workqueue.c 141.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67 68
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
69
	 * create_worker() is in progress.
70
	 */
71
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
72
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
74

T
Tejun Heo 已提交
75 76 77 78
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
79
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83

84 85
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
86

87
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88

89
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
90
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91

92 93 94
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

95 96 97
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
98 99 100 101 102 103 104 105
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
106
	HIGHPRI_NICE_LEVEL	= -20,
107 108

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
109
};
L
Linus Torvalds 已提交
110 111

/*
T
Tejun Heo 已提交
112 113
 * Structure fields follow one of the following exclusion rules.
 *
114 115
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
116
 *
117 118 119
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
120
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
121
 *
122 123 124 125
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
126
 *
127 128 129
 * MG: pool->manager_mutex and pool->lock protected.  Writes require both
 *     locks.  Reads can happen under either lock.
 *
130
 * PL: wq_pool_mutex protected.
131
 *
132
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
133
 *
134 135
 * WQ: wq->mutex protected.
 *
136
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
137 138
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
139 140
 */

141
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
142

143
struct worker_pool {
144
	spinlock_t		lock;		/* the pool lock */
145
	int			cpu;		/* I: the associated cpu */
146
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
147
	int			id;		/* I: pool ID */
148
	unsigned int		flags;		/* X: flags */
149 150 151

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
152 153

	/* nr_idle includes the ones off idle_list for rebinding */
154 155 156 157 158 159
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

160
	/* a workers is either on busy_hash or idle_list, or the manager */
161 162 163
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

164
	/* see manage_workers() for details on the two manager mutexes */
165
	struct mutex		manager_arb;	/* manager arbitration */
166
	struct mutex		manager_mutex;	/* manager exclusion */
167
	struct idr		worker_idr;	/* MG: worker IDs and iteration */
168

T
Tejun Heo 已提交
169
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 171
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
172

173 174 175 176 177 178
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 180 181 182 183 184

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
185 186
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
187
/*
188 189 190 191
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
192
 */
193
struct pool_workqueue {
194
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
195
	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 197
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
198
	int			refcnt;		/* L: reference count */
199 200
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
201
	int			nr_active;	/* L: nr of active works */
202
	int			max_active;	/* L: max active works */
203
	struct list_head	delayed_works;	/* L: delayed works */
204
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
206 207 208 209 210

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
211
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
212 213 214
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
215
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
216

217 218 219 220
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
221 222
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
223 224 225
	struct completion	done;		/* flush completion */
};

226 227
struct wq_device;

L
Linus Torvalds 已提交
228
/*
229 230
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
231 232
 */
struct workqueue_struct {
233
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234
	struct list_head	list;		/* PL: list of all workqueues */
235

236 237 238
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
239
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 241 242
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243

244
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 246
	struct worker		*rescuer;	/* I: rescue worker */

247
	int			nr_drainers;	/* WQ: drain in progress */
248
	int			saved_max_active; /* WQ: saved pwq max_active */
249

250
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252

253 254 255
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
256
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
257
	struct lockdep_map	lockdep_map;
258
#endif
259
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260 261 262 263

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
265 266
};

267 268
static struct kmem_cache *pwq_cache;

269 270 271 272
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

273 274 275
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

276 277 278 279 280 281 282 283 284
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

285 286
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

287 288 289
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

290
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
291
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
292

293 294
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
295 296 297 298 299

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

300
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
301

302
/* PL: hash of all unbound pools keyed by pool->attrs */
303 304
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

305
/* I: attributes used when instantiating standard unbound pools on demand */
306 307
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

308 309 310
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

311
struct workqueue_struct *system_wq __read_mostly;
312
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
313
struct workqueue_struct *system_highpri_wq __read_mostly;
314
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
315
struct workqueue_struct *system_long_wq __read_mostly;
316
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
317
struct workqueue_struct *system_unbound_wq __read_mostly;
318
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
319
struct workqueue_struct *system_freezable_wq __read_mostly;
320
EXPORT_SYMBOL_GPL(system_freezable_wq);
321 322 323 324
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
325

326 327 328 329
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

330 331 332
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

333
#define assert_rcu_or_pool_mutex()					\
334
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
335 336
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
337

338
#define assert_rcu_or_wq_mutex(wq)					\
339
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
340
			   lockdep_is_held(&wq->mutex),			\
341
			   "sched RCU or wq->mutex should be held")
342

343 344
#ifdef CONFIG_LOCKDEP
#define assert_manager_or_pool_lock(pool)				\
345 346
	WARN_ONCE(debug_locks &&					\
		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
347 348 349 350 351 352
		  !lockdep_is_held(&(pool)->lock),			\
		  "pool->manager_mutex or ->lock should be held")
#else
#define assert_manager_or_pool_lock(pool)	do { } while (0)
#endif

353 354 355
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
356
	     (pool)++)
357

T
Tejun Heo 已提交
358 359 360
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
361
 * @pi: integer used for iteration
362
 *
363 364 365
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
366 367 368
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
369
 */
370 371
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
372
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
373
		else
T
Tejun Heo 已提交
374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
 * This must be called with either @pool->manager_mutex or ->lock held.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
		else

391 392 393 394
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
395
 *
396
 * This must be called either with wq->mutex held or sched RCU read locked.
397 398
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
399 400 401
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
402 403
 */
#define for_each_pwq(pwq, wq)						\
404
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
405
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
406
		else
407

408 409 410 411
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

412 413 414 415 416
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
452
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
488
	.debug_hint	= work_debug_hint,
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

519 520 521 522 523 524 525
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

526 527 528 529 530
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

531 532 533 534 535 536 537
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
538 539 540 541
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

542
	lockdep_assert_held(&wq_pool_mutex);
543

544 545
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
546
	if (ret >= 0) {
T
Tejun Heo 已提交
547
		pool->id = ret;
548 549
		return 0;
	}
550
	return ret;
551 552
}

553 554 555 556 557 558 559 560
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
561 562
 *
 * Return: The unbound pool_workqueue for @node.
563 564 565 566 567 568 569 570
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
586

587
/*
588 589
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
590
 * is cleared and the high bits contain OFFQ flags and pool ID.
591
 *
592 593
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
594 595
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
596
 *
597
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
598
 * corresponding to a work.  Pool is available once the work has been
599
 * queued anywhere after initialization until it is sync canceled.  pwq is
600
 * available only while the work item is queued.
601
 *
602 603 604 605
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
606
 */
607 608
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
609
{
610
	WARN_ON_ONCE(!work_pending(work));
611 612
	atomic_long_set(&work->data, data | flags | work_static(work));
}
613

614
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
615 616
			 unsigned long extra_flags)
{
617 618
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
619 620
}

621 622 623 624 625 626 627
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

628 629
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
630
{
631 632 633 634 635 636 637
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
638
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
639
}
640

641
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
642
{
643 644
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
645 646
}

647
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
648
{
649
	unsigned long data = atomic_long_read(&work->data);
650

651
	if (data & WORK_STRUCT_PWQ)
652 653 654
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
655 656
}

657 658 659 660
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
661 662 663
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
664 665 666 667 668
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
669 670
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
671 672
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
673
{
674
	unsigned long data = atomic_long_read(&work->data);
675
	int pool_id;
676

677
	assert_rcu_or_pool_mutex();
678

679 680
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
681
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
682

683 684
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
685 686
		return NULL;

687
	return idr_find(&worker_pool_idr, pool_id);
688 689 690 691 692 693
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
694
 * Return: The worker_pool ID @work was last associated with.
695 696 697 698
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
699 700
	unsigned long data = atomic_long_read(&work->data);

701 702
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
703
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
704

705
	return data >> WORK_OFFQ_POOL_SHIFT;
706 707
}

708 709
static void mark_work_canceling(struct work_struct *work)
{
710
	unsigned long pool_id = get_work_pool_id(work);
711

712 713
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
714 715 716 717 718 719
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

720
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
721 722
}

723
/*
724 725
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
726
 * they're being called with pool->lock held.
727 728
 */

729
static bool __need_more_worker(struct worker_pool *pool)
730
{
731
	return !atomic_read(&pool->nr_running);
732 733
}

734
/*
735 736
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
737 738
 *
 * Note that, because unbound workers never contribute to nr_running, this
739
 * function will always return %true for unbound pools as long as the
740
 * worklist isn't empty.
741
 */
742
static bool need_more_worker(struct worker_pool *pool)
743
{
744
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
745
}
746

747
/* Can I start working?  Called from busy but !running workers. */
748
static bool may_start_working(struct worker_pool *pool)
749
{
750
	return pool->nr_idle;
751 752 753
}

/* Do I need to keep working?  Called from currently running workers. */
754
static bool keep_working(struct worker_pool *pool)
755
{
756 757
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
758 759 760
}

/* Do we need a new worker?  Called from manager. */
761
static bool need_to_create_worker(struct worker_pool *pool)
762
{
763
	return need_more_worker(pool) && !may_start_working(pool);
764
}
765

