workqueue.c 122.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/jhash.h>
45
#include <linux/hashtable.h>
46
#include <linux/rculist.h>
47

48
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
49

T
Tejun Heo 已提交
50
enum {
51 52
	/*
	 * worker_pool flags
53
	 *
54
	 * A bound pool is either associated or disassociated with its CPU.
55 56 57 58 59 60
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
61
	 * be executing on any CPU.  The pool behaves as an unbound one.
62
	 *
63 64
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
65
	 * create_worker() is in progress.
66
	 */
67
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
68
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
69
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78

79
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
80
				  WORKER_CPU_INTENSIVE,
81

82
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
83

84
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
85
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
86

87 88 89
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

90 91 92
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
93 94 95 96 97 98 99 100
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
101
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
102
};
L
Linus Torvalds 已提交
103 104

/*
T
Tejun Heo 已提交
105 106
 * Structure fields follow one of the following exclusion rules.
 *
107 108
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
109
 *
110 111 112
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
113
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
114
 *
115 116 117 118
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
119
 *
120 121
 * F: wq->flush_mutex protected.
 *
122 123 124
 * WQ: wq_mutex protected.
 *
 * WR: wq_mutex protected for writes.  Sched-RCU protected for reads.
125
 *
126
 * W: workqueue_lock protected.
127 128 129
 *
 * FR: wq->flush_mutex and workqueue_lock protected for writes.  Sched-RCU
 *     protected for reads.
L
Linus Torvalds 已提交
130 131
 */

132
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
133

134
struct worker_pool {
135
	spinlock_t		lock;		/* the pool lock */
136
	int			cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
137
	int			id;		/* I: pool ID */
138
	unsigned int		flags;		/* X: flags */
139 140 141

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
142 143

	/* nr_idle includes the ones off idle_list for rebinding */
144 145 146 147 148 149
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

150
	/* a workers is either on busy_hash or idle_list, or the manager */
151 152 153
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

154
	/* see manage_workers() for details on the two manager mutexes */
155
	struct mutex		manager_arb;	/* manager arbitration */
156
	struct mutex		manager_mutex;	/* manager exclusion */
157
	struct ida		worker_ida;	/* L: for worker IDs */
158

T
Tejun Heo 已提交
159
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
160 161
	struct hlist_node	hash_node;	/* WQ: unbound_pool_hash node */
	int			refcnt;		/* WQ: refcnt for unbound pools */
T
Tejun Heo 已提交
162

163 164 165 166 167 168
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
169 170 171 172 173 174

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
175 176
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
177
/*
178 179 180 181
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
182
 */
183
struct pool_workqueue {
184
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
185
	struct workqueue_struct *wq;		/* I: the owning workqueue */
186 187
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
188
	int			refcnt;		/* L: reference count */
189 190
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
191
	int			nr_active;	/* L: nr of active works */
192
	int			max_active;	/* L: max active works */
193
	struct list_head	delayed_works;	/* L: delayed works */
194
	struct list_head	pwqs_node;	/* FR: node on wq->pwqs */
195
	struct list_head	mayday_node;	/* W: node on wq->maydays */
T
Tejun Heo 已提交
196 197 198 199 200 201 202 203 204

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
	 * determined without grabbing workqueue_lock.
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
205
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
206

207 208 209 210 211 212 213 214 215
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

216 217
struct wq_device;

L
Linus Torvalds 已提交
218
/*
219 220
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
221 222
 */
struct workqueue_struct {
223
	unsigned int		flags;		/* WQ: WQ_* flags */
224
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
225
	struct list_head	pwqs;		/* FR: all pwqs of this wq */
226
	struct list_head	list;		/* WQ: list of all workqueues */
227 228 229 230

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
231
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
232 233 234 235
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

236
	struct list_head	maydays;	/* W: pwqs requesting rescue */
237 238
	struct worker		*rescuer;	/* I: rescue worker */

239
	int			nr_drainers;	/* WQ: drain in progress */
240
	int			saved_max_active; /* W: saved pwq max_active */
241 242 243 244

