workqueue.c 104.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45

46
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50
	/*
	 * worker_pool flags
51
	 *
52
	 * A bound pool is either associated or disassociated with its CPU.
53 54 55 56 57 58
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59
	 * be executing on any CPU.  The pool behaves as an unbound one.
60 61
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62 63
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
64
	 */
65
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77

78
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79
				  WORKER_CPU_INTENSIVE,
80

81
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82

T
Tejun Heo 已提交
83
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84

85 86 87
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

88 89 90
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
91 92 93 94 95 96 97 98
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
99
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
100
};
L
Linus Torvalds 已提交
101 102

/*
T
Tejun Heo 已提交
103 104
 * Structure fields follow one of the following exclusion rules.
 *
105 106
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
107
 *
108 109 110
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
111
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
112
 *
113 114 115 116
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
117
 *
118 119
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
120
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
121 122
 */

123
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
124

125
struct worker_pool {
126
	spinlock_t		lock;		/* the pool lock */
127
	unsigned int		cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
128
	int			id;		/* I: pool ID */
129
	unsigned int		flags;		/* X: flags */
130 131 132

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
133 134

	/* nr_idle includes the ones off idle_list for rebinding */
135 136 137 138 139 140
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

141 142 143 144
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

145
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
146
	struct ida		worker_ida;	/* L: for worker IDs */
147 148 149 150 151 152 153

	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
154 155
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
156
/*
157 158 159 160
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
161
 */
162
struct pool_workqueue {
163
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
164
	struct workqueue_struct *wq;		/* I: the owning workqueue */
165 166 167 168
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
169
	int			nr_active;	/* L: nr of active works */
170
	int			max_active;	/* L: max active works */
171
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
172
};
L
Linus Torvalds 已提交
173

174 175 176 177 178 179 180 181 182
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

183 184 185 186 187 188 189 190 191 192
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
193
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
194 195 196 197 198 199 200 201 202
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
203 204 205 206 207 208

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
209
	unsigned int		flags;		/* W: WQ_* flags */
210
	union {
211 212
		struct pool_workqueue __percpu		*pcpu;
		struct pool_workqueue			*single;
213
		unsigned long				v;
214
	} pool_wq;				/* I: pwq's */
T
Tejun Heo 已提交
215
	struct list_head	list;		/* W: list of all workqueues */
216 217 218 219

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
220
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
221 222 223 224
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

225
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
226 227
	struct worker		*rescuer;	/* I: rescue worker */

228
	int			nr_drainers;	/* W: drain in progress */
229
	int			saved_max_active; /* W: saved pwq max_active */
230
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
231
	struct lockdep_map	lockdep_map;
232
#endif
233
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
234 235
};

236 237
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
238
struct workqueue_struct *system_highpri_wq __read_mostly;
239
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
240
struct workqueue_struct *system_long_wq __read_mostly;
241
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
242
struct workqueue_struct *system_unbound_wq __read_mostly;
243
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
244
struct workqueue_struct *system_freezable_wq __read_mostly;
245
EXPORT_SYMBOL_GPL(system_freezable_wq);
246

247 248 249
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

250
#define for_each_std_worker_pool(pool, cpu)				\
T
Tejun Heo 已提交
251 252
	for ((pool) = &std_worker_pools(cpu)[0];			\
	     (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
253

254 255
#define for_each_busy_worker(worker, i, pool)				\
	hash_for_each(pool->busy_hash, i, worker, hentry)
256

257 258
static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				unsigned int sw)
259 260 261 262 263 264 265 266 267 268
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
269
	return WORK_CPU_END;
270 271
}

272
static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask,
273
				 struct workqueue_struct *wq)
274
{
275
	return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
276 277
}

278 279 280
/*
 * CPU iterators
 *
281
 * An extra cpu number is defined using an invalid cpu number
282
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
283 284
 * specific CPU.  The following iterators are similar to for_each_*_cpu()
 * iterators but also considers the unbound CPU.
285
 *
286 287
 * for_each_wq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_wq_cpu()	: online CPUs + WORK_CPU_UNBOUND
288
 * for_each_pwq_cpu()		: possible CPUs for bound workqueues,
289 290
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
291 292
#define for_each_wq_cpu(cpu)						\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3);		\
293
	     (cpu) < WORK_CPU_END;					\
294
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
295

296 297
#define for_each_online_wq_cpu(cpu)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3);		\
298
	     (cpu) < WORK_CPU_END;					\
299
	     (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
300

301 302
#define for_each_pwq_cpu(cpu, wq)					\
	for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq));	\
303
	     (cpu) < WORK_CPU_END;					\
304
	     (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq)))
305

306 307 308 309
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

310 311 312 313 314
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
350
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
386
	.debug_hint	= work_debug_hint,
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

422 423
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
424
static LIST_HEAD(workqueues);
425
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
426

427
/*
428 429
 * The CPU and unbound standard worker pools.  The unbound ones have
 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
430
 */
431 432
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_std_worker_pools);
T
Tejun Heo 已提交
433
static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
434

T
Tejun Heo 已提交
435 436 437 438
/* idr of all pools */
static DEFINE_MUTEX(worker_pool_idr_mutex);
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
439
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
440

T
Tejun Heo 已提交
441
static struct worker_pool *std_worker_pools(int cpu)
442
{
443
	if (cpu != WORK_CPU_UNBOUND)
T
Tejun Heo 已提交
444
		return per_cpu(cpu_std_worker_pools, cpu);
445
	else
T
Tejun Heo 已提交
446
		return unbound_std_worker_pools;
447 448
}

T
Tejun Heo 已提交
449 450
static int std_worker_pool_pri(struct worker_pool *pool)
{
T
Tejun Heo 已提交
451
	return pool - std_worker_pools(pool->cpu);
T
Tejun Heo 已提交
452 453
}

T
Tejun Heo 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

	mutex_lock(&worker_pool_idr_mutex);
	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	mutex_unlock(&worker_pool_idr_mutex);

	return ret;
}

467 468 469 470 471 472 473 474 475
/*
 * Lookup worker_pool by id.  The idr currently is built during boot and
 * never modified.  Don't worry about locking for now.
 */
static struct worker_pool *worker_pool_by_id(int pool_id)
{
	return idr_find(&worker_pool_idr, pool_id);
}

476 477
static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
{
T
Tejun Heo 已提交
478
	struct worker_pool *pools = std_worker_pools(cpu);
479

T
Tejun Heo 已提交
480
	return &pools[highpri];
481 482
}

483 484
static struct pool_workqueue *get_pwq(unsigned int cpu,
				      struct workqueue_struct *wq)
485
{
486
	if (!(wq->flags & WQ_UNBOUND)) {
487
		if (likely(cpu < nr_cpu_ids))
488
			return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
489
	} else if (likely(cpu == WORK_CPU_UNBOUND))
490
		return wq->pool_wq.single;
491
	return NULL;
492 493
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
509

510
/*
511 512
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
513
 * is cleared and the high bits contain OFFQ flags and pool ID.
514
 *
515 516
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
517 518
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
519
 *
520
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
521
 * corresponding to a work.  Pool is available once the work has been
522
 * queued anywhere after initialization until it is sync canceled.  pwq is
523
 * available only while the work item is queued.
524
 *
525 526 527 528
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
529
 */
530 531
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
532
{
533
	WARN_ON_ONCE(!work_pending(work));
534 535
	atomic_long_set(&work->data, data | flags | work_static(work));
}
536

537
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
538 539
			 unsigned long extra_flags)
{
540 541
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
542 543
}

544 545 546 547 548 549 550
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

551 552
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
553
{
554 555 556 557 558 559 560
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
561
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
562
}
563

564
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
565
{
566 567
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
568 569
}

570
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
571
{
572
	unsigned long data = atomic_long_read(&work->data);
573

574
	if (data & WORK_STRUCT_PWQ)
575 576 577
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
578 579
}

580 581 582 583 584 585 586
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
587
{
588
	unsigned long data = atomic_long_read(&work->data);
589 590
	struct worker_pool *pool;
	int pool_id;
591

592 593
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
594
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
595

596 597
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
598 599
		return NULL;

600 601 602 603 604 605 606 607 608 609 610 611 612 613
	pool = worker_pool_by_id(pool_id);
	WARN_ON_ONCE(!pool);
	return pool;
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
614 615
	unsigned long data = atomic_long_read(&work->data);

616 617
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
618
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
619