766
/* Do I need to be the manager? */
767
static bool need_to_manage_workers(struct worker_pool *pool)
768
{
769
	return need_to_create_worker(pool) ||
770
		(pool->flags & POOL_MANAGE_WORKERS);
771 772 773
}

/* Do we have too many workers and should some go away? */
774
static bool too_many_workers(struct worker_pool *pool)
775
{
776
	bool managing = mutex_is_locked(&pool->manager_arb);
777 778
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
779

780 781 782 783 784 785 786
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

787
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
788 789
}

790
/*
791 792 793
 * Wake up functions.
 */

794
/* Return the first worker.  Safe with preemption disabled */
795
static struct worker *first_worker(struct worker_pool *pool)
796
{
797
	if (unlikely(list_empty(&pool->idle_list)))
798 799
		return NULL;

800
	return list_first_entry(&pool->idle_list, struct worker, entry);
801 802 803 804
}

/**
 * wake_up_worker - wake up an idle worker
805
 * @pool: worker pool to wake worker from
806
 *
807
 * Wake up the first idle worker of @pool.
808 809
 *
 * CONTEXT:
810
 * spin_lock_irq(pool->lock).
811
 */
812
static void wake_up_worker(struct worker_pool *pool)
813
{
814
	struct worker *worker = first_worker(pool);
815 816 817 818 819

	if (likely(worker))
		wake_up_process(worker->task);
}

820
/**
821 822 823 824 825 826 827 828 829 830
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
831
void wq_worker_waking_up(struct task_struct *task, int cpu)
832 833 834
{
	struct worker *worker = kthread_data(task);

835
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
836
		WARN_ON_ONCE(worker->pool->cpu != cpu);
837
		atomic_inc(&worker->pool->nr_running);
838
	}
839 840 841 842 843 844 845 846 847 848 849 850 851 852
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
853
 * Return:
854 855
 * Worker task on @cpu to wake up, %NULL if none.
 */
856
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
857 858
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
859
	struct worker_pool *pool;
860

861 862 863 864 865
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
866
	if (worker->flags & WORKER_NOT_RUNNING)
867 868
		return NULL;

869 870
	pool = worker->pool;

871
	/* this can only happen on the local cpu */
872 873
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
874 875 876 877 878 879

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
880 881 882
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
883
	 * manipulating idle_list, so dereferencing idle_list without pool
884
	 * lock is safe.
885
	 */
886 887
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
888
		to_wakeup = first_worker(pool);
889 890 891 892 893
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
894
 * @worker: self
895 896 897
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
898 899 900
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
901
 *
902
 * CONTEXT:
903
 * spin_lock_irq(pool->lock)
904 905 906 907
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
908
	struct worker_pool *pool = worker->pool;
909

910 911
	WARN_ON_ONCE(worker->task != current);

912 913 914 915 916 917 918 919
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
920
			if (atomic_dec_and_test(&pool->nr_running) &&
921
			    !list_empty(&pool->worklist))
922
				wake_up_worker(pool);
923
		} else
924
			atomic_dec(&pool->nr_running);
925 926
	}

927 928 929 930
	worker->flags |= flags;
}

/**
931
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
932
 * @worker: self
933 934
 * @flags: flags to clear
 *
935
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
936
 *
937
 * CONTEXT:
938
 * spin_lock_irq(pool->lock)
939 940 941
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
942
	struct worker_pool *pool = worker->pool;
943 944
	unsigned int oflags = worker->flags;

945 946
	WARN_ON_ONCE(worker->task != current);

947
	worker->flags &= ~flags;
948

949 950 951 952 953
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
954 955
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
956
			atomic_inc(&pool->nr_running);
957 958
}

959 960
/**
 * find_worker_executing_work - find worker which is executing a work
961
 * @pool: pool of interest
962 963
 * @work: work to find worker for
 *
964 965
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
966 967 968 969 970 971 972 973 974 975 976 977
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
978 979 980 981 982 983
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
984 985
 *
 * CONTEXT:
986
 * spin_lock_irq(pool->lock).
987
 *
988 989
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
990
 * otherwise.
991
 */
992
static struct worker *find_worker_executing_work(struct worker_pool *pool,
993
						 struct work_struct *work)
994
{
995 996
	struct worker *worker;

997
	hash_for_each_possible(pool->busy_hash, worker, hentry,
998 999 1000
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
1001 1002 1003
			return worker;

	return NULL;
1004 1005
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1021
 * spin_lock_irq(pool->lock).
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1105
static void pwq_activate_delayed_work(struct work_struct *work)
1106
{
1107
	struct pool_workqueue *pwq = get_work_pwq(work);
1108 1109

	trace_workqueue_activate_work(work);
1110
	move_linked_works(work, &pwq->pool->worklist, NULL);
1111
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1112
	pwq->nr_active++;
1113 1114
}

1115
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1116
{
1117
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1118 1119
						    struct work_struct, entry);

1120
	pwq_activate_delayed_work(work);
1121 1122
}

1123
/**
1124 1125
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1126 1127 1128
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1129
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1130 1131
 *
 * CONTEXT:
1132
 * spin_lock_irq(pool->lock).
1133
 */
1134
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1135
{
T
Tejun Heo 已提交
1136
	/* uncolored work items don't participate in flushing or nr_active */
1137
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1138
		goto out_put;
1139

1140
	pwq->nr_in_flight[color]--;
1141

1142 1143
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1144
		/* one down, submit a delayed one */
1145 1146
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1147 1148 1149
	}

	/* is flush in progress and are we at the flushing tip? */
1150
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1151
		goto out_put;
1152 1153

	/* are there still in-flight works? */
1154
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1155
		goto out_put;
1156

1157 1158
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1159 1160

	/*
1161
	 * If this was the last pwq, wake up the first flusher.  It
1162 1163
	 * will handle the rest.
	 */
1164 1165
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1166 1167
out_put:
	put_pwq(pwq);
1168 1169
}

1170
/**
1171
 * try_to_grab_pending - steal work item from worklist and disable irq
1172 1173
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1174
 * @flags: place to store irq state
1175 1176
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1177
 * stable state - idle, on timer or on worklist.
1178
 *
1179
 * Return:
1180 1181 1182
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1183 1184
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1185
 *
1186
 * Note:
1187
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1188 1189 1190
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1191 1192 1193 1194
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1195
 * This function is safe to call from any context including IRQ handler.
1196
 */
1197 1198
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1199
{
1200
	struct worker_pool *pool;
1201
	struct pool_workqueue *pwq;
1202

1203 1204
	local_irq_save(*flags);

1205 1206 1207 1208
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1209 1210 1211 1212 1213
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1214 1215 1216 1217 1218
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1219 1220 1221 1222 1223 1224 1225
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1226 1227
	pool = get_work_pool(work);
	if (!pool)
1228
		goto fail;
1229

1230
	spin_lock(&pool->lock);
1231
	/*
1232 1233 1234 1235 1236
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1237 1238
	 * item is currently queued on that pool.
	 */
1239 1240
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1241 1242 1243 1244 1245
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1246
		 * on the delayed_list, will confuse pwq->nr_active
1247 1248 1249 1250
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1251
			pwq_activate_delayed_work(work);
1252 1253

		list_del_init(&work->entry);
1254
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1255

1256
		/* work->data points to pwq iff queued, point to pool */
1257 1258 1259 1260
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1261
	}
1262
	spin_unlock(&pool->lock);
1263 1264 1265 1266 1267
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1268
	return -EAGAIN;
1269 1270
}

T
Tejun Heo 已提交
1271
/**
1272
 * insert_work - insert a work into a pool
1273
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1274 1275 1276 1277
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1278
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1279
 * work_struct flags.
T
Tejun Heo 已提交
1280 1281
 *
 * CONTEXT:
1282
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1283
 */
1284 1285
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1286
{
1287
	struct worker_pool *pool = pwq->pool;
1288

T
Tejun Heo 已提交
1289
	/* we own @work, set data and link */
1290
	set_work_pwq(work, pwq, extra_flags);
1291
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1292
	get_pwq(pwq);
1293 1294

	/*
1295 1296 1297
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1298 1299 1300
	 */
	smp_mb();

1301 1302
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1303 1304
}

1305 1306
/*
 * Test whether @work is being queued from another work executing on the
1307
 * same workqueue.
1308 1309 1310
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1311 1312 1313 1314 1315 1316 1317
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1318
	return worker && worker->current_pwq->wq == wq;
1319 1320
}

1321
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1322 1323
			 struct work_struct *work)
{
1324
	struct pool_workqueue *pwq;
1325
	struct worker_pool *last_pool;
1326
	struct list_head *worklist;
1327
	unsigned int work_flags;
1328
	unsigned int req_cpu = cpu;
1329 1330 1331 1332 1333 1334 1335 1336

