workqueue.c 134.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/jhash.h>
45
#include <linux/hashtable.h>
46
#include <linux/rculist.h>
47
#include <linux/nodemask.h>
48
#include <linux/moduleparam.h>
49

50
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
51

T
Tejun Heo 已提交
52
enum {
53 54
	/*
	 * worker_pool flags
55
	 *
56
	 * A bound pool is either associated or disassociated with its CPU.
57 58 59 60 61 62
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
63
	 * be executing on any CPU.  The pool behaves as an unbound one.
64
	 *
65 66
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
67
	 * create_worker() is in progress.
68
	 */
69
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
70
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
71
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
72

T
Tejun Heo 已提交
73 74 75 76
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
77
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
78
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
79
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
80
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
81

82 83
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
84

85
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
86

87
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
88
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
89

90 91 92
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

93 94 95
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
96 97 98 99 100 101 102 103
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
104
	HIGHPRI_NICE_LEVEL	= -20,
105 106

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
107
};
L
Linus Torvalds 已提交
108 109

/*
T
Tejun Heo 已提交
110 111
 * Structure fields follow one of the following exclusion rules.
 *
112 113
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
114
 *
115 116 117
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
118
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
119
 *
120 121 122 123
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
124
 *
125 126 127
 * MG: pool->manager_mutex and pool->lock protected.  Writes require both
 *     locks.  Reads can happen under either lock.
 *
128
 * PL: wq_pool_mutex protected.
129
 *
130
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
131
 *
132 133
 * WQ: wq->mutex protected.
 *
134
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
135 136
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
137 138
 */

139
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
140

141
struct worker_pool {
142
	spinlock_t		lock;		/* the pool lock */
143
	int			cpu;		/* I: the associated cpu */
144
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
145
	int			id;		/* I: pool ID */
146
	unsigned int		flags;		/* X: flags */
147 148 149

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
150 151

	/* nr_idle includes the ones off idle_list for rebinding */
152 153 154 155 156 157
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

158
	/* a workers is either on busy_hash or idle_list, or the manager */
159 160 161
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

162
	/* see manage_workers() for details on the two manager mutexes */
163
	struct mutex		manager_arb;	/* manager arbitration */
164
	struct mutex		manager_mutex;	/* manager exclusion */
165
	struct idr		worker_idr;	/* MG: worker IDs and iteration */
166

T
Tejun Heo 已提交
167
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
168 169
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
170

171 172 173 174 175 176
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
177 178 179 180 181 182

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
183 184
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
185
/*
186 187 188 189
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
190
 */
191
struct pool_workqueue {
192
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
193
	struct workqueue_struct *wq;		/* I: the owning workqueue */
194 195
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
196
	int			refcnt;		/* L: reference count */
197 198
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
199
	int			nr_active;	/* L: nr of active works */
200
	int			max_active;	/* L: max active works */
201
	struct list_head	delayed_works;	/* L: delayed works */
202
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
203
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
204 205 206 207 208

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
209
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
210 211 212
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
213
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
214

215 216 217 218
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
219 220
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
221 222 223
	struct completion	done;		/* flush completion */
};

224 225
struct wq_device;

L
Linus Torvalds 已提交
226
/*
227 228
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
229 230
 */
struct workqueue_struct {
231
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
232
	struct list_head	list;		/* PL: list of all workqueues */
233

234 235 236
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
237
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
238 239 240
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
241

242
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
243 244
	struct worker		*rescuer;	/* I: rescue worker */

245
	int			nr_drainers;	/* WQ: drain in progress */
246
	int			saved_max_active; /* WQ: saved pwq max_active */
247

248
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
249
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
250

251 252 253
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
254
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
255
	struct lockdep_map	lockdep_map;
256
#endif
257
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
258 259 260 261

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
262
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
263 264
};

265 266
static struct kmem_cache *pwq_cache;

267 268 269 270
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

271 272 273
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

274 275
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

276 277 278
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

279
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
280
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
281

282 283
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
284 285 286 287 288

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

289
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
290

291
/* PL: hash of all unbound pools keyed by pool->attrs */
292 293
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

294
/* I: attributes used when instantiating standard unbound pools on demand */
295 296
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

297 298
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
299
struct workqueue_struct *system_highpri_wq __read_mostly;
300
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
301
struct workqueue_struct *system_long_wq __read_mostly;
302
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
303
struct workqueue_struct *system_unbound_wq __read_mostly;
304
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
305
struct workqueue_struct *system_freezable_wq __read_mostly;
306
EXPORT_SYMBOL_GPL(system_freezable_wq);
307

308 309 310 311
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

312 313 314
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

315
#define assert_rcu_or_pool_mutex()					\
316
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
317 318
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
319

320
#define assert_rcu_or_wq_mutex(wq)					\
321
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
322
			   lockdep_is_held(&wq->mutex),			\
323
			   "sched RCU or wq->mutex should be held")
324

325 326
#ifdef CONFIG_LOCKDEP
#define assert_manager_or_pool_lock(pool)				\
327 328
	WARN_ONCE(debug_locks &&					\
		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
329 330 331 332 333 334
		  !lockdep_is_held(&(pool)->lock),			\
		  "pool->manager_mutex or ->lock should be held")
#else
#define assert_manager_or_pool_lock(pool)	do { } while (0)
#endif

335 336 337
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
338
	     (pool)++)
339

T
Tejun Heo 已提交
340 341 342
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
343
 * @pi: integer used for iteration
344
 *
345 346 347
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
348 349 350
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
351
 */
352 353
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
354
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
355
		else
T
Tejun Heo 已提交
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
 * This must be called with either @pool->manager_mutex or ->lock held.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
		else

373 374 375 376
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
377
 *
378
 * This must be called either with wq->mutex held or sched RCU read locked.
379 380
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
381 382 383
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
384 385
 */
#define for_each_pwq(pwq, wq)						\
386
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
387
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
388
		else
389

390 391 392 393
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

394 395 396 397 398
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
434
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
470
	.debug_hint	= work_debug_hint,
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

T
Tejun Heo 已提交
506 507 508 509 510
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

511
	lockdep_assert_held(&wq_pool_mutex);
512

T
Tejun Heo 已提交
513
	ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
514
	if (ret >= 0) {
T
Tejun Heo 已提交
515
		pool->id = ret;
516 517
		return 0;
	}
518
	return ret;
519 520
}

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
552

553
/*
554 555
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
556
 * is cleared and the high bits contain OFFQ flags and pool ID.
557
 *
558 559
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
560 561
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
562
 *
563
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
564
 * corresponding to a work.  Pool is available once the work has been
565
 * queued anywhere after initialization until it is sync canceled.  pwq is
566
 * available only while the work item is queued.
567
 *
568 569 570 571
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
572
 */
573 574
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
575
{
576
	WARN_ON_ONCE(!work_pending(work));
577 578
	atomic_long_set(&work->data, data | flags | work_static(work));
}
579

580
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
581 582
			 unsigned long extra_flags)
{
583 584
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
585 586
}

587 588 589 590 591 592 593
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

594 595
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
596
{
597 598 599 600 601 602 603
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
604
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
605
}
606

607
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
608
{
609 610
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
611 612
}

613
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
614
{
615
	unsigned long data = atomic_long_read(&work->data);
616

617
	if (data & WORK_STRUCT_PWQ)
618 619 620
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
621 622
}

623 624 625 626 627
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
628
 *
629 630 631
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
632 633 634 635 636
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
637 638
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
639
{
640
	unsigned long data = atomic_long_read(&work->data);
641
	int pool_id;
642

643
	assert_rcu_or_pool_mutex();
644

645 646
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
647
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
648

649 650
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
651 652
		return NULL;

653
	return idr_find(&worker_pool_idr, pool_id);
654 655 656 657 658 659 660 661 662 663 664
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
665 666
	unsigned long data = atomic_long_read(&work->data);

667 668
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
669
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
670

671
	return data >> WORK_OFFQ_POOL_SHIFT;
672 673
}

674 675
static void mark_work_canceling(struct work_struct *work)
{
676
	unsigned long pool_id = get_work_pool_id(work);
677

678 679
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
680 681 682 683 684 685
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

686
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
687 688
}

689
/*
690 691
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
692
 * they're being called with pool->lock held.
693 694
 */

695
static bool __need_more_worker(struct worker_pool *pool)
696
{
697
	return !atomic_read(&pool->nr_running);
698 699
}