620
	return data >> WORK_OFFQ_POOL_SHIFT;
621 622
}

623 624
static void mark_work_canceling(struct work_struct *work)
{
625
	unsigned long pool_id = get_work_pool_id(work);
626

627 628
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
629 630 631 632 633 634
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

635
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
636 637
}

638
/*
639 640
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
641
 * they're being called with pool->lock held.
642 643
 */

644
static bool __need_more_worker(struct worker_pool *pool)
645
{
646
	return !atomic_read(&pool->nr_running);
647 648
}

649
/*
650 651
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
652 653
 *
 * Note that, because unbound workers never contribute to nr_running, this
654
 * function will always return %true for unbound pools as long as the
655
 * worklist isn't empty.
656
 */
657
static bool need_more_worker(struct worker_pool *pool)
658
{
659
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
660
}
661

662
/* Can I start working?  Called from busy but !running workers. */
663
static bool may_start_working(struct worker_pool *pool)
664
{
665
	return pool->nr_idle;
666 667 668
}

/* Do I need to keep working?  Called from currently running workers. */
669
static bool keep_working(struct worker_pool *pool)
670
{
671 672
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
673 674 675
}

/* Do we need a new worker?  Called from manager. */
676
static bool need_to_create_worker(struct worker_pool *pool)
677
{
678
	return need_more_worker(pool) && !may_start_working(pool);
679
}
680

681
/* Do I need to be the manager? */
682
static bool need_to_manage_workers(struct worker_pool *pool)
683
{
684
	return need_to_create_worker(pool) ||
685
		(pool->flags & POOL_MANAGE_WORKERS);
686 687 688
}

/* Do we have too many workers and should some go away? */
689
static bool too_many_workers(struct worker_pool *pool)
690
{
691
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
692 693
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
694

695 696 697 698 699 700 701
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

702
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
703 704
}

705
/*
706 707 708
 * Wake up functions.
 */

709
/* Return the first worker.  Safe with preemption disabled */
710
static struct worker *first_worker(struct worker_pool *pool)
711
{
712
	if (unlikely(list_empty(&pool->idle_list)))
713 714
		return NULL;

715
	return list_first_entry(&pool->idle_list, struct worker, entry);
716 717 718 719
}

/**
 * wake_up_worker - wake up an idle worker
720
 * @pool: worker pool to wake worker from
721
 *
722
 * Wake up the first idle worker of @pool.
723 724
 *
 * CONTEXT:
725
 * spin_lock_irq(pool->lock).
726
 */
727
static void wake_up_worker(struct worker_pool *pool)
728
{
729
	struct worker *worker = first_worker(pool);
730 731 732 733 734

	if (likely(worker))
		wake_up_process(worker->task);
}

735
/**
736 737 738 739 740 741 742 743 744 745 746 747 748 749
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

750
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
751
		WARN_ON_ONCE(worker->pool->cpu != cpu);
752
		atomic_inc(&worker->pool->nr_running);
753
	}
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
775
	struct worker_pool *pool;
776

777 778 779 780 781
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
782
	if (worker->flags & WORKER_NOT_RUNNING)
783 784
		return NULL;

785 786
	pool = worker->pool;

787
	/* this can only happen on the local cpu */
788 789
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
790 791 792 793 794 795

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
796 797 798
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
799
	 * manipulating idle_list, so dereferencing idle_list without pool
800
	 * lock is safe.
801
	 */
802 803
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
804
		to_wakeup = first_worker(pool);
805 806 807 808 809
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
810
 * @worker: self
811 812 813
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
814 815 816
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
817
 *
818
 * CONTEXT:
819
 * spin_lock_irq(pool->lock)
820 821 822 823
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
824
	struct worker_pool *pool = worker->pool;
825

826 827
	WARN_ON_ONCE(worker->task != current);

828 829 830 831 832 833 834 835
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
836
			if (atomic_dec_and_test(&pool->nr_running) &&
837
			    !list_empty(&pool->worklist))
838
				wake_up_worker(pool);
839
		} else
840
			atomic_dec(&pool->nr_running);
841 842
	}

843 844 845 846
	worker->flags |= flags;
}

/**
847
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
848
 * @worker: self
849 850
 * @flags: flags to clear
 *
851
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
852
 *
853
 * CONTEXT:
854
 * spin_lock_irq(pool->lock)
855 856 857
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
858
	struct worker_pool *pool = worker->pool;
859 860
	unsigned int oflags = worker->flags;

861 862
	WARN_ON_ONCE(worker->task != current);

863
	worker->flags &= ~flags;
864

865 866 867 868 869
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
870 871
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
872
			atomic_inc(&pool->nr_running);
873 874
}

875 876
/**
 * find_worker_executing_work - find worker which is executing a work
877
 * @pool: pool of interest
878 879
 * @work: work to find worker for
 *
880 881
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
901 902
 *
 * CONTEXT:
903
 * spin_lock_irq(pool->lock).
904 905 906 907
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
908
 */
909
static struct worker *find_worker_executing_work(struct worker_pool *pool,
910
						 struct work_struct *work)
911
{
912 913
	struct worker *worker;

914
	hash_for_each_possible(pool->busy_hash, worker, hentry,
915 916 917
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
918 919 920
			return worker;

	return NULL;
921 922
}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
938
 * spin_lock_irq(pool->lock).
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

964
static void pwq_activate_delayed_work(struct work_struct *work)
965
{
966
	struct pool_workqueue *pwq = get_work_pwq(work);
967 968

	trace_workqueue_activate_work(work);
969
	move_linked_works(work, &pwq->pool->worklist, NULL);
970
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
971
	pwq->nr_active++;
972 973
}

974
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
975
{
976
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
977 978
						    struct work_struct, entry);

979
	pwq_activate_delayed_work(work);
980 981
}

982
/**
983 984
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
985 986 987
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
988
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
989 990
 *
 * CONTEXT:
991
 * spin_lock_irq(pool->lock).
992
 */
993
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
994 995 996 997 998
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

999
	pwq->nr_in_flight[color]--;
1000

1001 1002
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1003
		/* one down, submit a delayed one */
1004 1005
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1006 1007 1008
	}

	/* is flush in progress and are we at the flushing tip? */
1009
	if (likely(pwq->flush_color != color))
1010 1011 1012
		return;

	/* are there still in-flight works? */
1013
	if (pwq->nr_in_flight[color])
1014 1015
		return;

1016 1017
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1018 1019

	/*
1020
	 * If this was the last pwq, wake up the first flusher.  It
1021 1022
	 * will handle the rest.
	 */
1023 1024
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
1025 1026
}

1027
/**
1028
 * try_to_grab_pending - steal work item from worklist and disable irq
1029 1030
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1031
 * @flags: place to store irq state
1032 1033 1034 1035 1036 1037 1038
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1039 1040
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1041
 *
1042
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1043 1044 1045
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1046 1047 1048 1049
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1050
 * This function is safe to call from any context including IRQ handler.
1051
 */
1052 1053
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1054
{
1055
	struct worker_pool *pool;
1056
	struct pool_workqueue *pwq;
1057

1058 1059
	local_irq_save(*flags);

1060 1061 1062 1063
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1064 1065 1066 1067 1068
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1069 1070 1071 1072 1073
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1074 1075 1076 1077 1078 1079 1080
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1081 1082
	pool = get_work_pool(work);
	if (!pool)
1083
		goto fail;
1084

1085
	spin_lock(&pool->lock);
1086
	/*
1087 1088 1089 1090 1091
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1092 1093
	 * item is currently queued on that pool.
	 */
1094 1095
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1096 1097 1098 1099 1100
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1101
		 * on the delayed_list, will confuse pwq->nr_active
1102 1103 1104 1105
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1106
			pwq_activate_delayed_work(work);
1107 1108

		list_del_init(&work->entry);
1109
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1110

1111
		/* work->data points to pwq iff queued, point to pool */
1112 1113 1114 1115
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1116
	}
1117
	spin_unlock(&pool->lock);
1118 1119 1120 1121 1122
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1123
	return -EAGAIN;
1124 1125
}

T
Tejun Heo 已提交
1126
/**
1127
 * insert_work - insert a work into a pool
1128
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1129 1130 1131 1132
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1133
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1134
 * work_struct flags.
T
Tejun Heo 已提交
1135 1136
 *
 * CONTEXT:
1137
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1138
 */
1139 1140
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1141
{
1142
	struct worker_pool *pool = pwq->pool;
1143