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1337

1338
	debug_work_activate(work);
1339

1340
	/* if draining, only works from the same workqueue are allowed */
1341
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1342
	    WARN_ON_ONCE(!is_chained_work(wq)))
1343
		return;
1344
retry:
1345 1346 1347
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1348
	/* pwq which will be used unless @work is executing elsewhere */
1349
	if (!(wq->flags & WQ_UNBOUND))
1350
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1351 1352
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1353

1354 1355 1356 1357 1358 1359 1360 1361
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1362

1363
		spin_lock(&last_pool->lock);
1364

1365
		worker = find_worker_executing_work(last_pool, work);
1366

1367 1368
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1369
		} else {
1370 1371
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1372
			spin_lock(&pwq->pool->lock);
1373
		}
1374
	} else {
1375
		spin_lock(&pwq->pool->lock);
1376 1377
	}

1378 1379 1380 1381
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1382 1383
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1397 1398
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1399

1400
	if (WARN_ON(!list_empty(&work->entry))) {
1401
		spin_unlock(&pwq->pool->lock);
1402 1403
		return;
	}
1404

1405 1406
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1407

1408
	if (likely(pwq->nr_active < pwq->max_active)) {
1409
		trace_workqueue_activate_work(work);
1410 1411
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1412 1413
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1414
		worklist = &pwq->delayed_works;
1415
	}
1416

1417
	insert_work(pwq, work, worklist, work_flags);
1418

1419
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1420 1421
}

1422
/**
1423 1424
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1425 1426 1427
 * @wq: workqueue to use
 * @work: work to queue
 *
1428 1429
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1430 1431
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1432
 */
1433 1434
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1435
{
1436
	bool ret = false;
1437
	unsigned long flags;
1438

1439
	local_irq_save(flags);
1440

1441
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1442
		__queue_work(cpu, wq, work);
1443
		ret = true;
1444
	}
1445

1446
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1447 1448
	return ret;
}
1449
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1450

1451
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1452
{
1453
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1454

1455
	/* should have been called from irqsafe timer with irq already off */
1456
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1457
}
1458
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1459

1460 1461
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1462
{
1463 1464 1465 1466 1467
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1468 1469
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1470

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1482
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1483

1484
	dwork->wq = wq;
1485
	dwork->cpu = cpu;
1486 1487 1488 1489 1490 1491
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1492 1493
}

1494 1495 1496 1497
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1498
 * @dwork: work to queue
1499 1500
 * @delay: number of jiffies to wait before queueing
 *
1501
 * Return: %false if @work was already on a queue, %true otherwise.  If
1502 1503
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1504
 */
1505 1506
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1507
{
1508
	struct work_struct *work = &dwork->work;
1509
	bool ret = false;
1510
	unsigned long flags;
1511

1512 1513
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1514

1515
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1516
		__queue_delayed_work(cpu, wq, dwork, delay);
1517
		ret = true;
1518
	}
1519

1520
	local_irq_restore(flags);
1521 1522
	return ret;
}
1523
EXPORT_SYMBOL(queue_delayed_work_on);
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1537
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1538 1539
 * pending and its timer was modified.
 *
1540
 * This function is safe to call from any context including IRQ handler.
1541 1542 1543 1544 1545 1546 1547
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1548

1549 1550 1551
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1552

1553 1554 1555
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1556
	}
1557 1558

	/* -ENOENT from try_to_grab_pending() becomes %true */
1559 1560
	return ret;
}
1561 1562
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1563 1564 1565 1566 1567 1568 1569 1570
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1571
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1572 1573
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1574
{
1575
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1576

1577 1578 1579 1580
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1581

1582 1583
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1584
	pool->nr_idle++;
1585
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1586 1587

	/* idle_list is LIFO */
1588
	list_add(&worker->entry, &pool->idle_list);
1589

1590 1591
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1592

1593
	/*
1594
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1595
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1596 1597
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1598
	 */
1599
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1600
		     pool->nr_workers == pool->nr_idle &&
1601
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1611
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1612 1613 1614
 */
static void worker_leave_idle(struct worker *worker)
{
1615
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1616

1617 1618
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1619
	worker_clr_flags(worker, WORKER_IDLE);
1620
	pool->nr_idle--;
T
Tejun Heo 已提交
1621 1622 1623
	list_del_init(&worker->entry);
}

1624
/**
1625 1626 1627 1628
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1629 1630 1631 1632 1633 1634
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1635
 * This function is to be used by unbound workers and rescuers to bind
1636 1637 1638
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1639
 * verbatim as it's best effort and blocking and pool may be
1640 1641
 * [dis]associated in the meantime.
 *
1642
 * This function tries set_cpus_allowed() and locks pool and verifies the
1643
 * binding against %POOL_DISASSOCIATED which is set during
1644 1645 1646
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1647 1648
 *
 * CONTEXT:
1649
 * Might sleep.  Called without any lock but returns with pool->lock
1650 1651
 * held.
 *
1652
 * Return:
1653
 * %true if the associated pool is online (@worker is successfully
1654 1655
 * bound), %false if offline.
 */
1656
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1657
__acquires(&pool->lock)
1658 1659
{
	while (true) {
1660
		/*
1661 1662 1663
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1664
		 * against POOL_DISASSOCIATED.
1665
		 */
1666
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1667
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1668

1669
		spin_lock_irq(&pool->lock);
1670
		if (pool->flags & POOL_DISASSOCIATED)
1671
			return false;
1672
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1673
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1674
			return true;
1675
		spin_unlock_irq(&pool->lock);
1676

1677 1678 1679 1680 1681 1682
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1683
		cpu_relax();
1684
		cond_resched();
1685 1686 1687
	}
}

T
Tejun Heo 已提交
1688 1689 1690 1691 1692
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1693 1694
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1695
		INIT_LIST_HEAD(&worker->scheduled);
1696 1697
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1698
	}
T
Tejun Heo 已提交
1699 1700 1701 1702 1703
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1704
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1705
 *
1706
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1707 1708 1709 1710 1711 1712
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1713
 * Return:
T
Tejun Heo 已提交
1714 1715
 * Pointer to the newly created worker.
 */
1716
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1717 1718
{
	struct worker *worker = NULL;
1719
	int id = -1;
1720
	char id_buf[16];
T
Tejun Heo 已提交
1721

1722 1723
	lockdep_assert_held(&pool->manager_mutex);

1724 1725 1726 1727 1728
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
	idr_preload(GFP_KERNEL);
1729
	spin_lock_irq(&pool->lock);
1730 1731 1732

	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);

1733
	spin_unlock_irq(&pool->lock);
1734 1735 1736
	idr_preload_end();
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1737 1738 1739 1740 1741

	worker = alloc_worker();
	if (!worker)
		goto fail;

1742
	worker->pool = pool;
T
Tejun Heo 已提交
1743 1744
	worker->id = id;

1745
	if (pool->cpu >= 0)
1746 1747
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1748
	else
1749 1750
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1751
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1752
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1753 1754 1755
	if (IS_ERR(worker->task))
		goto fail;

1756 1757 1758 1759 1760
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1761 1762 1763 1764
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1765
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1766

T
Tejun Heo 已提交
1767 1768 1769 1770 1771 1772
	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1773
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1774

1775 1776 1777 1778 1779
	/* successful, commit the pointer to idr */
	spin_lock_irq(&pool->lock);
	idr_replace(&pool->worker_idr, worker, worker->id);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1780
	return worker;
1781

T
Tejun Heo 已提交
1782 1783
fail:
	if (id >= 0) {
1784
		spin_lock_irq(&pool->lock);
1785
		idr_remove(&pool->worker_idr, id);
1786
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1796
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1797 1798
 *
 * CONTEXT:
1799
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1800 1801 1802
 */
static void start_worker(struct worker *worker)
{
1803
	worker->flags |= WORKER_STARTED;
1804
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1805
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1806 1807 1808
	wake_up_process(worker->task);
}

1809 1810 1811 1812
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1813
 * Grab the managership of @pool and create and start a new worker for it.
1814 1815
 *
 * Return: 0 on success. A negative error code otherwise.
1816 1817 1818 1819 1820
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1821 1822
	mutex_lock(&pool->manager_mutex);

1823 1824 1825 1826 1827 1828 1829
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1830 1831
	mutex_unlock(&pool->manager_mutex);

1832 1833 1834
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1835 1836 1837 1838
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1839
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1840 1841
 *
 * CONTEXT:
1842
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1843 1844 1845
 */
static void destroy_worker(struct worker *worker)
{
1846
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1847

1848 1849 1850
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1851
	/* sanity check frenzy */
1852 1853 1854
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1855

T
Tejun Heo 已提交
1856
	if (worker->flags & WORKER_STARTED)
1857
		pool->nr_workers--;
T
Tejun Heo 已提交
1858
	if (worker->flags & WORKER_IDLE)
1859
		pool->nr_idle--;
T
Tejun Heo 已提交
1860