#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
245
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
246
	struct lockdep_map	lockdep_map;
247
#endif
248
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
249 250
};

251 252
static struct kmem_cache *pwq_cache;

253
static DEFINE_MUTEX(wq_mutex);		/* protects workqueues and pools */
254
static DEFINE_SPINLOCK(workqueue_lock);
255 256 257

static LIST_HEAD(workqueues);		/* WQ: list of all workqueues */
static bool workqueue_freezing;		/* WQ: have wqs started freezing? */
258 259 260 261 262

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

263
static DEFINE_IDR(worker_pool_idr);	/* WR: idr of all pools */
264

265
/* WQ: hash of all unbound pools keyed by pool->attrs */
266 267
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

268
/* I: attributes used when instantiating standard unbound pools on demand */
269 270
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

271 272
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
273
struct workqueue_struct *system_highpri_wq __read_mostly;
274
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
275
struct workqueue_struct *system_long_wq __read_mostly;
276
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
277
struct workqueue_struct *system_unbound_wq __read_mostly;
278
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
279
struct workqueue_struct *system_freezable_wq __read_mostly;
280
EXPORT_SYMBOL_GPL(system_freezable_wq);
281

282 283 284 285
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

286 287 288
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

289 290 291 292 293
#define assert_rcu_or_wq_mutex()					\
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
			   lockdep_is_held(&wq_mutex),			\
			   "sched RCU or wq_mutex should be held")

294 295 296 297 298
#define assert_rcu_or_wq_lock()						\
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
			   lockdep_is_held(&workqueue_lock),		\
			   "sched RCU or workqueue lock should be held")

299 300 301
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
302
	     (pool)++)
303

304 305
#define for_each_busy_worker(worker, i, pool)				\
	hash_for_each(pool->busy_hash, i, worker, hentry)
306

T
Tejun Heo 已提交
307 308 309
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
310
 * @pi: integer used for iteration
311
 *
312 313 314
 * This must be called either with wq_mutex held or sched RCU read locked.
 * If the pool needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pool stays online.
315 316 317
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
318
 */
319 320
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
321
		if (({ assert_rcu_or_wq_mutex(); false; })) { }		\
322
		else
T
Tejun Heo 已提交
323

324 325 326 327
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
328 329 330 331 332 333 334
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
335 336
 */
#define for_each_pwq(pwq, wq)						\
337 338 339
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
		if (({ assert_rcu_or_wq_lock(); false; })) { }		\
		else
340

341 342 343 344
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

345 346 347 348 349
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
385
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
421
	.debug_hint	= work_debug_hint,
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

T
Tejun Heo 已提交
457 458 459 460 461
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

462 463
	lockdep_assert_held(&wq_mutex);

464 465 466 467 468
	do {
		if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
			return -ENOMEM;
		ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	} while (ret == -EAGAIN);
T
Tejun Heo 已提交
469

470
	return ret;
471 472
}

473 474 475 476 477 478 479 480
/**
 * first_pwq - return the first pool_workqueue of the specified workqueue
 * @wq: the target workqueue
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 */
481
static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
482
{
483 484 485
	assert_rcu_or_wq_lock();
	return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
				      pwqs_node);
486 487
}

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
503

504
/*
505 506
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
507
 * is cleared and the high bits contain OFFQ flags and pool ID.
508
 *
509 510
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
511 512
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
513
 *
514
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
515
 * corresponding to a work.  Pool is available once the work has been
516
 * queued anywhere after initialization until it is sync canceled.  pwq is
517
 * available only while the work item is queued.
518
 *
519 520 521 522
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
523
 */
524 525
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
526
{
527
	WARN_ON_ONCE(!work_pending(work));
528 529
	atomic_long_set(&work->data, data | flags | work_static(work));
}
530

531
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
532 533
			 unsigned long extra_flags)
{
534 535
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
536 537
}

538 539 540 541 542 543 544
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

545 546
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
547
{
548 549 550 551 552 553 554
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
555
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
556
}
557

558
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
559
{
560 561
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
562 563
}

