workqueue.c 140.1 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67 68
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
69
	 * create_worker() is in progress.
70
	 */
71
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
72
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
74

T
Tejun Heo 已提交
75 76 77 78
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
79
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83

84 85
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
86

87
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88

89
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
90
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91

92 93 94
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

95 96 97
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
98 99 100 101 102 103 104 105
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
106
	HIGHPRI_NICE_LEVEL	= -20,
107 108

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
109
};
L
Linus Torvalds 已提交
110 111

/*
T
Tejun Heo 已提交
112 113
 * Structure fields follow one of the following exclusion rules.
 *
114 115
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
116
 *
117 118 119
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
120
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
121
 *
122 123 124 125
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
126
 *
127 128 129
 * MG: pool->manager_mutex and pool->lock protected.  Writes require both
 *     locks.  Reads can happen under either lock.
 *
130
 * PL: wq_pool_mutex protected.
131
 *
132
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
133
 *
134 135
 * WQ: wq->mutex protected.
 *
136
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
137 138
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
139 140
 */

141
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
142

143
struct worker_pool {
144
	spinlock_t		lock;		/* the pool lock */
145
	int			cpu;		/* I: the associated cpu */
146
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
147
	int			id;		/* I: pool ID */
148
	unsigned int		flags;		/* X: flags */
149 150 151

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
152 153

	/* nr_idle includes the ones off idle_list for rebinding */
154 155 156 157 158 159
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

160
	/* a workers is either on busy_hash or idle_list, or the manager */
161 162 163
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

164
	/* see manage_workers() for details on the two manager mutexes */
165
	struct mutex		manager_arb;	/* manager arbitration */
166
	struct mutex		manager_mutex;	/* manager exclusion */
167
	struct idr		worker_idr;	/* MG: worker IDs and iteration */
168

T
Tejun Heo 已提交
169
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 171
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
172

173 174 175 176 177 178
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 180 181 182 183 184

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
185 186
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
187
/*
188 189 190 191
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
192
 */
193
struct pool_workqueue {
194
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
195
	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 197
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
198
	int			refcnt;		/* L: reference count */
199 200
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
201
	int			nr_active;	/* L: nr of active works */
202
	int			max_active;	/* L: max active works */
203
	struct list_head	delayed_works;	/* L: delayed works */
204
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
206 207 208 209 210

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
211
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
212 213 214
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
215
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
216

217 218 219 220
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
221 222
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
223 224 225
	struct completion	done;		/* flush completion */
};

226 227
struct wq_device;

L
Linus Torvalds 已提交
228
/*
229 230
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
231 232
 */
struct workqueue_struct {
233
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234
	struct list_head	list;		/* PL: list of all workqueues */
235

236 237 238
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
239
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 241 242
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243

244
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 246
	struct worker		*rescuer;	/* I: rescue worker */

247
	int			nr_drainers;	/* WQ: drain in progress */
248
	int			saved_max_active; /* WQ: saved pwq max_active */
249

250
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252

253 254 255
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
256
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
257
	struct lockdep_map	lockdep_map;
258
#endif
259
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260 261 262 263

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
265 266
};

267 268
static struct kmem_cache *pwq_cache;

269 270 271 272
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

273 274 275
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

276 277 278 279 280 281 282 283 284
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

285 286
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

287 288 289
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

290
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
291
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
292

293 294
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
295 296 297 298 299

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

300
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
301

302
/* PL: hash of all unbound pools keyed by pool->attrs */
303 304
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

305
/* I: attributes used when instantiating standard unbound pools on demand */
306 307
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

308
struct workqueue_struct *system_wq __read_mostly;
309
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
310
struct workqueue_struct *system_highpri_wq __read_mostly;
311
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
312
struct workqueue_struct *system_long_wq __read_mostly;
313
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
314
struct workqueue_struct *system_unbound_wq __read_mostly;
315
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
316
struct workqueue_struct *system_freezable_wq __read_mostly;
317
EXPORT_SYMBOL_GPL(system_freezable_wq);
318 319 320 321
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
322

323 324 325 326
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

327 328 329
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

330
#define assert_rcu_or_pool_mutex()					\
331
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
332 333
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
334

335
#define assert_rcu_or_wq_mutex(wq)					\
336
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
337
			   lockdep_is_held(&wq->mutex),			\
338
			   "sched RCU or wq->mutex should be held")
339

340 341
#ifdef CONFIG_LOCKDEP
#define assert_manager_or_pool_lock(pool)				\
342 343
	WARN_ONCE(debug_locks &&					\
		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
344 345 346 347 348 349
		  !lockdep_is_held(&(pool)->lock),			\
		  "pool->manager_mutex or ->lock should be held")
#else
#define assert_manager_or_pool_lock(pool)	do { } while (0)
#endif

350 351 352
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
353
	     (pool)++)
354

T
Tejun Heo 已提交
355 356 357
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
358
 * @pi: integer used for iteration
359
 *
360 361 362
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
363 364 365
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
366
 */
367 368
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
369
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
370
		else
T
Tejun Heo 已提交
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
 * This must be called with either @pool->manager_mutex or ->lock held.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
		else

388 389 390 391
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
392
 *
393
 * This must be called either with wq->mutex held or sched RCU read locked.
394 395
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
396 397 398
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
399 400
 */
#define for_each_pwq(pwq, wq)						\
401
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
402
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
403
		else
404

405 406 407 408
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

409 410 411 412 413
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
449
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
485
	.debug_hint	= work_debug_hint,
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

T
Tejun Heo 已提交
521 522 523 524 525
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

526
	lockdep_assert_held(&wq_pool_mutex);
527

T
Tejun Heo 已提交
528
	ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
529
	if (ret >= 0) {
T
Tejun Heo 已提交
530
		pool->id = ret;
531 532
		return 0;
	}
533
	return ret;
534 535
}

536 537 538 539 540 541 542 543
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
544 545
 *
 * Return: The unbound pool_workqueue for @node.
546 547 548 549 550 551 552 553
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
569

570
/*
571 572
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
573
 * is cleared and the high bits contain OFFQ flags and pool ID.
574
 *
575 576
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
577 578
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
579
 *
580
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
581
 * corresponding to a work.  Pool is available once the work has been
582
 * queued anywhere after initialization until it is sync canceled.  pwq is
583
 * available only while the work item is queued.
584
 *
585 586 587 588
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
589
 */
590 591
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
592
{
593
	WARN_ON_ONCE(!work_pending(work));
594 595
	atomic_long_set(&work->data, data | flags | work_static(work));
}
596

597
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
598 599
			 unsigned long extra_flags)
{
600 601
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
602 603
}

604 605 606 607 608 609 610
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

611 612
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
613
{
614 615 616 617 618 619 620
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
621
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
622
}
623

624
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
625
{
626 627
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
628 629
}

630
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
631
{
632
	unsigned long data = atomic_long_read(&work->data);
633

634
	if (data & WORK_STRUCT_PWQ)
635 636 637
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
638 639
}

640 641 642 643
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
644 645 646
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
647 648 649 650 651
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
652 653
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
654 655
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
656
{
657
	unsigned long data = atomic_long_read(&work->data);
658
	int pool_id;
659

660
	assert_rcu_or_pool_mutex();
661

662 663
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
664
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
665

666 667
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
668 669
		return NULL;

670
	return idr_find(&worker_pool_idr, pool_id);
671 672 673 674 675 676
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
677
 * Return: The worker_pool ID @work was last associated with.
678 679 680 681
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
682 683
	unsigned long data = atomic_long_read(&work->data);

684 685
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
686
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
687

688
	return data >> WORK_OFFQ_POOL_SHIFT;
689 690
}

691 692
static void mark_work_canceling(struct work_struct *work)
{
693
	unsigned long pool_id = get_work_pool_id(work);
694

695 696
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
697 698 699 700 701 702
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

703
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
704 705
}

706
/*
707 708
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
709
 * they're being called with pool->lock held.
710 711
 */

712
static bool __need_more_worker(struct worker_pool *pool)
713
{
714
	return !atomic_read(&pool->nr_running);
715 716
}

717
/*
718 719
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
720 721
 *
 * Note that, because unbound workers never contribute to nr_running, this
722
 * function will always return %true for unbound pools as long as the
723
 * worklist isn't empty.
724
 */
725
static bool need_more_worker(struct worker_pool *pool)
726
{
727
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
728
}
729

730
/* Can I start working?  Called from busy but !running workers. */
731
static bool may_start_working(struct worker_pool *pool)
732
{
733
	return pool->nr_idle;
734 735 736
}

/* Do I need to keep working?  Called from currently running workers. */
737
static bool keep_working(struct worker_pool *pool)
738
{
739 740
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
741 742 743
}

/* Do we need a new worker?  Called from manager. */
744
static bool need_to_create_worker(struct worker_pool *pool)
745
{
746
	return need_more_worker(pool) && !may_start_working(pool);
747
}
748

