workqueue.c 137.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131
 * WQ: wq->mutex protected.
 *
132
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
133 134
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
135 136
 */

137
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
138

139
struct worker_pool {
140
	spinlock_t		lock;		/* the pool lock */
141
	int			cpu;		/* I: the associated cpu */
142
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
143
	int			id;		/* I: pool ID */
144
	unsigned int		flags;		/* X: flags */
145 146 147

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
148 149

	/* nr_idle includes the ones off idle_list for rebinding */
150 151 152 153 154 155
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

156
	/* a workers is either on busy_hash or idle_list, or the manager */
157 158 159
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

160
	/* see manage_workers() for details on the two manager mutexes */
161
	struct mutex		manager_arb;	/* manager arbitration */
162 163
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
164
	struct completion	*detach_completion; /* all workers detached */
165

166
	struct ida		worker_ida;	/* worker IDs for task name */
167

T
Tejun Heo 已提交
168
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 170
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
171

172 173 174 175 176 177
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 179 180 181 182 183

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
184 185
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
186
/*
187 188 189 190
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
191
 */
192
struct pool_workqueue {
193
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
194
	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 196
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
197
	int			refcnt;		/* L: reference count */
198 199
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
200
	int			nr_active;	/* L: nr of active works */
201
	int			max_active;	/* L: max active works */
202
	struct list_head	delayed_works;	/* L: delayed works */
203
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
205 206 207 208 209

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
210
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
211 212 213
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
214
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
215

216 217 218 219
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
220 221
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
222 223 224
	struct completion	done;		/* flush completion */
};

225 226
struct wq_device;

L
Linus Torvalds 已提交
227
/*
228 229
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
230 231
 */
struct workqueue_struct {
232
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233
	struct list_head	list;		/* PL: list of all workqueues */
234

235 236 237
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
238
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 240 241
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242

243
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 245
	struct worker		*rescuer;	/* I: rescue worker */

246
	int			nr_drainers;	/* WQ: drain in progress */
247
	int			saved_max_active; /* WQ: saved pwq max_active */
248

249
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251

252 253 254
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
255
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
256
	struct lockdep_map	lockdep_map;
257
#endif
258
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 260 261 262

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
264 265
};

266 267
static struct kmem_cache *pwq_cache;

268 269 270 271
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

272 273 274
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

275 276 277 278 279 280 281 282 283
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

284 285
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

286 287 288
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

289
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
290
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
291

292 293
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
294 295 296 297 298

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

299
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
300

301
/* PL: hash of all unbound pools keyed by pool->attrs */
302 303
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

304
/* I: attributes used when instantiating standard unbound pools on demand */
305 306
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

307 308 309
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

310
struct workqueue_struct *system_wq __read_mostly;
311
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
312
struct workqueue_struct *system_highpri_wq __read_mostly;
313
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
314
struct workqueue_struct *system_long_wq __read_mostly;
315
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
316
struct workqueue_struct *system_unbound_wq __read_mostly;
317
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
318
struct workqueue_struct *system_freezable_wq __read_mostly;
319
EXPORT_SYMBOL_GPL(system_freezable_wq);
320 321 322 323
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
324

325 326 327 328
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

329 330 331
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

332
#define assert_rcu_or_pool_mutex()					\
333
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
334 335
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
336

337
#define assert_rcu_or_wq_mutex(wq)					\
338
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
339
			   lockdep_is_held(&wq->mutex),			\
340
			   "sched RCU or wq->mutex should be held")
341

342 343 344
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
345
	     (pool)++)
346

T
Tejun Heo 已提交
347 348 349
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
350
 * @pi: integer used for iteration
351
 *
352 353 354
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
355 356 357
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
358
 */
359 360
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
361
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
362
		else
T
Tejun Heo 已提交
363

364 365 366 367 368
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
369
 * This must be called with @pool->attach_mutex.
370 371 372 373
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
374 375
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
376
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
377 378
		else

379 380 381 382
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
383
 *
384
 * This must be called either with wq->mutex held or sched RCU read locked.
385 386
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
387 388 389
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
390 391
 */
#define for_each_pwq(pwq, wq)						\
392
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
393
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
394
		else
395

396 397 398 399
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

400 401 402 403 404
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
440
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
476
	.debug_hint	= work_debug_hint,
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

507 508 509 510 511 512 513
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

514 515 516 517 518
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

519 520 521 522 523 524 525
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
526 527 528 529
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

530
	lockdep_assert_held(&wq_pool_mutex);
531

532 533
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
534
	if (ret >= 0) {
T
Tejun Heo 已提交
535
		pool->id = ret;
536 537
		return 0;
	}
538
	return ret;
539 540
}

541 542 543 544 545 546 547 548
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
549 550
 *
 * Return: The unbound pool_workqueue for @node.
551 552 553 554 555 556 557 558
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
574

575
/*
576 577
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
578
 * is cleared and the high bits contain OFFQ flags and pool ID.
579
 *
580 581
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
582 583
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
584
 *
585
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
586
 * corresponding to a work.  Pool is available once the work has been
587
 * queued anywhere after initialization until it is sync canceled.  pwq is
588
 * available only while the work item is queued.
589
 *
590 591 592 593
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
594
 */
595 596
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
597
{
598
	WARN_ON_ONCE(!work_pending(work));
599 600
	atomic_long_set(&work->data, data | flags | work_static(work));
}
601

602
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
603 604
			 unsigned long extra_flags)
{
605 606
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
607 608
}

609 610 611 612 613 614 615
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

616 617
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
618
{
619 620 621 622 623 624 625
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
626
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
627
}
628

629
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
630
{
631 632
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
633 634
}

635
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
636
{
637
	unsigned long data = atomic_long_read(&work->data);
638

639
	if (data & WORK_STRUCT_PWQ)
640 641 642
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
643 644
}

645 646 647 648
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
649 650 651
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
652 653 654 655 656
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
657 658
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
659 660
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
661
{
662
	unsigned long data = atomic_long_read(&work->data);
663
	int pool_id;
664

665
	assert_rcu_or_pool_mutex();
666

667 668
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
669
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
670

671 672
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
673 674
		return NULL;

675
	return idr_find(&worker_pool_idr, pool_id);
676 677 678 679 680 681
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
682
 * Return: The worker_pool ID @work was last associated with.
683 684 685 686
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
687 688
	unsigned long data = atomic_long_read(&work->data);

689 690
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
691
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
692

693
	return data >> WORK_OFFQ_POOL_SHIFT;
694 695
}

696 697
static void mark_work_canceling(struct work_struct *work)
{
698
	unsigned long pool_id = get_work_pool_id(work);
699

700 701
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
702 703 704 705 706 707
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

708
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
709 710
}

711
/*
712 713
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
714
 * they're being called with pool->lock held.
715 716
 */

717
static bool __need_more_worker(struct worker_pool *pool)
718
{
719
	return !atomic_read(&pool->nr_running);
720 721
}

722
/*
723 724
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
725 726
 *
 * Note that, because unbound workers never contribute to nr_running, this
727
 * function will always return %true for unbound pools as long as the
728
 * worklist isn't empty.
729
 */
730
static bool need_more_worker(struct worker_pool *pool)
731
{
732
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
733
}
734

735
/* Can I start working?  Called from busy but !running workers. */
736
static bool may_start_working(struct worker_pool *pool)
737
{
738
	return pool->nr_idle;
739 740 741
}

/* Do I need to keep working?  Called from currently running workers. */
742
static bool keep_working(struct worker_pool *pool)
743
{
744 745
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
746 747 748
}

/* Do we need a new worker?  Called from manager. */
749
static bool need_to_create_worker(struct worker_pool *pool)
750
{
751
	return need_more_worker(pool) && !may_start_working(pool);
752
}
753

754
/* Do we have too many workers and should some go away? */
755
static bool too_many_workers(struct worker_pool *pool)
756
{
757
	bool managing = mutex_is_locked(&pool->manager_arb);
758 759
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
760

761 762 763 764 765 766 767
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

768
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
769 770
}

771
/*
772 773 774
 * Wake up functions.
 */

775 776
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
777
{
778
	if (unlikely(list_empty(&pool->idle_list)))
779 780
		return NULL;

781
	return list_first_entry(&pool->idle_list, struct worker, entry);
782 783 784 785
}