700
/*
701 702
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
703 704
 *
 * Note that, because unbound workers never contribute to nr_running, this
705
 * function will always return %true for unbound pools as long as the
706
 * worklist isn't empty.
707
 */
708
static bool need_more_worker(struct worker_pool *pool)
709
{
710
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
711
}
712

713
/* Can I start working?  Called from busy but !running workers. */
714
static bool may_start_working(struct worker_pool *pool)
715
{
716
	return pool->nr_idle;
717 718 719
}

/* Do I need to keep working?  Called from currently running workers. */
720
static bool keep_working(struct worker_pool *pool)
721
{
722 723
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
724 725 726
}

/* Do we need a new worker?  Called from manager. */
727
static bool need_to_create_worker(struct worker_pool *pool)
728
{
729
	return need_more_worker(pool) && !may_start_working(pool);
730
}
731

732
/* Do I need to be the manager? */
733
static bool need_to_manage_workers(struct worker_pool *pool)
734
{
735
	return need_to_create_worker(pool) ||
736
		(pool->flags & POOL_MANAGE_WORKERS);
737 738 739
}

/* Do we have too many workers and should some go away? */
740
static bool too_many_workers(struct worker_pool *pool)
741
{
742
	bool managing = mutex_is_locked(&pool->manager_arb);
743 744
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
745

746 747 748 749 750 751 752
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

753
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
754 755
}

756
/*
757 758 759
 * Wake up functions.
 */

760
/* Return the first worker.  Safe with preemption disabled */
761
static struct worker *first_worker(struct worker_pool *pool)
762
{
763
	if (unlikely(list_empty(&pool->idle_list)))
764 765
		return NULL;

766
	return list_first_entry(&pool->idle_list, struct worker, entry);
767 768 769 770
}

/**
 * wake_up_worker - wake up an idle worker
771
 * @pool: worker pool to wake worker from
772
 *
773
 * Wake up the first idle worker of @pool.
774 775
 *
 * CONTEXT:
776
 * spin_lock_irq(pool->lock).
777
 */
778
static void wake_up_worker(struct worker_pool *pool)
779
{
780
	struct worker *worker = first_worker(pool);
781 782 783 784 785

	if (likely(worker))
		wake_up_process(worker->task);
}

786
/**
787 788 789 790 791 792 793 794 795 796
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
797
void wq_worker_waking_up(struct task_struct *task, int cpu)
798 799 800
{
	struct worker *worker = kthread_data(task);

801
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
802
		WARN_ON_ONCE(worker->pool->cpu != cpu);
803
		atomic_inc(&worker->pool->nr_running);
804
	}
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
822
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
823 824
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
825
	struct worker_pool *pool;
826

827 828 829 830 831
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
832
	if (worker->flags & WORKER_NOT_RUNNING)
833 834
		return NULL;

835 836
	pool = worker->pool;

837
	/* this can only happen on the local cpu */
838 839
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
840 841 842 843 844 845

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
846 847 848
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
849
	 * manipulating idle_list, so dereferencing idle_list without pool
850
	 * lock is safe.
851
	 */
852 853
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
854
		to_wakeup = first_worker(pool);
855 856 857 858 859
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
860
 * @worker: self
861 862 863
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
864 865 866
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
867
 *
868
 * CONTEXT:
869
 * spin_lock_irq(pool->lock)
870 871 872 873
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
874
	struct worker_pool *pool = worker->pool;
875

876 877
	WARN_ON_ONCE(worker->task != current);

878 879 880 881 882 883 884 885
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
886
			if (atomic_dec_and_test(&pool->nr_running) &&
887
			    !list_empty(&pool->worklist))
888
				wake_up_worker(pool);
889
		} else
890
			atomic_dec(&pool->nr_running);
891 892
	}

893 894 895 896
	worker->flags |= flags;
}

/**
897
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
898
 * @worker: self
899 900
 * @flags: flags to clear
 *
901
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
902
 *
903
 * CONTEXT:
904
 * spin_lock_irq(pool->lock)
905 906 907
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
908
	struct worker_pool *pool = worker->pool;
909 910
	unsigned int oflags = worker->flags;

911 912
	WARN_ON_ONCE(worker->task != current);

913
	worker->flags &= ~flags;
914

915 916 917 918 919
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
920 921
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
922
			atomic_inc(&pool->nr_running);
923 924
}

925 926
/**
 * find_worker_executing_work - find worker which is executing a work
927
 * @pool: pool of interest
928 929
 * @work: work to find worker for
 *
930 931
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
932 933 934 935 936 937 938 939 940 941 942 943
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
944 945 946 947 948 949
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
950 951
 *
 * CONTEXT:
952
 * spin_lock_irq(pool->lock).
953 954 955 956
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
957
 */
958
static struct worker *find_worker_executing_work(struct worker_pool *pool,
959
						 struct work_struct *work)
960
{
961 962
	struct worker *worker;

963
	hash_for_each_possible(pool->busy_hash, worker, hentry,
964 965 966
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
967 968 969
			return worker;

	return NULL;
970 971
}

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
987
 * spin_lock_irq(pool->lock).
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1071
static void pwq_activate_delayed_work(struct work_struct *work)
1072
{
1073
	struct pool_workqueue *pwq = get_work_pwq(work);
1074 1075

	trace_workqueue_activate_work(work);
1076
	move_linked_works(work, &pwq->pool->worklist, NULL);
1077
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1078
	pwq->nr_active++;
1079 1080
}

1081
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1082
{
1083
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1084 1085
						    struct work_struct, entry);

1086
	pwq_activate_delayed_work(work);
1087 1088
}

1089
/**
1090 1091
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1092 1093 1094
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1095
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1096 1097
 *
 * CONTEXT:
1098
 * spin_lock_irq(pool->lock).
1099
 */
1100
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1101
{
T
Tejun Heo 已提交
1102
	/* uncolored work items don't participate in flushing or nr_active */
1103
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1104
		goto out_put;
1105

1106
	pwq->nr_in_flight[color]--;
1107

1108 1109
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1110
		/* one down, submit a delayed one */
1111 1112
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1113 1114 1115
	}

	/* is flush in progress and are we at the flushing tip? */
1116
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1117
		goto out_put;
1118 1119

	/* are there still in-flight works? */
1120
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1121
		goto out_put;
1122

1123 1124
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1125 1126

	/*
1127
	 * If this was the last pwq, wake up the first flusher.  It
1128 1129
	 * will handle the rest.
	 */
1130 1131
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1132 1133
out_put:
	put_pwq(pwq);
1134 1135
}

1136
/**
1137
 * try_to_grab_pending - steal work item from worklist and disable irq
1138 1139
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1140
 * @flags: place to store irq state
1141 1142 1143 1144 1145 1146 1147
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1148 1149
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1150
 *
1151
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1152 1153 1154
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1155 1156 1157 1158
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1159
 * This function is safe to call from any context including IRQ handler.
1160
 */
1161 1162
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1163
{
1164
	struct worker_pool *pool;
1165
	struct pool_workqueue *pwq;
1166

1167 1168
	local_irq_save(*flags);

1169 1170 1171 1172
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1173 1174 1175 1176 1177
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1178 1179 1180 1181 1182
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1183 1184 1185 1186 1187 1188 1189
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1190 1191
	pool = get_work_pool(work);
	if (!pool)
1192
		goto fail;
1193

1194
	spin_lock(&pool->lock);
1195
	/*
1196 1197 1198 1199 1200
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1201 1202
	 * item is currently queued on that pool.
	 */
1203 1204
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1205 1206 1207 1208 1209
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1210
		 * on the delayed_list, will confuse pwq->nr_active
1211 1212 1213 1214
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1215
			pwq_activate_delayed_work(work);
1216 1217

		list_del_init(&work->entry);
1218
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1219

1220
		/* work->data points to pwq iff queued, point to pool */
1221 1222 1223 1224
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1225
	}
1226
	spin_unlock(&pool->lock);
1227 1228 1229 1230 1231
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1232
	return -EAGAIN;
1233 1234
}

T
Tejun Heo 已提交
1235
/**
1236
 * insert_work - insert a work into a pool
1237
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1238 1239 1240 1241
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1242
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1243
 * work_struct flags.
T
Tejun Heo 已提交
1244 1245
 *
 * CONTEXT:
1246
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1247
 */
1248 1249
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1250
{
1251
	struct worker_pool *pool = pwq->pool;
1252

T
Tejun Heo 已提交
1253
	/* we own @work, set data and link */
1254
	set_work_pwq(work, pwq, extra_flags);
1255
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1256
	get_pwq(pwq);
1257 1258

	/*
1259 1260 1261
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1262 1263 1264
	 */
	smp_mb();