564
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
565
{
566
	unsigned long data = atomic_long_read(&work->data);
567

568
	if (data & WORK_STRUCT_PWQ)
569 570 571
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
572 573
}

574 575 576 577 578
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
579
 *
580 581 582
 * Pools are created and destroyed under wq_mutex, and allows read access
 * under sched-RCU read lock.  As such, this function should be called
 * under wq_mutex or with preemption disabled.
583 584 585 586 587
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
588 589
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
590
{
591
	unsigned long data = atomic_long_read(&work->data);
592
	int pool_id;
593

594
	assert_rcu_or_wq_mutex();
595

596 597
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
598
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
599

600 601
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
602 603
		return NULL;

604
	return idr_find(&worker_pool_idr, pool_id);
605 606 607 608 609 610 611 612 613 614 615
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
616 617
	unsigned long data = atomic_long_read(&work->data);

618 619
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
620
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
621

622
	return data >> WORK_OFFQ_POOL_SHIFT;
623 624
}

625 626
static void mark_work_canceling(struct work_struct *work)
{
627
	unsigned long pool_id = get_work_pool_id(work);
628

629 630
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
631 632 633 634 635 636
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

637
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
638 639
}

640
/*
641 642
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
643
 * they're being called with pool->lock held.
644 645
 */

646
static bool __need_more_worker(struct worker_pool *pool)
647
{
648
	return !atomic_read(&pool->nr_running);
649 650
}

651
/*
652 653
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
654 655
 *
 * Note that, because unbound workers never contribute to nr_running, this
656
 * function will always return %true for unbound pools as long as the
657
 * worklist isn't empty.
658
 */
659
static bool need_more_worker(struct worker_pool *pool)
660
{
661
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
662
}
663

664
/* Can I start working?  Called from busy but !running workers. */
665
static bool may_start_working(struct worker_pool *pool)
666
{
667
	return pool->nr_idle;
668 669 670
}

/* Do I need to keep working?  Called from currently running workers. */
671
static bool keep_working(struct worker_pool *pool)
672
{
673 674
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
675 676 677
}

/* Do we need a new worker?  Called from manager. */
678
static bool need_to_create_worker(struct worker_pool *pool)
679
{
680
	return need_more_worker(pool) && !may_start_working(pool);
681
}
682

683
/* Do I need to be the manager? */
684
static bool need_to_manage_workers(struct worker_pool *pool)
685
{
686
	return need_to_create_worker(pool) ||
687
		(pool->flags & POOL_MANAGE_WORKERS);
688 689 690
}

/* Do we have too many workers and should some go away? */
691
static bool too_many_workers(struct worker_pool *pool)
692
{
693
	bool managing = mutex_is_locked(&pool->manager_arb);
694 695
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
696

697 698 699 700 701 702 703
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

704
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
705 706
}

707
/*
708 709 710
 * Wake up functions.
 */

711
/* Return the first worker.  Safe with preemption disabled */
712
static struct worker *first_worker(struct worker_pool *pool)
713
{
714
	if (unlikely(list_empty(&pool->idle_list)))
715 716
		return NULL;

717
	return list_first_entry(&pool->idle_list, struct worker, entry);
718 719 720 721
}

/**
 * wake_up_worker - wake up an idle worker
722
 * @pool: worker pool to wake worker from
723
 *
724
 * Wake up the first idle worker of @pool.
725 726
 *
 * CONTEXT:
727
 * spin_lock_irq(pool->lock).
728
 */
729
static void wake_up_worker(struct worker_pool *pool)
730
{
731
	struct worker *worker = first_worker(pool);
732 733 734 735 736

	if (likely(worker))
		wake_up_process(worker->task);
}

737
/**
738 739 740 741 742 743 744 745 746 747
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
748
void wq_worker_waking_up(struct task_struct *task, int cpu)
749 750 751
{
	struct worker *worker = kthread_data(task);

752
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
753
		WARN_ON_ONCE(worker->pool->cpu != cpu);
754
		atomic_inc(&worker->pool->nr_running);
755
	}
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
773
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
774 775
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
776
	struct worker_pool *pool;
777