/**
 * wake_up_worker - wake up an idle worker
786
 * @pool: worker pool to wake worker from
787
 *
788
 * Wake up the first idle worker of @pool.
789 790
 *
 * CONTEXT:
791
 * spin_lock_irq(pool->lock).
792
 */
793
static void wake_up_worker(struct worker_pool *pool)
794
{
795
	struct worker *worker = first_idle_worker(pool);
796 797 798 799 800

	if (likely(worker))
		wake_up_process(worker->task);
}

801
/**
802 803 804 805 806 807 808 809 810 811
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
812
void wq_worker_waking_up(struct task_struct *task, int cpu)
813 814 815
{
	struct worker *worker = kthread_data(task);

816
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
817
		WARN_ON_ONCE(worker->pool->cpu != cpu);
818
		atomic_inc(&worker->pool->nr_running);
819
	}
820 821 822 823 824 825 826 827 828 829 830 831 832 833
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
834
 * Return:
835 836
 * Worker task on @cpu to wake up, %NULL if none.
 */
837
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
838 839
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
840
	struct worker_pool *pool;
841

842 843 844 845 846
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
847
	if (worker->flags & WORKER_NOT_RUNNING)
848 849
		return NULL;

850 851
	pool = worker->pool;

852
	/* this can only happen on the local cpu */
853 854
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
855 856 857 858 859 860

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
861 862 863
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
864
	 * manipulating idle_list, so dereferencing idle_list without pool
865
	 * lock is safe.
866
	 */
867 868
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
869
		to_wakeup = first_idle_worker(pool);
870 871 872 873 874
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
875
 * @worker: self
876 877 878
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
879 880 881
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
882
 *
883
 * CONTEXT:
884
 * spin_lock_irq(pool->lock)
885 886 887 888
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
889
	struct worker_pool *pool = worker->pool;
890

891 892
	WARN_ON_ONCE(worker->task != current);

893 894 895 896 897 898 899 900
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
901
			if (atomic_dec_and_test(&pool->nr_running) &&
902
			    !list_empty(&pool->worklist))
903
				wake_up_worker(pool);
904
		} else
905
			atomic_dec(&pool->nr_running);
906 907
	}

908 909 910 911
	worker->flags |= flags;
}

/**
912
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
913
 * @worker: self
914 915
 * @flags: flags to clear
 *
916
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
917
 *
918
 * CONTEXT:
919
 * spin_lock_irq(pool->lock)
920 921 922
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
923
	struct worker_pool *pool = worker->pool;
924 925
	unsigned int oflags = worker->flags;

926 927
	WARN_ON_ONCE(worker->task != current);

928
	worker->flags &= ~flags;
929

930 931 932 933 934
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
935 936
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
937
			atomic_inc(&pool->nr_running);
938 939
}

940 941
/**
 * find_worker_executing_work - find worker which is executing a work
942
 * @pool: pool of interest
943 944
 * @work: work to find worker for
 *
945 946
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
947 948 949 950 951 952 953 954 955 956 957 958
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
959 960 961 962 963 964
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
965 966
 *
 * CONTEXT:
967
 * spin_lock_irq(pool->lock).
968
 *
969 970
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
971
 * otherwise.
972
 */
973
static struct worker *find_worker_executing_work(struct worker_pool *pool,
974
						 struct work_struct *work)
975
{
976 977
	struct worker *worker;

978
	hash_for_each_possible(pool->busy_hash, worker, hentry,
979 980 981
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
982 983 984
			return worker;

	return NULL;
985 986
}

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1002
 * spin_lock_irq(pool->lock).
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1086
static void pwq_activate_delayed_work(struct work_struct *work)
1087
{
1088
	struct pool_workqueue *pwq = get_work_pwq(work);
1089 1090

	trace_workqueue_activate_work(work);
1091
	move_linked_works(work, &pwq->pool->worklist, NULL);
1092
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1093
	pwq->nr_active++;
1094 1095
}

1096
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1097
{
1098
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1099 1100
						    struct work_struct, entry);

1101
	pwq_activate_delayed_work(work);
1102 1103
}

1104
/**
1105 1106
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1107 1108 1109
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1110
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1111 1112
 *
 * CONTEXT:
1113
 * spin_lock_irq(pool->lock).
1114
 */
1115
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1116
{
T
Tejun Heo 已提交
1117
	/* uncolored work items don't participate in flushing or nr_active */
1118
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1119
		goto out_put;
1120

1121
	pwq->nr_in_flight[color]--;
1122

1123 1124
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1125
		/* one down, submit a delayed one */
1126 1127
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1128 1129 1130
	}

	/* is flush in progress and are we at the flushing tip? */
1131
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1132
		goto out_put;
1133 1134

	/* are there still in-flight works? */
1135
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1136
		goto out_put;
1137

1138 1139
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1140 1141

	/*
1142
	 * If this was the last pwq, wake up the first flusher.  It
1143 1144
	 * will handle the rest.
	 */
1145 1146
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1147 1148
out_put:
	put_pwq(pwq);
1149 1150
}

1151
/**
1152
 * try_to_grab_pending - steal work item from worklist and disable irq
1153 1154
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1155
 * @flags: place to store irq state
1156 1157
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1158
 * stable state - idle, on timer or on worklist.
1159
 *
1160
 * Return:
1161 1162 1163
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1164 1165
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1166
 *
1167
 * Note:
1168
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1169 1170 1171
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1172 1173 1174 1175
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1176
 * This function is safe to call from any context including IRQ handler.
1177
 */
1178 1179
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1180
{
1181
	struct worker_pool *pool;
1182
	struct pool_workqueue *pwq;
1183

1184 1185
	local_irq_save(*flags);

1186 1187 1188 1189
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1190 1191 1192 1193 1194
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1195 1196 1197 1198 1199
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1200 1201 1202 1203 1204 1205 1206
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1207 1208
	pool = get_work_pool(work);
	if (!pool)
1209
		goto fail;
1210

1211
	spin_lock(&pool->lock);
1212
	/*
1213 1214 1215 1216 1217
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1218 1219
	 * item is currently queued on that pool.
	 */
1220 1221
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1222 1223 1224 1225 1226
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1227
		 * on the delayed_list, will confuse pwq->nr_active
1228 1229 1230 1231
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1232
			pwq_activate_delayed_work(work);
1233 1234

		list_del_init(&work->entry);
1235
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1236

1237
		/* work->data points to pwq iff queued, point to pool */
1238 1239 1240 1241
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1242
	}
1243
	spin_unlock(&pool->lock);
1244 1245 1246 1247 1248
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1249
	return -EAGAIN;
1250 1251
}

T
Tejun Heo 已提交
1252
/**
1253
 * insert_work - insert a work into a pool
1254
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1255 1256 1257 1258
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1259
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1260
 * work_struct flags.
T
Tejun Heo 已提交
1261 1262
 *
 * CONTEXT:
1263
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1264
 */
1265 1266
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1267
{
1268
	struct worker_pool *pool = pwq->pool;
1269

T
Tejun Heo 已提交
1270
	/* we own @work, set data and link */
1271
	set_work_pwq(work, pwq, extra_flags);
1272
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1273
	get_pwq(pwq);
1274 1275

	/*
1276 1277 1278
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1279 1280 1281
	 */
	smp_mb();

1282 1283
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1284 1285
}

1286 1287
/*
 * Test whether @work is being queued from another work executing on the
1288
 * same workqueue.
1289 1290 1291
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1292 1293 1294 1295 1296 1297 1298
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1299
	return worker && worker->current_pwq->wq == wq;
1300 1301
}

1302
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1303 1304
			 struct work_struct *work)
{
1305
	struct pool_workqueue *pwq;
1306
	struct worker_pool *last_pool;
1307
	struct list_head *worklist;
1308
	unsigned int work_flags;
1309
	unsigned int req_cpu = cpu;
1310 1311 1312 1313 1314 1315 1316 1317

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1318

1319
	debug_work_activate(work);
1320

1321
	/* if draining, only works from the same workqueue are allowed */
1322
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1323
	    WARN_ON_ONCE(!is_chained_work(wq)))
1324
		return;
1325
retry:
1326 1327 1328
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1329
	/* pwq which will be used unless @work is executing elsewhere */
1330
	if (!(wq->flags & WQ_UNBOUND))
1331
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1332 1333
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1334

1335 1336 1337 1338 1339 1340 1341 1342
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1343