1861 1862 1863 1864 1865 1866
	/*
	 * Once WORKER_DIE is set, the kworker may destroy itself at any
	 * point.  Pin to ensure the task stays until we're done with it.
	 */
	get_task_struct(worker->task);

T
Tejun Heo 已提交
1867
	list_del_init(&worker->entry);
1868
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1869

1870 1871
	idr_remove(&pool->worker_idr, worker->id);

1872
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1873

T
Tejun Heo 已提交
1874
	kthread_stop(worker->task);
1875
	put_task_struct(worker->task);
T
Tejun Heo 已提交
1876 1877
	kfree(worker);

1878
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1879 1880
}

1881
static void idle_worker_timeout(unsigned long __pool)
1882
{
1883
	struct worker_pool *pool = (void *)__pool;
1884

1885
	spin_lock_irq(&pool->lock);
1886

1887
	if (too_many_workers(pool)) {
1888 1889 1890 1891
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1892
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1893 1894 1895
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1896
			mod_timer(&pool->idle_timer, expires);
1897 1898
		else {
			/* it's been idle for too long, wake up manager */
1899
			pool->flags |= POOL_MANAGE_WORKERS;
1900
			wake_up_worker(pool);
1901
		}
1902 1903
	}

1904
	spin_unlock_irq(&pool->lock);
1905
}
1906

1907
static void send_mayday(struct work_struct *work)
1908
{
1909 1910
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1911

1912
	lockdep_assert_held(&wq_mayday_lock);
1913

1914
	if (!wq->rescuer)
1915
		return;
1916 1917

	/* mayday mayday mayday */
1918
	if (list_empty(&pwq->mayday_node)) {
1919 1920 1921 1922 1923 1924
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1925
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1926
		wake_up_process(wq->rescuer->task);
1927
	}
1928 1929
}

1930
static void pool_mayday_timeout(unsigned long __pool)
1931
{
1932
	struct worker_pool *pool = (void *)__pool;
1933 1934
	struct work_struct *work;

1935
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1936
	spin_lock(&pool->lock);
1937

1938
	if (need_to_create_worker(pool)) {
1939 1940 1941 1942 1943 1944
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1945
		list_for_each_entry(work, &pool->worklist, entry)
1946
			send_mayday(work);
L
Linus Torvalds 已提交
1947
	}
1948

1949
	spin_unlock(&pool->lock);
1950
	spin_unlock_irq(&wq_mayday_lock);
1951

1952
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1953 1954
}

1955 1956
/**
 * maybe_create_worker - create a new worker if necessary
1957
 * @pool: pool to create a new worker for
1958
 *
1959
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1960 1961
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1962
 * sent to all rescuers with works scheduled on @pool to resolve
1963 1964
 * possible allocation deadlock.
 *
1965 1966
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1967 1968
 *
 * LOCKING:
1969
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1970 1971 1972
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1973
 * Return:
1974
 * %false if no action was taken and pool->lock stayed locked, %true
1975 1976
 * otherwise.
 */
1977
static bool maybe_create_worker(struct worker_pool *pool)
1978 1979
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1980
{
1981
	if (!need_to_create_worker(pool))
1982 1983
		return false;
restart:
1984
	spin_unlock_irq(&pool->lock);
1985

1986
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1987
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1988 1989 1990 1991

	while (true) {
		struct worker *worker;

1992
		worker = create_worker(pool);
1993
		if (worker) {
1994
			del_timer_sync(&pool->mayday_timer);
1995
			spin_lock_irq(&pool->lock);
1996
			start_worker(worker);
1997 1998
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1999 2000 2001
			return true;
		}

2002
		if (!need_to_create_worker(pool))
2003
			break;
L
Linus Torvalds 已提交
2004

2005 2006
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
2007

2008
		if (!need_to_create_worker(pool))
2009 2010 2011
			break;
	}

2012
	del_timer_sync(&pool->mayday_timer);
2013
	spin_lock_irq(&pool->lock);
2014
	if (need_to_create_worker(pool))
2015 2016 2017 2018 2019 2020
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2021
 * @pool: pool to destroy workers for
2022
 *
2023
 * Destroy @pool workers which have been idle for longer than
2024 2025 2026
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
2027
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2028 2029
 * multiple times.  Called only from manager.
 *
2030
 * Return:
2031
 * %false if no action was taken and pool->lock stayed locked, %true
2032 2033
 * otherwise.
 */
2034
static bool maybe_destroy_workers(struct worker_pool *pool)
2035 2036
{
	bool ret = false;
L
Linus Torvalds 已提交
2037

2038
	while (too_many_workers(pool)) {
2039 2040
		struct worker *worker;
		unsigned long expires;
2041

2042
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2043
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2044

2045
		if (time_before(jiffies, expires)) {
2046
			mod_timer(&pool->idle_timer, expires);
2047
			break;
2048
		}
L
Linus Torvalds 已提交
2049

2050 2051
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2052
	}
2053

2054
	return ret;
2055 2056
}

2057
/**
2058 2059
 * manage_workers - manage worker pool
 * @worker: self
2060
 *
2061
 * Assume the manager role and manage the worker pool @worker belongs
2062
 * to.  At any given time, there can be only zero or one manager per
2063
 * pool.  The exclusion is handled automatically by this function.
2064 2065 2066 2067
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2068 2069
 *
 * CONTEXT:
2070
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2071 2072
 * multiple times.  Does GFP_KERNEL allocations.
 *
2073
 * Return:
2074 2075 2076 2077 2078
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
2079
 */
2080
static bool manage_workers(struct worker *worker)
2081
{
2082
	struct worker_pool *pool = worker->pool;
2083
	bool ret = false;
2084

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2106
	if (!mutex_trylock(&pool->manager_arb))
2107
		return ret;
2108

2109
	/*
2110 2111
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2112
	 */
2113
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2114
		spin_unlock_irq(&pool->lock);
2115
		mutex_lock(&pool->manager_mutex);
2116
		spin_lock_irq(&pool->lock);
2117 2118
		ret = true;
	}
2119

2120
	pool->flags &= ~POOL_MANAGE_WORKERS;
2121 2122

	/*
2123 2124
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2125
	 */
2126 2127
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2128

2129
	mutex_unlock(&pool->manager_mutex);
2130
	mutex_unlock(&pool->manager_arb);
2131
	return ret;
2132 2133
}

2134 2135
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2136
 * @worker: self
2137 2138 2139 2140 2141 2142 2143 2144 2145
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2146
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2147
 */
T
Tejun Heo 已提交
2148
static void process_one_work(struct worker *worker, struct work_struct *work)
2149 2150
__releases(&pool->lock)
__acquires(&pool->lock)
2151
{
2152
	struct pool_workqueue *pwq = get_work_pwq(work);
2153
	struct worker_pool *pool = worker->pool;
2154
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2155
	int work_color;
2156
	struct worker *collision;
2157 2158 2159 2160 2161 2162 2163 2164
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2165 2166 2167
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2168
#endif
2169 2170 2171
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2172
	 * unbound or a disassociated pool.
2173
	 */
2174
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2175
		     !(pool->flags & POOL_DISASSOCIATED) &&
2176
		     raw_smp_processor_id() != pool->cpu);
2177

2178 2179 2180 2181 2182 2183
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2184
	collision = find_worker_executing_work(pool, work);
2185 2186 2187 2188 2189
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2190
	/* claim and dequeue */
2191
	debug_work_deactivate(work);
2192
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2193
	worker->current_work = work;
2194
	worker->current_func = work->func;
2195
	worker->current_pwq = pwq;
2196
	work_color = get_work_color(work);
2197

2198 2199
	list_del_init(&work->entry);

2200 2201 2202 2203 2204 2205 2206
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2207
	/*
2208
	 * Unbound pool isn't concurrency managed and work items should be
2209 2210
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2211 2212
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2213

2214
	/*
2215
	 * Record the last pool and clear PENDING which should be the last
2216
	 * update to @work.  Also, do this inside @pool->lock so that
2217 2218
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2219
	 */
2220
	set_work_pool_and_clear_pending(work, pool->id);
2221

2222
	spin_unlock_irq(&pool->lock);
2223

2224
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2225
	lock_map_acquire(&lockdep_map);
2226
	trace_workqueue_execute_start(work);
2227
	worker->current_func(work);
2228 2229 2230 2231 2232
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2233
	lock_map_release(&lockdep_map);
2234
	lock_map_release(&pwq->wq->lockdep_map);
2235 2236

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2237 2238
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2239 2240
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2241 2242 2243 2244
		debug_show_held_locks(current);
		dump_stack();
	}

2245 2246 2247 2248 2249 2250 2251 2252 2253
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2254
	spin_lock_irq(&pool->lock);
2255

2256 2257 2258 2259
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2260
	/* we're done with it, release */
2261
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2262
	worker->current_work = NULL;
2263
	worker->current_func = NULL;
2264
	worker->current_pwq = NULL;
2265
	worker->desc_valid = false;
2266
	pwq_dec_nr_in_flight(pwq, work_color);
2267 2268
}