778 779 780 781 782
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
783
	if (worker->flags & WORKER_NOT_RUNNING)
784 785
		return NULL;

786 787
	pool = worker->pool;

788
	/* this can only happen on the local cpu */
789 790
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
791 792 793 794 795 796

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
797 798 799
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
800
	 * manipulating idle_list, so dereferencing idle_list without pool
801
	 * lock is safe.
802
	 */
803 804
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
805
		to_wakeup = first_worker(pool);
806 807 808 809 810
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
811
 * @worker: self
812 813 814
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
815 816 817
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
818
 *
819
 * CONTEXT:
820
 * spin_lock_irq(pool->lock)
821 822 823 824
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
825
	struct worker_pool *pool = worker->pool;
826

827 828
	WARN_ON_ONCE(worker->task != current);

829 830 831 832 833 834 835 836
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
837
			if (atomic_dec_and_test(&pool->nr_running) &&
838
			    !list_empty(&pool->worklist))
839
				wake_up_worker(pool);
840
		} else
841
			atomic_dec(&pool->nr_running);
842 843
	}

844 845 846 847
	worker->flags |= flags;
}

/**
848
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
849
 * @worker: self
850 851
 * @flags: flags to clear
 *
852
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
853
 *
854
 * CONTEXT:
855
 * spin_lock_irq(pool->lock)
856 857 858
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
859
	struct worker_pool *pool = worker->pool;
860 861
	unsigned int oflags = worker->flags;

862 863
	WARN_ON_ONCE(worker->task != current);

864
	worker->flags &= ~flags;
865

866 867 868 869 870
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
871 872
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
873
			atomic_inc(&pool->nr_running);
874 875
}

876 877
/**
 * find_worker_executing_work - find worker which is executing a work
878
 * @pool: pool of interest
879 880
 * @work: work to find worker for
 *
881 882
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
883 884 885 886 887 888 889 890 891 892 893 894
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
895 896 897 898 899 900
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
901 902
 *
 * CONTEXT:
903
 * spin_lock_irq(pool->lock).
904 905 906 907
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
908
 */
909
static struct worker *find_worker_executing_work(struct worker_pool *pool,
910
						 struct work_struct *work)
911
{
912 913
	struct worker *worker;

914
	hash_for_each_possible(pool->busy_hash, worker, hentry,
915 916 917
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
918 919 920
			return worker;

	return NULL;
921 922
}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
938
 * spin_lock_irq(pool->lock).
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1003
static void pwq_activate_delayed_work(struct work_struct *work)
1004
{
1005
	struct pool_workqueue *pwq = get_work_pwq(work);
1006 1007

	trace_workqueue_activate_work(work);
1008
	move_linked_works(work, &pwq->pool->worklist, NULL);
1009
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1010
	pwq->nr_active++;
1011 1012
}

1013
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1014
{
1015
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1016 1017
						    struct work_struct, entry);

1018
	pwq_activate_delayed_work(work);
1019 1020
}

1021
/**
1022 1023
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1024 1025 1026
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1027
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1028 1029
 *
 * CONTEXT:
1030
 * spin_lock_irq(pool->lock).
1031
 */
1032
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1033
{
T
Tejun Heo 已提交
1034
	/* uncolored work items don't participate in flushing or nr_active */
1035
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1036
		goto out_put;
1037

1038
	pwq->nr_in_flight[color]--;
1039

1040 1041
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1042
		/* one down, submit a delayed one */
1043 1044
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1045 1046 1047
	}

	/* is flush in progress and are we at the flushing tip? */
1048
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1049
		goto out_put;
1050 1051

	/* are there still in-flight works? */
1052
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1053
		goto out_put;
1054

1055 1056
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1057 1058

	/*
1059
	 * If this was the last pwq, wake up the first flusher.  It
1060 1061
	 * will handle the rest.
	 */
1062 1063
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1064 1065
out_put:
	put_pwq(pwq);
1066 1067
}