1265 1266
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1267 1268
}

1269 1270
/*
 * Test whether @work is being queued from another work executing on the
1271
 * same workqueue.
1272 1273 1274
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1275 1276 1277 1278 1279 1280 1281
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1282
	return worker && worker->current_pwq->wq == wq;
1283 1284
}

1285
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1286 1287
			 struct work_struct *work)
{
1288
	struct pool_workqueue *pwq;
1289
	struct worker_pool *last_pool;
1290
	struct list_head *worklist;
1291
	unsigned int work_flags;
1292
	unsigned int req_cpu = cpu;
1293 1294 1295 1296 1297 1298 1299 1300

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1301

1302
	debug_work_activate(work);
1303

1304
	/* if dying, only works from the same workqueue are allowed */
1305
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1306
	    WARN_ON_ONCE(!is_chained_work(wq)))
1307
		return;
1308
retry:
1309 1310 1311
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1312
	/* pwq which will be used unless @work is executing elsewhere */
1313
	if (!(wq->flags & WQ_UNBOUND))
1314
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1315 1316
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1317

1318 1319 1320 1321 1322 1323 1324 1325
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1326

1327
		spin_lock(&last_pool->lock);
1328

1329
		worker = find_worker_executing_work(last_pool, work);
1330

1331 1332
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1333
		} else {
1334 1335
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1336
			spin_lock(&pwq->pool->lock);
1337
		}
1338
	} else {
1339
		spin_lock(&pwq->pool->lock);
1340 1341
	}

1342 1343 1344 1345
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1346 1347
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1361 1362
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1363

1364
	if (WARN_ON(!list_empty(&work->entry))) {
1365
		spin_unlock(&pwq->pool->lock);
1366 1367
		return;
	}
1368

1369 1370
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1371

1372
	if (likely(pwq->nr_active < pwq->max_active)) {
1373
		trace_workqueue_activate_work(work);
1374 1375
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1376 1377
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1378
		worklist = &pwq->delayed_works;
1379
	}
1380

1381
	insert_work(pwq, work, worklist, work_flags);
1382

1383
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1384 1385
}

1386
/**
1387 1388
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1389 1390 1391
 * @wq: workqueue to use
 * @work: work to queue
 *
1392
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1393
 *
1394 1395
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1396
 */
1397 1398
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1399
{
1400
	bool ret = false;
1401
	unsigned long flags;
1402

1403
	local_irq_save(flags);
1404

1405
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1406
		__queue_work(cpu, wq, work);
1407
		ret = true;
1408
	}
1409

1410
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1411 1412
	return ret;
}
1413
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1414

1415
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1416
{
1417
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1418

1419
	/* should have been called from irqsafe timer with irq already off */
1420
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1421
}
1422
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1423

1424 1425
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1426
{
1427 1428 1429 1430 1431
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1432 1433
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1434

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1446
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1447

1448
	dwork->wq = wq;
1449
	dwork->cpu = cpu;
1450 1451 1452 1453 1454 1455
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1456 1457
}

1458 1459 1460 1461
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1462
 * @dwork: work to queue
1463 1464
 * @delay: number of jiffies to wait before queueing
 *
1465 1466 1467
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1468
 */
1469 1470
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1471
{
1472
	struct work_struct *work = &dwork->work;
1473
	bool ret = false;
1474
	unsigned long flags;
1475

1476 1477
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1478

1479
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1480
		__queue_delayed_work(cpu, wq, dwork, delay);
1481
		ret = true;
1482
	}
1483

1484
	local_irq_restore(flags);
1485 1486
	return ret;
}
1487
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1488

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1504
 * This function is safe to call from any context including IRQ handler.
1505 1506 1507 1508 1509 1510 1511
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1512

1513 1514 1515
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1516

1517 1518 1519
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1520
	}
1521 1522

	/* -ENOENT from try_to_grab_pending() becomes %true */
1523 1524
	return ret;
}
1525 1526
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1527 1528 1529 1530 1531 1532 1533 1534
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1535
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1536 1537
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1538
{
1539
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1540

1541 1542 1543 1544
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1545

1546 1547
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1548
	pool->nr_idle++;
1549
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1550 1551

	/* idle_list is LIFO */
1552
	list_add(&worker->entry, &pool->idle_list);
1553

1554 1555
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1556

1557
	/*
1558
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1559
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1560 1561
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1562
	 */
1563
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1564
		     pool->nr_workers == pool->nr_idle &&
1565
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1575
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1576 1577 1578
 */
static void worker_leave_idle(struct worker *worker)
{
1579
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1580

1581 1582
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1583
	worker_clr_flags(worker, WORKER_IDLE);
1584
	pool->nr_idle--;
T
Tejun Heo 已提交
1585 1586 1587
	list_del_init(&worker->entry);
}

1588
/**
1589 1590 1591 1592
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1593 1594 1595 1596 1597 1598
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1599
 * This function is to be used by unbound workers and rescuers to bind
1600 1601 1602
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1603
 * verbatim as it's best effort and blocking and pool may be
1604 1605
 * [dis]associated in the meantime.
 *
1606
 * This function tries set_cpus_allowed() and locks pool and verifies the
1607
 * binding against %POOL_DISASSOCIATED which is set during
1608 1609 1610
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1611 1612
 *
 * CONTEXT:
1613
 * Might sleep.  Called without any lock but returns with pool->lock
1614 1615 1616
 * held.
 *
 * RETURNS:
1617
 * %true if the associated pool is online (@worker is successfully
1618 1619
 * bound), %false if offline.
 */
1620
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1621
__acquires(&pool->lock)
1622 1623
{
	while (true) {
1624
		/*
1625 1626 1627
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1628
		 * against POOL_DISASSOCIATED.
1629
		 */
1630
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1631
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1632

1633
		spin_lock_irq(&pool->lock);
1634
		if (pool->flags & POOL_DISASSOCIATED)
1635
			return false;
1636
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1637
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1638
			return true;
1639
		spin_unlock_irq(&pool->lock);
1640

1641 1642 1643 1644 1645 1646
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1647
		cpu_relax();
1648
		cond_resched();
1649 1650 1651
	}
}

T
Tejun Heo 已提交
1652 1653 1654 1655 1656
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1657 1658
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1659
		INIT_LIST_HEAD(&worker->scheduled);
1660 1661
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1662
	}
T
Tejun Heo 已提交
1663 1664 1665 1666 1667
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1668
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1669
 *
1670
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1680
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1681 1682
{
	struct worker *worker = NULL;
1683
	int id = -1;
1684
	char id_buf[16];
T
Tejun Heo 已提交
1685

1686 1687
	lockdep_assert_held(&pool->manager_mutex);

1688 1689 1690 1691 1692
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
	idr_preload(GFP_KERNEL);
1693
	spin_lock_irq(&pool->lock);
1694 1695 1696

	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);

1697
	spin_unlock_irq(&pool->lock);
1698 1699 1700
	idr_preload_end();
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1701 1702 1703 1704 1705

	worker = alloc_worker();
	if (!worker)
		goto fail;

1706
	worker->pool = pool;
T
Tejun Heo 已提交
1707 1708
	worker->id = id;

1709
	if (pool->cpu >= 0)
1710 1711
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1712
	else
1713 1714
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1715
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1716
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1717 1718 1719
	if (IS_ERR(worker->task))
		goto fail;

1720 1721 1722 1723
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1724 1725
	set_user_nice(worker->task, pool->attrs->nice);
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1726

1727 1728
	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;
T
Tejun Heo 已提交
1729 1730 1731 1732 1733 1734 1735

	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1736
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1737

1738 1739 1740 1741 1742
	/* successful, commit the pointer to idr */
	spin_lock_irq(&pool->lock);
	idr_replace(&pool->worker_idr, worker, worker->id);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1743
	return worker;
1744

T
Tejun Heo 已提交
1745 1746
fail:
	if (id >= 0) {
1747
		spin_lock_irq(&pool->lock);
1748
		idr_remove(&pool->worker_idr, id);
1749
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1759
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1760 1761
 *
 * CONTEXT:
1762
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1763 1764 1765
 */
static void start_worker(struct worker *worker)
{
1766
	worker->flags |= WORKER_STARTED;
1767
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1768
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1769 1770 1771
	wake_up_process(worker->task);
}

1772 1773 1774 1775
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1776
 * Grab the managership of @pool and create and start a new worker for it.
1777 1778 1779 1780 1781
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1782 1783
	mutex_lock(&pool->manager_mutex);