2269 2270 2271 2272 2273 2274 2275 2276 2277
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2278
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2279 2280 2281
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2282
{
2283 2284
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2285
						struct work_struct, entry);
T
Tejun Heo 已提交
2286
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2287 2288 2289
	}
}

T
Tejun Heo 已提交
2290 2291
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2292
 * @__worker: self
T
Tejun Heo 已提交
2293
 *
2294 2295 2296 2297 2298
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2299 2300
 *
 * Return: 0
T
Tejun Heo 已提交
2301
 */
T
Tejun Heo 已提交
2302
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2303
{
T
Tejun Heo 已提交
2304
	struct worker *worker = __worker;
2305
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2306

2307 2308
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2309
woke_up:
2310
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2311

2312 2313
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2314
		spin_unlock_irq(&pool->lock);
2315 2316 2317
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
		return 0;
T
Tejun Heo 已提交
2318
	}
2319

T
Tejun Heo 已提交
2320
	worker_leave_idle(worker);
2321
recheck:
2322
	/* no more worker necessary? */
2323
	if (!need_more_worker(pool))
2324 2325 2326
		goto sleep;

	/* do we need to manage? */
2327
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2328 2329
		goto recheck;

T
Tejun Heo 已提交
2330 2331 2332 2333 2334
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2335
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2336

2337
	/*
2338 2339 2340 2341 2342
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2343
	 */
2344
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2345 2346

	do {
T
Tejun Heo 已提交
2347
		struct work_struct *work =
2348
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2349 2350 2351 2352 2353 2354
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2355
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2356 2357 2358
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2359
		}
2360
	} while (keep_working(pool));
2361 2362

	worker_set_flags(worker, WORKER_PREP, false);
2363
sleep:
2364
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2365
		goto recheck;
2366

T
Tejun Heo 已提交
2367
	/*
2368 2369 2370 2371 2372
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2373 2374 2375
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2376
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2377 2378
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2379 2380
}

2381 2382
/**
 * rescuer_thread - the rescuer thread function
2383
 * @__rescuer: self
2384 2385
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2386
 * workqueue which has WQ_MEM_RECLAIM set.
2387
 *
2388
 * Regular work processing on a pool may block trying to create a new
2389 2390 2391 2392 2393
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2394 2395
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2396 2397 2398
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2399 2400
 *
 * Return: 0
2401
 */
2402
static int rescuer_thread(void *__rescuer)
2403
{
2404 2405
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2406
	struct list_head *scheduled = &rescuer->scheduled;
2407
	bool should_stop;
2408 2409

	set_user_nice(current, RESCUER_NICE_LEVEL);
2410 2411 2412 2413 2414 2415

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2416 2417 2418
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2419 2420 2421 2422 2423 2424 2425 2426 2427
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2428

2429
	/* see whether any pwq is asking for help */
2430
	spin_lock_irq(&wq_mayday_lock);
2431 2432 2433 2434

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2435
		struct worker_pool *pool = pwq->pool;
2436 2437 2438
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2439 2440
		list_del_init(&pwq->mayday_node);

2441
		spin_unlock_irq(&wq_mayday_lock);
2442 2443

		/* migrate to the target cpu if possible */
2444
		worker_maybe_bind_and_lock(pool);
2445
		rescuer->pool = pool;
2446 2447 2448 2449 2450

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2451
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2452
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2453
			if (get_work_pwq(work) == pwq)
2454 2455 2456
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2457

2458 2459 2460 2461 2462 2463
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
		 * go away while we're holding its lock.
		 */
		put_pwq(pwq);

2464
		/*
2465
		 * Leave this pool.  If keep_working() is %true, notify a
2466 2467 2468
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2469 2470
		if (keep_working(pool))
			wake_up_worker(pool);
2471

2472
		rescuer->pool = NULL;
2473
		spin_unlock(&pool->lock);
2474
		spin_lock(&wq_mayday_lock);
2475 2476
	}

2477
	spin_unlock_irq(&wq_mayday_lock);
2478

2479 2480 2481 2482 2483 2484
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2485 2486
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2487 2488
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2489 2490
}

O
Oleg Nesterov 已提交
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2502 2503
/**
 * insert_wq_barrier - insert a barrier work
2504
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2505
 * @barr: wq_barrier to insert
2506 2507
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2508
 *
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2521
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2522 2523
 *
 * CONTEXT:
2524
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2525
 */
2526
static void insert_wq_barrier(struct pool_workqueue *pwq,
2527 2528
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2529
{
2530 2531 2532
	struct list_head *head;
	unsigned int linked = 0;

2533
	/*
2534
	 * debugobject calls are safe here even with pool->lock locked
2535 2536 2537 2538
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2539
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2540
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2541
	init_completion(&barr->done);
2542

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2558
	debug_work_activate(&barr->work);
2559
	insert_work(pwq, &barr->work, head,
2560
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2561 2562
}

2563
/**
2564
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2565 2566 2567 2568
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2569
 * Prepare pwqs for workqueue flushing.
2570
 *
2571 2572 2573 2574 2575
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2576 2577 2578 2579 2580 2581 2582
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2583
 * If @work_color is non-negative, all pwqs should have the same
2584 2585 2586 2587
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2588
 * mutex_lock(wq->mutex).
2589
 *
2590
 * Return:
2591 2592 2593
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2594
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2595
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2596
{
2597
	bool wait = false;
2598
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2599

2600
	if (flush_color >= 0) {
2601
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2602
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2603
	}
2604

2605
	for_each_pwq(pwq, wq) {
2606
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2607

2608
		spin_lock_irq(&pool->lock);
2609

2610
		if (flush_color >= 0) {
2611
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2612

2613 2614 2615
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2616 2617 2618
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2619

2620
		if (work_color >= 0) {
2621
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2622
			pwq->work_color = work_color;
2623
		}
L
Linus Torvalds 已提交
2624

2625
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2626
	}
2627

2628
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2629
		complete(&wq->first_flusher->done);
2630

2631
	return wait;
L
Linus Torvalds 已提交
2632 2633
}

2634
/**
L
Linus Torvalds 已提交
2635
 * flush_workqueue - ensure that any scheduled work has run to completion.
2636
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2637
 *
2638 2639
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2640
 */
2641
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2642
{
2643 2644 2645 2646 2647 2648
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2649

2650 2651
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2652

2653
	mutex_lock(&wq->mutex);
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2666
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2667 2668 2669 2670 2671
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2672
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2673 2674 2675

			wq->first_flusher = &this_flusher;

2676
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2677 2678 2679 2680 2681 2682 2683 2684
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2685
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2686
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2687
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2698
	mutex_unlock(&wq->mutex);
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2711
	mutex_lock(&wq->mutex);
2712

2713 2714 2715 2716
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2717 2718
	wq->first_flusher = NULL;

2719 2720
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2733 2734
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2754
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2755 2756 2757
		}

		if (list_empty(&wq->flusher_queue)) {
2758
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2759 2760 2761 2762 2763
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2764
		 * the new first flusher and arm pwqs.
2765
		 */
2766 2767
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2768 2769 2770 2771

		list_del_init(&next->list);
		wq->first_flusher = next;

2772
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2783
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2784
}
2785
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2786

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2801
	struct pool_workqueue *pwq;
2802 2803 2804 2805

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2806
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2807
	 */
2808
	mutex_lock(&wq->mutex);
2809
	if (!wq->nr_drainers++)
2810
		wq->flags |= __WQ_DRAINING;
2811
	mutex_unlock(&wq->mutex);
2812 2813 2814
reflush:
	flush_workqueue(wq);

2815
	mutex_lock(&wq->mutex);
2816

2817
	for_each_pwq(pwq, wq) {
2818
		bool drained;
2819

2820
		spin_lock_irq(&pwq->pool->lock);
2821
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2822
		spin_unlock_irq(&pwq->pool->lock);
2823 2824

		if (drained)
2825 2826 2827 2828
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2829
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2830
				wq->name, flush_cnt);
2831

2832
		mutex_unlock(&wq->mutex);
2833 2834 2835 2836
		goto reflush;
	}

	if (!--wq->nr_drainers)
2837
		wq->flags &= ~__WQ_DRAINING;
2838
	mutex_unlock(&wq->mutex);
2839 2840 2841
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2842
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2843
{
2844
	struct worker *worker = NULL;
2845
	struct worker_pool *pool;
2846
	struct pool_workqueue *pwq;
2847 2848

	might_sleep();
2849 2850

	local_irq_disable();
2851
	pool = get_work_pool(work);
2852 2853
	if (!pool) {
		local_irq_enable();
2854
		return false;
2855
	}
2856

2857
	spin_lock(&pool->lock);
2858
	/* see the comment in try_to_grab_pending() with the same code */
2859 2860 2861
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2862
			goto already_gone;
2863
	} else {
2864
		worker = find_worker_executing_work(pool, work);
2865
		if (!worker)
T
Tejun Heo 已提交
2866
			goto already_gone;
2867
		pwq = worker->current_pwq;
2868
	}
2869