749
/* Do I need to be the manager? */
750
static bool need_to_manage_workers(struct worker_pool *pool)
751
{
752
	return need_to_create_worker(pool) ||
753
		(pool->flags & POOL_MANAGE_WORKERS);
754 755 756
}

/* Do we have too many workers and should some go away? */
757
static bool too_many_workers(struct worker_pool *pool)
758
{
759
	bool managing = mutex_is_locked(&pool->manager_arb);
760 761
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
762

763 764 765 766 767 768 769
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

770
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
771 772
}

773
/*
774 775 776
 * Wake up functions.
 */

777
/* Return the first worker.  Safe with preemption disabled */
778
static struct worker *first_worker(struct worker_pool *pool)
779
{
780
	if (unlikely(list_empty(&pool->idle_list)))
781 782
		return NULL;

783
	return list_first_entry(&pool->idle_list, struct worker, entry);
784 785 786 787
}

/**
 * wake_up_worker - wake up an idle worker
788
 * @pool: worker pool to wake worker from
789
 *
790
 * Wake up the first idle worker of @pool.
791 792
 *
 * CONTEXT:
793
 * spin_lock_irq(pool->lock).
794
 */
795
static void wake_up_worker(struct worker_pool *pool)
796
{
797
	struct worker *worker = first_worker(pool);
798 799 800 801 802

	if (likely(worker))
		wake_up_process(worker->task);
}

803
/**
804 805 806 807 808 809 810 811 812 813
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
814
void wq_worker_waking_up(struct task_struct *task, int cpu)
815 816 817
{
	struct worker *worker = kthread_data(task);

818
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
819
		WARN_ON_ONCE(worker->pool->cpu != cpu);
820
		atomic_inc(&worker->pool->nr_running);
821
	}
822 823 824 825 826 827 828 829 830 831 832 833 834 835
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
836
 * Return:
837 838
 * Worker task on @cpu to wake up, %NULL if none.
 */
839
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
840 841
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
842
	struct worker_pool *pool;
843

844 845 846 847 848
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
849
	if (worker->flags & WORKER_NOT_RUNNING)
850 851
		return NULL;

852 853
	pool = worker->pool;

854
	/* this can only happen on the local cpu */
855 856
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
857 858 859 860 861 862

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
863 864 865
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
866
	 * manipulating idle_list, so dereferencing idle_list without pool
867
	 * lock is safe.
868
	 */
869 870
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
871
		to_wakeup = first_worker(pool);
872 873 874 875 876
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
877
 * @worker: self
878 879 880
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
881 882 883
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
884
 *
885
 * CONTEXT:
886
 * spin_lock_irq(pool->lock)
887 888 889 890
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
891
	struct worker_pool *pool = worker->pool;
892

893 894
	WARN_ON_ONCE(worker->task != current);

895 896 897 898 899 900 901 902
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
903
			if (atomic_dec_and_test(&pool->nr_running) &&
904
			    !list_empty(&pool->worklist))
905
				wake_up_worker(pool);
906
		} else
907
			atomic_dec(&pool->nr_running);
908 909
	}

910 911 912 913
	worker->flags |= flags;
}

/**
914
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
915
 * @worker: self
916 917
 * @flags: flags to clear
 *
918
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
919
 *
920
 * CONTEXT:
921
 * spin_lock_irq(pool->lock)
922 923 924
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
925
	struct worker_pool *pool = worker->pool;
926 927
	unsigned int oflags = worker->flags;

928 929
	WARN_ON_ONCE(worker->task != current);

930
	worker->flags &= ~flags;
931

932 933 934 935 936
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
937 938
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
939
			atomic_inc(&pool->nr_running);
940 941
}

942 943
/**
 * find_worker_executing_work - find worker which is executing a work
944
 * @pool: pool of interest
945 946
 * @work: work to find worker for
 *
947 948
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
949 950 951 952 953 954 955 956 957 958 959 960
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
961 962 963 964 965 966
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
967 968
 *
 * CONTEXT:
969
 * spin_lock_irq(pool->lock).
970
 *
971 972
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
973
 * otherwise.
974
 */
975
static struct worker *find_worker_executing_work(struct worker_pool *pool,
976
						 struct work_struct *work)
977
{
978 979
	struct worker *worker;

980
	hash_for_each_possible(pool->busy_hash, worker, hentry,
981 982 983
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
984 985 986
			return worker;

	return NULL;
987 988
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1004
 * spin_lock_irq(pool->lock).
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1088
static void pwq_activate_delayed_work(struct work_struct *work)
1089
{
1090
	struct pool_workqueue *pwq = get_work_pwq(work);
1091 1092

	trace_workqueue_activate_work(work);
1093
	move_linked_works(work, &pwq->pool->worklist, NULL);
1094
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1095
	pwq->nr_active++;
1096 1097
}

1098
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1099
{
1100
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1101 1102
						    struct work_struct, entry);

1103
	pwq_activate_delayed_work(work);
1104 1105
}

1106
/**
1107 1108
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1109 1110 1111
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1112
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1113 1114
 *
 * CONTEXT:
1115
 * spin_lock_irq(pool->lock).
1116
 */
1117
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1118
{
T
Tejun Heo 已提交
1119
	/* uncolored work items don't participate in flushing or nr_active */
1120
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1121
		goto out_put;
1122

1123
	pwq->nr_in_flight[color]--;
1124

1125 1126
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1127
		/* one down, submit a delayed one */
1128 1129
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1130 1131 1132
	}

	/* is flush in progress and are we at the flushing tip? */
1133
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1134
		goto out_put;
1135 1136

	/* are there still in-flight works? */
1137
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1138
		goto out_put;
1139

1140 1141
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1142 1143

	/*
1144
	 * If this was the last pwq, wake up the first flusher.  It
1145 1146
	 * will handle the rest.
	 */
1147 1148
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1149 1150
out_put:
	put_pwq(pwq);
1151 1152
}

1153
/**
1154
 * try_to_grab_pending - steal work item from worklist and disable irq
1155 1156
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1157
 * @flags: place to store irq state
1158 1159
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1160
 * stable state - idle, on timer or on worklist.
1161
 *
1162
 * Return:
1163 1164 1165
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1166 1167
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1168
 *
1169
 * Note:
1170
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1171 1172 1173
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1174 1175 1176 1177
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1178
 * This function is safe to call from any context including IRQ handler.
1179
 */
1180 1181
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1182
{
1183
	struct worker_pool *pool;
1184
	struct pool_workqueue *pwq;
1185

1186 1187
	local_irq_save(*flags);

1188 1189 1190 1191
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1192 1193 1194 1195 1196
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1197 1198 1199 1200 1201
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1202 1203 1204 1205 1206 1207 1208
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1209 1210
	pool = get_work_pool(work);
	if (!pool)
1211
		goto fail;
1212

1213
	spin_lock(&pool->lock);
1214
	/*
1215 1216 1217 1218 1219
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1220 1221
	 * item is currently queued on that pool.
	 */
1222 1223
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1224 1225 1226 1227 1228
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1229
		 * on the delayed_list, will confuse pwq->nr_active
1230 1231 1232 1233
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1234
			pwq_activate_delayed_work(work);
1235 1236

		list_del_init(&work->entry);
1237
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1238

1239
		/* work->data points to pwq iff queued, point to pool */
1240 1241 1242 1243
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1244
	}
1245
	spin_unlock(&pool->lock);
1246 1247 1248 1249 1250
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1251
	return -EAGAIN;
1252 1253
}

T
Tejun Heo 已提交
1254
/**
1255
 * insert_work - insert a work into a pool
1256
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1257 1258 1259 1260
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1261
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1262
 * work_struct flags.
T
Tejun Heo 已提交
1263 1264
 *
 * CONTEXT:
1265
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1266
 */
1267 1268
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1269
{
1270
	struct worker_pool *pool = pwq->pool;
1271

T
Tejun Heo 已提交
1272
	/* we own @work, set data and link */
1273
	set_work_pwq(work, pwq, extra_flags);
1274
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1275
	get_pwq(pwq);
1276 1277

	/*
1278 1279 1280
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1281 1282 1283
	 */
	smp_mb();

1284 1285
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1286 1287
}

1288 1289
/*
 * Test whether @work is being queued from another work executing on the
1290
 * same workqueue.
1291 1292 1293
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1294 1295 1296 1297 1298 1299 1300
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1301
	return worker && worker->current_pwq->wq == wq;
1302 1303
}

1304
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1305 1306
			 struct work_struct *work)
{
1307
	struct pool_workqueue *pwq;
1308
	struct worker_pool *last_pool;
1309
	struct list_head *worklist;
1310
	unsigned int work_flags;
1311
	unsigned int req_cpu = cpu;
1312 1313 1314 1315 1316 1317 1318 1319