1784 1785 1786 1787 1788 1789 1790
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1791 1792
	mutex_unlock(&pool->manager_mutex);

1793 1794 1795
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1796 1797 1798 1799
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1800
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1801 1802
 *
 * CONTEXT:
1803
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1804 1805 1806
 */
static void destroy_worker(struct worker *worker)
{
1807
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1808

1809 1810 1811
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1812
	/* sanity check frenzy */
1813 1814 1815
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1816

T
Tejun Heo 已提交
1817
	if (worker->flags & WORKER_STARTED)
1818
		pool->nr_workers--;
T
Tejun Heo 已提交
1819
	if (worker->flags & WORKER_IDLE)
1820
		pool->nr_idle--;
T
Tejun Heo 已提交
1821 1822

	list_del_init(&worker->entry);
1823
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1824

1825 1826
	idr_remove(&pool->worker_idr, worker->id);

1827
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1828

T
Tejun Heo 已提交
1829 1830 1831
	kthread_stop(worker->task);
	kfree(worker);

1832
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1833 1834
}

1835
static void idle_worker_timeout(unsigned long __pool)
1836
{
1837
	struct worker_pool *pool = (void *)__pool;
1838

1839
	spin_lock_irq(&pool->lock);
1840

1841
	if (too_many_workers(pool)) {
1842 1843 1844 1845
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1846
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1847 1848 1849
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1850
			mod_timer(&pool->idle_timer, expires);
1851 1852
		else {
			/* it's been idle for too long, wake up manager */
1853
			pool->flags |= POOL_MANAGE_WORKERS;
1854
			wake_up_worker(pool);
1855
		}
1856 1857
	}

1858
	spin_unlock_irq(&pool->lock);
1859
}
1860

1861
static void send_mayday(struct work_struct *work)
1862
{
1863 1864
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1865

1866
	lockdep_assert_held(&wq_mayday_lock);
1867

1868
	if (!wq->rescuer)
1869
		return;
1870 1871

	/* mayday mayday mayday */
1872 1873
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1874
		wake_up_process(wq->rescuer->task);
1875
	}
1876 1877
}

1878
static void pool_mayday_timeout(unsigned long __pool)
1879
{
1880
	struct worker_pool *pool = (void *)__pool;
1881 1882
	struct work_struct *work;

1883
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1884
	spin_lock(&pool->lock);
1885

1886
	if (need_to_create_worker(pool)) {
1887 1888 1889 1890 1891 1892
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1893
		list_for_each_entry(work, &pool->worklist, entry)
1894
			send_mayday(work);
L
Linus Torvalds 已提交
1895
	}
1896

1897
	spin_unlock(&pool->lock);
1898
	spin_unlock_irq(&wq_mayday_lock);
1899

1900
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1901 1902
}

1903 1904
/**
 * maybe_create_worker - create a new worker if necessary
1905
 * @pool: pool to create a new worker for
1906
 *
1907
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1908 1909
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1910
 * sent to all rescuers with works scheduled on @pool to resolve
1911 1912
 * possible allocation deadlock.
 *
1913 1914
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1915 1916
 *
 * LOCKING:
1917
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1918 1919 1920 1921
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1922
 * %false if no action was taken and pool->lock stayed locked, %true
1923 1924
 * otherwise.
 */
1925
static bool maybe_create_worker(struct worker_pool *pool)
1926 1927
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1928
{
1929
	if (!need_to_create_worker(pool))
1930 1931
		return false;
restart:
1932
	spin_unlock_irq(&pool->lock);
1933

1934
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1935
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1936 1937 1938 1939

	while (true) {
		struct worker *worker;

1940
		worker = create_worker(pool);
1941
		if (worker) {
1942
			del_timer_sync(&pool->mayday_timer);
1943
			spin_lock_irq(&pool->lock);
1944
			start_worker(worker);
1945 1946
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1947 1948 1949
			return true;
		}

1950
		if (!need_to_create_worker(pool))
1951
			break;
L
Linus Torvalds 已提交
1952

1953 1954
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1955

1956
		if (!need_to_create_worker(pool))
1957 1958 1959
			break;
	}

1960
	del_timer_sync(&pool->mayday_timer);
1961
	spin_lock_irq(&pool->lock);
1962
	if (need_to_create_worker(pool))
1963 1964 1965 1966 1967 1968
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1969
 * @pool: pool to destroy workers for
1970
 *
1971
 * Destroy @pool workers which have been idle for longer than
1972 1973 1974
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1975
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1976 1977 1978
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1979
 * %false if no action was taken and pool->lock stayed locked, %true
1980 1981
 * otherwise.
 */
1982
static bool maybe_destroy_workers(struct worker_pool *pool)
1983 1984
{
	bool ret = false;
L
Linus Torvalds 已提交
1985

1986
	while (too_many_workers(pool)) {
1987 1988
		struct worker *worker;
		unsigned long expires;
1989

1990
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1991
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1992

1993
		if (time_before(jiffies, expires)) {
1994
			mod_timer(&pool->idle_timer, expires);
1995
			break;
1996
		}
L
Linus Torvalds 已提交
1997

1998 1999
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2000
	}
2001

2002
	return ret;
2003 2004
}

2005
/**
2006 2007
 * manage_workers - manage worker pool
 * @worker: self
2008
 *
2009
 * Assume the manager role and manage the worker pool @worker belongs
2010
 * to.  At any given time, there can be only zero or one manager per
2011
 * pool.  The exclusion is handled automatically by this function.
2012 2013 2014 2015
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2016 2017
 *
 * CONTEXT:
2018
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2019 2020 2021
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2022 2023
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2024
 */
2025
static bool manage_workers(struct worker *worker)
2026
{
2027
	struct worker_pool *pool = worker->pool;
2028
	bool ret = false;
2029

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2051
	if (!mutex_trylock(&pool->manager_arb))
2052
		return ret;
2053

2054
	/*
2055 2056
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2057
	 */
2058
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2059
		spin_unlock_irq(&pool->lock);
2060
		mutex_lock(&pool->manager_mutex);
2061 2062
		ret = true;
	}
2063

2064
	pool->flags &= ~POOL_MANAGE_WORKERS;
2065 2066

	/*
2067 2068
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2069
	 */
2070 2071
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2072

2073
	mutex_unlock(&pool->manager_mutex);
2074
	mutex_unlock(&pool->manager_arb);
2075
	return ret;
2076 2077
}

2078 2079
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2080
 * @worker: self
2081 2082 2083 2084 2085 2086 2087 2088 2089
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2090
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2091
 */
T
Tejun Heo 已提交
2092
static void process_one_work(struct worker *worker, struct work_struct *work)
2093 2094
__releases(&pool->lock)
__acquires(&pool->lock)
2095
{
2096
	struct pool_workqueue *pwq = get_work_pwq(work);
2097
	struct worker_pool *pool = worker->pool;
2098
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2099
	int work_color;
2100
	struct worker *collision;
2101 2102 2103 2104 2105 2106 2107 2108
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2109 2110 2111
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2112
#endif
2113 2114 2115
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2116
	 * unbound or a disassociated pool.
2117
	 */
2118
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2119
		     !(pool->flags & POOL_DISASSOCIATED) &&
2120
		     raw_smp_processor_id() != pool->cpu);
2121

2122 2123 2124 2125 2126 2127
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2128
	collision = find_worker_executing_work(pool, work);
2129 2130 2131 2132 2133
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2134
	/* claim and dequeue */
2135
	debug_work_deactivate(work);
2136
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2137
	worker->current_work = work;
2138
	worker->current_func = work->func;
2139
	worker->current_pwq = pwq;
2140
	work_color = get_work_color(work);
2141

2142 2143
	list_del_init(&work->entry);

2144 2145 2146 2147 2148 2149 2150
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2151
	/*
2152
	 * Unbound pool isn't concurrency managed and work items should be
2153 2154
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2155 2156
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2157

2158
	/*
2159
	 * Record the last pool and clear PENDING which should be the last
2160
	 * update to @work.  Also, do this inside @pool->lock so that
2161 2162
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2163
	 */
2164
	set_work_pool_and_clear_pending(work, pool->id);
2165

2166
	spin_unlock_irq(&pool->lock);
2167

2168
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2169
	lock_map_acquire(&lockdep_map);
2170
	trace_workqueue_execute_start(work);
2171
	worker->current_func(work);
2172 2173 2174 2175 2176
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2177
	lock_map_release(&lockdep_map);
2178
	lock_map_release(&pwq->wq->lockdep_map);
2179 2180