1344
		spin_lock(&last_pool->lock);
1345

1346
		worker = find_worker_executing_work(last_pool, work);
1347

1348 1349
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1350
		} else {
1351 1352
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1353
			spin_lock(&pwq->pool->lock);
1354
		}
1355
	} else {
1356
		spin_lock(&pwq->pool->lock);
1357 1358
	}

1359 1360 1361 1362
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1363 1364
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1378 1379
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1380

1381
	if (WARN_ON(!list_empty(&work->entry))) {
1382
		spin_unlock(&pwq->pool->lock);
1383 1384
		return;
	}
1385

1386 1387
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1388

1389
	if (likely(pwq->nr_active < pwq->max_active)) {
1390
		trace_workqueue_activate_work(work);
1391 1392
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1393 1394
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1395
		worklist = &pwq->delayed_works;
1396
	}
1397

1398
	insert_work(pwq, work, worklist, work_flags);
1399

1400
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1401 1402
}

1403
/**
1404 1405
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1406 1407 1408
 * @wq: workqueue to use
 * @work: work to queue
 *
1409 1410
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1411 1412
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1413
 */
1414 1415
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1416
{
1417
	bool ret = false;
1418
	unsigned long flags;
1419

1420
	local_irq_save(flags);
1421

1422
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1423
		__queue_work(cpu, wq, work);
1424
		ret = true;
1425
	}
1426

1427
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1428 1429
	return ret;
}
1430
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1431

1432
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1433
{
1434
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1435

1436
	/* should have been called from irqsafe timer with irq already off */
1437
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1438
}
1439
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1440

1441 1442
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1443
{
1444 1445 1446 1447 1448
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1449 1450
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1451

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1463
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1464

1465
	dwork->wq = wq;
1466
	dwork->cpu = cpu;
1467 1468 1469 1470 1471 1472
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1473 1474
}

1475 1476 1477 1478
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1479
 * @dwork: work to queue
1480 1481
 * @delay: number of jiffies to wait before queueing
 *
1482
 * Return: %false if @work was already on a queue, %true otherwise.  If
1483 1484
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1485
 */
1486 1487
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1488
{
1489
	struct work_struct *work = &dwork->work;
1490
	bool ret = false;
1491
	unsigned long flags;
1492

1493 1494
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1495

1496
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1497
		__queue_delayed_work(cpu, wq, dwork, delay);
1498
		ret = true;
1499
	}
1500

1501
	local_irq_restore(flags);
1502 1503
	return ret;
}
1504
EXPORT_SYMBOL(queue_delayed_work_on);
1505

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1518
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1519 1520
 * pending and its timer was modified.
 *
1521
 * This function is safe to call from any context including IRQ handler.
1522 1523 1524 1525 1526 1527 1528
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1529

1530 1531 1532
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1533

1534 1535 1536
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1537
	}
1538 1539

	/* -ENOENT from try_to_grab_pending() becomes %true */
1540 1541
	return ret;
}
1542 1543
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1544 1545 1546 1547 1548 1549 1550 1551
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1552
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1553 1554
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1555
{
1556
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1557

1558 1559 1560 1561
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1562

1563 1564
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1565
	pool->nr_idle++;
1566
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1567 1568

	/* idle_list is LIFO */
1569
	list_add(&worker->entry, &pool->idle_list);
1570

1571 1572
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1573

1574
	/*
1575
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1576
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1577 1578
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1579
	 */
1580
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1581
		     pool->nr_workers == pool->nr_idle &&
1582
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1592
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1593 1594 1595
 */
static void worker_leave_idle(struct worker *worker)
{
1596
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1597

1598 1599
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1600
	worker_clr_flags(worker, WORKER_IDLE);
1601
	pool->nr_idle--;
T
Tejun Heo 已提交
1602 1603 1604
	list_del_init(&worker->entry);
}

T
Tejun Heo 已提交
1605 1606 1607 1608 1609
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1610 1611
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1612
		INIT_LIST_HEAD(&worker->scheduled);
1613
		INIT_LIST_HEAD(&worker->node);
1614 1615
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1616
	}
T
Tejun Heo 已提交
1617 1618 1619
	return worker;
}

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1653 1654 1655 1656 1657
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1658 1659 1660
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1661 1662 1663 1664 1665 1666
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1667
	mutex_lock(&pool->attach_mutex);
1668 1669
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1670
		detach_completion = pool->detach_completion;
1671
	mutex_unlock(&pool->attach_mutex);
1672 1673 1674 1675 1676

	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1677 1678
/**
 * create_worker - create a new workqueue worker
1679
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1680
 *
1681 1682
 * Create a new worker which is attached to @pool.  The new worker must be
 * started by start_worker().
T
Tejun Heo 已提交
1683 1684 1685 1686
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1687
 * Return:
T
Tejun Heo 已提交
1688 1689
 * Pointer to the newly created worker.
 */
1690
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1691 1692
{
	struct worker *worker = NULL;
1693
	int id = -1;
1694
	char id_buf[16];
T
Tejun Heo 已提交
1695

1696 1697
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1698 1699
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1700 1701 1702 1703 1704

	worker = alloc_worker();
	if (!worker)
		goto fail;

1705
	worker->pool = pool;
T
Tejun Heo 已提交
1706 1707
	worker->id = id;

1708
	if (pool->cpu >= 0)
1709 1710
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1711
	else
1712 1713
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1714
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1715
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1716 1717 1718
	if (IS_ERR(worker->task))
		goto fail;

1719 1720 1721 1722 1723
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1724
	/* successful, attach the worker to the pool */
1725
	worker_attach_to_pool(worker, pool);
1726

T
Tejun Heo 已提交
1727
	return worker;
1728

T
Tejun Heo 已提交
1729
fail:
1730
	if (id >= 0)
1731
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1732 1733 1734 1735 1736 1737 1738 1739
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1740
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1741 1742
 *
 * CONTEXT:
1743
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1744 1745 1746
 */
static void start_worker(struct worker *worker)
{
1747
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1748
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1749 1750 1751
	wake_up_process(worker->task);
}

1752 1753 1754 1755
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1756
 * Grab the managership of @pool and create and start a new worker for it.
1757 1758
 *
 * Return: 0 on success. A negative error code otherwise.
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1774 1775 1776 1777
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1778 1779
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1780 1781
 *
 * CONTEXT:
1782
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1783 1784 1785
 */
static void destroy_worker(struct worker *worker)
{
1786
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1787

1788 1789
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1790
	/* sanity check frenzy */
1791
	if (WARN_ON(worker->current_work) ||
1792 1793
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1794
		return;
T
Tejun Heo 已提交
1795

1796 1797
	pool->nr_workers--;
	pool->nr_idle--;
1798

T
Tejun Heo 已提交
1799
	list_del_init(&worker->entry);
1800
	worker->flags |= WORKER_DIE;
1801
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1802 1803
}

1804
static void idle_worker_timeout(unsigned long __pool)
1805
{
1806
	struct worker_pool *pool = (void *)__pool;
1807

1808
	spin_lock_irq(&pool->lock);
1809

1810
	while (too_many_workers(pool)) {
1811 1812 1813 1814
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1815
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1816 1817
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1818
		if (time_before(jiffies, expires)) {
1819
			mod_timer(&pool->idle_timer, expires);
1820
			break;
1821
		}
1822 1823

		destroy_worker(worker);
1824 1825
	}

1826
	spin_unlock_irq(&pool->lock);
1827
}
1828

1829
static void send_mayday(struct work_struct *work)
1830
{
1831 1832
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1833

1834
	lockdep_assert_held(&wq_mayday_lock);
1835

1836
	if (!wq->rescuer)
1837
		return;
1838 1839

	/* mayday mayday mayday */
1840
	if (list_empty(&pwq->mayday_node)) {
1841 1842 1843 1844 1845 1846
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1847
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1848
		wake_up_process(wq->rescuer->task);
1849
	}
1850 1851
}

1852
static void pool_mayday_timeout(unsigned long __pool)
1853
{
1854
	struct worker_pool *pool = (void *)__pool;
1855 1856
	struct work_struct *work;

1857
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1858
	spin_lock(&pool->lock);
1859

1860
	if (need_to_create_worker(pool)) {
1861 1862 1863 1864 1865 1866
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1867
		list_for_each_entry(work, &pool->worklist, entry)
1868
			send_mayday(work);
L
Linus Torvalds 已提交
1869
	}
1870