T
Tejun Heo 已提交
1144
	/* we own @work, set data and link */
1145
	set_work_pwq(work, pwq, extra_flags);
1146
	list_add_tail(&work->entry, head);
1147 1148 1149 1150 1151 1152 1153 1154

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1155 1156
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1157 1158
}

1159 1160
/*
 * Test whether @work is being queued from another work executing on the
1161
 * same workqueue.
1162 1163 1164
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1165 1166 1167 1168 1169 1170 1171
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1172
	return worker && worker->current_pwq->wq == wq;
1173 1174
}

T
Tejun Heo 已提交
1175
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1176 1177
			 struct work_struct *work)
{
1178
	struct pool_workqueue *pwq;
1179
	struct list_head *worklist;
1180
	unsigned int work_flags;
1181
	unsigned int req_cpu = cpu;
1182 1183 1184 1185 1186 1187 1188 1189

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1190

1191
	debug_work_activate(work);
1192

1193
	/* if dying, only works from the same workqueue are allowed */
1194
	if (unlikely(wq->flags & WQ_DRAINING) &&
1195
	    WARN_ON_ONCE(!is_chained_work(wq)))
1196 1197
		return;

1198
	/* determine the pwq to use */
1199
	if (!(wq->flags & WQ_UNBOUND)) {
1200
		struct worker_pool *last_pool;
1201

1202
		if (cpu == WORK_CPU_UNBOUND)
1203 1204
			cpu = raw_smp_processor_id();

1205
		/*
1206 1207 1208 1209
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1210
		 */
1211
		pwq = get_pwq(cpu, wq);
1212
		last_pool = get_work_pool(work);
1213

1214
		if (last_pool && last_pool != pwq->pool) {
1215 1216
			struct worker *worker;

1217
			spin_lock(&last_pool->lock);
1218

1219
			worker = find_worker_executing_work(last_pool, work);
1220

1221 1222
			if (worker && worker->current_pwq->wq == wq) {
				pwq = get_pwq(last_pool->cpu, wq);
1223
			} else {
1224
				/* meh... not running there, queue here */
1225
				spin_unlock(&last_pool->lock);
1226
				spin_lock(&pwq->pool->lock);
1227
			}
1228
		} else {
1229
			spin_lock(&pwq->pool->lock);
1230
		}
1231
	} else {
1232 1233
		pwq = get_pwq(WORK_CPU_UNBOUND, wq);
		spin_lock(&pwq->pool->lock);
1234 1235
	}

1236 1237
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1238

1239
	if (WARN_ON(!list_empty(&work->entry))) {
1240
		spin_unlock(&pwq->pool->lock);
1241 1242
		return;
	}
1243

1244 1245
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1246

1247
	if (likely(pwq->nr_active < pwq->max_active)) {
1248
		trace_workqueue_activate_work(work);
1249 1250
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1251 1252
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1253
		worklist = &pwq->delayed_works;
1254
	}
1255

1256
	insert_work(pwq, work, worklist, work_flags);
1257

1258
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1259 1260
}

1261
/**
1262 1263
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1264 1265 1266
 * @wq: workqueue to use
 * @work: work to queue
 *
1267
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1268
 *
1269 1270
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1271
 */
1272 1273
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1274
{
1275
	bool ret = false;
1276
	unsigned long flags;
1277

1278
	local_irq_save(flags);
1279

1280
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1281
		__queue_work(cpu, wq, work);
1282
		ret = true;
1283
	}
1284

1285
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1286 1287
	return ret;
}
1288
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1289

1290
/**
1291
 * queue_work - queue work on a workqueue
1292 1293 1294
 * @wq: workqueue to use
 * @work: work to queue
 *
1295
 * Returns %false if @work was already on a queue, %true otherwise.
1296
 *
1297 1298
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1299
 */
1300
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1301
{
1302
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1303
}
1304
EXPORT_SYMBOL_GPL(queue_work);
1305

1306
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1307
{
1308
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1309

1310
	/* should have been called from irqsafe timer with irq already off */
1311
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1312
}
1313
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1314

1315 1316
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1317
{
1318 1319 1320 1321 1322
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1323 1324
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1325

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1337
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1338

1339
	dwork->wq = wq;
1340
	dwork->cpu = cpu;
1341 1342 1343 1344 1345 1346
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1347 1348
}

1349 1350 1351 1352
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1353
 * @dwork: work to queue
1354 1355
 * @delay: number of jiffies to wait before queueing
 *
1356 1357 1358
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1359
 */
1360 1361
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1362
{
1363
	struct work_struct *work = &dwork->work;
1364
	bool ret = false;
1365
	unsigned long flags;
1366

1367 1368
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1369

1370
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1371
		__queue_delayed_work(cpu, wq, dwork, delay);
1372
		ret = true;
1373
	}
1374

1375
	local_irq_restore(flags);
1376 1377
	return ret;
}
1378
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1379

1380 1381 1382 1383 1384 1385
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1386
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1387
 */
1388
bool queue_delayed_work(struct workqueue_struct *wq,
1389 1390
			struct delayed_work *dwork, unsigned long delay)
{
1391
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1392 1393
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1394

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1410
 * This function is safe to call from any context including IRQ handler.
1411 1412 1413 1414 1415 1416 1417
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1418

1419 1420 1421
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1422

1423 1424 1425
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1426
	}
1427 1428

	/* -ENOENT from try_to_grab_pending() becomes %true */
1429 1430
	return ret;
}
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1447

T
Tejun Heo 已提交
1448 1449 1450 1451 1452 1453 1454 1455
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1456
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1457 1458
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1459
{
1460
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1461

1462 1463 1464 1465
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1466

1467 1468
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1469
	pool->nr_idle++;
1470
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1471 1472

	/* idle_list is LIFO */
1473
	list_add(&worker->entry, &pool->idle_list);
1474

1475 1476
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1477

1478
	/*
1479
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1480
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1481 1482
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1483
	 */
1484
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1485
		     pool->nr_workers == pool->nr_idle &&
1486
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1496
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1497 1498 1499
 */
static void worker_leave_idle(struct worker *worker)
{
1500
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1501

1502 1503
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1504
	worker_clr_flags(worker, WORKER_IDLE);
1505
	pool->nr_idle--;
T
Tejun Heo 已提交
1506 1507 1508
	list_del_init(&worker->entry);
}

1509
/**
1510 1511 1512 1513
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1514 1515 1516 1517 1518 1519
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1520
 * This function is to be used by unbound workers and rescuers to bind
1521 1522 1523
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1524
 * verbatim as it's best effort and blocking and pool may be
1525 1526
 * [dis]associated in the meantime.
 *
1527
 * This function tries set_cpus_allowed() and locks pool and verifies the
1528
 * binding against %POOL_DISASSOCIATED which is set during
1529 1530 1531
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1532 1533
 *
 * CONTEXT:
1534
 * Might sleep.  Called without any lock but returns with pool->lock
1535 1536 1537
 * held.
 *
 * RETURNS:
1538
 * %true if the associated pool is online (@worker is successfully
1539 1540
 * bound), %false if offline.
 */
1541
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1542
__acquires(&pool->lock)
1543 1544
{
	while (true) {
1545
		/*
1546 1547 1548
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1549
		 * against POOL_DISASSOCIATED.
1550
		 */
1551
		if (!(pool->flags & POOL_DISASSOCIATED))
1552
			set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
1553

1554
		spin_lock_irq(&pool->lock);
1555
		if (pool->flags & POOL_DISASSOCIATED)
1556
			return false;
1557
		if (task_cpu(current) == pool->cpu &&
1558
		    cpumask_equal(&current->cpus_allowed,
1559
				  get_cpu_mask(pool->cpu)))
1560
			return true;
1561
		spin_unlock_irq(&pool->lock);
1562

1563 1564 1565 1566 1567 1568
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1569
		cpu_relax();
1570
		cond_resched();
1571 1572 1573
	}
}

1574
/*
1575
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1576
 * list_empty(@worker->entry) before leaving idle and call this function.
1577 1578 1579
 */
static void idle_worker_rebind(struct worker *worker)
{
1580
	/* CPU may go down again inbetween, clear UNBOUND only on success */
1581
	if (worker_maybe_bind_and_lock(worker->pool))
1582
		worker_clr_flags(worker, WORKER_UNBOUND);
1583