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2181 2182
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2183 2184
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2185 2186 2187 2188
		debug_show_held_locks(current);
		dump_stack();
	}

2189
	spin_lock_irq(&pool->lock);
2190

2191 2192 2193 2194
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2195
	/* we're done with it, release */
2196
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2197
	worker->current_work = NULL;
2198
	worker->current_func = NULL;
2199 2200
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2201 2202
}

2203 2204 2205 2206 2207 2208 2209 2210 2211
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2212
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2213 2214 2215
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2216
{
2217 2218
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2219
						struct work_struct, entry);
T
Tejun Heo 已提交
2220
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2221 2222 2223
	}
}

T
Tejun Heo 已提交
2224 2225
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2226
 * @__worker: self
T
Tejun Heo 已提交
2227
 *
2228 2229 2230 2231 2232
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
T
Tejun Heo 已提交
2233
 */
T
Tejun Heo 已提交
2234
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2235
{
T
Tejun Heo 已提交
2236
	struct worker *worker = __worker;
2237
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2238

2239 2240
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2241
woke_up:
2242
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2243

2244 2245
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2246
		spin_unlock_irq(&pool->lock);
2247 2248 2249
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
		return 0;
T
Tejun Heo 已提交
2250
	}
2251

T
Tejun Heo 已提交
2252
	worker_leave_idle(worker);
2253
recheck:
2254
	/* no more worker necessary? */
2255
	if (!need_more_worker(pool))
2256 2257 2258
		goto sleep;

	/* do we need to manage? */
2259
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2260 2261
		goto recheck;

T
Tejun Heo 已提交
2262 2263 2264 2265 2266
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2267
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2268

2269
	/*
2270 2271 2272 2273 2274
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2275
	 */
2276
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2277 2278

	do {
T
Tejun Heo 已提交
2279
		struct work_struct *work =
2280
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2281 2282 2283 2284 2285 2286
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2287
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2288 2289 2290
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2291
		}
2292
	} while (keep_working(pool));
2293 2294

	worker_set_flags(worker, WORKER_PREP, false);
2295
sleep:
2296
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2297
		goto recheck;
2298

T
Tejun Heo 已提交
2299
	/*
2300 2301 2302 2303 2304
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2305 2306 2307
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2308
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2309 2310
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2311 2312
}

2313 2314
/**
 * rescuer_thread - the rescuer thread function
2315
 * @__rescuer: self
2316 2317
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2318
 * workqueue which has WQ_MEM_RECLAIM set.
2319
 *
2320
 * Regular work processing on a pool may block trying to create a new
2321 2322 2323 2324 2325
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2326 2327
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2328 2329 2330 2331
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2332
static int rescuer_thread(void *__rescuer)
2333
{
2334 2335
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2336 2337 2338
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2339 2340 2341 2342 2343 2344

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2345 2346 2347
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2348 2349
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2350
		rescuer->task->flags &= ~PF_WQ_WORKER;
2351
		return 0;
2352
	}
2353

2354
	/* see whether any pwq is asking for help */
2355
	spin_lock_irq(&wq_mayday_lock);
2356 2357 2358 2359

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2360
		struct worker_pool *pool = pwq->pool;
2361 2362 2363
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2364 2365
		list_del_init(&pwq->mayday_node);

2366
		spin_unlock_irq(&wq_mayday_lock);
2367 2368

		/* migrate to the target cpu if possible */
2369
		worker_maybe_bind_and_lock(pool);
2370
		rescuer->pool = pool;
2371 2372 2373 2374 2375

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2376
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2377
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2378
			if (get_work_pwq(work) == pwq)
2379 2380 2381
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2382 2383

		/*
2384
		 * Leave this pool.  If keep_working() is %true, notify a
2385 2386 2387
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2388 2389
		if (keep_working(pool))
			wake_up_worker(pool);
2390

2391
		rescuer->pool = NULL;
2392
		spin_unlock(&pool->lock);
2393
		spin_lock(&wq_mayday_lock);
2394 2395
	}

2396
	spin_unlock_irq(&wq_mayday_lock);
2397

2398 2399
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2400 2401
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2402 2403
}

O
Oleg Nesterov 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2415 2416
/**
 * insert_wq_barrier - insert a barrier work
2417
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2418
 * @barr: wq_barrier to insert
2419 2420
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2421
 *
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2434
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2435 2436
 *
 * CONTEXT:
2437
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2438
 */
2439
static void insert_wq_barrier(struct pool_workqueue *pwq,
2440 2441
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2442
{
2443 2444 2445
	struct list_head *head;
	unsigned int linked = 0;

2446
	/*
2447
	 * debugobject calls are safe here even with pool->lock locked
2448 2449 2450 2451
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2452
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2453
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2454
	init_completion(&barr->done);
2455

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2471
	debug_work_activate(&barr->work);
2472
	insert_work(pwq, &barr->work, head,
2473
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2474 2475
}

2476
/**
2477
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2478 2479 2480 2481
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2482
 * Prepare pwqs for workqueue flushing.
2483
 *
2484 2485 2486 2487 2488
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2489 2490 2491 2492 2493 2494 2495
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2496
 * If @work_color is non-negative, all pwqs should have the same
2497 2498 2499 2500
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2501
 * mutex_lock(wq->mutex).
2502 2503 2504 2505 2506
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2507
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2508
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2509
{
2510
	bool wait = false;
2511
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2512

2513
	if (flush_color >= 0) {
2514
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2515
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2516
	}
2517

2518
	for_each_pwq(pwq, wq) {
2519
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2520

2521
		spin_lock_irq(&pool->lock);
2522

2523
		if (flush_color >= 0) {
2524
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2525

2526 2527 2528
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2529 2530 2531
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2532

2533
		if (work_color >= 0) {
2534
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2535
			pwq->work_color = work_color;
2536
		}
L
Linus Torvalds 已提交
2537

2538
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2539
	}
2540

2541
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2542
		complete(&wq->first_flusher->done);
2543

2544
	return wait;
L
Linus Torvalds 已提交
2545 2546
}

2547
/**
L
Linus Torvalds 已提交
2548
 * flush_workqueue - ensure that any scheduled work has run to completion.
2549
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2550
 *
2551 2552
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2553
 */
2554
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2555
{
2556 2557 2558 2559 2560 2561
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2562

2563 2564
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2565

2566
	mutex_lock(&wq->mutex);
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2579
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2580 2581 2582 2583 2584
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2585
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2586 2587 2588

			wq->first_flusher = &this_flusher;

2589
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2590 2591 2592 2593 2594 2595 2596 2597
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2598
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2599
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2600
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2611
	mutex_unlock(&wq->mutex);
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2624
	mutex_lock(&wq->mutex);
2625

2626 2627 2628 2629
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2630 2631
	wq->first_flusher = NULL;

2632 2633
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2646 2647
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2667
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2668 2669 2670
		}

		if (list_empty(&wq->flusher_queue)) {
2671
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2672 2673 2674 2675 2676
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2677
		 * the new first flusher and arm pwqs.
2678
		 */
2679 2680
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2681 2682 2683 2684

		list_del_init(&next->list);
		wq->first_flusher = next;

2685
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2696
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2697
}
2698
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2699

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2714
	struct pool_workqueue *pwq;
2715 2716 2717 2718

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2719
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2720
	 */
2721
	mutex_lock(&wq->mutex);
2722
	if (!wq->nr_drainers++)
2723
		wq->flags |= __WQ_DRAINING;
2724
	mutex_unlock(&wq->mutex);
2725 2726 2727
reflush:
	flush_workqueue(wq);

2728
	mutex_lock(&wq->mutex);
2729

2730
	for_each_pwq(pwq, wq) {
2731
		bool drained;
2732

2733
		spin_lock_irq(&pwq->pool->lock);
2734
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2735
		spin_unlock_irq(&pwq->pool->lock);
2736 2737

		if (drained)
2738 2739 2740 2741
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2742
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2743
				wq->name, flush_cnt);
2744

2745
		mutex_unlock(&wq->mutex);
2746 2747 2748 2749
		goto reflush;
	}

	if (!--wq->nr_drainers)
2750
		wq->flags &= ~__WQ_DRAINING;
2751
	mutex_unlock(&wq->mutex);
2752 2753 2754
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2755
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2756
{
2757
	struct worker *worker = NULL;
2758
	struct worker_pool *pool;
2759
	struct pool_workqueue *pwq;
2760 2761

	might_sleep();
2762 2763

	local_irq_disable();
2764
	pool = get_work_pool(work);
2765 2766
	if (!pool) {
		local_irq_enable();
2767
		return false;
2768
	}
2769