2870
	insert_wq_barrier(pwq, barr, work, worker);
2871
	spin_unlock_irq(&pool->lock);
2872

2873 2874 2875 2876 2877 2878
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2879
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2880
		lock_map_acquire(&pwq->wq->lockdep_map);
2881
	else
2882 2883
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2884

2885
	return true;
T
Tejun Heo 已提交
2886
already_gone:
2887
	spin_unlock_irq(&pool->lock);
2888
	return false;
2889
}
2890 2891 2892 2893 2894

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2895 2896
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2897
 *
2898
 * Return:
2899 2900 2901 2902 2903
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2904 2905
	struct wq_barrier barr;

2906 2907 2908
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2909 2910 2911 2912 2913 2914 2915
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2916
}
2917
EXPORT_SYMBOL_GPL(flush_work);
2918

2919
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2920
{
2921
	unsigned long flags;
2922 2923 2924
	int ret;

	do {
2925 2926 2927 2928 2929 2930
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2931
			flush_work(work);
2932 2933
	} while (unlikely(ret < 0));

2934 2935 2936 2937
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2938
	flush_work(work);
2939
	clear_work_data(work);
2940 2941 2942
	return ret;
}

2943
/**
2944 2945
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2946
 *
2947 2948 2949 2950
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2951
 *
2952 2953
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2954
 *
2955
 * The caller must ensure that the workqueue on which @work was last
2956
 * queued can't be destroyed before this function returns.
2957
 *
2958
 * Return:
2959
 * %true if @work was pending, %false otherwise.
2960
 */
2961
bool cancel_work_sync(struct work_struct *work)
2962
{
2963
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2964
}
2965
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2966

2967
/**
2968 2969
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2970
 *
2971 2972 2973
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2974
 *
2975
 * Return:
2976 2977
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2978
 */
2979 2980
bool flush_delayed_work(struct delayed_work *dwork)
{
2981
	local_irq_disable();
2982
	if (del_timer_sync(&dwork->timer))
2983
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2984
	local_irq_enable();
2985 2986 2987 2988
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2989
/**
2990 2991
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2992
 *
2993 2994 2995 2996 2997 2998 2999 3000 3001
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
3002
 *
3003
 * This function is safe to call from any context including IRQ handler.
3004
 */
3005
bool cancel_delayed_work(struct delayed_work *dwork)
3006
{
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

3017 3018
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
3019
	local_irq_restore(flags);
3020
	return ret;
3021
}
3022
EXPORT_SYMBOL(cancel_delayed_work);
3023

3024 3025 3026 3027 3028 3029
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
3030
 * Return:
3031 3032 3033
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3034
{
3035
	return __cancel_work_timer(&dwork->work, true);
3036
}
3037
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3038

3039
/**
3040
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3041 3042
 * @func: the function to call
 *
3043 3044
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3045
 * schedule_on_each_cpu() is very slow.
3046
 *
3047
 * Return:
3048
 * 0 on success, -errno on failure.
3049
 */
3050
int schedule_on_each_cpu(work_func_t func)
3051 3052
{
	int cpu;
3053
	struct work_struct __percpu *works;
3054

3055 3056
	works = alloc_percpu(struct work_struct);
	if (!works)
3057
		return -ENOMEM;
3058

3059 3060
	get_online_cpus();

3061
	for_each_online_cpu(cpu) {
3062 3063 3064
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3065
		schedule_work_on(cpu, work);
3066
	}
3067 3068 3069 3070

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3071
	put_online_cpus();
3072
	free_percpu(works);
3073 3074 3075
	return 0;
}

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3100 3101
void flush_scheduled_work(void)
{
3102
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3103
}
3104
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3105

3106 3107 3108 3109 3110 3111 3112 3113 3114
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3115
 * Return:	0 - function was executed
3116 3117
 *		1 - function was scheduled for execution
 */
3118
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3119 3120
{
	if (!in_interrupt()) {
3121
		fn(&ew->work);
3122 3123 3124
		return 0;
	}

3125
	INIT_WORK(&ew->work, fn);
3126 3127 3128 3129 3130 3131
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3159 3160
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3161 3162 3163 3164 3165
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3166
static DEVICE_ATTR_RO(per_cpu);
3167

3168 3169
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3170 3171 3172 3173 3174 3175
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3176 3177 3178
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3189
static DEVICE_ATTR_RW(max_active);
3190

3191 3192 3193 3194
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3195
};
3196
ATTRIBUTE_GROUPS(wq_sysfs);
3197

3198 3199
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3200 3201
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3202 3203
	const char *delim = "";
	int node, written = 0;
3204 3205

	rcu_read_lock_sched();
3206 3207 3208 3209 3210 3211 3212
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3224 3225 3226
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3240 3241 3242
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3258
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3273 3274 3275
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3336
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3337
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3338 3339
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3340
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3341 3342 3343 3344 3345
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3346
	.dev_groups			= wq_sysfs_groups,
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3375
 * Return: 0 on success, -errno on failure.
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3468 3469 3470
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3482
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3483 3484 3485 3486 3487 3488
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3489 3490 3491 3492 3493
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3494 3495 3496 3497 3498 3499
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3500 3501 3502 3503 3504 3505 3506 3507
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3508 3509
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3524 3525 3526 3527 3528
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3529 3530
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3531 3532
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3533 3534
 */
static int init_worker_pool(struct worker_pool *pool)
3535 3536
{
	spin_lock_init(&pool->lock);
3537 3538
	pool->id = -1;
	pool->cpu = -1;
3539
	pool->node = NUMA_NO_NODE;
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3553
	mutex_init(&pool->manager_mutex);
3554
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3555

3556 3557 3558 3559
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3560 3561 3562 3563
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3564 3565
}

3566 3567 3568 3569
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3570
	idr_destroy(&pool->worker_idr);
3571 3572 3573 3574 3575 3576 3577 3578 3579
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3580 3581 3582
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3583 3584
 *
 * Should be called with wq_pool_mutex held.
3585 3586 3587 3588 3589
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3590 3591 3592
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3593 3594 3595 3596
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3597
	    WARN_ON(!list_empty(&pool->worklist)))
3598 3599 3600 3601 3602 3603 3604
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3605 3606 3607 3608 3609
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3610
	mutex_lock(&pool->manager_arb);
3611
	mutex_lock(&pool->manager_mutex);
3612 3613 3614 3615 3616 3617 3618
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3619
	mutex_unlock(&pool->manager_mutex);
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3637
 * create a new one.
3638 3639
 *
 * Should be called with wq_pool_mutex held.
3640 3641 3642
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3643 3644 3645 3646 3647
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3648
	int node;
3649

3650
	lockdep_assert_held(&wq_pool_mutex);
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3665 3666 3667
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3668
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3669 3670
	copy_workqueue_attrs(pool->attrs, attrs);

3671 3672 3673 3674 3675 3676
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3688 3689 3690 3691
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3692
	if (create_and_start_worker(pool) < 0)
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3721
	bool is_last;
T
Tejun Heo 已提交
3722 3723 3724 3725

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3726
	/*
3727
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3728 3729 3730
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3731
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3732
	list_del_rcu(&pwq->pwqs_node);
3733
	is_last = list_empty(&wq->pwqs);
3734
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3735

3736
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3737
	put_unbound_pool(pool);
3738 3739
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3740 3741 3742 3743 3744 3745
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3746 3747
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3748
		kfree(wq);
3749
	}
T
Tejun Heo 已提交
3750 3751
}

3752
/**
3753
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3754 3755
 * @pwq: target pool_workqueue
 *
3756 3757 3758
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3759
 */
3760
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3761
{
3762 3763 3764 3765
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3766
	lockdep_assert_held(&wq->mutex);
3767 3768 3769 3770 3771

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3772
	spin_lock_irq(&pwq->pool->lock);
3773 3774 3775

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3776

3777 3778 3779
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3780 3781 3782 3783 3784 3785

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3786 3787 3788 3789
	} else {
		pwq->max_active = 0;
	}

3790
	spin_unlock_irq(&pwq->pool->lock);
3791 3792
}

3793
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3794 3795
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3796 3797 3798
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3799 3800
	memset(pwq, 0, sizeof(*pwq));

3801 3802 3803
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3804
	pwq->refcnt = 1;
3805
	INIT_LIST_HEAD(&pwq->delayed_works);
3806
	INIT_LIST_HEAD(&pwq->pwqs_node);
3807
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3808
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3809
}
3810

3811
/* sync @pwq with the current state of its associated wq and link it */
3812
static void link_pwq(struct pool_workqueue *pwq)
3813 3814 3815 3816
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3817

3818 3819 3820 3821
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3822 3823
	/*
	 * Set the matching work_color.  This is synchronized with
3824
	 * wq->mutex to avoid confusing flush_workqueue().
3825
	 */
3826
	pwq->work_color = wq->work_color;
3827 3828 3829 3830 3831