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1320

1321
	debug_work_activate(work);
1322

1323
	/* if dying, only works from the same workqueue are allowed */
1324
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1325
	    WARN_ON_ONCE(!is_chained_work(wq)))
1326
		return;
1327
retry:
1328 1329 1330
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1331
	/* pwq which will be used unless @work is executing elsewhere */
1332
	if (!(wq->flags & WQ_UNBOUND))
1333
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1334 1335
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1336

1337 1338 1339 1340 1341 1342 1343 1344
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1345

1346
		spin_lock(&last_pool->lock);
1347

1348
		worker = find_worker_executing_work(last_pool, work);
1349

1350 1351
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1352
		} else {
1353 1354
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1355
			spin_lock(&pwq->pool->lock);
1356
		}
1357
	} else {
1358
		spin_lock(&pwq->pool->lock);
1359 1360
	}

1361 1362 1363 1364
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1365 1366
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1380 1381
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1382

1383
	if (WARN_ON(!list_empty(&work->entry))) {
1384
		spin_unlock(&pwq->pool->lock);
1385 1386
		return;
	}
1387

1388 1389
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1390

1391
	if (likely(pwq->nr_active < pwq->max_active)) {
1392
		trace_workqueue_activate_work(work);
1393 1394
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1395 1396
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1397
		worklist = &pwq->delayed_works;
1398
	}
1399

1400
	insert_work(pwq, work, worklist, work_flags);
1401

1402
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1403 1404
}

1405
/**
1406 1407
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1408 1409 1410
 * @wq: workqueue to use
 * @work: work to queue
 *
1411 1412
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1413 1414
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1415
 */
1416 1417
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1418
{
1419
	bool ret = false;
1420
	unsigned long flags;
1421

1422
	local_irq_save(flags);
1423

1424
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1425
		__queue_work(cpu, wq, work);
1426
		ret = true;
1427
	}
1428

1429
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1430 1431
	return ret;
}
1432
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1433

1434
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1435
{
1436
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1437

1438
	/* should have been called from irqsafe timer with irq already off */
1439
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1440
}
1441
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1442

1443 1444
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1445
{
1446 1447 1448 1449 1450
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1451 1452
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1465
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1466

1467
	dwork->wq = wq;
1468
	dwork->cpu = cpu;
1469 1470 1471 1472 1473 1474
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1475 1476
}

1477 1478 1479 1480
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1481
 * @dwork: work to queue
1482 1483
 * @delay: number of jiffies to wait before queueing
 *
1484
 * Return: %false if @work was already on a queue, %true otherwise.  If
1485 1486
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1487
 */
1488 1489
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1490
{
1491
	struct work_struct *work = &dwork->work;
1492
	bool ret = false;
1493
	unsigned long flags;
1494

1495 1496
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1497

1498
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1499
		__queue_delayed_work(cpu, wq, dwork, delay);
1500
		ret = true;
1501
	}
1502

1503
	local_irq_restore(flags);
1504 1505
	return ret;
}
1506
EXPORT_SYMBOL(queue_delayed_work_on);
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1520
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1521 1522
 * pending and its timer was modified.
 *
1523
 * This function is safe to call from any context including IRQ handler.
1524 1525 1526 1527 1528 1529 1530
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1531

1532 1533 1534
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1535

1536 1537 1538
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1539
	}
1540 1541

	/* -ENOENT from try_to_grab_pending() becomes %true */
1542 1543
	return ret;
}
1544 1545
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1546 1547 1548 1549 1550 1551 1552 1553
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1554
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1555 1556
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1557
{
1558
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1559

1560 1561 1562 1563
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1564

1565 1566
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1567
	pool->nr_idle++;
1568
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1569 1570

	/* idle_list is LIFO */
1571
	list_add(&worker->entry, &pool->idle_list);
1572

1573 1574
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1575

1576
	/*
1577
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1578
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1579 1580
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1581
	 */
1582
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1583
		     pool->nr_workers == pool->nr_idle &&
1584
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1594
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1595 1596 1597
 */
static void worker_leave_idle(struct worker *worker)
{
1598
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1599

1600 1601
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1602
	worker_clr_flags(worker, WORKER_IDLE);
1603
	pool->nr_idle--;
T
Tejun Heo 已提交
1604 1605 1606
	list_del_init(&worker->entry);
}

1607
/**
1608 1609 1610 1611
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1612 1613 1614 1615 1616 1617
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1618
 * This function is to be used by unbound workers and rescuers to bind
1619 1620 1621
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1622
 * verbatim as it's best effort and blocking and pool may be
1623 1624
 * [dis]associated in the meantime.
 *
1625
 * This function tries set_cpus_allowed() and locks pool and verifies the
1626
 * binding against %POOL_DISASSOCIATED which is set during
1627 1628 1629
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1630 1631
 *
 * CONTEXT:
1632
 * Might sleep.  Called without any lock but returns with pool->lock
1633 1634
 * held.
 *
1635
 * Return:
1636
 * %true if the associated pool is online (@worker is successfully
1637 1638
 * bound), %false if offline.
 */
1639
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1640
__acquires(&pool->lock)
1641 1642
{
	while (true) {
1643
		/*
1644 1645 1646
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1647
		 * against POOL_DISASSOCIATED.
1648
		 */
1649
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1650
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1651

1652
		spin_lock_irq(&pool->lock);
1653
		if (pool->flags & POOL_DISASSOCIATED)
1654
			return false;
1655
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1656
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1657
			return true;
1658
		spin_unlock_irq(&pool->lock);
1659

1660 1661 1662 1663 1664 1665
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1666
		cpu_relax();
1667
		cond_resched();
1668 1669 1670
	}
}

T
Tejun Heo 已提交
1671 1672 1673 1674 1675
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1676 1677
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1678
		INIT_LIST_HEAD(&worker->scheduled);
1679 1680
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1681
	}
T
Tejun Heo 已提交
1682 1683 1684 1685 1686
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1687
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1688
 *
1689
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1690 1691 1692 1693 1694 1695
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1696
 * Return:
T
Tejun Heo 已提交
1697 1698
 * Pointer to the newly created worker.
 */
1699
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1700 1701
{
	struct worker *worker = NULL;
1702
	int id = -1;
1703
	char id_buf[16];
T
Tejun Heo 已提交
1704

1705 1706
	lockdep_assert_held(&pool->manager_mutex);

1707 1708 1709 1710 1711
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
	idr_preload(GFP_KERNEL);
1712
	spin_lock_irq(&pool->lock);
1713 1714 1715

	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);

1716
	spin_unlock_irq(&pool->lock);
1717 1718 1719
	idr_preload_end();
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1720 1721 1722 1723 1724

	worker = alloc_worker();
	if (!worker)
		goto fail;

1725
	worker->pool = pool;
T
Tejun Heo 已提交
1726 1727
	worker->id = id;

1728
	if (pool->cpu >= 0)
1729 1730
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1731
	else
1732 1733
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1734
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1735
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1736 1737 1738
	if (IS_ERR(worker->task))
		goto fail;

1739 1740 1741 1742 1743
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1744 1745 1746 1747
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1748
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1749

T
Tejun Heo 已提交
1750 1751 1752 1753 1754 1755
	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1756
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1757

1758 1759 1760 1761 1762
	/* successful, commit the pointer to idr */
	spin_lock_irq(&pool->lock);
	idr_replace(&pool->worker_idr, worker, worker->id);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1763
	return worker;
1764

T
Tejun Heo 已提交
1765 1766
fail:
	if (id >= 0) {
1767
		spin_lock_irq(&pool->lock);
1768
		idr_remove(&pool->worker_idr, id);
1769
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1779
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1780 1781
 *
 * CONTEXT:
1782
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1783 1784 1785
 */
static void start_worker(struct worker *worker)
{
1786
	worker->flags |= WORKER_STARTED;
1787
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1788
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1789 1790 1791
	wake_up_process(worker->task);
}

1792 1793 1794 1795
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1796
 * Grab the managership of @pool and create and start a new worker for it.
1797 1798
 *
 * Return: 0 on success. A negative error code otherwise.
1799 1800 1801 1802 1803
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1804 1805
	mutex_lock(&pool->manager_mutex);

1806 1807 1808 1809 1810 1811 1812
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1813 1814
	mutex_unlock(&pool->manager_mutex);

1815 1816 1817
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1818 1819 1820 1821
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1822
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1823 1824
 *
 * CONTEXT:
1825
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1826 1827 1828
 */
static void destroy_worker(struct worker *worker)
{
1829
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1830

1831 1832 1833
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1834
	/* sanity check frenzy */
1835 1836 1837
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1838

T
Tejun Heo 已提交
1839
	if (worker->flags & WORKER_STARTED)
1840
		pool->nr_workers--;
T
Tejun Heo 已提交
1841
	if (worker->flags & WORKER_IDLE)
1842
		pool->nr_idle--;
T
Tejun Heo 已提交
1843 1844

	list_del_init(&worker->entry);
1845
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1846