1871
	spin_unlock(&pool->lock);
1872
	spin_unlock_irq(&wq_mayday_lock);
1873

1874
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1875 1876
}

1877 1878
/**
 * maybe_create_worker - create a new worker if necessary
1879
 * @pool: pool to create a new worker for
1880
 *
1881
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1882 1883
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1884
 * sent to all rescuers with works scheduled on @pool to resolve
1885 1886
 * possible allocation deadlock.
 *
1887 1888
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1889 1890
 *
 * LOCKING:
1891
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1892 1893 1894
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1895
 * Return:
1896
 * %false if no action was taken and pool->lock stayed locked, %true
1897 1898
 * otherwise.
 */
1899
static bool maybe_create_worker(struct worker_pool *pool)
1900 1901
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1902
{
1903
	if (!need_to_create_worker(pool))
1904 1905
		return false;
restart:
1906
	spin_unlock_irq(&pool->lock);
1907

1908
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1909
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1910 1911 1912 1913

	while (true) {
		struct worker *worker;

1914
		worker = create_worker(pool);
1915
		if (worker) {
1916
			del_timer_sync(&pool->mayday_timer);
1917
			spin_lock_irq(&pool->lock);
1918
			start_worker(worker);
1919 1920
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1921 1922 1923
			return true;
		}

1924
		if (!need_to_create_worker(pool))
1925
			break;
L
Linus Torvalds 已提交
1926

1927 1928
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1929

1930
		if (!need_to_create_worker(pool))
1931 1932 1933
			break;
	}

1934
	del_timer_sync(&pool->mayday_timer);
1935
	spin_lock_irq(&pool->lock);
1936
	if (need_to_create_worker(pool))
1937 1938 1939 1940
		goto restart;
	return true;
}

1941
/**
1942 1943
 * manage_workers - manage worker pool
 * @worker: self
1944
 *
1945
 * Assume the manager role and manage the worker pool @worker belongs
1946
 * to.  At any given time, there can be only zero or one manager per
1947
 * pool.  The exclusion is handled automatically by this function.
1948 1949 1950 1951
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1952 1953
 *
 * CONTEXT:
1954
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1955 1956
 * multiple times.  Does GFP_KERNEL allocations.
 *
1957
 * Return:
1958 1959 1960 1961 1962
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
1963
 */
1964
static bool manage_workers(struct worker *worker)
1965
{
1966
	struct worker_pool *pool = worker->pool;
1967
	bool ret = false;
1968

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1979
	if (!mutex_trylock(&pool->manager_arb))
1980
		return ret;
1981

1982
	ret |= maybe_create_worker(pool);
1983

1984
	mutex_unlock(&pool->manager_arb);
1985
	return ret;
1986 1987
}

1988 1989
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1990
 * @worker: self
1991 1992 1993 1994 1995 1996 1997 1998 1999
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2000
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2001
 */
T
Tejun Heo 已提交
2002
static void process_one_work(struct worker *worker, struct work_struct *work)
2003 2004
__releases(&pool->lock)
__acquires(&pool->lock)
2005
{
2006
	struct pool_workqueue *pwq = get_work_pwq(work);
2007
	struct worker_pool *pool = worker->pool;
2008
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2009
	int work_color;
2010
	struct worker *collision;
2011 2012 2013 2014 2015 2016 2017 2018
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2019 2020 2021
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2022
#endif
2023 2024 2025
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2026
	 * unbound or a disassociated pool.
2027
	 */
2028
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2029
		     !(pool->flags & POOL_DISASSOCIATED) &&
2030
		     raw_smp_processor_id() != pool->cpu);
2031

2032 2033 2034 2035 2036 2037
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2038
	collision = find_worker_executing_work(pool, work);
2039 2040 2041 2042 2043
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2044
	/* claim and dequeue */
2045
	debug_work_deactivate(work);
2046
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2047
	worker->current_work = work;
2048
	worker->current_func = work->func;
2049
	worker->current_pwq = pwq;
2050
	work_color = get_work_color(work);
2051

2052 2053
	list_del_init(&work->entry);

2054 2055 2056 2057 2058 2059 2060
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2061
	/*
2062
	 * Unbound pool isn't concurrency managed and work items should be
2063 2064
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2065 2066
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2067

2068
	/*
2069
	 * Record the last pool and clear PENDING which should be the last
2070
	 * update to @work.  Also, do this inside @pool->lock so that
2071 2072
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2073
	 */
2074
	set_work_pool_and_clear_pending(work, pool->id);
2075

2076
	spin_unlock_irq(&pool->lock);
2077

2078
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2079
	lock_map_acquire(&lockdep_map);
2080
	trace_workqueue_execute_start(work);
2081
	worker->current_func(work);
2082 2083 2084 2085 2086
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2087
	lock_map_release(&lockdep_map);
2088
	lock_map_release(&pwq->wq->lockdep_map);
2089 2090

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2091 2092
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2093 2094
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2095 2096 2097 2098
		debug_show_held_locks(current);
		dump_stack();
	}

2099 2100 2101 2102 2103 2104 2105 2106 2107
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2108
	spin_lock_irq(&pool->lock);
2109

2110 2111 2112 2113
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2114
	/* we're done with it, release */
2115
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2116
	worker->current_work = NULL;
2117
	worker->current_func = NULL;
2118
	worker->current_pwq = NULL;
2119
	worker->desc_valid = false;
2120
	pwq_dec_nr_in_flight(pwq, work_color);
2121 2122
}

2123 2124 2125 2126 2127 2128 2129 2130 2131
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2132
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2133 2134 2135
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2136
{
2137 2138
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2139
						struct work_struct, entry);
T
Tejun Heo 已提交
2140
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2141 2142 2143
	}
}

T
Tejun Heo 已提交
2144 2145
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2146
 * @__worker: self
T
Tejun Heo 已提交
2147
 *
2148 2149 2150 2151 2152
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2153 2154
 *
 * Return: 0
T
Tejun Heo 已提交
2155
 */
T
Tejun Heo 已提交
2156
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2157
{
T
Tejun Heo 已提交
2158
	struct worker *worker = __worker;
2159
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2160

2161 2162
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2163
woke_up:
2164
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2165

2166 2167
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2168
		spin_unlock_irq(&pool->lock);
2169 2170
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2171 2172

		set_task_comm(worker->task, "kworker/dying");
2173
		ida_simple_remove(&pool->worker_ida, worker->id);
2174 2175
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2176
		return 0;
T
Tejun Heo 已提交
2177
	}
2178

T
Tejun Heo 已提交
2179
	worker_leave_idle(worker);
2180
recheck:
2181
	/* no more worker necessary? */
2182
	if (!need_more_worker(pool))
2183 2184 2185
		goto sleep;

	/* do we need to manage? */
2186
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2187 2188
		goto recheck;

T
Tejun Heo 已提交
2189 2190 2191 2192 2193
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2194
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2195

2196
	/*
2197 2198 2199 2200 2201
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2202
	 */
2203
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2204 2205

	do {
T
Tejun Heo 已提交
2206
		struct work_struct *work =
2207
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2208 2209 2210 2211 2212 2213
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2214
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2215 2216 2217
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2218
		}
2219
	} while (keep_working(pool));
2220 2221

	worker_set_flags(worker, WORKER_PREP, false);
2222
sleep:
T
Tejun Heo 已提交
2223
	/*
2224 2225 2226 2227 2228
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2229 2230 2231
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2232
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2233 2234
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2235 2236
}

2237 2238
/**
 * rescuer_thread - the rescuer thread function
2239
 * @__rescuer: self
2240 2241
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2242
 * workqueue which has WQ_MEM_RECLAIM set.
2243
 *
2244
 * Regular work processing on a pool may block trying to create a new
2245 2246 2247 2248 2249
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2250 2251
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2252 2253 2254
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2255 2256
 *
 * Return: 0
2257
 */
2258
static int rescuer_thread(void *__rescuer)
2259
{
2260 2261
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2262
	struct list_head *scheduled = &rescuer->scheduled;
2263
	bool should_stop;
2264 2265

	set_user_nice(current, RESCUER_NICE_LEVEL);
2266 2267 2268 2269 2270 2271

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2272 2273 2274
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2275 2276 2277 2278 2279 2280 2281 2282 2283
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2284

2285
	/* see whether any pwq is asking for help */
2286
	spin_lock_irq(&wq_mayday_lock);
2287 2288 2289 2290