1068
/**
1069
 * try_to_grab_pending - steal work item from worklist and disable irq
1070 1071
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1072
 * @flags: place to store irq state
1073 1074 1075 1076 1077 1078 1079
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1080 1081
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1082
 *
1083
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1084 1085 1086
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1087 1088 1089 1090
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1091
 * This function is safe to call from any context including IRQ handler.
1092
 */
1093 1094
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1095
{
1096
	struct worker_pool *pool;
1097
	struct pool_workqueue *pwq;
1098

1099 1100
	local_irq_save(*flags);

1101 1102 1103 1104
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1105 1106 1107 1108 1109
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1110 1111 1112 1113 1114
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1115 1116 1117 1118 1119 1120 1121
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1122 1123
	pool = get_work_pool(work);
	if (!pool)
1124
		goto fail;
1125

1126
	spin_lock(&pool->lock);
1127
	/*
1128 1129 1130 1131 1132
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1133 1134
	 * item is currently queued on that pool.
	 */
1135 1136
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1137 1138 1139 1140 1141
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1142
		 * on the delayed_list, will confuse pwq->nr_active
1143 1144 1145 1146
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1147
			pwq_activate_delayed_work(work);
1148 1149

		list_del_init(&work->entry);
1150
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1151

1152
		/* work->data points to pwq iff queued, point to pool */
1153 1154 1155 1156
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1157
	}
1158
	spin_unlock(&pool->lock);
1159 1160 1161 1162 1163
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1164
	return -EAGAIN;
1165 1166
}

T
Tejun Heo 已提交
1167
/**
1168
 * insert_work - insert a work into a pool
1169
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1170 1171 1172 1173
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1174
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1175
 * work_struct flags.
T
Tejun Heo 已提交
1176 1177
 *
 * CONTEXT:
1178
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1179
 */
1180 1181
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1182
{
1183
	struct worker_pool *pool = pwq->pool;
1184

T
Tejun Heo 已提交
1185
	/* we own @work, set data and link */
1186
	set_work_pwq(work, pwq, extra_flags);
1187
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1188
	get_pwq(pwq);
1189 1190

	/*
1191 1192 1193
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1194 1195 1196
	 */
	smp_mb();

1197 1198
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1199 1200
}

1201 1202
/*
 * Test whether @work is being queued from another work executing on the
1203
 * same workqueue.
1204 1205 1206
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1207 1208 1209 1210 1211 1212 1213
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1214
	return worker && worker->current_pwq->wq == wq;
1215 1216
}

1217
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1218 1219
			 struct work_struct *work)
{
1220
	struct pool_workqueue *pwq;
1221
	struct worker_pool *last_pool;
1222
	struct list_head *worklist;
1223
	unsigned int work_flags;
1224
	unsigned int req_cpu = cpu;
1225 1226 1227 1228 1229 1230 1231 1232

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1233

1234
	debug_work_activate(work);
1235

1236
	/* if dying, only works from the same workqueue are allowed */
1237
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1238
	    WARN_ON_ONCE(!is_chained_work(wq)))
1239
		return;
1240
retry:
1241
	/* pwq which will be used unless @work is executing elsewhere */
1242
	if (!(wq->flags & WQ_UNBOUND)) {
1243
		if (cpu == WORK_CPU_UNBOUND)
1244
			cpu = raw_smp_processor_id();
1245
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1246 1247 1248
	} else {
		pwq = first_pwq(wq);
	}
1249

1250 1251 1252 1253 1254 1255 1256 1257
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1258

1259
		spin_lock(&last_pool->lock);
1260

1261
		worker = find_worker_executing_work(last_pool, work);
1262

1263 1264
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1265
		} else {
1266 1267
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1268
			spin_lock(&pwq->pool->lock);
1269
		}
1270
	} else {
1271
		spin_lock(&pwq->pool->lock);
1272 1273
	}

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
	 * without another pwq replacing it as the first pwq or while a
	 * work item is executing on it, so the retying is guaranteed to
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1293 1294
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1295

1296
	if (WARN_ON(!list_empty(&work->entry))) {
1297
		spin_unlock(&pwq->pool->lock);
1298 1299
		return;
	}
1300

