned long action,
					       void *hcpu)
3608 3609
{
	unsigned int cpu = (unsigned long)hcpu;
3610
	struct global_cwq *gcwq = get_gcwq(cpu);
3611
	struct worker_pool *pool;
3612

T
Tejun Heo 已提交
3613
	switch (action & ~CPU_TASKS_FROZEN) {
3614
	case CPU_UP_PREPARE:
3615
		for_each_worker_pool(pool, gcwq) {
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
3628
		}
T
Tejun Heo 已提交
3629
		break;
3630

3631 3632
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
T
Tejun Heo 已提交
3633
		gcwq_claim_management_and_lock(gcwq);
3634
		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3635
		rebind_workers(gcwq);
T
Tejun Heo 已提交
3636
		gcwq_release_management_and_unlock(gcwq);
3637
		break;
3638
	}
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3650 3651 3652
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3653 3654
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3655 3656 3657 3658 3659
		/* unbinding should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
		schedule_work_on(cpu, &unbind_work);
		flush_work(&unbind_work);
		break;
3660 3661 3662 3663
	}
	return NOTIFY_OK;
}

3664
#ifdef CONFIG_SMP
3665

3666
struct work_for_cpu {
3667
	struct completion completion;
3668 3669 3670 3671 3672
	long (*fn)(void *);
	void *arg;
	long ret;
};

3673
static int do_work_for_cpu(void *_wfc)
3674
{
3675
	struct work_for_cpu *wfc = _wfc;
3676
	wfc->ret = wfc->fn(wfc->arg);
3677 3678
	complete(&wfc->completion);
	return 0;
3679 3680 3681 3682 3683 3684 3685 3686
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3687 3688
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3689
 * The caller must not hold any locks which would prevent @fn from completing.
3690 3691 3692
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
	struct task_struct *sub_thread;
	struct work_for_cpu wfc = {
		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
		.fn = fn,
		.arg = arg,
	};

	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
	if (IS_ERR(sub_thread))
		return PTR_ERR(sub_thread);
	kthread_bind(sub_thread, cpu);
	wake_up_process(sub_thread);
	wait_for_completion(&wfc.completion);
3706 3707 3708 3709 3710
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3711 3712 3713 3714 3715
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3716 3717 3718
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
 * gcwq->worklist.
3719 3720
 *
 * CONTEXT:
3721
 * Grabs and releases workqueue_lock and gcwq->lock's.
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3732
	for_each_gcwq_cpu(cpu) {
3733
		struct global_cwq *gcwq = get_gcwq(cpu);
3734
		struct workqueue_struct *wq;
3735 3736 3737

		spin_lock_irq(&gcwq->lock);

3738 3739 3740
		BUG_ON(gcwq->flags & GCWQ_FREEZING);
		gcwq->flags |= GCWQ_FREEZING;

3741 3742 3743
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3744
			if (cwq && wq->flags & WQ_FREEZABLE)
3745 3746
				cwq->max_active = 0;
		}
3747 3748

		spin_unlock_irq(&gcwq->lock);
3749 3750 3751 3752 3753 3754
	}

	spin_unlock(&workqueue_lock);
}

/**
3755
 * freeze_workqueues_busy - are freezable workqueues still busy?
3756 3757 3758 3759 3760 3761 3762 3763
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3764 3765
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3776
	for_each_gcwq_cpu(cpu) {
3777
		struct workqueue_struct *wq;
3778 3779 3780 3781 3782 3783 3784
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3785
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3804
 * frozen works are transferred to their respective gcwq worklists.
3805 3806
 *
 * CONTEXT:
3807
 * Grabs and releases workqueue_lock and gcwq->lock's.
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3818
	for_each_gcwq_cpu(cpu) {
3819
		struct global_cwq *gcwq = get_gcwq(cpu);
3820
		struct worker_pool *pool;
3821
		struct workqueue_struct *wq;
3822 3823 3824

		spin_lock_irq(&gcwq->lock);

3825 3826 3827
		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
		gcwq->flags &= ~GCWQ_FREEZING;

3828 3829 3830
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3831
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3832 3833 3834 3835 3836 3837 3838 3839 3840
				continue;

			/* restore max_active and repopulate worklist */
			cwq->max_active = wq->saved_max_active;

			while (!list_empty(&cwq->delayed_works) &&
			       cwq->nr_active < cwq->max_active)
				cwq_activate_first_delayed(cwq);
		}
3841

3842 3843
		for_each_worker_pool(pool, gcwq)
			wake_up_worker(pool);
3844

3845
		spin_unlock_irq(&gcwq->lock);
3846 3847 3848 3849 3850 3851 3852 3853
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3854
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3855
{
T
Tejun Heo 已提交
3856
	unsigned int cpu;
T
Tejun Heo 已提交
3857
	int i;
T
Tejun Heo 已提交
3858

3859 3860 3861 3862
	/* make sure we have enough bits for OFFQ CPU number */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
		     WORK_CPU_LAST);

3863 3864
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
	cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3865 3866

	/* initialize gcwqs */
3867
	for_each_gcwq_cpu(cpu) {
3868
		struct global_cwq *gcwq = get_gcwq(cpu);
3869
		struct worker_pool *pool;
3870 3871 3872

		spin_lock_init(&gcwq->lock);
		gcwq->cpu = cpu;
3873
		gcwq->flags |= GCWQ_DISASSOCIATED;
3874

T
Tejun Heo 已提交
3875 3876 3877
		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);

3878 3879 3880 3881
		for_each_worker_pool(pool, gcwq) {
			pool->gcwq = gcwq;
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3882

3883 3884 3885
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3886

3887 3888 3889
			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
				    (unsigned long)pool);

3890
			mutex_init(&pool->manager_mutex);
3891 3892
			ida_init(&pool->worker_ida);
		}
3893

3894
		init_waitqueue_head(&gcwq->rebind_hold);
3895 3896
	}

3897
	/* create the initial worker */
3898
	for_each_online_gcwq_cpu(cpu) {
3899
		struct global_cwq *gcwq = get_gcwq(cpu);
3900
		struct worker_pool *pool;
3901

3902 3903
		if (cpu != WORK_CPU_UNBOUND)
			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3904 3905 3906 3907

		for_each_worker_pool(pool, gcwq) {
			struct worker *worker;

3908
			worker = create_worker(pool);
3909 3910 3911 3912 3913
			BUG_ON(!worker);
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
		}
3914 3915
	}

3916 3917 3918
	system_wq = alloc_workqueue("events", 0, 0);
	system_long_wq = alloc_workqueue("events_long", 0, 0);
	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3919 3920
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3921 3922
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3923 3924
	system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
			WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3925
	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3926 3927
	       !system_unbound_wq || !system_freezable_wq ||
		!system_nrt_freezable_wq);
3928
	return 0;
L
Linus Torvalds 已提交
3929
}
3930
early_initcall(init_workqueues);