1847 1848
	idr_remove(&pool->worker_idr, worker->id);

1849
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1850

T
Tejun Heo 已提交
1851 1852 1853
	kthread_stop(worker->task);
	kfree(worker);

1854
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1855 1856
}

1857
static void idle_worker_timeout(unsigned long __pool)
1858
{
1859
	struct worker_pool *pool = (void *)__pool;
1860

1861
	spin_lock_irq(&pool->lock);
1862

1863
	if (too_many_workers(pool)) {
1864 1865 1866 1867
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1868
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1869 1870 1871
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1872
			mod_timer(&pool->idle_timer, expires);
1873 1874
		else {
			/* it's been idle for too long, wake up manager */
1875
			pool->flags |= POOL_MANAGE_WORKERS;
1876
			wake_up_worker(pool);
1877
		}
1878 1879
	}

1880
	spin_unlock_irq(&pool->lock);
1881
}
1882

1883
static void send_mayday(struct work_struct *work)
1884
{
1885 1886
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1887

1888
	lockdep_assert_held(&wq_mayday_lock);
1889

1890
	if (!wq->rescuer)
1891
		return;
1892 1893

	/* mayday mayday mayday */
1894 1895
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1896
		wake_up_process(wq->rescuer->task);
1897
	}
1898 1899
}

1900
static void pool_mayday_timeout(unsigned long __pool)
1901
{
1902
	struct worker_pool *pool = (void *)__pool;
1903 1904
	struct work_struct *work;

1905
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1906
	spin_lock(&pool->lock);
1907

1908
	if (need_to_create_worker(pool)) {
1909 1910 1911 1912 1913 1914
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1915
		list_for_each_entry(work, &pool->worklist, entry)
1916
			send_mayday(work);
L
Linus Torvalds 已提交
1917
	}
1918

1919
	spin_unlock(&pool->lock);
1920
	spin_unlock_irq(&wq_mayday_lock);
1921

1922
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1923 1924
}

1925 1926
/**
 * maybe_create_worker - create a new worker if necessary
1927
 * @pool: pool to create a new worker for
1928
 *
1929
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1930 1931
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1932
 * sent to all rescuers with works scheduled on @pool to resolve
1933 1934
 * possible allocation deadlock.
 *
1935 1936
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1937 1938
 *
 * LOCKING:
1939
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1940 1941 1942
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1943
 * Return:
1944
 * %false if no action was taken and pool->lock stayed locked, %true
1945 1946
 * otherwise.
 */
1947
static bool maybe_create_worker(struct worker_pool *pool)
1948 1949
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1950
{
1951
	if (!need_to_create_worker(pool))
1952 1953
		return false;
restart:
1954
	spin_unlock_irq(&pool->lock);
1955

1956
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1957
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1958 1959 1960 1961

	while (true) {
		struct worker *worker;

1962
		worker = create_worker(pool);
1963
		if (worker) {
1964
			del_timer_sync(&pool->mayday_timer);
1965
			spin_lock_irq(&pool->lock);
1966
			start_worker(worker);
1967 1968
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1969 1970 1971
			return true;
		}

1972
		if (!need_to_create_worker(pool))
1973
			break;
L
Linus Torvalds 已提交
1974

1975 1976
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1977

1978
		if (!need_to_create_worker(pool))
1979 1980 1981
			break;
	}

1982
	del_timer_sync(&pool->mayday_timer);
1983
	spin_lock_irq(&pool->lock);
1984
	if (need_to_create_worker(pool))
1985 1986 1987 1988 1989 1990
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1991
 * @pool: pool to destroy workers for
1992
 *
1993
 * Destroy @pool workers which have been idle for longer than
1994 1995 1996
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1997
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1998 1999
 * multiple times.  Called only from manager.
 *
2000
 * Return:
2001
 * %false if no action was taken and pool->lock stayed locked, %true
2002 2003
 * otherwise.
 */
2004
static bool maybe_destroy_workers(struct worker_pool *pool)
2005 2006
{
	bool ret = false;
L
Linus Torvalds 已提交
2007

2008
	while (too_many_workers(pool)) {
2009 2010
		struct worker *worker;
		unsigned long expires;
2011

2012
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2013
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2014

2015
		if (time_before(jiffies, expires)) {
2016
			mod_timer(&pool->idle_timer, expires);
2017
			break;
2018
		}
L
Linus Torvalds 已提交
2019

2020 2021
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2022
	}
2023

2024
	return ret;
2025 2026
}

2027
/**
2028 2029
 * manage_workers - manage worker pool
 * @worker: self
2030
 *
2031
 * Assume the manager role and manage the worker pool @worker belongs
2032
 * to.  At any given time, there can be only zero or one manager per
2033
 * pool.  The exclusion is handled automatically by this function.
2034 2035 2036 2037
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2038 2039
 *
 * CONTEXT:
2040
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2041 2042
 * multiple times.  Does GFP_KERNEL allocations.
 *
2043
 * Return:
2044 2045 2046 2047 2048
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
2049
 */
2050
static bool manage_workers(struct worker *worker)
2051
{
2052
	struct worker_pool *pool = worker->pool;
2053
	bool ret = false;
2054

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2076
	if (!mutex_trylock(&pool->manager_arb))
2077
		return ret;
2078

2079
	/*
2080 2081
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2082
	 */
2083
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2084
		spin_unlock_irq(&pool->lock);
2085
		mutex_lock(&pool->manager_mutex);
2086
		spin_lock_irq(&pool->lock);
2087 2088
		ret = true;
	}
2089

2090
	pool->flags &= ~POOL_MANAGE_WORKERS;
2091 2092

	/*
2093 2094
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2095
	 */
2096 2097
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2098

2099
	mutex_unlock(&pool->manager_mutex);
2100
	mutex_unlock(&pool->manager_arb);
2101
	return ret;
2102 2103
}

2104 2105
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2106
 * @worker: self
2107 2108 2109 2110 2111 2112 2113 2114 2115
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2116
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2117
 */
T
Tejun Heo 已提交
2118
static void process_one_work(struct worker *worker, struct work_struct *work)
2119 2120
__releases(&pool->lock)
__acquires(&pool->lock)
2121
{
2122
	struct pool_workqueue *pwq = get_work_pwq(work);
2123
	struct worker_pool *pool = worker->pool;
2124
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2125
	int work_color;
2126
	struct worker *collision;
2127 2128 2129 2130 2131 2132 2133 2134
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2135 2136 2137
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2138
#endif
2139 2140 2141
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2142
	 * unbound or a disassociated pool.
2143
	 */
2144
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2145
		     !(pool->flags & POOL_DISASSOCIATED) &&
2146
		     raw_smp_processor_id() != pool->cpu);
2147

2148 2149 2150 2151 2152 2153
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2154
	collision = find_worker_executing_work(pool, work);
2155 2156 2157 2158 2159
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2160
	/* claim and dequeue */
2161
	debug_work_deactivate(work);
2162
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2163
	worker->current_work = work;
2164
	worker->current_func = work->func;
2165
	worker->current_pwq = pwq;
2166
	work_color = get_work_color(work);
2167

2168 2169
	list_del_init(&work->entry);

2170 2171 2172 2173 2174 2175 2176
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2177
	/*
2178
	 * Unbound pool isn't concurrency managed and work items should be
2179 2180
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2181 2182
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2183

2184
	/*
2185
	 * Record the last pool and clear PENDING which should be the last
2186
	 * update to @work.  Also, do this inside @pool->lock so that
2187 2188
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2189
	 */
2190
	set_work_pool_and_clear_pending(work, pool->id);
2191

2192
	spin_unlock_irq(&pool->lock);
2193

2194
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2195
	lock_map_acquire(&lockdep_map);
2196
	trace_workqueue_execute_start(work);
2197
	worker->current_func(work);
2198 2199 2200 2201 2202
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2203
	lock_map_release(&lockdep_map);
2204
	lock_map_release(&pwq->wq->lockdep_map);
2205 2206

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2207 2208
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2209 2210
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2211 2212 2213 2214
		debug_show_held_locks(current);
		dump_stack();
	}

2215 2216 2217 2218 2219 2220 2221 2222 2223
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2224
	spin_lock_irq(&pool->lock);
2225

2226 2227 2228 2229
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2230
	/* we're done with it, release */
2231
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2232
	worker->current_work = NULL;
2233
	worker->current_func = NULL;
2234
	worker->current_pwq = NULL;
2235
	worker->desc_valid = false;
2236
	pwq_dec_nr_in_flight(pwq, work_color);
2237 2238
}

2239 2240 2241 2242 2243 2244 2245 2246 2247
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2248
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2249 2250 2251
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2252
{
2253 2254
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2255
						struct work_struct, entry);
T
Tejun Heo 已提交
2256
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2257 2258 2259
	}
}