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3832
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3833
}
3834

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3848
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3849 3850 3851
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3852
	}
3853

3854 3855
	init_pwq(pwq, wq, pool);
	return pwq;
3856 3857
}

3858 3859 3860 3861 3862 3863 3864
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3865
		kmem_cache_free(pwq_cache, pwq);
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3878
 * calculation.  The result is stored in @cpumask.
3879 3880 3881 3882 3883 3884 3885 3886
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3887 3888 3889
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3890 3891 3892 3893
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3894
	if (!wq_numa_enabled || attrs->no_numa)
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3931 3932 3933 3934 3935
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3936 3937 3938 3939 3940 3941
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3942
 *
3943 3944 3945
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3946 3947 3948 3949
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3950 3951
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3952
	int node, ret;
3953

3954
	/* only unbound workqueues can change attributes */
3955 3956 3957
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3958 3959 3960 3961
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3962
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3963
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3964 3965
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3966 3967
		goto enomem;

3968
	/* make a copy of @attrs and sanitize it */
3969 3970 3971
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3986
	mutex_lock(&wq_pool_mutex);
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

4008
	mutex_unlock(&wq_pool_mutex);
4009

4010
	/* all pwqs have been created successfully, let's install'em */
4011
	mutex_lock(&wq->mutex);
4012

4013
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4014 4015

	/* save the previous pwq and install the new one */
4016
	for_each_node(node)
4017 4018 4019 4020 4021
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
4022 4023

	mutex_unlock(&wq->mutex);
4024

4025 4026 4027 4028 4029 4030
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
4031 4032 4033
	ret = 0;
	/* fall through */
out_free:
4034
	free_workqueue_attrs(tmp_attrs);
4035
	free_workqueue_attrs(new_attrs);
4036
	kfree(pwq_tbl);
4037
	return ret;
4038

4039 4040 4041 4042 4043 4044 4045
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
4046
enomem:
4047 4048
	ret = -ENOMEM;
	goto out_free;
4049 4050
}

4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
4096 4097
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
	 * wq's, the default pwq should be used.  If @pwq is already the
	 * default one, nothing to do; otherwise, install the default one.
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
		if (pwq == wq->dfl_pwq)
			goto out_unlock;
		else
			goto use_dfl_pwq;
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			   wq->name);
4126 4127
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4150
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4151
{
4152
	bool highpri = wq->flags & WQ_HIGHPRI;
4153
	int cpu, ret;
4154 4155

	if (!(wq->flags & WQ_UNBOUND)) {
4156 4157
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4158 4159 4160
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4161 4162
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4163
			struct worker_pool *cpu_pools =
4164
				per_cpu(cpu_worker_pools, cpu);
4165

4166 4167 4168
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4169
			link_pwq(pwq);
4170
			mutex_unlock(&wq->mutex);
4171
		}
4172
		return 0;
4173 4174 4175 4176 4177 4178 4179
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4180
	} else {
4181
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4182
	}
T
Tejun Heo 已提交
4183 4184
}

4185 4186
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4187
{
4188 4189 4190
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4191 4192
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4193

4194
	return clamp_val(max_active, 1, lim);
4195 4196
}

4197
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4198 4199 4200
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4201
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4202
{
4203
	size_t tbl_size = 0;
4204
	va_list args;
L
Linus Torvalds 已提交
4205
	struct workqueue_struct *wq;
4206
	struct pool_workqueue *pwq;
4207

4208 4209 4210 4211
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4212
	/* allocate wq and format name */
4213 4214 4215 4216
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4217
	if (!wq)
4218
		return NULL;
4219

4220 4221 4222 4223 4224 4225
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4226 4227
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4228
	va_end(args);
L
Linus Torvalds 已提交
4229

4230
	max_active = max_active ?: WQ_DFL_ACTIVE;
4231
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4232

4233
	/* init wq */
4234
	wq->flags = flags;
4235
	wq->saved_max_active = max_active;
4236
	mutex_init(&wq->mutex);
4237
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4238
	INIT_LIST_HEAD(&wq->pwqs);
4239 4240
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4241
	INIT_LIST_HEAD(&wq->maydays);
4242

4243
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4244
	INIT_LIST_HEAD(&wq->list);
4245

4246
	if (alloc_and_link_pwqs(wq) < 0)
4247
		goto err_free_wq;
T
Tejun Heo 已提交
4248

4249 4250 4251 4252 4253
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4254 4255
		struct worker *rescuer;

4256
		rescuer = alloc_worker();
4257
		if (!rescuer)
4258
			goto err_destroy;
4259

4260 4261
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4262
					       wq->name);
4263 4264 4265 4266
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4267

4268
		wq->rescuer = rescuer;
4269
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4270
		wake_up_process(rescuer->task);
4271 4272
	}

4273 4274 4275
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4276
	/*
4277 4278 4279
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4280
	 */
4281
	mutex_lock(&wq_pool_mutex);
4282

4283
	mutex_lock(&wq->mutex);
4284 4285
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4286
	mutex_unlock(&wq->mutex);
4287

T
Tejun Heo 已提交
4288
	list_add(&wq->list, &workqueues);
4289

4290
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4291

4292
	return wq;
4293 4294

err_free_wq:
4295
	free_workqueue_attrs(wq->unbound_attrs);
4296 4297 4298 4299
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4300
	return NULL;
4301
}
4302
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4303

4304 4305 4306 4307 4308 4309 4310 4311
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4312
	struct pool_workqueue *pwq;
4313
	int node;
4314

4315 4316
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4317

4318
	/* sanity checks */
4319
	mutex_lock(&wq->mutex);
4320
	for_each_pwq(pwq, wq) {
4321 4322
		int i;

4323 4324
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4325
				mutex_unlock(&wq->mutex);
4326
				return;
4327 4328 4329
			}
		}

4330
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4331
		    WARN_ON(pwq->nr_active) ||
4332
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4333
			mutex_unlock(&wq->mutex);
4334
			return;
4335
		}
4336
	}
4337
	mutex_unlock(&wq->mutex);
4338

4339 4340 4341 4342
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4343
	mutex_lock(&wq_pool_mutex);
4344
	list_del_init(&wq->list);
4345
	mutex_unlock(&wq_pool_mutex);
4346

4347 4348
	workqueue_sysfs_unregister(wq);

4349
	if (wq->rescuer) {
4350
		kthread_stop(wq->rescuer->task);
4351
		kfree(wq->rescuer);
4352
		wq->rescuer = NULL;
4353 4354
	}

T
Tejun Heo 已提交
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4365 4366
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4367
		 */
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4380
		put_pwq_unlocked(pwq);
4381
	}
4382 4383 4384
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4397
	struct pool_workqueue *pwq;
4398

4399 4400 4401 4402
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4403
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4404

4405
	mutex_lock(&wq->mutex);
4406 4407 4408

	wq->saved_max_active = max_active;

4409 4410
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4411

4412
	mutex_unlock(&wq->mutex);
4413
}
4414
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4415

4416 4417 4418 4419 4420
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4421 4422
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4423 4424 4425 4426 4427
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4428
	return worker && worker->rescue_wq;
4429 4430
}

4431
/**
4432 4433 4434
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4435
 *
4436 4437 4438
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4439
 *
4440 4441 4442 4443 4444 4445
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4446
 * Return:
4447
 * %true if congested, %false otherwise.
4448
 */
4449
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4450
{
4451
	struct pool_workqueue *pwq;
4452 4453
	bool ret;

4454
	rcu_read_lock_sched();
4455

4456 4457 4458
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4459 4460 4461
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4462
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4463

4464
	ret = !list_empty(&pwq->delayed_works);
4465
	rcu_read_unlock_sched();
4466 4467

	return ret;
L
Linus Torvalds 已提交
4468
}
4469
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4470

4471 4472 4473 4474 4475 4476 4477 4478
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4479
 * Return:
4480 4481 4482
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4483
{
4484
	struct worker_pool *pool;
4485 4486
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4487

4488 4489
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4490

4491 4492
	local_irq_save(flags);
	pool = get_work_pool(work);
4493
	if (pool) {
4494
		spin_lock(&pool->lock);
4495 4496
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4497
		spin_unlock(&pool->lock);
4498
	}
4499
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4500

4501
	return ret;
L
Linus Torvalds 已提交
4502
}
4503
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4504

4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4582 4583 4584
/*
 * CPU hotplug.
 *
4585
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4586
 * are a lot of assumptions on strong associations among work, pwq and
4587
 * pool which make migrating pending and scheduled works very
4588
 * difficult to implement without impacting hot paths.  Secondly,
4589
 * worker pools serve mix of short, long and very long running works making
4590 4591
 * blocked draining impractical.
 *
4592
 * This is solved by allowing the pools to be disassociated from the CPU
4593 4594
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4595
 */
L
Linus Torvalds 已提交
4596