1584 1585
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1586
	spin_unlock_irq(&worker->pool->lock);
1587 1588
}

1589
/*
1590
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1591 1592 1593
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1594
 */
1595
static void busy_worker_rebind_fn(struct work_struct *work)
1596 1597 1598
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1599
	if (worker_maybe_bind_and_lock(worker->pool))
1600
		worker_clr_flags(worker, WORKER_UNBOUND);
1601

1602
	spin_unlock_irq(&worker->pool->lock);
1603 1604
}

1605
/**
1606 1607
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1608
 *
1609
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1610 1611
 * is different for idle and busy ones.
 *
1612 1613 1614 1615
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1616
 *
1617 1618 1619 1620
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1621
 *
1622 1623 1624 1625
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1626
 */
1627
static void rebind_workers(struct worker_pool *pool)
1628
{
1629
	struct worker *worker, *n;
1630 1631
	int i;

1632 1633
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1634

1635
	/* dequeue and kick idle ones */
1636 1637 1638 1639 1640 1641
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1642

1643 1644 1645 1646 1647 1648
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1649

1650
	/* rebind busy workers */
1651
	for_each_busy_worker(worker, i, pool) {
1652 1653
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1654

1655 1656 1657
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1658

1659
		debug_work_activate(rebind_work);
1660

1661 1662
		/*
		 * wq doesn't really matter but let's keep @worker->pool
1663
		 * and @pwq->pool consistent for sanity.
1664 1665 1666 1667 1668 1669
		 */
		if (std_worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

1670
		insert_work(get_pwq(pool->cpu, wq), rebind_work,
1671 1672
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1673
	}
1674 1675
}

T
Tejun Heo 已提交
1676 1677 1678 1679 1680
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1681 1682
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1683
		INIT_LIST_HEAD(&worker->scheduled);
1684
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1685 1686
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1687
	}
T
Tejun Heo 已提交
1688 1689 1690 1691 1692
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1693
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1694
 *
1695
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1705
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1706
{
1707
	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1708
	struct worker *worker = NULL;
1709
	int id = -1;
T
Tejun Heo 已提交
1710

1711
	spin_lock_irq(&pool->lock);
1712
	while (ida_get_new(&pool->worker_ida, &id)) {
1713
		spin_unlock_irq(&pool->lock);
1714
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1715
			goto fail;
1716
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1717
	}
1718
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1719 1720 1721 1722 1723

	worker = alloc_worker();
	if (!worker)
		goto fail;

1724
	worker->pool = pool;
T
Tejun Heo 已提交
1725 1726
	worker->id = id;

1727
	if (pool->cpu != WORK_CPU_UNBOUND)
1728
		worker->task = kthread_create_on_node(worker_thread,
1729 1730
					worker, cpu_to_node(pool->cpu),
					"kworker/%u:%d%s", pool->cpu, id, pri);
1731 1732
	else
		worker->task = kthread_create(worker_thread, worker,
1733
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1734 1735 1736
	if (IS_ERR(worker->task))
		goto fail;

1737
	if (std_worker_pool_pri(pool))
1738 1739
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1740
	/*
1741
	 * Determine CPU binding of the new worker depending on
1742
	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1743 1744 1745 1746 1747
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1748
	 */
1749
	if (!(pool->flags & POOL_DISASSOCIATED)) {
1750
		kthread_bind(worker->task, pool->cpu);
1751
	} else {
1752
		worker->task->flags |= PF_THREAD_BOUND;
1753
		worker->flags |= WORKER_UNBOUND;
1754
	}
T
Tejun Heo 已提交
1755 1756 1757 1758

	return worker;
fail:
	if (id >= 0) {
1759
		spin_lock_irq(&pool->lock);
1760
		ida_remove(&pool->worker_ida, id);
1761
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1771
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1772 1773
 *
 * CONTEXT:
1774
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1775 1776 1777
 */
static void start_worker(struct worker *worker)
{
1778
	worker->flags |= WORKER_STARTED;
1779
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1780
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1781 1782 1783 1784 1785 1786 1787
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1788
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1789 1790
 *
 * CONTEXT:
1791
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1792 1793 1794
 */
static void destroy_worker(struct worker *worker)
{
1795
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1796 1797 1798
	int id = worker->id;

	/* sanity check frenzy */
1799 1800 1801
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1802

T
Tejun Heo 已提交
1803
	if (worker->flags & WORKER_STARTED)
1804
		pool->nr_workers--;
T
Tejun Heo 已提交
1805
	if (worker->flags & WORKER_IDLE)
1806
		pool->nr_idle--;
T
Tejun Heo 已提交
1807 1808

	list_del_init(&worker->entry);
1809
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1810

1811
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1812

T
Tejun Heo 已提交
1813 1814 1815
	kthread_stop(worker->task);
	kfree(worker);

1816
	spin_lock_irq(&pool->lock);
1817
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1818 1819
}

1820
static void idle_worker_timeout(unsigned long __pool)
1821
{
1822
	struct worker_pool *pool = (void *)__pool;
1823

1824
	spin_lock_irq(&pool->lock);
1825

1826
	if (too_many_workers(pool)) {
1827 1828 1829 1830
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1831
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1832 1833 1834
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1835
			mod_timer(&pool->idle_timer, expires);
1836 1837
		else {
			/* it's been idle for too long, wake up manager */
1838
			pool->flags |= POOL_MANAGE_WORKERS;
1839
			wake_up_worker(pool);
1840
		}
1841 1842
	}

1843
	spin_unlock_irq(&pool->lock);
1844
}
1845

1846 1847
static bool send_mayday(struct work_struct *work)
{
1848 1849
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1850
	unsigned int cpu;
1851 1852 1853 1854 1855

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1856
	cpu = pwq->pool->cpu;
1857 1858 1859
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1860
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1861 1862 1863 1864
		wake_up_process(wq->rescuer->task);
	return true;
}

1865
static void pool_mayday_timeout(unsigned long __pool)
1866
{
1867
	struct worker_pool *pool = (void *)__pool;
1868 1869
	struct work_struct *work;

1870
	spin_lock_irq(&pool->lock);
1871

1872
	if (need_to_create_worker(pool)) {
1873 1874 1875 1876 1877 1878
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1879
		list_for_each_entry(work, &pool->worklist, entry)
1880
			send_mayday(work);
L
Linus Torvalds 已提交
1881
	}
1882

1883
	spin_unlock_irq(&pool->lock);
1884

1885
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1886 1887
}

1888 1889
/**
 * maybe_create_worker - create a new worker if necessary
1890
 * @pool: pool to create a new worker for
1891
 *
1892
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1893 1894
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1895
 * sent to all rescuers with works scheduled on @pool to resolve
1896 1897 1898 1899 1900 1901
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1902
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1903 1904 1905 1906
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1907
 * false if no action was taken and pool->lock stayed locked, true
1908 1909
 * otherwise.
 */
1910
static bool maybe_create_worker(struct worker_pool *pool)
1911 1912
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1913
{
1914
	if (!need_to_create_worker(pool))
1915 1916
		return false;
restart:
1917
	spin_unlock_irq(&pool->lock);
1918

1919
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1920
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1921 1922 1923 1924

	while (true) {
		struct worker *worker;

1925
		worker = create_worker(pool);
1926
		if (worker) {
1927
			del_timer_sync(&pool->mayday_timer);
1928
			spin_lock_irq(&pool->lock);
1929
			start_worker(worker);
1930 1931
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1932 1933 1934
			return true;
		}

1935
		if (!need_to_create_worker(pool))
1936
			break;
L
Linus Torvalds 已提交
1937

1938 1939
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1940

1941
		if (!need_to_create_worker(pool))
1942 1943 1944
			break;
	}

1945
	del_timer_sync(&pool->mayday_timer);
1946
	spin_lock_irq(&pool->lock);
1947
	if (need_to_create_worker(pool))
1948 1949 1950 1951 1952 1953
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1954
 * @pool: pool to destroy workers for
1955
 *
1956
 * Destroy @pool workers which have been idle for longer than
1957 1958 1959
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1960
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1961 1962 1963
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1964
 * false if no action was taken and pool->lock stayed locked, true
1965 1966
 * otherwise.
 */
1967
static bool maybe_destroy_workers(struct worker_pool *pool)
1968 1969
{
	bool ret = false;
L
Linus Torvalds 已提交
1970