T
Tejun Heo 已提交
2260 2261
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2262
 * @__worker: self
T
Tejun Heo 已提交
2263
 *
2264 2265 2266 2267 2268
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2269 2270
 *
 * Return: 0
T
Tejun Heo 已提交
2271
 */
T
Tejun Heo 已提交
2272
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2273
{
T
Tejun Heo 已提交
2274
	struct worker *worker = __worker;
2275
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2276

2277 2278
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2279
woke_up:
2280
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2281

2282 2283
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2284
		spin_unlock_irq(&pool->lock);
2285 2286 2287
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
		return 0;
T
Tejun Heo 已提交
2288
	}
2289

T
Tejun Heo 已提交
2290
	worker_leave_idle(worker);
2291
recheck:
2292
	/* no more worker necessary? */
2293
	if (!need_more_worker(pool))
2294 2295 2296
		goto sleep;

	/* do we need to manage? */
2297
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2298 2299
		goto recheck;

T
Tejun Heo 已提交
2300 2301 2302 2303 2304
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2305
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2306

2307
	/*
2308 2309 2310 2311 2312
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2313
	 */
2314
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2315 2316

	do {
T
Tejun Heo 已提交
2317
		struct work_struct *work =
2318
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2319 2320 2321 2322 2323 2324
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2325
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2326 2327 2328
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2329
		}
2330
	} while (keep_working(pool));
2331 2332

	worker_set_flags(worker, WORKER_PREP, false);
2333
sleep:
2334
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2335
		goto recheck;
2336

T
Tejun Heo 已提交
2337
	/*
2338 2339 2340 2341 2342
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2343 2344 2345
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2346
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2347 2348
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2349 2350
}

2351 2352
/**
 * rescuer_thread - the rescuer thread function
2353
 * @__rescuer: self
2354 2355
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2356
 * workqueue which has WQ_MEM_RECLAIM set.
2357
 *
2358
 * Regular work processing on a pool may block trying to create a new
2359 2360 2361 2362 2363
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2364 2365
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2366 2367 2368
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2369 2370
 *
 * Return: 0
2371
 */
2372
static int rescuer_thread(void *__rescuer)
2373
{
2374 2375
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2376 2377 2378
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2379 2380 2381 2382 2383 2384

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2385 2386 2387
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2388 2389
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2390
		rescuer->task->flags &= ~PF_WQ_WORKER;
2391
		return 0;
2392
	}
2393

2394
	/* see whether any pwq is asking for help */
2395
	spin_lock_irq(&wq_mayday_lock);
2396 2397 2398 2399

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2400
		struct worker_pool *pool = pwq->pool;
2401 2402 2403
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2404 2405
		list_del_init(&pwq->mayday_node);

2406
		spin_unlock_irq(&wq_mayday_lock);
2407 2408

		/* migrate to the target cpu if possible */
2409
		worker_maybe_bind_and_lock(pool);
2410
		rescuer->pool = pool;
2411 2412 2413 2414 2415

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2416
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2417
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2418
			if (get_work_pwq(work) == pwq)
2419 2420 2421
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2422 2423

		/*
2424
		 * Leave this pool.  If keep_working() is %true, notify a
2425 2426 2427
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2428 2429
		if (keep_working(pool))
			wake_up_worker(pool);
2430

2431
		rescuer->pool = NULL;
2432
		spin_unlock(&pool->lock);
2433
		spin_lock(&wq_mayday_lock);
2434 2435
	}

2436
	spin_unlock_irq(&wq_mayday_lock);
2437

2438 2439
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2440 2441
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2442 2443
}

O
Oleg Nesterov 已提交
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2455 2456
/**
 * insert_wq_barrier - insert a barrier work
2457
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2458
 * @barr: wq_barrier to insert
2459 2460
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2461
 *
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2474
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2475 2476
 *
 * CONTEXT:
2477
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2478
 */
2479
static void insert_wq_barrier(struct pool_workqueue *pwq,
2480 2481
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2482
{
2483 2484 2485
	struct list_head *head;
	unsigned int linked = 0;

2486
	/*
2487
	 * debugobject calls are safe here even with pool->lock locked
2488 2489 2490 2491
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2492
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2493
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2494
	init_completion(&barr->done);
2495

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2511
	debug_work_activate(&barr->work);
2512
	insert_work(pwq, &barr->work, head,
2513
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2514 2515
}

2516
/**
2517
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2518 2519 2520 2521
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2522
 * Prepare pwqs for workqueue flushing.
2523
 *
2524 2525 2526 2527 2528
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2529 2530 2531 2532 2533 2534 2535
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2536
 * If @work_color is non-negative, all pwqs should have the same
2537 2538 2539 2540
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2541
 * mutex_lock(wq->mutex).
2542
 *
2543
 * Return:
2544 2545 2546
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2547
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2548
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2549
{
2550
	bool wait = false;
2551
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2552

2553
	if (flush_color >= 0) {
2554
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2555
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2556
	}
2557

2558
	for_each_pwq(pwq, wq) {
2559
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2560

2561
		spin_lock_irq(&pool->lock);
2562

2563
		if (flush_color >= 0) {
2564
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2565

2566 2567 2568
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2569 2570 2571
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2572

2573
		if (work_color >= 0) {
2574
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2575
			pwq->work_color = work_color;
2576
		}
L
Linus Torvalds 已提交
2577

2578
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2579
	}
2580

2581
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2582
		complete(&wq->first_flusher->done);
2583

2584
	return wait;
L
Linus Torvalds 已提交
2585 2586
}

2587
/**
L
Linus Torvalds 已提交
2588
 * flush_workqueue - ensure that any scheduled work has run to completion.
2589
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2590
 *
2591 2592
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2593
 */
2594
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2595
{
2596 2597 2598 2599 2600 2601
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2602

2603 2604
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2605

2606
	mutex_lock(&wq->mutex);
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2619
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2620 2621 2622 2623 2624
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2625
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2626 2627 2628

			wq->first_flusher = &this_flusher;

2629
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2630 2631 2632 2633 2634 2635 2636 2637
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2638
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2639
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2640
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2651
	mutex_unlock(&wq->mutex);
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2664
	mutex_lock(&wq->mutex);
2665

2666 2667 2668 2669
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2670 2671
	wq->first_flusher = NULL;

2672 2673
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2686 2687
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2707
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2708 2709 2710
		}

		if (list_empty(&wq->flusher_queue)) {
2711
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2712 2713 2714 2715 2716
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2717
		 * the new first flusher and arm pwqs.
2718
		 */
2719 2720
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2721 2722 2723 2724

		list_del_init(&next->list);
		wq->first_flusher = next;

2725
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2736
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2737
}
2738
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2739

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2754
	struct pool_workqueue *pwq;
2755 2756 2757 2758

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2759
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2760
	 */
2761
	mutex_lock(&wq->mutex);
2762
	if (!wq->nr_drainers++)
2763
		wq->flags |= __WQ_DRAINING;
2764
	mutex_unlock(&wq->mutex);
2765 2766 2767
reflush:
	flush_workqueue(wq);

2768
	mutex_lock(&wq->mutex);
2769

2770
	for_each_pwq(pwq, wq) {
2771
		bool drained;
2772

2773
		spin_lock_irq(&pwq->pool->lock);
2774
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2775
		spin_unlock_irq(&pwq->pool->lock);
2776 2777

		if (drained)
2778 2779 2780 2781
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2782
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2783
				wq->name, flush_cnt);
2784

2785
		mutex_unlock(&wq->mutex);
2786 2787 2788 2789
		goto reflush;
	}

	if (!--wq->nr_drainers)
2790
		wq->flags &= ~__WQ_DRAINING;
2791
	mutex_unlock(&wq->mutex);
2792 2793 2794
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2795
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2796
{
2797
	struct worker *worker = NULL;
2798
	struct worker_pool *pool;
2799
	struct pool_workqueue *pwq;
2800 2801

	might_sleep();
2802 2803

	local_irq_disable();
2804
	pool = get_work_pool(work);
2805 2806
	if (!pool) {
		local_irq_enable();
2807
		return false;
2808
	}
2809

2810
	spin_lock(&pool->lock);
2811
	/* see the comment in try_to_grab_pending() with the same code */
2812 2813 2814
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2815
			goto already_gone;
2816
	} else {
2817
		worker = find_worker_executing_work(pool, work);
2818
		if (!worker)
T
Tejun Heo 已提交
2819
			goto already_gone;
2820
		pwq = worker->current_pwq;
2821
	}
2822

2823
	insert_wq_barrier(pwq, barr, work, worker);
2824
	spin_unlock_irq(&pool->lock);
2825