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2291
		struct worker_pool *pool = pwq->pool;
2292 2293 2294
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2295 2296
		list_del_init(&pwq->mayday_node);

2297
		spin_unlock_irq(&wq_mayday_lock);
2298

2299 2300 2301
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2302
		rescuer->pool = pool;
2303 2304 2305 2306 2307

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2308
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2309
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2310
			if (get_work_pwq(work) == pwq)
2311 2312 2313
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2314 2315 2316 2317 2318
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2319

2320 2321 2322 2323 2324 2325
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
		 * go away while we're holding its lock.
		 */
		put_pwq(pwq);

2326
		/*
2327
		 * Leave this pool.  If keep_working() is %true, notify a
2328 2329 2330
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2331 2332
		if (keep_working(pool))
			wake_up_worker(pool);
2333

2334
		rescuer->pool = NULL;
2335
		spin_unlock(&pool->lock);
2336
		spin_lock(&wq_mayday_lock);
2337 2338
	}

2339
	spin_unlock_irq(&wq_mayday_lock);
2340

2341 2342 2343 2344 2345 2346
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2347 2348
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2349 2350
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2351 2352
}

O
Oleg Nesterov 已提交
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2364 2365
/**
 * insert_wq_barrier - insert a barrier work
2366
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2367
 * @barr: wq_barrier to insert
2368 2369
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2370
 *
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2383
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2384 2385
 *
 * CONTEXT:
2386
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2387
 */
2388
static void insert_wq_barrier(struct pool_workqueue *pwq,
2389 2390
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2391
{
2392 2393 2394
	struct list_head *head;
	unsigned int linked = 0;

2395
	/*
2396
	 * debugobject calls are safe here even with pool->lock locked
2397 2398 2399 2400
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2401
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2402
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2403
	init_completion(&barr->done);
2404

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2420
	debug_work_activate(&barr->work);
2421
	insert_work(pwq, &barr->work, head,
2422
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2423 2424
}

2425
/**
2426
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2427 2428 2429 2430
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2431
 * Prepare pwqs for workqueue flushing.
2432
 *
2433 2434 2435 2436 2437
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2438 2439 2440 2441 2442 2443 2444
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2445
 * If @work_color is non-negative, all pwqs should have the same
2446 2447 2448 2449
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2450
 * mutex_lock(wq->mutex).
2451
 *
2452
 * Return:
2453 2454 2455
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2456
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2457
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2458
{
2459
	bool wait = false;
2460
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2461

2462
	if (flush_color >= 0) {
2463
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2464
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2465
	}
2466

2467
	for_each_pwq(pwq, wq) {
2468
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2469

2470
		spin_lock_irq(&pool->lock);
2471

2472
		if (flush_color >= 0) {
2473
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2474

2475 2476 2477
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2478 2479 2480
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2481

2482
		if (work_color >= 0) {
2483
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2484
			pwq->work_color = work_color;
2485
		}
L
Linus Torvalds 已提交
2486

2487
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2488
	}
2489

2490
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2491
		complete(&wq->first_flusher->done);
2492

2493
	return wait;
L
Linus Torvalds 已提交
2494 2495
}

2496
/**
L
Linus Torvalds 已提交
2497
 * flush_workqueue - ensure that any scheduled work has run to completion.
2498
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2499
 *
2500 2501
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2502
 */
2503
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2504
{
2505 2506 2507 2508 2509 2510
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2511

2512 2513
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2514

2515
	mutex_lock(&wq->mutex);
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2528
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2529 2530 2531 2532 2533
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2534
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2535 2536 2537

			wq->first_flusher = &this_flusher;

2538
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2539 2540 2541 2542 2543 2544 2545 2546
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2547
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2548
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2549
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2560
	mutex_unlock(&wq->mutex);
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2573
	mutex_lock(&wq->mutex);
2574

2575 2576 2577 2578
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2579 2580
	wq->first_flusher = NULL;

2581 2582
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2595 2596
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2616
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2617 2618 2619
		}

		if (list_empty(&wq->flusher_queue)) {
2620
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2621 2622 2623 2624 2625
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2626
		 * the new first flusher and arm pwqs.
2627
		 */
2628 2629
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2630 2631 2632 2633

		list_del_init(&next->list);
		wq->first_flusher = next;

2634
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2645
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2646
}
2647
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2648

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2663
	struct pool_workqueue *pwq;
2664 2665 2666 2667

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2668
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2669
	 */
2670
	mutex_lock(&wq->mutex);
2671
	if (!wq->nr_drainers++)
2672
		wq->flags |= __WQ_DRAINING;
2673
	mutex_unlock(&wq->mutex);
2674 2675 2676
reflush:
	flush_workqueue(wq);

2677
	mutex_lock(&wq->mutex);
2678

2679
	for_each_pwq(pwq, wq) {
2680
		bool drained;
2681

2682
		spin_lock_irq(&pwq->pool->lock);
2683
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2684
		spin_unlock_irq(&pwq->pool->lock);
2685 2686

		if (drained)
2687 2688 2689 2690
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2691
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2692
				wq->name, flush_cnt);
2693

2694
		mutex_unlock(&wq->mutex);
2695 2696 2697 2698
		goto reflush;
	}

	if (!--wq->nr_drainers)
2699
		wq->flags &= ~__WQ_DRAINING;
2700
	mutex_unlock(&wq->mutex);
2701 2702 2703
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2704
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2705
{
2706
	struct worker *worker = NULL;
2707
	struct worker_pool *pool;
2708
	struct pool_workqueue *pwq;
2709 2710

	might_sleep();
2711 2712

	local_irq_disable();
2713
	pool = get_work_pool(work);
2714 2715
	if (!pool) {
		local_irq_enable();
2716
		return false;
2717
	}
2718

2719
	spin_lock(&pool->lock);
2720
	/* see the comment in try_to_grab_pending() with the same code */
2721 2722 2723
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2724
			goto already_gone;
2725
	} else {
2726
		worker = find_worker_executing_work(pool, work);
2727
		if (!worker)
T
Tejun Heo 已提交
2728
			goto already_gone;
2729
		pwq = worker->current_pwq;
2730
	}
2731

2732
	insert_wq_barrier(pwq, barr, work, worker);
2733
	spin_unlock_irq(&pool->lock);
2734

2735 2736 2737 2738 2739 2740
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2741
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2742
		lock_map_acquire(&pwq->wq->lockdep_map);
2743
	else
2744 2745
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2746

2747
	return true;
T
Tejun Heo 已提交
2748
already_gone:
2749
	spin_unlock_irq(&pool->lock);
2750
	return false;
2751
}
2752 2753 2754 2755 2756

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2757 2758
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2759
 *
2760
 * Return:
2761 2762 2763 2764 2765
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2766 2767
	struct wq_barrier barr;

2768 2769 2770
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2771 2772 2773 2774 2775 2776 2777
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2778
}
2779
EXPORT_SYMBOL_GPL(flush_work);
2780

2781
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2782
{
2783
	unsigned long flags;
2784 2785 2786
	int ret;

	do {
2787 2788 2789 2790 2791 2792
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2793
			flush_work(work);
2794 2795
	} while (unlikely(ret < 0));

2796 2797 2798 2799
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2800
	flush_work(work);
2801
	clear_work_data(work);
2802 2803 2804
	return ret;
}

2805
/**
2806 2807
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2808
 *
2809 2810 2811 2812
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2813
 *
2814 2815
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2816
 *
2817
 * The caller must ensure that the workqueue on which @work was last
2818
 * queued can't be destroyed before this function returns.
2819
 *
2820
 * Return:
2821
 * %true if @work was pending, %false otherwise.
2822
 */
2823
bool cancel_work_sync(struct work_struct *work)
2824
{
2825
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2826
}
2827
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2828

2829
/**
2830 2831
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2832
 *
2833 2834 2835
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2836
 *
2837
 * Return:
2838 2839
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2840
 */
2841 2842
bool flush_delayed_work(struct delayed_work *dwork)
{
2843
	local_irq_disable();
2844
	if (del_timer_sync(&dwork->timer))
2845
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2846
	local_irq_enable();
2847 2848 2849 2850
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2851
/**
2852 2853
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2854
 *
2855 2856 2857 2858 2859 2860 2861 2862 2863
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2864
 *
2865
 * This function is safe to call from any context including IRQ handler.
2866
 */
2867
bool cancel_delayed_work(struct delayed_work *dwork)
2868
{
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2879 2880
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2881
	local_irq_restore(flags);
2882
	return ret;
2883
}
2884
EXPORT_SYMBOL(cancel_delayed_work);
2885