2770
	spin_lock(&pool->lock);
2771
	/* see the comment in try_to_grab_pending() with the same code */
2772 2773 2774
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2775
			goto already_gone;
2776
	} else {
2777
		worker = find_worker_executing_work(pool, work);
2778
		if (!worker)
T
Tejun Heo 已提交
2779
			goto already_gone;
2780
		pwq = worker->current_pwq;
2781
	}
2782

2783
	insert_wq_barrier(pwq, barr, work, worker);
2784
	spin_unlock_irq(&pool->lock);
2785

2786 2787 2788 2789 2790 2791
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2792
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2793
		lock_map_acquire(&pwq->wq->lockdep_map);
2794
	else
2795 2796
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2797

2798
	return true;
T
Tejun Heo 已提交
2799
already_gone:
2800
	spin_unlock_irq(&pool->lock);
2801
	return false;
2802
}
2803 2804 2805 2806 2807

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2808 2809
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2810 2811 2812 2813 2814 2815 2816 2817 2818
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2819 2820 2821
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2822
	if (start_flush_work(work, &barr)) {
2823 2824 2825
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2826
	} else {
2827
		return false;
2828 2829
	}
}
2830
EXPORT_SYMBOL_GPL(flush_work);
2831

2832
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2833
{
2834
	unsigned long flags;
2835 2836 2837
	int ret;

	do {
2838 2839 2840 2841 2842 2843
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2844
			flush_work(work);
2845 2846
	} while (unlikely(ret < 0));

2847 2848 2849 2850
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2851
	flush_work(work);
2852
	clear_work_data(work);
2853 2854 2855
	return ret;
}

2856
/**
2857 2858
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2859
 *
2860 2861 2862 2863
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2864
 *
2865 2866
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2867
 *
2868
 * The caller must ensure that the workqueue on which @work was last
2869
 * queued can't be destroyed before this function returns.
2870 2871 2872
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2873
 */
2874
bool cancel_work_sync(struct work_struct *work)
2875
{
2876
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2877
}
2878
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2879

2880
/**
2881 2882
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2883
 *
2884 2885 2886
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2887
 *
2888 2889 2890
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2891
 */
2892 2893
bool flush_delayed_work(struct delayed_work *dwork)
{
2894
	local_irq_disable();
2895
	if (del_timer_sync(&dwork->timer))
2896
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2897
	local_irq_enable();
2898 2899 2900 2901
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2902
/**
2903 2904
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2905
 *
2906 2907 2908 2909 2910
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2911
 *
2912
 * This function is safe to call from any context including IRQ handler.
2913
 */
2914
bool cancel_delayed_work(struct delayed_work *dwork)
2915
{
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2926 2927
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2928
	local_irq_restore(flags);
2929
	return ret;
2930
}
2931
EXPORT_SYMBOL(cancel_delayed_work);
2932

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2943
{
2944
	return __cancel_work_timer(&dwork->work, true);
2945
}
2946
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2947

2948
/**
2949
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2950 2951
 * @func: the function to call
 *
2952 2953
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2954
 * schedule_on_each_cpu() is very slow.
2955 2956 2957
 *
 * RETURNS:
 * 0 on success, -errno on failure.
2958
 */
2959
int schedule_on_each_cpu(work_func_t func)
2960 2961
{
	int cpu;
2962
	struct work_struct __percpu *works;
2963

2964 2965
	works = alloc_percpu(struct work_struct);
	if (!works)
2966
		return -ENOMEM;
2967

2968 2969
	get_online_cpus();

2970
	for_each_online_cpu(cpu) {
2971 2972 2973
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2974
		schedule_work_on(cpu, work);
2975
	}
2976 2977 2978 2979

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2980
	put_online_cpus();
2981
	free_percpu(works);
2982 2983 2984
	return 0;
}

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3009 3010
void flush_scheduled_work(void)
{
3011
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3012
}
3013
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3014

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3027
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3028 3029
{
	if (!in_interrupt()) {
3030
		fn(&ew->work);
3031 3032 3033
		return 0;
	}

3034
	INIT_WORK(&ew->work, fn);
3035 3036 3037 3038 3039 3040
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t wq_per_cpu_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}

static ssize_t wq_max_active_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t wq_max_active_store(struct device *dev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}

static struct device_attribute wq_sysfs_attrs[] = {
	__ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
	__ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
	__ATTR_NULL,
};

3104 3105
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3106 3107
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3108 3109
	const char *delim = "";
	int node, written = 0;
3110 3111

	rcu_read_lock_sched();
3112 3113 3114 3115 3116 3117 3118
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3130 3131 3132
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3146 3147 3148
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= -20 && attrs->nice <= 19)
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3179 3180 3181
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3242
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3243
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3244 3245
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3246
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_attrs			= wq_sysfs_attrs,
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Returns 0 on success, -errno on failure.
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.  Returns NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3386
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3387 3388 3389 3390 3391 3392
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3406 3407
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3422 3423 3424 3425 3426
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3427 3428 3429
 * Returns 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3430 3431
 */
static int init_worker_pool(struct worker_pool *pool)
3432 3433
{
	spin_lock_init(&pool->lock);
3434 3435
	pool->id = -1;
	pool->cpu = -1;
3436
	pool->node = NUMA_NO_NODE;
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3450
	mutex_init(&pool->manager_mutex);
3451
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3452

3453 3454 3455 3456
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3457 3458 3459 3460
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3461 3462
}

3463 3464 3465 3466
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3467
	idr_destroy(&pool->worker_idr);
3468 3469 3470 3471 3472 3473 3474 3475 3476
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3477 3478 3479
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3480 3481
 *
 * Should be called with wq_pool_mutex held.
3482 3483 3484 3485 3486
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3487 3488 3489
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3490 3491 3492 3493
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3494
	    WARN_ON(!list_empty(&pool->worklist)))
3495 3496 3497 3498 3499 3500 3501
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3502 3503 3504 3505 3506
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3507
	mutex_lock(&pool->manager_arb);
3508
	mutex_lock(&pool->manager_mutex);
3509 3510 3511 3512 3513 3514 3515
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3516
	mutex_unlock(&pool->manager_mutex);
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.  On failure, returns NULL.
3535 3536
 *
 * Should be called with wq_pool_mutex held.
3537 3538 3539 3540 3541
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3542
	int node;
3543

3544
	lockdep_assert_held(&wq_pool_mutex);
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3559 3560 3561
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3562
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3563 3564
	copy_workqueue_attrs(pool->attrs, attrs);

3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3576 3577 3578 3579
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3580
	if (create_and_start_worker(pool) < 0)
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3609
	bool is_last;
T
Tejun Heo 已提交
3610 3611 3612 3613

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3614
	/*
3615
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3616 3617 3618
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3619
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3620
	list_del_rcu(&pwq->pwqs_node);
3621
	is_last = list_empty(&wq->pwqs);
3622
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3623

3624
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3625
	put_unbound_pool(pool);
3626 3627
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3628 3629 3630 3631 3632 3633
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3634 3635
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3636
		kfree(wq);
3637
	}
T
Tejun Heo 已提交
3638 3639
}

3640
/**
3641
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3642 3643
 * @pwq: target pool_workqueue
 *
3644 3645 3646
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3647
 */
3648
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3649
{
3650 3651 3652 3653
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3654
	lockdep_assert_held(&wq->mutex);
3655 3656 3657 3658 3659

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3660
	spin_lock_irq(&pwq->pool->lock);
3661 3662 3663

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3664

3665 3666 3667
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3668 3669 3670 3671 3672 3673

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3674 3675 3676 3677
	} else {
		pwq->max_active = 0;
	}

3678
	spin_unlock_irq(&pwq->pool->lock);
3679 3680
}

3681
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3682 3683
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3684 3685 3686
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3687 3688
	memset(pwq, 0, sizeof(*pwq));

3689 3690 3691
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3692
	pwq->refcnt = 1;
3693
	INIT_LIST_HEAD(&pwq->delayed_works);
3694
	INIT_LIST_HEAD(&pwq->pwqs_node);
3695
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3696
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3697
}
3698

3699
/* sync @pwq with the current state of its associated wq and link it */
3700
static void link_pwq(struct pool_workqueue *pwq)
3701 3702 3703 3704
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3705

3706 3707 3708 3709
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3710 3711
	/*
	 * Set the matching work_color.  This is synchronized with
3712
	 * wq->mutex to avoid confusing flush_workqueue().
3713
	 */
3714
	pwq->work_color = wq->work_color;
3715 3716 3717 3718 3719