1971
	while (too_many_workers(pool)) {
1972 1973
		struct worker *worker;
		unsigned long expires;
1974

1975
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1976
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1977

1978
		if (time_before(jiffies, expires)) {
1979
			mod_timer(&pool->idle_timer, expires);
1980
			break;
1981
		}
L
Linus Torvalds 已提交
1982

1983 1984
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1985
	}
1986

1987
	return ret;
1988 1989
}

1990
/**
1991 1992
 * manage_workers - manage worker pool
 * @worker: self
1993
 *
1994
 * Assume the manager role and manage the worker pool @worker belongs
1995
 * to.  At any given time, there can be only zero or one manager per
1996
 * pool.  The exclusion is handled automatically by this function.
1997 1998 1999 2000
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2001 2002
 *
 * CONTEXT:
2003
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2004 2005 2006
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2007 2008
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2009
 */
2010
static bool manage_workers(struct worker *worker)
2011
{
2012
	struct worker_pool *pool = worker->pool;
2013
	bool ret = false;
2014

2015
	if (pool->flags & POOL_MANAGING_WORKERS)
2016
		return ret;
2017

2018
	pool->flags |= POOL_MANAGING_WORKERS;
2019

2020 2021 2022 2023 2024 2025
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2026
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2027 2028
	 * manager against CPU hotplug.
	 *
2029
	 * assoc_mutex would always be free unless CPU hotplug is in
2030
	 * progress.  trylock first without dropping @pool->lock.
2031
	 */
2032
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2033
		spin_unlock_irq(&pool->lock);
2034
		mutex_lock(&pool->assoc_mutex);
2035 2036
		/*
		 * CPU hotplug could have happened while we were waiting
2037
		 * for assoc_mutex.  Hotplug itself can't handle us
2038
		 * because manager isn't either on idle or busy list, and
2039
		 * @pool's state and ours could have deviated.
2040
		 *
2041
		 * As hotplug is now excluded via assoc_mutex, we can
2042
		 * simply try to bind.  It will succeed or fail depending
2043
		 * on @pool's current state.  Try it and adjust
2044 2045
		 * %WORKER_UNBOUND accordingly.
		 */
2046
		if (worker_maybe_bind_and_lock(pool))
2047 2048 2049
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2050

2051 2052
		ret = true;
	}
2053

2054
	pool->flags &= ~POOL_MANAGE_WORKERS;
2055 2056

	/*
2057 2058
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2059
	 */
2060 2061
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2062

2063
	pool->flags &= ~POOL_MANAGING_WORKERS;
2064
	mutex_unlock(&pool->assoc_mutex);
2065
	return ret;
2066 2067
}

2068 2069
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2070
 * @worker: self
2071 2072 2073 2074 2075 2076 2077 2078 2079
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2080
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2081
 */
T
Tejun Heo 已提交
2082
static void process_one_work(struct worker *worker, struct work_struct *work)
2083 2084
__releases(&pool->lock)
__acquires(&pool->lock)
2085
{
2086
	struct pool_workqueue *pwq = get_work_pwq(work);
2087
	struct worker_pool *pool = worker->pool;
2088
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2089
	int work_color;
2090
	struct worker *collision;
2091 2092 2093 2094 2095 2096 2097 2098
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2099 2100 2101
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2102
#endif
2103 2104 2105
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2106
	 * unbound or a disassociated pool.
2107
	 */
2108
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2109
		     !(pool->flags & POOL_DISASSOCIATED) &&
2110
		     raw_smp_processor_id() != pool->cpu);
2111

2112 2113 2114 2115 2116 2117
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2118
	collision = find_worker_executing_work(pool, work);
2119 2120 2121 2122 2123
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2124
	/* claim and dequeue */
2125
	debug_work_deactivate(work);
2126
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2127
	worker->current_work = work;
2128
	worker->current_func = work->func;
2129
	worker->current_pwq = pwq;
2130
	work_color = get_work_color(work);
2131

2132 2133
	list_del_init(&work->entry);

2134 2135 2136 2137 2138 2139 2140
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2141
	/*
2142
	 * Unbound pool isn't concurrency managed and work items should be
2143 2144
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2145 2146
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2147

2148
	/*
2149
	 * Record the last pool and clear PENDING which should be the last
2150
	 * update to @work.  Also, do this inside @pool->lock so that
2151 2152
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2153
	 */
2154
	set_work_pool_and_clear_pending(work, pool->id);
2155

2156
	spin_unlock_irq(&pool->lock);
2157

2158
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2159
	lock_map_acquire(&lockdep_map);
2160
	trace_workqueue_execute_start(work);
2161
	worker->current_func(work);
2162 2163 2164 2165 2166
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2167
	lock_map_release(&lockdep_map);
2168
	lock_map_release(&pwq->wq->lockdep_map);
2169 2170

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2171 2172
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2173 2174
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2175 2176 2177 2178
		debug_show_held_locks(current);
		dump_stack();
	}

2179
	spin_lock_irq(&pool->lock);
2180

2181 2182 2183 2184
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2185
	/* we're done with it, release */
2186
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2187
	worker->current_work = NULL;
2188
	worker->current_func = NULL;
2189 2190
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2191 2192
}

2193 2194 2195 2196 2197 2198 2199 2200 2201
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2202
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2203 2204 2205
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2206
{
2207 2208
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2209
						struct work_struct, entry);
T
Tejun Heo 已提交
2210
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2211 2212 2213
	}
}

T
Tejun Heo 已提交
2214 2215
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2216
 * @__worker: self
T
Tejun Heo 已提交
2217
 *
2218 2219
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2220 2221 2222
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2223
 */
T
Tejun Heo 已提交
2224
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2225
{
T
Tejun Heo 已提交
2226
	struct worker *worker = __worker;
2227
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2228

2229 2230
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2231
woke_up:
2232
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2233

2234 2235
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2236
		spin_unlock_irq(&pool->lock);
2237

2238
		/* if DIE is set, destruction is requested */
2239 2240 2241 2242 2243
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2244
		/* otherwise, rebind */
2245 2246
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2247
	}
2248

T
Tejun Heo 已提交
2249
	worker_leave_idle(worker);
2250
recheck:
2251
	/* no more worker necessary? */
2252
	if (!need_more_worker(pool))
2253 2254 2255
		goto sleep;

	/* do we need to manage? */
2256
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2257 2258
		goto recheck;

T
Tejun Heo 已提交
2259 2260 2261 2262 2263
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2264
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2265

2266 2267 2268 2269 2270 2271 2272 2273
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2274
		struct work_struct *work =
2275
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2276 2277 2278 2279 2280 2281
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2282
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2283 2284 2285
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2286
		}
2287
	} while (keep_working(pool));
2288 2289

	worker_set_flags(worker, WORKER_PREP, false);
2290
sleep:
2291
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2292
		goto recheck;
2293

T
Tejun Heo 已提交
2294
	/*
2295 2296 2297 2298 2299
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2300 2301 2302
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2303
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2304 2305
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2306 2307
}

2308 2309
/**
 * rescuer_thread - the rescuer thread function
2310
 * @__rescuer: self
2311 2312 2313 2314
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
2315
 * Regular work processing on a pool may block trying to create a new
2316 2317 2318 2319 2320
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2321 2322
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2323 2324 2325 2326
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2327
static int rescuer_thread(void *__rescuer)
2328
{
2329 2330
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2331
	struct list_head *scheduled = &rescuer->scheduled;
2332
	bool is_unbound = wq->flags & WQ_UNBOUND;
2333 2334 2335
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2336 2337 2338 2339 2340 2341

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2342 2343 2344
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2345 2346
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2347
		rescuer->task->flags &= ~PF_WQ_WORKER;
2348
		return 0;
2349
	}
2350

2351 2352 2353 2354
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2355
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2356
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2357 2358
		struct pool_workqueue *pwq = get_pwq(tcpu, wq);
		struct worker_pool *pool = pwq->pool;
2359 2360 2361
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2362
		mayday_clear_cpu(cpu, wq->mayday_mask);
2363 2364

		/* migrate to the target cpu if possible */
2365
		worker_maybe_bind_and_lock(pool);
2366
		rescuer->pool = pool;
2367 2368 2369 2370 2371

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2372
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2373
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2374
			if (get_work_pwq(work) == pwq)
2375 2376 2377
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2378 2379

		/*
2380
		 * Leave this pool.  If keep_working() is %true, notify a
2381 2382 2383
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2384 2385
		if (keep_working(pool))
			wake_up_worker(pool);
2386