4597
static void wq_unbind_fn(struct work_struct *work)
4598
{
4599
	int cpu = smp_processor_id();
4600
	struct worker_pool *pool;
4601
	struct worker *worker;
4602
	int wi;
4603

4604
	for_each_cpu_worker_pool(pool, cpu) {
4605
		WARN_ON_ONCE(cpu != smp_processor_id());
4606

4607
		mutex_lock(&pool->manager_mutex);
4608
		spin_lock_irq(&pool->lock);
4609

4610
		/*
4611
		 * We've blocked all manager operations.  Make all workers
4612 4613 4614 4615 4616
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4617
		for_each_pool_worker(worker, wi, pool)
4618
			worker->flags |= WORKER_UNBOUND;
4619

4620
		pool->flags |= POOL_DISASSOCIATED;
4621

4622
		spin_unlock_irq(&pool->lock);
4623
		mutex_unlock(&pool->manager_mutex);
4624

4625 4626 4627 4628 4629 4630 4631
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4632

4633 4634 4635 4636 4637 4638 4639 4640
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4641
		atomic_set(&pool->nr_running, 0);
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4652 4653
}

T
Tejun Heo 已提交
4654 4655 4656 4657
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4658
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4659 4660 4661
 */
static void rebind_workers(struct worker_pool *pool)
{
4662 4663
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4664 4665 4666

	lockdep_assert_held(&pool->manager_mutex);

4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4677

4678
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4679

4680 4681
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4682 4683

		/*
4684 4685 4686 4687 4688 4689
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4690
		 */
4691 4692
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4693

4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4713
	}
4714 4715

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4716 4717
}

4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4751 4752 4753 4754
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4755
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4756 4757
					       unsigned long action,
					       void *hcpu)
4758
{
4759
	int cpu = (unsigned long)hcpu;
4760
	struct worker_pool *pool;
4761
	struct workqueue_struct *wq;
4762
	int pi;
4763

T
Tejun Heo 已提交
4764
	switch (action & ~CPU_TASKS_FROZEN) {
4765
	case CPU_UP_PREPARE:
4766
		for_each_cpu_worker_pool(pool, cpu) {
4767 4768
			if (pool->nr_workers)
				continue;
4769
			if (create_and_start_worker(pool) < 0)
4770
				return NOTIFY_BAD;
4771
		}
T
Tejun Heo 已提交
4772
		break;
4773

4774 4775
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4776
		mutex_lock(&wq_pool_mutex);
4777 4778

		for_each_pool(pool, pi) {
4779
			mutex_lock(&pool->manager_mutex);
4780

4781 4782 4783 4784
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4785

4786 4787 4788 4789
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4790

4791
			mutex_unlock(&pool->manager_mutex);
4792
		}
4793

4794 4795 4796 4797
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4798
		mutex_unlock(&wq_pool_mutex);
4799
		break;
4800
	}
4801 4802 4803 4804 4805 4806 4807
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4808
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4809 4810 4811
						 unsigned long action,
						 void *hcpu)
{
4812
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4813
	struct work_struct unbind_work;
4814
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4815

4816 4817
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4818
		/* unbinding per-cpu workers should happen on the local CPU */
4819
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4820
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4821 4822 4823 4824 4825 4826 4827 4828

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4829
		flush_work(&unbind_work);
4830
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4831
		break;
4832 4833 4834 4835
	}
	return NOTIFY_OK;
}

4836
#ifdef CONFIG_SMP
4837

4838
struct work_for_cpu {
4839
	struct work_struct work;
4840 4841 4842 4843 4844
	long (*fn)(void *);
	void *arg;
	long ret;
};

4845
static void work_for_cpu_fn(struct work_struct *work)
4846
{
4847 4848
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4849 4850 4851 4852 4853 4854 4855 4856 4857
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4858
 * It is up to the caller to ensure that the cpu doesn't go offline.
4859
 * The caller must not hold any locks which would prevent @fn from completing.
4860 4861
 *
 * Return: The value @fn returns.
4862
 */
4863
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4864
{
4865
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4866

4867 4868
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4869
	flush_work(&wfc.work);
4870
	destroy_work_on_stack(&wfc.work);
4871 4872 4873 4874 4875
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4876 4877 4878 4879 4880
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4881
 * Start freezing workqueues.  After this function returns, all freezable
4882
 * workqueues will queue new works to their delayed_works list instead of
4883
 * pool->worklist.
4884 4885
 *
 * CONTEXT:
4886
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4887 4888 4889
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4890
	struct worker_pool *pool;
4891 4892
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4893
	int pi;
4894

4895
	mutex_lock(&wq_pool_mutex);
4896

4897
	WARN_ON_ONCE(workqueue_freezing);
4898 4899
	workqueue_freezing = true;

4900
	/* set FREEZING */
4901
	for_each_pool(pool, pi) {
4902
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4903 4904
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4905
		spin_unlock_irq(&pool->lock);
4906
	}
4907

4908
	list_for_each_entry(wq, &workqueues, list) {
4909
		mutex_lock(&wq->mutex);
4910 4911
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4912
		mutex_unlock(&wq->mutex);
4913
	}
4914

4915
	mutex_unlock(&wq_pool_mutex);
4916 4917 4918
}

/**
4919
 * freeze_workqueues_busy - are freezable workqueues still busy?
4920 4921 4922 4923 4924
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4925
 * Grabs and releases wq_pool_mutex.
4926
 *
4927
 * Return:
4928 4929
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4930 4931 4932 4933
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4934 4935
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4936

4937
	mutex_lock(&wq_pool_mutex);
4938

4939
	WARN_ON_ONCE(!workqueue_freezing);
4940

4941 4942 4943
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4944 4945 4946 4947
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4948
		rcu_read_lock_sched();
4949
		for_each_pwq(pwq, wq) {
4950
			WARN_ON_ONCE(pwq->nr_active < 0);
4951
			if (pwq->nr_active) {
4952
				busy = true;
4953
				rcu_read_unlock_sched();
4954 4955 4956
				goto out_unlock;
			}
		}
4957
		rcu_read_unlock_sched();
4958 4959
	}
out_unlock:
4960
	mutex_unlock(&wq_pool_mutex);
4961 4962 4963 4964 4965 4966 4967
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4968
 * frozen works are transferred to their respective pool worklists.
4969 4970
 *
 * CONTEXT:
4971
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4972 4973 4974
 */
void thaw_workqueues(void)
{
4975 4976 4977
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4978
	int pi;
4979

4980
	mutex_lock(&wq_pool_mutex);
4981 4982 4983 4984

	if (!workqueue_freezing)
		goto out_unlock;

4985
	/* clear FREEZING */
4986
	for_each_pool(pool, pi) {
4987
		spin_lock_irq(&pool->lock);
4988 4989
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4990
		spin_unlock_irq(&pool->lock);
4991
	}
4992

4993 4994
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4995
		mutex_lock(&wq->mutex);
4996 4997
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4998
		mutex_unlock(&wq->mutex);
4999 5000 5001 5002
	}

	workqueue_freezing = false;
out_unlock:
5003
	mutex_unlock(&wq_pool_mutex);
5004 5005 5006
}
#endif /* CONFIG_FREEZER */

5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

5019 5020 5021 5022 5023
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

5024 5025 5026
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

5027 5028 5029 5030 5031 5032 5033 5034 5035
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
5036 5037
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5053
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
5054
{
T
Tejun Heo 已提交
5055 5056
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5057

5058 5059 5060 5061
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5062
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5063
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5064

5065 5066
	wq_numa_init();

5067
	/* initialize CPU pools */
5068
	for_each_possible_cpu(cpu) {
5069
		struct worker_pool *pool;
5070

T
Tejun Heo 已提交
5071
		i = 0;
5072
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5073
			BUG_ON(init_worker_pool(pool));
5074
			pool->cpu = cpu;
5075
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5076
			pool->attrs->nice = std_nice[i++];
5077
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5078

T
Tejun Heo 已提交
5079
			/* alloc pool ID */
5080
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5081
			BUG_ON(worker_pool_assign_id(pool));
5082
			mutex_unlock(&wq_pool_mutex);
5083
		}
5084 5085
	}

5086
	/* create the initial worker */
5087
	for_each_online_cpu(cpu) {
5088
		struct worker_pool *pool;
5089

5090
		for_each_cpu_worker_pool(pool, cpu) {
5091
			pool->flags &= ~POOL_DISASSOCIATED;
5092
			BUG_ON(create_and_start_worker(pool) < 0);
5093
		}
5094 5095
	}

5096
	/* create default unbound and ordered wq attrs */
5097 5098 5099 5100 5101 5102
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5113 5114
	}

5115
	system_wq = alloc_workqueue("events", 0, 0);
5116
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5117
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5118 5119
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5120 5121
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5122 5123 5124 5125 5126
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5127
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5128 5129 5130
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5131
	return 0;
L
Linus Torvalds 已提交
5132
}
5133
early_initcall(init_workqueues);