2826 2827 2828 2829 2830 2831
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2832
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2833
		lock_map_acquire(&pwq->wq->lockdep_map);
2834
	else
2835 2836
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2837

2838
	return true;
T
Tejun Heo 已提交
2839
already_gone:
2840
	spin_unlock_irq(&pool->lock);
2841
	return false;
2842
}
2843

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
static bool __flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
}

2857 2858 2859 2860
/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2861 2862
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2863
 *
2864
 * Return:
2865 2866 2867 2868 2869
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2870 2871 2872
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2873
	return __flush_work(work);
2874
}
2875
EXPORT_SYMBOL_GPL(flush_work);
2876

2877
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2878
{
2879
	unsigned long flags;
2880 2881 2882
	int ret;

	do {
2883 2884 2885 2886 2887 2888
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2889
			flush_work(work);
2890 2891
	} while (unlikely(ret < 0));

2892 2893 2894 2895
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2896
	flush_work(work);
2897
	clear_work_data(work);
2898 2899 2900
	return ret;
}

2901
/**
2902 2903
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2904
 *
2905 2906 2907 2908
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2909
 *
2910 2911
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2912
 *
2913
 * The caller must ensure that the workqueue on which @work was last
2914
 * queued can't be destroyed before this function returns.
2915
 *
2916
 * Return:
2917
 * %true if @work was pending, %false otherwise.
2918
 */
2919
bool cancel_work_sync(struct work_struct *work)
2920
{
2921
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2922
}
2923
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2924

2925
/**
2926 2927
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2928
 *
2929 2930 2931
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2932
 *
2933
 * Return:
2934 2935
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2936
 */
2937 2938
bool flush_delayed_work(struct delayed_work *dwork)
{
2939
	local_irq_disable();
2940
	if (del_timer_sync(&dwork->timer))
2941
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2942
	local_irq_enable();
2943 2944 2945 2946
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2947
/**
2948 2949
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2950
 *
2951 2952 2953 2954 2955 2956 2957 2958 2959
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2960
 *
2961
 * This function is safe to call from any context including IRQ handler.
2962
 */
2963
bool cancel_delayed_work(struct delayed_work *dwork)
2964
{
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2975 2976
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2977
	local_irq_restore(flags);
2978
	return ret;
2979
}
2980
EXPORT_SYMBOL(cancel_delayed_work);
2981

2982 2983 2984 2985 2986 2987
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2988
 * Return:
2989 2990 2991
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2992
{
2993
	return __cancel_work_timer(&dwork->work, true);
2994
}
2995
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2996

2997
/**
2998
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2999 3000
 * @func: the function to call
 *
3001 3002
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3003
 * schedule_on_each_cpu() is very slow.
3004
 *
3005
 * Return:
3006
 * 0 on success, -errno on failure.
3007
 */
3008
int schedule_on_each_cpu(work_func_t func)
3009 3010
{
	int cpu;
3011
	struct work_struct __percpu *works;
3012

3013 3014
	works = alloc_percpu(struct work_struct);
	if (!works)
3015
		return -ENOMEM;
3016

3017 3018
	get_online_cpus();

3019
	for_each_online_cpu(cpu) {
3020 3021 3022
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3023
		schedule_work_on(cpu, work);
3024
	}
3025 3026 3027 3028

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3029
	put_online_cpus();
3030
	free_percpu(works);
3031 3032 3033
	return 0;
}

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3058 3059
void flush_scheduled_work(void)
{
3060
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3061
}
3062
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3063

3064 3065 3066 3067 3068 3069 3070 3071 3072
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3073
 * Return:	0 - function was executed
3074 3075
 *		1 - function was scheduled for execution
 */
3076
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3077 3078
{
	if (!in_interrupt()) {
3079
		fn(&ew->work);
3080 3081 3082
		return 0;
	}

3083
	INIT_WORK(&ew->work, fn);
3084 3085 3086 3087 3088 3089
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3117 3118
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3119 3120 3121 3122 3123
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3124
static DEVICE_ATTR_RO(per_cpu);
3125

3126 3127
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3128 3129 3130 3131 3132 3133
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3134 3135 3136
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3147
static DEVICE_ATTR_RW(max_active);
3148

3149 3150 3151 3152
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3153
};
3154
ATTRIBUTE_GROUPS(wq_sysfs);
3155

3156 3157
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3158 3159
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3160 3161
	const char *delim = "";
	int node, written = 0;
3162 3163

	rcu_read_lock_sched();
3164 3165 3166 3167 3168 3169 3170
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3182 3183 3184
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3198 3199 3200
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= -20 && attrs->nice <= 19)
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3231 3232 3233
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3294
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3295
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3296 3297
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3298
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3299 3300 3301 3302 3303
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3304
	.dev_groups			= wq_sysfs_groups,
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3333
 * Return: 0 on success, -errno on failure.
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3426 3427 3428
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3440
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3441 3442 3443 3444 3445 3446
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3447 3448 3449 3450 3451
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3452 3453 3454 3455 3456 3457
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3458 3459 3460 3461 3462 3463 3464 3465
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3466 3467
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3482 3483 3484 3485 3486
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3487 3488
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3489 3490
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3491 3492
 */
static int init_worker_pool(struct worker_pool *pool)
3493 3494
{
	spin_lock_init(&pool->lock);
3495 3496
	pool->id = -1;
	pool->cpu = -1;
3497
	pool->node = NUMA_NO_NODE;
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3511
	mutex_init(&pool->manager_mutex);
3512
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3513

3514 3515 3516 3517
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3518 3519 3520 3521
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3522 3523
}

3524 3525 3526 3527
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3528
	idr_destroy(&pool->worker_idr);
3529 3530 3531 3532 3533 3534 3535 3536 3537
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3538 3539 3540
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3541 3542
 *
 * Should be called with wq_pool_mutex held.
3543 3544 3545 3546 3547
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3548 3549 3550
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3551 3552 3553 3554
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3555
	    WARN_ON(!list_empty(&pool->worklist)))
3556 3557 3558 3559 3560 3561 3562
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3563 3564 3565 3566 3567
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3568
	mutex_lock(&pool->manager_arb);
3569
	mutex_lock(&pool->manager_mutex);
3570 3571 3572 3573 3574 3575 3576
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3577
	mutex_unlock(&pool->manager_mutex);
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3595
 * create a new one.
3596 3597
 *
 * Should be called with wq_pool_mutex held.
3598 3599 3600
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3601 3602 3603 3604 3605
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3606
	int node;
3607

3608
	lockdep_assert_held(&wq_pool_mutex);
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3623 3624 3625
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3626
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3627 3628
	copy_workqueue_attrs(pool->attrs, attrs);

3629 3630 3631 3632 3633 3634
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3646 3647 3648 3649
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3650
	if (create_and_start_worker(pool) < 0)
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3679
	bool is_last;
T
Tejun Heo 已提交
3680 3681 3682 3683

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3684
	/*
3685
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3686 3687 3688
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3689
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3690
	list_del_rcu(&pwq->pwqs_node);
3691
	is_last = list_empty(&wq->pwqs);
3692
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3693

3694
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3695
	put_unbound_pool(pool);
3696 3697
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3698 3699 3700 3701 3702 3703
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3704 3705
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3706
		kfree(wq);
3707
	}
T
Tejun Heo 已提交
3708 3709
}

3710
/**
3711
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3712 3713
 * @pwq: target pool_workqueue
 *
3714 3715 3716
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3717
 */
3718
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3719
{
3720 3721 3722 3723
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3724
	lockdep_assert_held(&wq->mutex);
3725 3726 3727 3728 3729

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3730
	spin_lock_irq(&pwq->pool->lock);
3731 3732 3733

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3734

3735 3736 3737
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3738 3739 3740 3741 3742 3743

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3744 3745 3746 3747
	} else {
		pwq->max_active = 0;
	}

3748
	spin_unlock_irq(&pwq->pool->lock);
3749 3750
}

3751
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3752 3753
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3754 3755 3756
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3757 3758
	memset(pwq, 0, sizeof(*pwq));

3759 3760 3761
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3762
	pwq->refcnt = 1;
3763
	INIT_LIST_HEAD(&pwq->delayed_works);
3764
	INIT_LIST_HEAD(&pwq->pwqs_node);
3765
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3766
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3767
}
3768

3769
/* sync @pwq with the current state of its associated wq and link it */
3770
static void link_pwq(struct pool_workqueue *pwq)
3771 3772 3773 3774
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3775

3776 3777 3778 3779
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3780 3781
	/*
	 * Set the matching work_color.  This is synchronized with
3782
	 * wq->mutex to avoid confusing flush_workqueue().
3783
	 */
3784
	pwq->work_color = wq->work_color;
3785 3786 3787 3788 3789

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3790
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3791
}
3792

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3806
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3807 3808 3809
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3810
	}
3811