2387
		rescuer->pool = NULL;
2388
		spin_unlock_irq(&pool->lock);
2389 2390
	}

2391 2392
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2393 2394
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2395 2396
}

O
Oleg Nesterov 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2408 2409
/**
 * insert_wq_barrier - insert a barrier work
2410
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2411
 * @barr: wq_barrier to insert
2412 2413
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2414
 *
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2427
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2428 2429
 *
 * CONTEXT:
2430
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2431
 */
2432
static void insert_wq_barrier(struct pool_workqueue *pwq,
2433 2434
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2435
{
2436 2437 2438
	struct list_head *head;
	unsigned int linked = 0;

2439
	/*
2440
	 * debugobject calls are safe here even with pool->lock locked
2441 2442 2443 2444
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2445
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2446
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2447
	init_completion(&barr->done);
2448

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2464
	debug_work_activate(&barr->work);
2465
	insert_work(pwq, &barr->work, head,
2466
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2467 2468
}

2469
/**
2470
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2471 2472 2473 2474
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2475
 * Prepare pwqs for workqueue flushing.
2476
 *
2477 2478 2479 2480 2481
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2482 2483 2484 2485 2486 2487 2488
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2489
 * If @work_color is non-negative, all pwqs should have the same
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2500
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2501
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2502
{
2503 2504
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2505

2506
	if (flush_color >= 0) {
2507
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2508
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2509
	}
2510

2511 2512 2513
	for_each_pwq_cpu(cpu, wq) {
		struct pool_workqueue *pwq = get_pwq(cpu, wq);
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2514

2515
		spin_lock_irq(&pool->lock);
2516

2517
		if (flush_color >= 0) {
2518
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2519

2520 2521 2522
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2523 2524 2525
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2526

2527
		if (work_color >= 0) {
2528
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2529
			pwq->work_color = work_color;
2530
		}
L
Linus Torvalds 已提交
2531

2532
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2533
	}
2534

2535
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2536
		complete(&wq->first_flusher->done);
2537

2538
	return wait;
L
Linus Torvalds 已提交
2539 2540
}

2541
/**
L
Linus Torvalds 已提交
2542
 * flush_workqueue - ensure that any scheduled work has run to completion.
2543
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2544 2545 2546 2547
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2548 2549
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2550
 */
2551
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2552
{
2553 2554 2555 2556 2557 2558
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2559

2560 2561
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2576
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2577 2578 2579 2580 2581
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2582
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2583 2584 2585

			wq->first_flusher = &this_flusher;

2586
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2587 2588 2589 2590 2591 2592 2593 2594
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2595
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2596
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2597
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2623 2624 2625 2626
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2627 2628
	wq->first_flusher = NULL;

2629 2630
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2643 2644
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2664
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2665 2666 2667
		}

		if (list_empty(&wq->flusher_queue)) {
2668
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2669 2670 2671 2672 2673
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2674
		 * the new first flusher and arm pwqs.
2675
		 */
2676 2677
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2678 2679 2680 2681

		list_del_init(&next->list);
		wq->first_flusher = next;

2682
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2694
}
2695
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2696

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
2718
	spin_lock_irq(&workqueue_lock);
2719 2720
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
2721
	spin_unlock_irq(&workqueue_lock);
2722 2723 2724
reflush:
	flush_workqueue(wq);

2725 2726
	for_each_pwq_cpu(cpu, wq) {
		struct pool_workqueue *pwq = get_pwq(cpu, wq);
2727
		bool drained;
2728

2729 2730 2731
		spin_lock_irq(&pwq->pool->lock);
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
		spin_unlock_irq(&pwq->pool->lock);
2732 2733

		if (drained)
2734 2735 2736 2737
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2738 2739
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2740 2741 2742
		goto reflush;
	}

2743
	spin_lock_irq(&workqueue_lock);
2744 2745
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
2746
	spin_unlock_irq(&workqueue_lock);
2747 2748 2749
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2750
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2751
{
2752
	struct worker *worker = NULL;
2753
	struct worker_pool *pool;
2754
	struct pool_workqueue *pwq;
2755 2756

	might_sleep();
2757 2758
	pool = get_work_pool(work);
	if (!pool)
2759
		return false;
2760

2761
	spin_lock_irq(&pool->lock);
2762
	/* see the comment in try_to_grab_pending() with the same code */
2763 2764 2765
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2766
			goto already_gone;
2767
	} else {
2768
		worker = find_worker_executing_work(pool, work);
2769
		if (!worker)
T
Tejun Heo 已提交
2770
			goto already_gone;
2771
		pwq = worker->current_pwq;
2772
	}
2773

2774
	insert_wq_barrier(pwq, barr, work, worker);
2775
	spin_unlock_irq(&pool->lock);
2776

2777 2778 2779 2780 2781 2782
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2783 2784
	if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&pwq->wq->lockdep_map);
2785
	else
2786 2787
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2788

2789
	return true;
T
Tejun Heo 已提交
2790
already_gone:
2791
	spin_unlock_irq(&pool->lock);
2792
	return false;
2793
}
2794 2795 2796 2797 2798

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2799 2800
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2801 2802 2803 2804 2805 2806 2807 2808 2809
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2810 2811 2812
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2813
	if (start_flush_work(work, &barr)) {
2814 2815 2816
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2817
	} else {
2818
		return false;
2819 2820
	}
}
2821
EXPORT_SYMBOL_GPL(flush_work);
2822

2823
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2824
{
2825
	unsigned long flags;
2826 2827 2828
	int ret;

	do {
2829 2830 2831 2832 2833 2834
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2835
			flush_work(work);
2836 2837
	} while (unlikely(ret < 0));

2838 2839 2840 2841
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2842
	flush_work(work);
2843
	clear_work_data(work);
2844 2845 2846
	return ret;
}

2847
/**
2848 2849
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2850
 *
2851 2852 2853 2854
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2855
 *
2856 2857
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2858
 *
2859
 * The caller must ensure that the workqueue on which @work was last
2860
 * queued can't be destroyed before this function returns.
2861 2862 2863
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2864
 */
2865
bool cancel_work_sync(struct work_struct *work)
2866
{
2867
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2868
}
2869
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2870

2871
/**
2872 2873
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2874
 *
2875 2876 2877
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2878
 *
2879 2880 2881
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2882
 */
2883 2884
bool flush_delayed_work(struct delayed_work *dwork)
{
2885
	local_irq_disable();
2886
	if (del_timer_sync(&dwork->timer))
2887
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2888
	local_irq_enable();
2889 2890 2891 2892
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2893
/**
2894 2895
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2896
 *
2897 2898 2899 2900 2901
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2902
 *
2903
 * This function is safe to call from any context including IRQ handler.
2904
 */
2905
bool cancel_delayed_work(struct delayed_work *dwork)
2906
{
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2917 2918
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2919
	local_irq_restore(flags);
2920
	return ret;
2921
}
2922
EXPORT_SYMBOL(cancel_delayed_work);
2923

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2934
{
2935
	return __cancel_work_timer(&dwork->work, true);
2936
}
2937
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2938

2939
/**
2940 2941 2942 2943 2944 2945
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2946
bool schedule_work_on(int cpu, struct work_struct *work)
2947
{
2948
	return queue_work_on(cpu, system_wq, work);
2949 2950 2951
}
EXPORT_SYMBOL(schedule_work_on);

2952 2953 2954 2955
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2956 2957
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2958 2959 2960 2961
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2962
 */
2963
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2964
{
2965
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
2966
}
2967
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
2968

2969 2970 2971
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
2972
 * @dwork: job to be done
2973 2974 2975 2976 2977
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
2978 2979
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
2980
{
2981
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
2982
}
2983
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
2984

2985 2986
/**
 * schedule_delayed_work - put work task in global workqueue after delay
2987 2988
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
2989 2990 2991 2992
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
2993
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
2994
{
2995
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
2996
}
2997
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
2998

2999
/**
3000
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3001 3002
 * @func: the function to call
 *
3003 3004
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3005
 * schedule_on_each_cpu() is very slow.
3006 3007 3008
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3009
 */
3010
int schedule_on_each_cpu(work_func_t func)
3011 3012
{
	int cpu;
3013
	struct work_struct __percpu *works;
3014

3015 3016
	works = alloc_percpu(struct work_struct);
	if (!works)
3017
		return -ENOMEM;
3018