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3720
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3721
}
3722

3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3736
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3737 3738 3739
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3740
	}
3741

3742 3743
	init_pwq(pwq, wq, pool);
	return pwq;
3744 3745
}

3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
		kfree(pwq);
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
 * calculation.  The result is stored in @cpumask.  This function returns
 * %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3781
	if (!wq_numa_enabled || attrs->no_numa)
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3818 3819 3820 3821 3822
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3823 3824 3825 3826 3827 3828
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3829 3830 3831 3832 3833 3834 3835
 *
 * Performs GFP_KERNEL allocations.  Returns 0 on success and -errno on
 * failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3836 3837
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3838
	int node, ret;
3839

3840
	/* only unbound workqueues can change attributes */
3841 3842 3843
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3844 3845 3846 3847
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3848
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3849
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3850 3851
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3852 3853
		goto enomem;

3854
	/* make a copy of @attrs and sanitize it */
3855 3856 3857
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3872
	mutex_lock(&wq_pool_mutex);
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3894
	mutex_unlock(&wq_pool_mutex);
3895

3896
	/* all pwqs have been created successfully, let's install'em */
3897
	mutex_lock(&wq->mutex);
3898

3899
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3900 3901

	/* save the previous pwq and install the new one */
3902
	for_each_node(node)
3903 3904 3905 3906 3907
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3908 3909

	mutex_unlock(&wq->mutex);
3910

3911 3912 3913 3914 3915 3916
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3917 3918 3919
	ret = 0;
	/* fall through */
out_free:
3920
	free_workqueue_attrs(tmp_attrs);
3921
	free_workqueue_attrs(new_attrs);
3922
	kfree(pwq_tbl);
3923
	return ret;
3924

3925 3926 3927 3928 3929 3930 3931
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3932
enomem:
3933 3934
	ret = -ENOMEM;
	goto out_free;
3935 3936
}

3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
3982 3983
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
	 * wq's, the default pwq should be used.  If @pwq is already the
	 * default one, nothing to do; otherwise, install the default one.
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
		if (pwq == wq->dfl_pwq)
			goto out_unlock;
		else
			goto use_dfl_pwq;
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			   wq->name);
		goto out_unlock;
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4035
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4036
{
4037
	bool highpri = wq->flags & WQ_HIGHPRI;
4038 4039 4040
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
4041 4042
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4043 4044 4045
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4046 4047
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4048
			struct worker_pool *cpu_pools =
4049
				per_cpu(cpu_worker_pools, cpu);
4050

4051 4052 4053
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4054
			link_pwq(pwq);
4055
			mutex_unlock(&wq->mutex);
4056
		}
4057
		return 0;
4058
	} else {
4059
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4060
	}
T
Tejun Heo 已提交
4061 4062
}

4063 4064
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4065
{
4066 4067 4068
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4069 4070
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4071

4072
	return clamp_val(max_active, 1, lim);
4073 4074
}

4075
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4076 4077 4078
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4079
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4080
{
4081
	size_t tbl_size = 0;
4082
	va_list args;
L
Linus Torvalds 已提交
4083
	struct workqueue_struct *wq;
4084
	struct pool_workqueue *pwq;
4085

4086
	/* allocate wq and format name */
4087 4088 4089 4090
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4091
	if (!wq)
4092
		return NULL;
4093

4094 4095 4096 4097 4098 4099
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4100 4101
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4102
	va_end(args);
L
Linus Torvalds 已提交
4103

4104
	max_active = max_active ?: WQ_DFL_ACTIVE;
4105
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4106

4107
	/* init wq */
4108
	wq->flags = flags;
4109
	wq->saved_max_active = max_active;
4110
	mutex_init(&wq->mutex);
4111
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4112
	INIT_LIST_HEAD(&wq->pwqs);
4113 4114
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4115
	INIT_LIST_HEAD(&wq->maydays);
4116

4117
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4118
	INIT_LIST_HEAD(&wq->list);
4119

4120
	if (alloc_and_link_pwqs(wq) < 0)
4121
		goto err_free_wq;
T
Tejun Heo 已提交
4122

4123 4124 4125 4126 4127
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4128 4129
		struct worker *rescuer;

4130
		rescuer = alloc_worker();
4131
		if (!rescuer)
4132
			goto err_destroy;
4133

4134 4135
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4136
					       wq->name);
4137 4138 4139 4140
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4141

4142
		wq->rescuer = rescuer;
4143
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4144
		wake_up_process(rescuer->task);
4145 4146
	}

4147 4148 4149
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4150
	/*
4151 4152 4153
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4154
	 */
4155
	mutex_lock(&wq_pool_mutex);
4156

4157
	mutex_lock(&wq->mutex);
4158 4159
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4160
	mutex_unlock(&wq->mutex);
4161

T
Tejun Heo 已提交
4162
	list_add(&wq->list, &workqueues);
4163

4164
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4165

4166
	return wq;
4167 4168

err_free_wq:
4169
	free_workqueue_attrs(wq->unbound_attrs);
4170 4171 4172 4173
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4174
	return NULL;
4175
}
4176
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4177

4178 4179 4180 4181 4182 4183 4184 4185
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4186
	struct pool_workqueue *pwq;
4187
	int node;
4188

4189 4190
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4191

4192
	/* sanity checks */
4193
	mutex_lock(&wq->mutex);
4194
	for_each_pwq(pwq, wq) {
4195 4196
		int i;

4197 4198
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4199
				mutex_unlock(&wq->mutex);
4200
				return;
4201 4202 4203
			}
		}

4204
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4205
		    WARN_ON(pwq->nr_active) ||
4206
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4207
			mutex_unlock(&wq->mutex);
4208
			return;
4209
		}
4210
	}
4211
	mutex_unlock(&wq->mutex);
4212

4213 4214 4215 4216
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4217
	mutex_lock(&wq_pool_mutex);
4218
	list_del_init(&wq->list);
4219
	mutex_unlock(&wq_pool_mutex);
4220

4221 4222
	workqueue_sysfs_unregister(wq);

4223
	if (wq->rescuer) {
4224
		kthread_stop(wq->rescuer->task);
4225
		kfree(wq->rescuer);
4226
		wq->rescuer = NULL;
4227 4228
	}

T
Tejun Heo 已提交
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4239 4240
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4241
		 */
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4254
		put_pwq_unlocked(pwq);
4255
	}
4256 4257 4258
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4271
	struct pool_workqueue *pwq;
4272

4273 4274 4275 4276
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4277
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4278

4279
	mutex_lock(&wq->mutex);
4280 4281 4282

	wq->saved_max_active = max_active;

4283 4284
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4285

4286
	mutex_unlock(&wq->mutex);
4287
}
4288
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4289

4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4300
	return worker && worker->rescue_wq;
4301 4302
}

4303
/**
4304 4305 4306
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4307
 *
4308 4309 4310
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4311
 *
4312 4313
 * RETURNS:
 * %true if congested, %false otherwise.
4314
 */
4315
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4316
{
4317
	struct pool_workqueue *pwq;
4318 4319
	bool ret;

4320
	rcu_read_lock_sched();
4321 4322 4323 4324

	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4325
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4326

4327
	ret = !list_empty(&pwq->delayed_works);
4328
	rcu_read_unlock_sched();
4329 4330

	return ret;
L
Linus Torvalds 已提交
4331
}
4332
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4333

4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4346
{
4347
	struct worker_pool *pool;
4348 4349
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4350

4351 4352
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4353

4354 4355
	local_irq_save(flags);
	pool = get_work_pool(work);
4356
	if (pool) {
4357
		spin_lock(&pool->lock);
4358 4359
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4360
		spin_unlock(&pool->lock);
4361
	}
4362
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4363

4364
	return ret;
L
Linus Torvalds 已提交
4365
}
4366
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4367

4368 4369 4370
/*
 * CPU hotplug.
 *
4371
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4372
 * are a lot of assumptions on strong associations among work, pwq and
4373
 * pool which make migrating pending and scheduled works very
4374
 * difficult to implement without impacting hot paths.  Secondly,
4375
 * worker pools serve mix of short, long and very long running works making
4376 4377
 * blocked draining impractical.
 *
4378
 * This is solved by allowing the pools to be disassociated from the CPU
4379 4380
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4381
 */
L
Linus Torvalds 已提交
4382

4383
static void wq_unbind_fn(struct work_struct *work)
4384
{
4385
	int cpu = smp_processor_id();
4386
	struct worker_pool *pool;
4387
	struct worker *worker;
4388
	int wi;
4389