2886 2887 2888 2889 2890 2891
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2892
 * Return:
2893 2894 2895
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2896
{
2897
	return __cancel_work_timer(&dwork->work, true);
2898
}
2899
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2900

2901
/**
2902
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2903 2904
 * @func: the function to call
 *
2905 2906
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2907
 * schedule_on_each_cpu() is very slow.
2908
 *
2909
 * Return:
2910
 * 0 on success, -errno on failure.
2911
 */
2912
int schedule_on_each_cpu(work_func_t func)
2913 2914
{
	int cpu;
2915
	struct work_struct __percpu *works;
2916

2917 2918
	works = alloc_percpu(struct work_struct);
	if (!works)
2919
		return -ENOMEM;
2920

2921 2922
	get_online_cpus();

2923
	for_each_online_cpu(cpu) {
2924 2925 2926
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2927
		schedule_work_on(cpu, work);
2928
	}
2929 2930 2931 2932

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2933
	put_online_cpus();
2934
	free_percpu(works);
2935 2936 2937
	return 0;
}

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
2962 2963
void flush_scheduled_work(void)
{
2964
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
2965
}
2966
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
2967

2968 2969 2970 2971 2972 2973 2974 2975 2976
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
2977
 * Return:	0 - function was executed
2978 2979
 *		1 - function was scheduled for execution
 */
2980
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2981 2982
{
	if (!in_interrupt()) {
2983
		fn(&ew->work);
2984 2985 2986
		return 0;
	}

2987
	INIT_WORK(&ew->work, fn);
2988 2989 2990 2991 2992 2993
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3021 3022
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3023 3024 3025 3026 3027
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3028
static DEVICE_ATTR_RO(per_cpu);
3029

3030 3031
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3032 3033 3034 3035 3036 3037
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3038 3039 3040
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3051
static DEVICE_ATTR_RW(max_active);
3052

3053 3054 3055 3056
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3057
};
3058
ATTRIBUTE_GROUPS(wq_sysfs);
3059

3060 3061
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3062 3063
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3064 3065
	const char *delim = "";
	int node, written = 0;
3066 3067

	rcu_read_lock_sched();
3068 3069 3070 3071 3072 3073 3074
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3086 3087 3088
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3102 3103 3104
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3120
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3135 3136 3137
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3198
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3199
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3200 3201
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3202
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3203 3204 3205 3206 3207
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3208
	.dev_groups			= wq_sysfs_groups,
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3237
 * Return: 0 on success, -errno on failure.
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3330 3331 3332
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3344
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3345 3346 3347 3348 3349 3350
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3351 3352 3353 3354 3355
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3356 3357 3358 3359 3360 3361
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3362 3363 3364 3365 3366 3367 3368 3369
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3370 3371
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3386 3387 3388 3389 3390
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3391 3392
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3393 3394
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3395 3396
 */
static int init_worker_pool(struct worker_pool *pool)
3397 3398
{
	spin_lock_init(&pool->lock);
3399 3400
	pool->id = -1;
	pool->cpu = -1;
3401
	pool->node = NUMA_NO_NODE;
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3415
	mutex_init(&pool->attach_mutex);
3416
	INIT_LIST_HEAD(&pool->workers);
T
Tejun Heo 已提交
3417

3418
	ida_init(&pool->worker_ida);
3419 3420 3421 3422
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3423 3424 3425 3426
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3427 3428
}

3429 3430 3431 3432
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3433
	ida_destroy(&pool->worker_ida);
3434 3435 3436 3437 3438 3439 3440 3441 3442
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3443 3444 3445
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3446 3447
 *
 * Should be called with wq_pool_mutex held.
3448 3449 3450
 */
static void put_unbound_pool(struct worker_pool *pool)
{
3451
	DECLARE_COMPLETION_ONSTACK(detach_completion);
3452 3453
	struct worker *worker;

3454 3455 3456
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3457 3458 3459 3460
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3461
	    WARN_ON(!list_empty(&pool->worklist)))
3462 3463 3464 3465 3466 3467 3468
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3469 3470 3471
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
3472
	 * attach_mutex.
3473
	 */
3474 3475
	mutex_lock(&pool->manager_arb);

3476
	spin_lock_irq(&pool->lock);
3477
	while ((worker = first_idle_worker(pool)))
3478 3479 3480
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3481

3482
	mutex_lock(&pool->attach_mutex);
3483
	if (!list_empty(&pool->workers))
3484
		pool->detach_completion = &detach_completion;
3485
	mutex_unlock(&pool->attach_mutex);
3486 3487 3488 3489

	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);

3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3507
 * create a new one.
3508 3509
 *
 * Should be called with wq_pool_mutex held.
3510 3511 3512
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3513 3514 3515 3516 3517
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3518
	int node;
3519

3520
	lockdep_assert_held(&wq_pool_mutex);
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

T
Tejun Heo 已提交
3535
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3536 3537
	copy_workqueue_attrs(pool->attrs, attrs);

3538 3539 3540 3541 3542 3543
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3555 3556 3557 3558
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3559
	if (create_and_start_worker(pool) < 0)
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3588
	bool is_last;
T
Tejun Heo 已提交
3589 3590 3591 3592

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3593
	/*
3594
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3595 3596 3597
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3598
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3599
	list_del_rcu(&pwq->pwqs_node);
3600
	is_last = list_empty(&wq->pwqs);
3601
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3602

3603
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3604
	put_unbound_pool(pool);
3605 3606
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3607 3608 3609 3610 3611 3612
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3613 3614
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3615
		kfree(wq);
3616
	}
T
Tejun Heo 已提交
3617 3618
}

3619
/**
3620
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3621 3622
 * @pwq: target pool_workqueue
 *
3623 3624 3625
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3626
 */
3627
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3628
{
3629 3630 3631 3632
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3633
	lockdep_assert_held(&wq->mutex);
3634 3635 3636 3637 3638

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3639
	spin_lock_irq(&pwq->pool->lock);
3640

3641 3642 3643 3644 3645 3646
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
3647
		pwq->max_active = wq->saved_max_active;
3648

3649 3650 3651
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3652 3653 3654 3655 3656 3657

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3658 3659 3660 3661
	} else {
		pwq->max_active = 0;
	}

3662
	spin_unlock_irq(&pwq->pool->lock);
3663 3664
}

3665
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3666 3667
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3668 3669 3670
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3671 3672
	memset(pwq, 0, sizeof(*pwq));

3673 3674 3675
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3676
	pwq->refcnt = 1;
3677
	INIT_LIST_HEAD(&pwq->delayed_works);
3678
	INIT_LIST_HEAD(&pwq->pwqs_node);
3679
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3680
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3681
}
3682

3683
/* sync @pwq with the current state of its associated wq and link it */
3684
static void link_pwq(struct pool_workqueue *pwq)
3685 3686 3687 3688
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3689

3690 3691 3692 3693
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3694 3695
	/*
	 * Set the matching work_color.  This is synchronized with
3696
	 * wq->mutex to avoid confusing flush_workqueue().
3697
	 */
3698
	pwq->work_color = wq->work_color;
3699 3700 3701 3702 3703

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3704
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3705
}
3706

3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3720
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3721 3722 3723
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3724
	}
3725

3726 3727
	init_pwq(pwq, wq, pool);
	return pwq;
3728 3729
}

3730 3731 3732 3733 3734 3735 3736
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3737
		kmem_cache_free(pwq_cache, pwq);
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3750
 * calculation.  The result is stored in @cpumask.
3751 3752 3753 3754 3755 3756 3757 3758
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3759 3760 3761
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3762 3763 3764 3765
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3766
	if (!wq_numa_enabled || attrs->no_numa)
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3803 3804 3805 3806 3807
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3808 3809 3810 3811 3812 3813
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3814
 *
3815 3816 3817
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3818 3819 3820 3821
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3822 3823
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3824
	int node, ret;
3825

3826
	/* only unbound workqueues can change attributes */
3827 3828 3829
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3830 3831 3832 3833
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3834
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3835
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3836 3837
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3838 3839
		goto enomem;