3812 3813
	init_pwq(pwq, wq, pool);
	return pwq;
3814 3815
}

3816 3817 3818 3819 3820 3821 3822
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3823
		kmem_cache_free(pwq_cache, pwq);
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3836
 * calculation.  The result is stored in @cpumask.
3837 3838 3839 3840 3841 3842 3843 3844
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3845 3846 3847
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3848 3849 3850 3851
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3852
	if (!wq_numa_enabled || attrs->no_numa)
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3889 3890 3891 3892 3893
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3894 3895 3896 3897 3898 3899
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3900
 *
3901 3902 3903
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3904 3905 3906 3907
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3908 3909
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3910
	int node, ret;
3911

3912
	/* only unbound workqueues can change attributes */
3913 3914 3915
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3916 3917 3918 3919
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3920
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3921
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3922 3923
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3924 3925
		goto enomem;

3926
	/* make a copy of @attrs and sanitize it */
3927 3928 3929
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3944
	mutex_lock(&wq_pool_mutex);
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3966
	mutex_unlock(&wq_pool_mutex);
3967

3968
	/* all pwqs have been created successfully, let's install'em */
3969
	mutex_lock(&wq->mutex);
3970

3971
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3972 3973

	/* save the previous pwq and install the new one */
3974
	for_each_node(node)
3975 3976 3977 3978 3979
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3980 3981

	mutex_unlock(&wq->mutex);
3982

3983 3984 3985 3986 3987 3988
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3989 3990 3991
	ret = 0;
	/* fall through */
out_free:
3992
	free_workqueue_attrs(tmp_attrs);
3993
	free_workqueue_attrs(new_attrs);
3994
	kfree(pwq_tbl);
3995
	return ret;
3996

3997 3998 3999 4000 4001 4002 4003
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
4004
enomem:
4005 4006
	ret = -ENOMEM;
	goto out_free;
4007 4008
}

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
4054 4055
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
	 * wq's, the default pwq should be used.  If @pwq is already the
	 * default one, nothing to do; otherwise, install the default one.
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
		if (pwq == wq->dfl_pwq)
			goto out_unlock;
		else
			goto use_dfl_pwq;
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			   wq->name);
		goto out_unlock;
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4107
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4108
{
4109
	bool highpri = wq->flags & WQ_HIGHPRI;
4110 4111 4112
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
4113 4114
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4115 4116 4117
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4118 4119
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4120
			struct worker_pool *cpu_pools =
4121
				per_cpu(cpu_worker_pools, cpu);
4122

4123 4124 4125
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4126
			link_pwq(pwq);
4127
			mutex_unlock(&wq->mutex);
4128
		}
4129
		return 0;
4130
	} else {
4131
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4132
	}
T
Tejun Heo 已提交
4133 4134
}

4135 4136
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4137
{
4138 4139 4140
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4141 4142
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4143

4144
	return clamp_val(max_active, 1, lim);
4145 4146
}

4147
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4148 4149 4150
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4151
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4152
{
4153
	size_t tbl_size = 0;
4154
	va_list args;
L
Linus Torvalds 已提交
4155
	struct workqueue_struct *wq;
4156
	struct pool_workqueue *pwq;
4157

4158 4159 4160 4161
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4162
	/* allocate wq and format name */
4163 4164 4165 4166
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4167
	if (!wq)
4168
		return NULL;
4169

4170 4171 4172 4173 4174 4175
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4176 4177
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4178
	va_end(args);
L
Linus Torvalds 已提交
4179

4180
	max_active = max_active ?: WQ_DFL_ACTIVE;
4181
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4182

4183
	/* init wq */
4184
	wq->flags = flags;
4185
	wq->saved_max_active = max_active;
4186
	mutex_init(&wq->mutex);
4187
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4188
	INIT_LIST_HEAD(&wq->pwqs);
4189 4190
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4191
	INIT_LIST_HEAD(&wq->maydays);
4192

4193
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4194
	INIT_LIST_HEAD(&wq->list);
4195

4196
	if (alloc_and_link_pwqs(wq) < 0)
4197
		goto err_free_wq;
T
Tejun Heo 已提交
4198

4199 4200 4201 4202 4203
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4204 4205
		struct worker *rescuer;

4206
		rescuer = alloc_worker();
4207
		if (!rescuer)
4208
			goto err_destroy;
4209

4210 4211
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4212
					       wq->name);
4213 4214 4215 4216
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4217

4218
		wq->rescuer = rescuer;
4219
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4220
		wake_up_process(rescuer->task);
4221 4222
	}

4223 4224 4225
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4226
	/*
4227 4228 4229
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4230
	 */
4231
	mutex_lock(&wq_pool_mutex);
4232

4233
	mutex_lock(&wq->mutex);
4234 4235
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4236
	mutex_unlock(&wq->mutex);
4237

T
Tejun Heo 已提交
4238
	list_add(&wq->list, &workqueues);
4239

4240
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4241

4242
	return wq;
4243 4244

err_free_wq:
4245
	free_workqueue_attrs(wq->unbound_attrs);
4246 4247 4248 4249
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4250
	return NULL;
4251
}
4252
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4253

4254 4255 4256 4257 4258 4259 4260 4261
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4262
	struct pool_workqueue *pwq;
4263
	int node;
4264

4265 4266
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4267

4268
	/* sanity checks */
4269
	mutex_lock(&wq->mutex);
4270
	for_each_pwq(pwq, wq) {
4271 4272
		int i;

4273 4274
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4275
				mutex_unlock(&wq->mutex);
4276
				return;
4277 4278 4279
			}
		}

4280
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4281
		    WARN_ON(pwq->nr_active) ||
4282
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4283
			mutex_unlock(&wq->mutex);
4284
			return;
4285
		}
4286
	}
4287
	mutex_unlock(&wq->mutex);
4288

4289 4290 4291 4292
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4293
	mutex_lock(&wq_pool_mutex);
4294
	list_del_init(&wq->list);
4295
	mutex_unlock(&wq_pool_mutex);
4296

4297 4298
	workqueue_sysfs_unregister(wq);

4299
	if (wq->rescuer) {
4300
		kthread_stop(wq->rescuer->task);
4301
		kfree(wq->rescuer);
4302
		wq->rescuer = NULL;
4303 4304
	}

T
Tejun Heo 已提交
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4315 4316
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4317
		 */
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4330
		put_pwq_unlocked(pwq);
4331
	}
4332 4333 4334
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4347
	struct pool_workqueue *pwq;
4348

4349 4350 4351 4352
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4353
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4354

4355
	mutex_lock(&wq->mutex);
4356 4357 4358

	wq->saved_max_active = max_active;

4359 4360
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4361

4362
	mutex_unlock(&wq->mutex);
4363
}
4364
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4365

4366 4367 4368 4369 4370
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4371 4372
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4373 4374 4375 4376 4377
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4378
	return worker && worker->rescue_wq;
4379 4380
}

4381
/**
4382 4383 4384
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4385
 *
4386 4387 4388
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4389
 *
4390 4391 4392 4393 4394 4395
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4396
 * Return:
4397
 * %true if congested, %false otherwise.
4398
 */
4399
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4400
{
4401
	struct pool_workqueue *pwq;
4402 4403
	bool ret;

4404
	rcu_read_lock_sched();
4405

4406 4407 4408
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4409 4410 4411
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4412
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4413

4414
	ret = !list_empty(&pwq->delayed_works);
4415
	rcu_read_unlock_sched();
4416 4417

	return ret;
L
Linus Torvalds 已提交
4418
}
4419
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4420

4421 4422 4423 4424 4425 4426 4427 4428
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4429
 * Return:
4430 4431 4432
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4433
{
4434
	struct worker_pool *pool;
4435 4436
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4437

4438 4439
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4440

4441 4442
	local_irq_save(flags);
	pool = get_work_pool(work);
4443
	if (pool) {
4444
		spin_lock(&pool->lock);
4445 4446
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4447
		spin_unlock(&pool->lock);
4448
	}
4449
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4450

4451
	return ret;
L
Linus Torvalds 已提交
4452
}
4453
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4454

4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4532 4533 4534
/*
 * CPU hotplug.
 *
4535
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4536
 * are a lot of assumptions on strong associations among work, pwq and
4537
 * pool which make migrating pending and scheduled works very
4538
 * difficult to implement without impacting hot paths.  Secondly,
4539
 * worker pools serve mix of short, long and very long running works making
4540 4541
 * blocked draining impractical.
 *
4542
 * This is solved by allowing the pools to be disassociated from the CPU
4543 4544
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4545
 */
L
Linus Torvalds 已提交
4546

4547
static void wq_unbind_fn(struct work_struct *work)
4548
{
4549
	int cpu = smp_processor_id();
4550
	struct worker_pool *pool;
4551
	struct worker *worker;
4552
	int wi;
4553

4554
	for_each_cpu_worker_pool(pool, cpu) {
4555
		WARN_ON_ONCE(cpu != smp_processor_id());
4556