4390
	for_each_cpu_worker_pool(pool, cpu) {
4391
		WARN_ON_ONCE(cpu != smp_processor_id());
4392

4393
		mutex_lock(&pool->manager_mutex);
4394
		spin_lock_irq(&pool->lock);
4395

4396
		/*
4397
		 * We've blocked all manager operations.  Make all workers
4398 4399 4400 4401 4402
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4403
		for_each_pool_worker(worker, wi, pool)
4404
			worker->flags |= WORKER_UNBOUND;
4405

4406
		pool->flags |= POOL_DISASSOCIATED;
4407

4408
		spin_unlock_irq(&pool->lock);
4409
		mutex_unlock(&pool->manager_mutex);
4410

4411 4412 4413 4414 4415 4416 4417
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4418

4419 4420 4421 4422 4423 4424 4425 4426
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4427
		atomic_set(&pool->nr_running, 0);
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4438 4439
}

T
Tejun Heo 已提交
4440 4441 4442 4443
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4444
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4445 4446 4447
 */
static void rebind_workers(struct worker_pool *pool)
{
4448 4449
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4450 4451 4452

	lockdep_assert_held(&pool->manager_mutex);

4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4463

4464
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4465

4466 4467
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4468 4469

		/*
4470 4471 4472 4473 4474 4475
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4476
		 */
4477 4478
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4479

4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4499
	}
4500 4501

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4502 4503
}

4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4537 4538 4539 4540
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4541
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4542 4543
					       unsigned long action,
					       void *hcpu)
4544
{
4545
	int cpu = (unsigned long)hcpu;
4546
	struct worker_pool *pool;
4547
	struct workqueue_struct *wq;
4548
	int pi;
4549

T
Tejun Heo 已提交
4550
	switch (action & ~CPU_TASKS_FROZEN) {
4551
	case CPU_UP_PREPARE:
4552
		for_each_cpu_worker_pool(pool, cpu) {
4553 4554
			if (pool->nr_workers)
				continue;
4555
			if (create_and_start_worker(pool) < 0)
4556
				return NOTIFY_BAD;
4557
		}
T
Tejun Heo 已提交
4558
		break;
4559

4560 4561
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4562
		mutex_lock(&wq_pool_mutex);
4563 4564

		for_each_pool(pool, pi) {
4565
			mutex_lock(&pool->manager_mutex);
4566

4567 4568 4569 4570
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4571

4572 4573 4574 4575
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4576

4577
			mutex_unlock(&pool->manager_mutex);
4578
		}
4579

4580 4581 4582 4583
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4584
		mutex_unlock(&wq_pool_mutex);
4585
		break;
4586
	}
4587 4588 4589 4590 4591 4592 4593
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4594
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4595 4596 4597
						 unsigned long action,
						 void *hcpu)
{
4598
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4599
	struct work_struct unbind_work;
4600
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4601

4602 4603
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4604
		/* unbinding per-cpu workers should happen on the local CPU */
4605
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4606
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4607 4608 4609 4610 4611 4612 4613 4614

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4615 4616
		flush_work(&unbind_work);
		break;
4617 4618 4619 4620
	}
	return NOTIFY_OK;
}

4621
#ifdef CONFIG_SMP
4622

4623
struct work_for_cpu {
4624
	struct work_struct work;
4625 4626 4627 4628 4629
	long (*fn)(void *);
	void *arg;
	long ret;
};

4630
static void work_for_cpu_fn(struct work_struct *work)
4631
{
4632 4633
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4634 4635 4636 4637 4638 4639 4640 4641 4642
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4643 4644
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
4645
 * The caller must not hold any locks which would prevent @fn from completing.
4646
 */
4647
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4648
{
4649
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4650

4651 4652 4653
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
4654 4655 4656 4657 4658
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4659 4660 4661 4662 4663
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4664
 * Start freezing workqueues.  After this function returns, all freezable
4665
 * workqueues will queue new works to their delayed_works list instead of
4666
 * pool->worklist.
4667 4668
 *
 * CONTEXT:
4669
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4670 4671 4672
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4673
	struct worker_pool *pool;
4674 4675
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4676
	int pi;
4677

4678
	mutex_lock(&wq_pool_mutex);
4679

4680
	WARN_ON_ONCE(workqueue_freezing);
4681 4682
	workqueue_freezing = true;

4683
	/* set FREEZING */
4684
	for_each_pool(pool, pi) {
4685
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4686 4687
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4688
		spin_unlock_irq(&pool->lock);
4689
	}
4690

4691
	list_for_each_entry(wq, &workqueues, list) {
4692
		mutex_lock(&wq->mutex);
4693 4694
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4695
		mutex_unlock(&wq->mutex);
4696
	}
4697

4698
	mutex_unlock(&wq_pool_mutex);
4699 4700 4701
}

/**
4702
 * freeze_workqueues_busy - are freezable workqueues still busy?
4703 4704 4705 4706 4707
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4708
 * Grabs and releases wq_pool_mutex.
4709 4710
 *
 * RETURNS:
4711 4712
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4713 4714 4715 4716
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4717 4718
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4719

4720
	mutex_lock(&wq_pool_mutex);
4721

4722
	WARN_ON_ONCE(!workqueue_freezing);
4723

4724 4725 4726
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4727 4728 4729 4730
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4731
		rcu_read_lock_sched();
4732
		for_each_pwq(pwq, wq) {
4733
			WARN_ON_ONCE(pwq->nr_active < 0);
4734
			if (pwq->nr_active) {
4735
				busy = true;
4736
				rcu_read_unlock_sched();
4737 4738 4739
				goto out_unlock;
			}
		}
4740
		rcu_read_unlock_sched();
4741 4742
	}
out_unlock:
4743
	mutex_unlock(&wq_pool_mutex);
4744 4745 4746 4747 4748 4749 4750
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4751
 * frozen works are transferred to their respective pool worklists.
4752 4753
 *
 * CONTEXT:
4754
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4755 4756 4757
 */
void thaw_workqueues(void)
{
4758 4759 4760
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4761
	int pi;
4762

4763
	mutex_lock(&wq_pool_mutex);
4764 4765 4766 4767

	if (!workqueue_freezing)
		goto out_unlock;

4768
	/* clear FREEZING */
4769
	for_each_pool(pool, pi) {
4770
		spin_lock_irq(&pool->lock);
4771 4772
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4773
		spin_unlock_irq(&pool->lock);
4774
	}
4775

4776 4777
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4778
		mutex_lock(&wq->mutex);
4779 4780
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4781
		mutex_unlock(&wq->mutex);
4782 4783 4784 4785
	}

	workqueue_freezing = false;
out_unlock:
4786
	mutex_unlock(&wq_pool_mutex);
4787 4788 4789
}
#endif /* CONFIG_FREEZER */

4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4802 4803 4804 4805 4806
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4807 4808 4809
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, node));

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4835
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4836
{
T
Tejun Heo 已提交
4837 4838
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4839

4840 4841
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4842
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4843

4844 4845 4846 4847
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4848
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4849
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4850

4851 4852
	wq_numa_init();

4853
	/* initialize CPU pools */
4854
	for_each_possible_cpu(cpu) {
4855
		struct worker_pool *pool;
4856

T
Tejun Heo 已提交
4857
		i = 0;
4858
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4859
			BUG_ON(init_worker_pool(pool));
4860
			pool->cpu = cpu;
4861
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4862
			pool->attrs->nice = std_nice[i++];
4863
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
4864

T
Tejun Heo 已提交
4865
			/* alloc pool ID */
4866
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4867
			BUG_ON(worker_pool_assign_id(pool));
4868
			mutex_unlock(&wq_pool_mutex);
4869
		}
4870 4871
	}

4872
	/* create the initial worker */
4873
	for_each_online_cpu(cpu) {
4874
		struct worker_pool *pool;
4875

4876
		for_each_cpu_worker_pool(pool, cpu) {
4877
			pool->flags &= ~POOL_DISASSOCIATED;
4878
			BUG_ON(create_and_start_worker(pool) < 0);
4879
		}
4880 4881
	}

4882 4883 4884 4885 4886 4887 4888 4889 4890
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
	}

4891
	system_wq = alloc_workqueue("events", 0, 0);
4892
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4893
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4894 4895
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4896 4897
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4898
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4899
	       !system_unbound_wq || !system_freezable_wq);
4900
	return 0;
L
Linus Torvalds 已提交
4901
}
4902
early_initcall(init_workqueues);