3019 3020
	get_online_cpus();

3021
	for_each_online_cpu(cpu) {
3022 3023 3024
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3025
		schedule_work_on(cpu, work);
3026
	}
3027 3028 3029 3030

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3031
	put_online_cpus();
3032
	free_percpu(works);
3033 3034 3035
	return 0;
}

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3060 3061
void flush_scheduled_work(void)
{
3062
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3063
}
3064
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3065

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3078
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3079 3080
{
	if (!in_interrupt()) {
3081
		fn(&ew->work);
3082 3083 3084
		return 0;
	}

3085
	INIT_WORK(&ew->work, fn);
3086 3087 3088 3089 3090 3091
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3092 3093
int keventd_up(void)
{
3094
	return system_wq != NULL;
L
Linus Torvalds 已提交
3095 3096
}

3097
static int alloc_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3098
{
3099
	/*
3100
	 * pwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
T
Tejun Heo 已提交
3101 3102
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3103
	 */
3104
	const size_t size = sizeof(struct pool_workqueue);
T
Tejun Heo 已提交
3105 3106
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3107

3108
	if (!(wq->flags & WQ_UNBOUND))
3109
		wq->pool_wq.pcpu = __alloc_percpu(size, align);
3110
	else {
3111 3112 3113
		void *ptr;

		/*
3114
		 * Allocate enough room to align pwq and put an extra
3115 3116 3117 3118 3119
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
3120 3121
			wq->pool_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->pool_wq.single + 1) = ptr;
3122
		}
3123
	}
3124

3125
	/* just in case, make sure it's actually aligned */
3126 3127
	BUG_ON(!IS_ALIGNED(wq->pool_wq.v, align));
	return wq->pool_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3128 3129
}

3130
static void free_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3131
{
3132
	if (!(wq->flags & WQ_UNBOUND))
3133 3134 3135 3136
		free_percpu(wq->pool_wq.pcpu);
	else if (wq->pool_wq.single) {
		/* the pointer to free is stored right after the pwq */
		kfree(*(void **)(wq->pool_wq.single + 1));
3137
	}
T
Tejun Heo 已提交
3138 3139
}

3140 3141
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3142
{
3143 3144 3145
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3146 3147
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3148

3149
	return clamp_val(max_active, 1, lim);
3150 3151
}

3152
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3153 3154 3155
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3156
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3157
{
3158
	va_list args, args1;
L
Linus Torvalds 已提交
3159
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3160
	unsigned int cpu;
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3175

3176 3177 3178 3179 3180 3181 3182
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3183
	max_active = max_active ?: WQ_DFL_ACTIVE;
3184
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3185

3186
	/* init wq */
3187
	wq->flags = flags;
3188
	wq->saved_max_active = max_active;
3189
	mutex_init(&wq->flush_mutex);
3190
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3191 3192
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3193

3194
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3195
	INIT_LIST_HEAD(&wq->list);
3196

3197
	if (alloc_pwqs(wq) < 0)
3198 3199
		goto err;

3200 3201
	for_each_pwq_cpu(cpu, wq) {
		struct pool_workqueue *pwq = get_pwq(cpu, wq);
T
Tejun Heo 已提交
3202

3203 3204 3205 3206 3207 3208
		BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
		pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
		pwq->wq = wq;
		pwq->flush_color = -1;
		pwq->max_active = max_active;
		INIT_LIST_HEAD(&pwq->delayed_works);
3209
	}
T
Tejun Heo 已提交
3210

3211 3212 3213
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3214
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3215 3216 3217 3218 3219 3220
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3221 3222
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3223
					       wq->name);
3224 3225 3226 3227 3228
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3229 3230
	}

3231 3232 3233 3234 3235
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
3236
	spin_lock_irq(&workqueue_lock);
3237

3238
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3239 3240
		for_each_pwq_cpu(cpu, wq)
			get_pwq(cpu, wq)->max_active = 0;
3241

T
Tejun Heo 已提交
3242
	list_add(&wq->list, &workqueues);
3243

3244
	spin_unlock_irq(&workqueue_lock);
T
Tejun Heo 已提交
3245

3246
	return wq;
T
Tejun Heo 已提交
3247 3248
err:
	if (wq) {
3249
		free_pwqs(wq);
3250
		free_mayday_mask(wq->mayday_mask);
3251
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3252 3253 3254
		kfree(wq);
	}
	return NULL;
3255
}
3256
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3257

3258 3259 3260 3261 3262 3263 3264 3265
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3266
	unsigned int cpu;
3267

3268 3269
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3270

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	/* sanity checks */
	for_each_pwq_cpu(cpu, wq) {
		struct pool_workqueue *pwq = get_pwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			if (WARN_ON(pwq->nr_in_flight[i]))
				return;
		if (WARN_ON(pwq->nr_active) ||
		    WARN_ON(!list_empty(&pwq->delayed_works)))
			return;
	}

3284 3285 3286 3287
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3288
	spin_lock_irq(&workqueue_lock);
3289
	list_del(&wq->list);
3290
	spin_unlock_irq(&workqueue_lock);
3291

3292 3293
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3294
		free_mayday_mask(wq->mayday_mask);
3295
		kfree(wq->rescuer);
3296 3297
	}

3298
	free_pwqs(wq);
3299 3300 3301 3302
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3303
/**
3304 3305
 * pwq_set_max_active - adjust max_active of a pwq
 * @pwq: target pool_workqueue
3306 3307
 * @max_active: new max_active value.
 *
3308
 * Set @pwq->max_active to @max_active and activate delayed works if
3309 3310 3311
 * increased.
 *
 * CONTEXT:
3312
 * spin_lock_irq(pool->lock).
3313
 */
3314
static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3315
{
3316
	pwq->max_active = max_active;
3317

3318 3319 3320
	while (!list_empty(&pwq->delayed_works) &&
	       pwq->nr_active < pwq->max_active)
		pwq_activate_first_delayed(pwq);
3321 3322
}

3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3337
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3338

3339
	spin_lock_irq(&workqueue_lock);
3340 3341 3342

	wq->saved_max_active = max_active;

3343 3344 3345
	for_each_pwq_cpu(cpu, wq) {
		struct pool_workqueue *pwq = get_pwq(cpu, wq);
		struct worker_pool *pool = pwq->pool;
3346

3347
		spin_lock(&pool->lock);
3348

3349
		if (!(wq->flags & WQ_FREEZABLE) ||
3350
		    !(pool->flags & POOL_FREEZING))
3351
			pwq_set_max_active(pwq, max_active);
3352

3353
		spin_unlock(&pool->lock);
3354
	}
3355

3356
	spin_unlock_irq(&workqueue_lock);
3357
}
3358
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3359

3360
/**
3361 3362 3363
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3364
 *
3365 3366 3367
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3368
 *
3369 3370
 * RETURNS:
 * %true if congested, %false otherwise.
3371
 */
3372
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3373
{
3374
	struct pool_workqueue *pwq = get_pwq(cpu, wq);
3375

3376
	return !list_empty(&pwq->delayed_works);
L
Linus Torvalds 已提交
3377
}
3378
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3379

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3392
{
3393
	struct worker_pool *pool = get_work_pool(work);
3394 3395
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3396

3397 3398
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3399

3400 3401 3402 3403 3404 3405
	if (pool) {
		spin_lock_irqsave(&pool->lock, flags);
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
		spin_unlock_irqrestore(&pool->lock, flags);
	}
L
Linus Torvalds 已提交
3406

3407
	return ret;
L
Linus Torvalds 已提交
3408
}
3409
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3410

3411 3412 3413
/*
 * CPU hotplug.
 *
3414
 * There are two challenges in supporting CPU hotplug.  Firstly, there
3415
 * are a lot of assumptions on strong associations among work, pwq and
3416
 * pool which make migrating pending and scheduled works very
3417
 * difficult to implement without impacting hot paths.  Secondly,
3418
 * worker pools serve mix of short, long and very long running works making
3419 3420
 * blocked draining impractical.
 *
3421
 * This is solved by allowing the pools to be disassociated from the CPU
3422 3423
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3424
 */
L
Linus Torvalds 已提交
3425

3426
static void wq_unbind_fn(struct work_struct *work)
3427
{
3428
	int cpu = smp_processor_id();
3429
	struct worker_pool *pool;
3430 3431
	struct worker *worker;
	int i;
3432