3840
	/* make a copy of @attrs and sanitize it */
3841 3842 3843
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3858
	mutex_lock(&wq_pool_mutex);
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3880
	mutex_unlock(&wq_pool_mutex);
3881

3882
	/* all pwqs have been created successfully, let's install'em */
3883
	mutex_lock(&wq->mutex);
3884

3885
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3886 3887

	/* save the previous pwq and install the new one */
3888
	for_each_node(node)
3889 3890 3891 3892 3893
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3894 3895

	mutex_unlock(&wq->mutex);
3896

3897 3898 3899 3900 3901 3902
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3903 3904 3905
	ret = 0;
	/* fall through */
out_free:
3906
	free_workqueue_attrs(tmp_attrs);
3907
	free_workqueue_attrs(new_attrs);
3908
	kfree(pwq_tbl);
3909
	return ret;
3910

3911 3912 3913 3914 3915 3916 3917
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3918
enomem:
3919 3920
	ret = -ENOMEM;
	goto out_free;
3921 3922
}

3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
3968 3969
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
3970 3971 3972 3973 3974 3975 3976 3977

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
3978
	 * wq's, the default pwq should be used.
3979 3980 3981 3982 3983
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
3984
		goto use_dfl_pwq;
3985 3986 3987 3988 3989 3990 3991
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3992 3993
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3994 3995
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4018
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4019
{
4020
	bool highpri = wq->flags & WQ_HIGHPRI;
4021
	int cpu, ret;
4022 4023

	if (!(wq->flags & WQ_UNBOUND)) {
4024 4025
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4026 4027 4028
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4029 4030
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4031
			struct worker_pool *cpu_pools =
4032
				per_cpu(cpu_worker_pools, cpu);
4033

4034 4035 4036
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4037
			link_pwq(pwq);
4038
			mutex_unlock(&wq->mutex);
4039
		}
4040
		return 0;
4041 4042 4043 4044 4045 4046 4047
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4048
	} else {
4049
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4050
	}
T
Tejun Heo 已提交
4051 4052
}

4053 4054
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4055
{
4056 4057 4058
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4059 4060
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4061

4062
	return clamp_val(max_active, 1, lim);
4063 4064
}

4065
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4066 4067 4068
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4069
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4070
{
4071
	size_t tbl_size = 0;
4072
	va_list args;
L
Linus Torvalds 已提交
4073
	struct workqueue_struct *wq;
4074
	struct pool_workqueue *pwq;
4075

4076 4077 4078 4079
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4080
	/* allocate wq and format name */
4081 4082 4083 4084
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4085
	if (!wq)
4086
		return NULL;
4087

4088 4089 4090 4091 4092 4093
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4094 4095
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4096
	va_end(args);
L
Linus Torvalds 已提交
4097

4098
	max_active = max_active ?: WQ_DFL_ACTIVE;
4099
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4100

4101
	/* init wq */
4102
	wq->flags = flags;
4103
	wq->saved_max_active = max_active;
4104
	mutex_init(&wq->mutex);
4105
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4106
	INIT_LIST_HEAD(&wq->pwqs);
4107 4108
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4109
	INIT_LIST_HEAD(&wq->maydays);
4110

4111
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4112
	INIT_LIST_HEAD(&wq->list);
4113

4114
	if (alloc_and_link_pwqs(wq) < 0)
4115
		goto err_free_wq;
T
Tejun Heo 已提交
4116

4117 4118 4119 4120 4121
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4122 4123
		struct worker *rescuer;

4124
		rescuer = alloc_worker();
4125
		if (!rescuer)
4126
			goto err_destroy;
4127

4128 4129
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4130
					       wq->name);
4131 4132 4133 4134
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4135

4136
		wq->rescuer = rescuer;
4137
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4138
		wake_up_process(rescuer->task);
4139 4140
	}

4141 4142 4143
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4144
	/*
4145 4146 4147
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4148
	 */
4149
	mutex_lock(&wq_pool_mutex);
4150

4151
	mutex_lock(&wq->mutex);
4152 4153
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4154
	mutex_unlock(&wq->mutex);
4155

T
Tejun Heo 已提交
4156
	list_add(&wq->list, &workqueues);
4157

4158
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4159

4160
	return wq;
4161 4162

err_free_wq:
4163
	free_workqueue_attrs(wq->unbound_attrs);
4164 4165 4166 4167
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4168
	return NULL;
4169
}
4170
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4171

4172 4173 4174 4175 4176 4177 4178 4179
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4180
	struct pool_workqueue *pwq;
4181
	int node;
4182

4183 4184
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4185

4186
	/* sanity checks */
4187
	mutex_lock(&wq->mutex);
4188
	for_each_pwq(pwq, wq) {
4189 4190
		int i;

4191 4192
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4193
				mutex_unlock(&wq->mutex);
4194
				return;
4195 4196 4197
			}
		}

4198
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4199
		    WARN_ON(pwq->nr_active) ||
4200
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4201
			mutex_unlock(&wq->mutex);
4202
			return;
4203
		}
4204
	}
4205
	mutex_unlock(&wq->mutex);
4206

4207 4208 4209 4210
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4211
	mutex_lock(&wq_pool_mutex);
4212
	list_del_init(&wq->list);
4213
	mutex_unlock(&wq_pool_mutex);
4214

4215 4216
	workqueue_sysfs_unregister(wq);

4217
	if (wq->rescuer) {
4218
		kthread_stop(wq->rescuer->task);
4219
		kfree(wq->rescuer);
4220
		wq->rescuer = NULL;
4221 4222
	}

T
Tejun Heo 已提交
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4233 4234
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4235
		 */
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4248
		put_pwq_unlocked(pwq);
4249
	}
4250 4251 4252
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4265
	struct pool_workqueue *pwq;
4266

4267 4268 4269 4270
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4271
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4272

4273
	mutex_lock(&wq->mutex);
4274 4275 4276

	wq->saved_max_active = max_active;

4277 4278
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4279

4280
	mutex_unlock(&wq->mutex);
4281
}
4282
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4283

4284 4285 4286 4287 4288
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4289 4290
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4291 4292 4293 4294 4295
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4296
	return worker && worker->rescue_wq;
4297 4298
}

4299
/**
4300 4301 4302
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4303
 *
4304 4305 4306
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4307
 *
4308 4309 4310 4311 4312 4313
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4314
 * Return:
4315
 * %true if congested, %false otherwise.
4316
 */
4317
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4318
{
4319
	struct pool_workqueue *pwq;
4320 4321
	bool ret;

4322
	rcu_read_lock_sched();
4323

4324 4325 4326
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4327 4328 4329
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4330
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4331

4332
	ret = !list_empty(&pwq->delayed_works);
4333
	rcu_read_unlock_sched();
4334 4335

	return ret;
L
Linus Torvalds 已提交
4336
}
4337
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4338

4339 4340 4341 4342 4343 4344 4345 4346
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4347
 * Return:
4348 4349 4350
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4351
{
4352
	struct worker_pool *pool;
4353 4354
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4355

4356 4357
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4358

4359 4360
	local_irq_save(flags);
	pool = get_work_pool(work);
4361
	if (pool) {
4362
		spin_lock(&pool->lock);
4363 4364
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4365
		spin_unlock(&pool->lock);
4366
	}
4367
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4368

4369
	return ret;
L
Linus Torvalds 已提交
4370
}
4371
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4372

4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4450 4451 4452
/*
 * CPU hotplug.
 *
4453
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4454
 * are a lot of assumptions on strong associations among work, pwq and
4455
 * pool which make migrating pending and scheduled works very
4456
 * difficult to implement without impacting hot paths.  Secondly,
4457
 * worker pools serve mix of short, long and very long running works making
4458 4459
 * blocked draining impractical.
 *
4460
 * This is solved by allowing the pools to be disassociated from the CPU
4461 4462
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4463
 */
L
Linus Torvalds 已提交
4464

4465
static void wq_unbind_fn(struct work_struct *work)
4466
{
4467
	int cpu = smp_processor_id();
4468
	struct worker_pool *pool;
4469
	struct worker *worker;
4470

4471
	for_each_cpu_worker_pool(pool, cpu) {
4472
		WARN_ON_ONCE(cpu != smp_processor_id());
4473