4557
		mutex_lock(&pool->manager_mutex);
4558
		spin_lock_irq(&pool->lock);
4559

4560
		/*
4561
		 * We've blocked all manager operations.  Make all workers
4562 4563 4564 4565 4566
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4567
		for_each_pool_worker(worker, wi, pool)
4568
			worker->flags |= WORKER_UNBOUND;
4569

4570
		pool->flags |= POOL_DISASSOCIATED;
4571

4572
		spin_unlock_irq(&pool->lock);
4573
		mutex_unlock(&pool->manager_mutex);
4574

4575 4576 4577 4578 4579 4580 4581
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4582

4583 4584 4585 4586 4587 4588 4589 4590
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4591
		atomic_set(&pool->nr_running, 0);
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4602 4603
}

T
Tejun Heo 已提交
4604 4605 4606 4607
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4608
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4609 4610 4611
 */
static void rebind_workers(struct worker_pool *pool)
{
4612 4613
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4614 4615 4616

	lockdep_assert_held(&pool->manager_mutex);

4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4627

4628
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4629

4630 4631
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4632 4633

		/*
4634 4635 4636 4637 4638 4639
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4640
		 */
4641 4642
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4643

4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4663
	}
4664 4665

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4666 4667
}

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4701 4702 4703 4704
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4705
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4706 4707
					       unsigned long action,
					       void *hcpu)
4708
{
4709
	int cpu = (unsigned long)hcpu;
4710
	struct worker_pool *pool;
4711
	struct workqueue_struct *wq;
4712
	int pi;
4713

T
Tejun Heo 已提交
4714
	switch (action & ~CPU_TASKS_FROZEN) {
4715
	case CPU_UP_PREPARE:
4716
		for_each_cpu_worker_pool(pool, cpu) {
4717 4718
			if (pool->nr_workers)
				continue;
4719
			if (create_and_start_worker(pool) < 0)
4720
				return NOTIFY_BAD;
4721
		}
T
Tejun Heo 已提交
4722
		break;
4723

4724 4725
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4726
		mutex_lock(&wq_pool_mutex);
4727 4728

		for_each_pool(pool, pi) {
4729
			mutex_lock(&pool->manager_mutex);
4730

4731 4732 4733 4734
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4735

4736 4737 4738 4739
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4740

4741
			mutex_unlock(&pool->manager_mutex);
4742
		}
4743

4744 4745 4746 4747
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4748
		mutex_unlock(&wq_pool_mutex);
4749
		break;
4750
	}
4751 4752 4753 4754 4755 4756 4757
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4758
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4759 4760 4761
						 unsigned long action,
						 void *hcpu)
{
4762
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4763
	struct work_struct unbind_work;
4764
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4765

4766 4767
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4768
		/* unbinding per-cpu workers should happen on the local CPU */
4769
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4770
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4771 4772 4773 4774 4775 4776 4777 4778

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4779 4780
		flush_work(&unbind_work);
		break;
4781 4782 4783 4784
	}
	return NOTIFY_OK;
}

4785
#ifdef CONFIG_SMP
4786

4787
struct work_for_cpu {
4788
	struct work_struct work;
4789 4790 4791 4792 4793
	long (*fn)(void *);
	void *arg;
	long ret;
};

4794
static void work_for_cpu_fn(struct work_struct *work)
4795
{
4796 4797
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4798 4799 4800 4801 4802 4803 4804 4805 4806
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4807
 * It is up to the caller to ensure that the cpu doesn't go offline.
4808
 * The caller must not hold any locks which would prevent @fn from completing.
4809 4810
 *
 * Return: The value @fn returns.
4811
 */
4812
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4813
{
4814
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4815

4816 4817
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4818 4819 4820 4821 4822 4823 4824 4825

	/*
	 * The work item is on-stack and can't lead to deadlock through
	 * flushing.  Use __flush_work() to avoid spurious lockdep warnings
	 * when work_on_cpu()s are nested.
	 */
	__flush_work(&wfc.work);

4826 4827 4828 4829 4830
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4831 4832 4833 4834 4835
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4836
 * Start freezing workqueues.  After this function returns, all freezable
4837
 * workqueues will queue new works to their delayed_works list instead of
4838
 * pool->worklist.
4839 4840
 *
 * CONTEXT:
4841
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4842 4843 4844
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4845
	struct worker_pool *pool;
4846 4847
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4848
	int pi;
4849

4850
	mutex_lock(&wq_pool_mutex);
4851

4852
	WARN_ON_ONCE(workqueue_freezing);
4853 4854
	workqueue_freezing = true;

4855
	/* set FREEZING */
4856
	for_each_pool(pool, pi) {
4857
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4858 4859
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4860
		spin_unlock_irq(&pool->lock);
4861
	}
4862

4863
	list_for_each_entry(wq, &workqueues, list) {
4864
		mutex_lock(&wq->mutex);
4865 4866
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4867
		mutex_unlock(&wq->mutex);
4868
	}
4869

4870
	mutex_unlock(&wq_pool_mutex);
4871 4872 4873
}

/**
4874
 * freeze_workqueues_busy - are freezable workqueues still busy?
4875 4876 4877 4878 4879
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4880
 * Grabs and releases wq_pool_mutex.
4881
 *
4882
 * Return:
4883 4884
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4885 4886 4887 4888
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4889 4890
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4891

4892
	mutex_lock(&wq_pool_mutex);
4893

4894
	WARN_ON_ONCE(!workqueue_freezing);
4895

4896 4897 4898
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4899 4900 4901 4902
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4903
		rcu_read_lock_sched();
4904
		for_each_pwq(pwq, wq) {
4905
			WARN_ON_ONCE(pwq->nr_active < 0);
4906
			if (pwq->nr_active) {
4907
				busy = true;
4908
				rcu_read_unlock_sched();
4909 4910 4911
				goto out_unlock;
			}
		}
4912
		rcu_read_unlock_sched();
4913 4914
	}
out_unlock:
4915
	mutex_unlock(&wq_pool_mutex);
4916 4917 4918 4919 4920 4921 4922
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4923
 * frozen works are transferred to their respective pool worklists.
4924 4925
 *
 * CONTEXT:
4926
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4927 4928 4929
 */
void thaw_workqueues(void)
{
4930 4931 4932
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4933
	int pi;
4934

4935
	mutex_lock(&wq_pool_mutex);
4936 4937 4938 4939

	if (!workqueue_freezing)
		goto out_unlock;

4940
	/* clear FREEZING */
4941
	for_each_pool(pool, pi) {
4942
		spin_lock_irq(&pool->lock);
4943 4944
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4945
		spin_unlock_irq(&pool->lock);
4946
	}
4947

4948 4949
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4950
		mutex_lock(&wq->mutex);
4951 4952
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4953
		mutex_unlock(&wq->mutex);
4954 4955 4956 4957
	}

	workqueue_freezing = false;
out_unlock:
4958
	mutex_unlock(&wq_pool_mutex);
4959 4960 4961
}
#endif /* CONFIG_FREEZER */

4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4974 4975 4976 4977 4978
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4979 4980 4981
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4982 4983 4984 4985 4986 4987 4988 4989 4990
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
4991 4992
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5008
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
5009
{
T
Tejun Heo 已提交
5010 5011
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5012

5013 5014
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
5015
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
5016

5017 5018 5019 5020
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5021
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5022
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5023

5024 5025
	wq_numa_init();

5026
	/* initialize CPU pools */
5027
	for_each_possible_cpu(cpu) {
5028
		struct worker_pool *pool;
5029

T
Tejun Heo 已提交
5030
		i = 0;
5031
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5032
			BUG_ON(init_worker_pool(pool));
5033
			pool->cpu = cpu;
5034
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5035
			pool->attrs->nice = std_nice[i++];
5036
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5037

T
Tejun Heo 已提交
5038
			/* alloc pool ID */
5039
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5040
			BUG_ON(worker_pool_assign_id(pool));
5041
			mutex_unlock(&wq_pool_mutex);
5042
		}
5043 5044
	}

5045
	/* create the initial worker */
5046
	for_each_online_cpu(cpu) {
5047
		struct worker_pool *pool;
5048

5049
		for_each_cpu_worker_pool(pool, cpu) {
5050
			pool->flags &= ~POOL_DISASSOCIATED;
5051
			BUG_ON(create_and_start_worker(pool) < 0);
5052
		}
5053 5054
	}

5055 5056 5057 5058 5059 5060 5061 5062 5063
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
	}

5064
	system_wq = alloc_workqueue("events", 0, 0);
5065
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5066
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5067 5068
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5069 5070
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5071 5072 5073 5074 5075
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5076
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5077 5078 5079
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5080
	return 0;
L
Linus Torvalds 已提交
5081
}
5082
early_initcall(init_workqueues);