3433
	for_each_std_worker_pool(pool, cpu) {
3434
		WARN_ON_ONCE(cpu != smp_processor_id());
3435

3436 3437
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3438

3439 3440 3441 3442 3443 3444 3445
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3446
		list_for_each_entry(worker, &pool->idle_list, entry)
3447
			worker->flags |= WORKER_UNBOUND;
3448

3449
		for_each_busy_worker(worker, i, pool)
3450
			worker->flags |= WORKER_UNBOUND;
3451

3452
		pool->flags |= POOL_DISASSOCIATED;
3453

3454 3455 3456
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3457

3458
	/*
3459
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3460 3461
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3462 3463
	 */
	schedule();
3464

3465
	/*
3466 3467
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3468 3469 3470
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3471 3472 3473 3474
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3475
	 */
3476
	for_each_std_worker_pool(pool, cpu)
3477
		atomic_set(&pool->nr_running, 0);
3478 3479
}

T
Tejun Heo 已提交
3480 3481 3482 3483
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3484
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3485 3486
					       unsigned long action,
					       void *hcpu)
3487 3488
{
	unsigned int cpu = (unsigned long)hcpu;
3489
	struct worker_pool *pool;
3490

T
Tejun Heo 已提交
3491
	switch (action & ~CPU_TASKS_FROZEN) {
3492
	case CPU_UP_PREPARE:
3493
		for_each_std_worker_pool(pool, cpu) {
3494 3495 3496 3497 3498 3499 3500 3501 3502
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3503
			spin_lock_irq(&pool->lock);
3504
			start_worker(worker);
3505
			spin_unlock_irq(&pool->lock);
3506
		}
T
Tejun Heo 已提交
3507
		break;
3508

3509 3510
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3511
		for_each_std_worker_pool(pool, cpu) {
3512 3513 3514
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3515
			pool->flags &= ~POOL_DISASSOCIATED;
3516 3517 3518 3519 3520
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3521
		break;
3522
	}
3523 3524 3525 3526 3527 3528 3529
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3530
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3531 3532 3533
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3534 3535 3536
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3537 3538
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3539
		/* unbinding should happen on the local CPU */
3540
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3541
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3542 3543
		flush_work(&unbind_work);
		break;
3544 3545 3546 3547
	}
	return NOTIFY_OK;
}

3548
#ifdef CONFIG_SMP
3549

3550
struct work_for_cpu {
3551
	struct work_struct work;
3552 3553 3554 3555 3556
	long (*fn)(void *);
	void *arg;
	long ret;
};

3557
static void work_for_cpu_fn(struct work_struct *work)
3558
{
3559 3560
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3561 3562 3563 3564 3565 3566 3567 3568 3569
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3570 3571
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3572
 * The caller must not hold any locks which would prevent @fn from completing.
3573 3574 3575
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3576
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3577

3578 3579 3580
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3581 3582 3583 3584 3585
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3586 3587 3588 3589 3590
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3591 3592
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
3593
 * pool->worklist.
3594 3595
 *
 * CONTEXT:
3596
 * Grabs and releases workqueue_lock and pool->lock's.
3597 3598 3599 3600 3601
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

3602
	spin_lock_irq(&workqueue_lock);
3603

3604
	WARN_ON_ONCE(workqueue_freezing);
3605 3606
	workqueue_freezing = true;

3607
	for_each_wq_cpu(cpu) {
3608
		struct worker_pool *pool;
3609
		struct workqueue_struct *wq;
3610

3611
		for_each_std_worker_pool(pool, cpu) {
3612
			spin_lock(&pool->lock);
3613

3614 3615
			WARN_ON_ONCE(pool->flags & POOL_FREEZING);
			pool->flags |= POOL_FREEZING;
3616

3617
			list_for_each_entry(wq, &workqueues, list) {
3618
				struct pool_workqueue *pwq = get_pwq(cpu, wq);
3619

3620
				if (pwq && pwq->pool == pool &&
3621
				    (wq->flags & WQ_FREEZABLE))
3622
					pwq->max_active = 0;
3623
			}
3624

3625
			spin_unlock(&pool->lock);
3626
		}
3627 3628
	}

3629
	spin_unlock_irq(&workqueue_lock);
3630 3631 3632
}

/**
3633
 * freeze_workqueues_busy - are freezable workqueues still busy?
3634 3635 3636 3637 3638 3639 3640 3641
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3642 3643
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3644 3645 3646 3647 3648 3649
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

3650
	spin_lock_irq(&workqueue_lock);
3651

3652
	WARN_ON_ONCE(!workqueue_freezing);
3653

3654
	for_each_wq_cpu(cpu) {
3655
		struct workqueue_struct *wq;
3656 3657 3658 3659 3660
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
3661
			struct pool_workqueue *pwq = get_pwq(cpu, wq);
3662

3663
			if (!pwq || !(wq->flags & WQ_FREEZABLE))
3664 3665
				continue;

3666
			WARN_ON_ONCE(pwq->nr_active < 0);
3667
			if (pwq->nr_active) {
3668 3669 3670 3671 3672 3673
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
3674
	spin_unlock_irq(&workqueue_lock);
3675 3676 3677 3678 3679 3680 3681
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3682
 * frozen works are transferred to their respective pool worklists.
3683 3684
 *
 * CONTEXT:
3685
 * Grabs and releases workqueue_lock and pool->lock's.
3686 3687 3688 3689 3690
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

3691
	spin_lock_irq(&workqueue_lock);
3692 3693 3694 3695

	if (!workqueue_freezing)
		goto out_unlock;

3696
	for_each_wq_cpu(cpu) {
3697
		struct worker_pool *pool;
3698
		struct workqueue_struct *wq;
3699

3700
		for_each_std_worker_pool(pool, cpu) {
3701
			spin_lock(&pool->lock);
3702

3703 3704
			WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
			pool->flags &= ~POOL_FREEZING;
3705

3706
			list_for_each_entry(wq, &workqueues, list) {
3707
				struct pool_workqueue *pwq = get_pwq(cpu, wq);
3708

3709
				if (!pwq || pwq->pool != pool ||
3710 3711
				    !(wq->flags & WQ_FREEZABLE))
					continue;
3712

3713
				/* restore max_active and repopulate worklist */
3714
				pwq_set_max_active(pwq, wq->saved_max_active);
3715
			}
3716

3717
			wake_up_worker(pool);
3718

3719
			spin_unlock(&pool->lock);
3720
		}
3721 3722 3723 3724
	}

	workqueue_freezing = false;
out_unlock:
3725
	spin_unlock_irq(&workqueue_lock);
3726 3727 3728
}
#endif /* CONFIG_FREEZER */

3729
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3730
{
T
Tejun Heo 已提交
3731 3732
	unsigned int cpu;

3733 3734
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3735
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
3736

3737
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3738
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3739

3740 3741
	/* initialize CPU pools */
	for_each_wq_cpu(cpu) {
3742
		struct worker_pool *pool;
3743

3744
		for_each_std_worker_pool(pool, cpu) {
3745
			spin_lock_init(&pool->lock);
3746
			pool->cpu = cpu;
3747
			pool->flags |= POOL_DISASSOCIATED;
3748 3749
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3750
			hash_init(pool->busy_hash);
3751

3752 3753 3754
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3755

3756
			setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3757 3758
				    (unsigned long)pool);

3759
			mutex_init(&pool->assoc_mutex);
3760
			ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3761 3762 3763

			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
3764
		}
3765 3766
	}

3767
	/* create the initial worker */
3768
	for_each_online_wq_cpu(cpu) {
3769
		struct worker_pool *pool;
3770

3771
		for_each_std_worker_pool(pool, cpu) {
3772 3773
			struct worker *worker;

3774 3775 3776
			if (cpu != WORK_CPU_UNBOUND)
				pool->flags &= ~POOL_DISASSOCIATED;

3777
			worker = create_worker(pool);
3778
			BUG_ON(!worker);
3779
			spin_lock_irq(&pool->lock);
3780
			start_worker(worker);
3781
			spin_unlock_irq(&pool->lock);
3782
		}
3783 3784
	}

3785
	system_wq = alloc_workqueue("events", 0, 0);
3786
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3787
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3788 3789
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3790 3791
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3792
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3793
	       !system_unbound_wq || !system_freezable_wq);
3794
	return 0;
L
Linus Torvalds 已提交
3795
}
3796
early_initcall(init_workqueues);