4474
		mutex_lock(&pool->attach_mutex);
4475
		spin_lock_irq(&pool->lock);
4476

4477
		/*
4478
		 * We've blocked all attach/detach operations. Make all workers
4479 4480 4481 4482 4483
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4484
		for_each_pool_worker(worker, pool)
4485
			worker->flags |= WORKER_UNBOUND;
4486

4487
		pool->flags |= POOL_DISASSOCIATED;
4488

4489
		spin_unlock_irq(&pool->lock);
4490
		mutex_unlock(&pool->attach_mutex);
4491

4492 4493 4494 4495 4496 4497 4498
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4499

4500 4501 4502 4503 4504 4505 4506 4507
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4508
		atomic_set(&pool->nr_running, 0);
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4519 4520
}

T
Tejun Heo 已提交
4521 4522 4523 4524
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4525
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4526 4527 4528
 */
static void rebind_workers(struct worker_pool *pool)
{
4529
	struct worker *worker;
T
Tejun Heo 已提交
4530

4531
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4532

4533 4534 4535 4536 4537 4538 4539
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4540
	for_each_pool_worker(worker, pool)
4541 4542
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4543

4544
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4545

4546
	for_each_pool_worker(worker, pool) {
4547
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4548 4549

		/*
4550 4551 4552 4553 4554 4555
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4556
		 */
4557 4558
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4559

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4579
	}
4580 4581

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4582 4583
}

4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4599
	lockdep_assert_held(&pool->attach_mutex);
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4611
	for_each_pool_worker(worker, pool)
4612 4613 4614 4615
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4616 4617 4618 4619
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4620
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4621 4622
					       unsigned long action,
					       void *hcpu)
4623
{
4624
	int cpu = (unsigned long)hcpu;
4625
	struct worker_pool *pool;
4626
	struct workqueue_struct *wq;
4627
	int pi;
4628

T
Tejun Heo 已提交
4629
	switch (action & ~CPU_TASKS_FROZEN) {
4630
	case CPU_UP_PREPARE:
4631
		for_each_cpu_worker_pool(pool, cpu) {
4632 4633
			if (pool->nr_workers)
				continue;
4634
			if (create_and_start_worker(pool) < 0)
4635
				return NOTIFY_BAD;
4636
		}
T
Tejun Heo 已提交
4637
		break;
4638

4639 4640
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4641
		mutex_lock(&wq_pool_mutex);
4642 4643

		for_each_pool(pool, pi) {
4644
			mutex_lock(&pool->attach_mutex);
4645

4646 4647 4648 4649
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4650

4651 4652 4653 4654
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4655

4656
			mutex_unlock(&pool->attach_mutex);
4657
		}
4658

4659 4660 4661 4662
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4663
		mutex_unlock(&wq_pool_mutex);
4664
		break;
4665
	}
4666 4667 4668 4669 4670 4671 4672
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4673
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4674 4675 4676
						 unsigned long action,
						 void *hcpu)
{
4677
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4678
	struct work_struct unbind_work;
4679
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4680

4681 4682
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4683
		/* unbinding per-cpu workers should happen on the local CPU */
4684
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4685
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4686 4687 4688 4689 4690 4691 4692 4693

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4694
		flush_work(&unbind_work);
4695
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4696
		break;
4697 4698 4699 4700
	}
	return NOTIFY_OK;
}

4701
#ifdef CONFIG_SMP
4702

4703
struct work_for_cpu {
4704
	struct work_struct work;
4705 4706 4707 4708 4709
	long (*fn)(void *);
	void *arg;
	long ret;
};

4710
static void work_for_cpu_fn(struct work_struct *work)
4711
{
4712 4713
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4714 4715 4716 4717 4718 4719 4720 4721 4722
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4723
 * It is up to the caller to ensure that the cpu doesn't go offline.
4724
 * The caller must not hold any locks which would prevent @fn from completing.
4725 4726
 *
 * Return: The value @fn returns.
4727
 */
4728
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4729
{
4730
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4731

4732 4733
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4734
	flush_work(&wfc.work);
4735
	destroy_work_on_stack(&wfc.work);
4736 4737 4738 4739 4740
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4741 4742 4743 4744 4745
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4746
 * Start freezing workqueues.  After this function returns, all freezable
4747
 * workqueues will queue new works to their delayed_works list instead of
4748
 * pool->worklist.
4749 4750
 *
 * CONTEXT:
4751
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4752 4753 4754
 */
void freeze_workqueues_begin(void)
{
4755 4756
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4757

4758
	mutex_lock(&wq_pool_mutex);
4759

4760
	WARN_ON_ONCE(workqueue_freezing);
4761 4762
	workqueue_freezing = true;

4763
	list_for_each_entry(wq, &workqueues, list) {
4764
		mutex_lock(&wq->mutex);
4765 4766
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4767
		mutex_unlock(&wq->mutex);
4768
	}
4769

4770
	mutex_unlock(&wq_pool_mutex);
4771 4772 4773
}

/**
4774
 * freeze_workqueues_busy - are freezable workqueues still busy?
4775 4776 4777 4778 4779
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4780
 * Grabs and releases wq_pool_mutex.
4781
 *
4782
 * Return:
4783 4784
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4785 4786 4787 4788
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4789 4790
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4791

4792
	mutex_lock(&wq_pool_mutex);
4793

4794
	WARN_ON_ONCE(!workqueue_freezing);
4795

4796 4797 4798
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4799 4800 4801 4802
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4803
		rcu_read_lock_sched();
4804
		for_each_pwq(pwq, wq) {
4805
			WARN_ON_ONCE(pwq->nr_active < 0);
4806
			if (pwq->nr_active) {
4807
				busy = true;
4808
				rcu_read_unlock_sched();
4809 4810 4811
				goto out_unlock;
			}
		}
4812
		rcu_read_unlock_sched();
4813 4814
	}
out_unlock:
4815
	mutex_unlock(&wq_pool_mutex);
4816 4817 4818 4819 4820 4821 4822
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4823
 * frozen works are transferred to their respective pool worklists.
4824 4825
 *
 * CONTEXT:
4826
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4827 4828 4829
 */
void thaw_workqueues(void)
{
4830 4831
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4832

4833
	mutex_lock(&wq_pool_mutex);
4834 4835 4836 4837

	if (!workqueue_freezing)
		goto out_unlock;

4838
	workqueue_freezing = false;
4839

4840 4841
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4842
		mutex_lock(&wq->mutex);
4843 4844
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4845
		mutex_unlock(&wq->mutex);
4846 4847 4848
	}

out_unlock:
4849
	mutex_unlock(&wq_pool_mutex);
4850 4851 4852
}
#endif /* CONFIG_FREEZER */

4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4865 4866 4867 4868 4869
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4870 4871 4872
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4873 4874 4875 4876 4877 4878 4879 4880 4881
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
4882 4883
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4899
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4900
{
T
Tejun Heo 已提交
4901 4902
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4903

4904 4905 4906 4907
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4908
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4909
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4910

4911 4912
	wq_numa_init();

4913
	/* initialize CPU pools */
4914
	for_each_possible_cpu(cpu) {
4915
		struct worker_pool *pool;
4916

T
Tejun Heo 已提交
4917
		i = 0;
4918
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4919
			BUG_ON(init_worker_pool(pool));
4920
			pool->cpu = cpu;
4921
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4922
			pool->attrs->nice = std_nice[i++];
4923
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
4924

T
Tejun Heo 已提交
4925
			/* alloc pool ID */
4926
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4927
			BUG_ON(worker_pool_assign_id(pool));
4928
			mutex_unlock(&wq_pool_mutex);
4929
		}
4930 4931
	}

4932
	/* create the initial worker */
4933
	for_each_online_cpu(cpu) {
4934
		struct worker_pool *pool;
4935

4936
		for_each_cpu_worker_pool(pool, cpu) {
4937
			pool->flags &= ~POOL_DISASSOCIATED;
4938
			BUG_ON(create_and_start_worker(pool) < 0);
4939
		}
4940 4941
	}

4942
	/* create default unbound and ordered wq attrs */
4943 4944 4945 4946 4947 4948
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
4949 4950 4951 4952 4953 4954 4955 4956 4957 4958

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
4959 4960
	}

4961
	system_wq = alloc_workqueue("events", 0, 0);
4962
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4963
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4964 4965
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4966 4967
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4968 4969 4970 4971 4972
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
4973
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4974 4975 4976
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
4977
	return 0;
L
Linus Torvalds 已提交
4978
}
4979
early_initcall(init_workqueues);