1301 1302
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1303

1304
	if (likely(pwq->nr_active < pwq->max_active)) {
1305
		trace_workqueue_activate_work(work);
1306 1307
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1308 1309
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1310
		worklist = &pwq->delayed_works;
1311
	}
1312

1313
	insert_work(pwq, work, worklist, work_flags);
1314

1315
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1316 1317
}

1318
/**
1319 1320
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1321 1322 1323
 * @wq: workqueue to use
 * @work: work to queue
 *
1324
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1325
 *
1326 1327
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1328
 */
1329 1330
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1331
{
1332
	bool ret = false;
1333
	unsigned long flags;
1334

1335
	local_irq_save(flags);
1336

1337
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1338
		__queue_work(cpu, wq, work);
1339
		ret = true;
1340
	}
1341

1342
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1343 1344
	return ret;
}
1345
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1346

1347
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1348
{
1349
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1350

1351
	/* should have been called from irqsafe timer with irq already off */
1352
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1353
}
1354
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1355

1356 1357
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1358
{
1359 1360 1361 1362 1363
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1364 1365
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1378
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1379

1380
	dwork->wq = wq;
1381
	dwork->cpu = cpu;
1382 1383 1384 1385 1386 1387
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1388 1389
}

1390 1391 1392 1393
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1394
 * @dwork: work to queue
1395 1396
 * @delay: number of jiffies to wait before queueing
 *
1397 1398 1399
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1400
 */
1401 1402
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1403
{
1404
	struct work_struct *work = &dwork->work;
1405
	bool ret = false;
1406
	unsigned long flags;
1407

1408 1409
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1410

1411
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1412
		__queue_delayed_work(cpu, wq, dwork, delay);
1413
		ret = true;
1414
	}
1415

1416
	local_irq_restore(flags);
1417 1418
	return ret;
}
1419
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1420

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1436
 * This function is safe to call from any context including IRQ handler.
1437 1438 1439 1440 1441 1442 1443
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1444

1445 1446 1447
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1448

1449 1450 1451
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1452
	}
1453 1454

	/* -ENOENT from try_to_grab_pending() becomes %true */
1455 1456
	return ret;
}
1457 1458
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1459 1460 1461 1462 1463 1464 1465 1466
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1467
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1468 1469
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1470
{
1471
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1472

1473 1474 1475 1476
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1477

1478 1479
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1480
	pool->nr_idle++;
1481
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1482 1483

	/* idle_list is LIFO */
1484
	list_add(&worker->entry, &pool->idle_list);
1485

1486 1487
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1488

1489
	/*
1490
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1491
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1492 1493
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1494
	 */
1495
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1496
		     pool->nr_workers == pool->nr_idle &&
1497
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1507
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1508 1509 1510
 */
static void worker_leave_idle(struct worker *worker)
{
1511
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1512

1513 1514
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1515
	worker_clr_flags(worker, WORKER_IDLE);
1516
	pool->nr_idle--;
T
Tejun Heo 已提交
1517 1518 1519
	list_del_init(&worker->entry);
}

1520
/**
1521 1522 1523 1524
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1525 1526 1527 1528 1529 1530
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1531
 * This function is to be used by unbound workers and rescuers to bind
1532 1533 1534
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1535
 * verbatim as it's best effort and blocking and pool may be
1536 1537
 * [dis]associated in the meantime.
 *
1538
 * This function tries set_cpus_allowed() and locks pool and verifies the
1539
 * binding against %POOL_DISASSOCIATED which is set during
1540 1541 1542
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1543 1544
 *
 * CONTEXT:
1545
 * Might sleep.  Called without any lock but returns with pool->lock
1546 1547 1548
 * held.
 *
 * RETURNS:
1549
 * %true if the associated pool is online (@worker is successfully
1550 1551
 * bound), %false if offline.
 */
1552
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1553
__acquires(&pool->lock)
1554 1555
{
	while (true) {
1556
		/*
1557 1558 1559
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1560
		 * against POOL_DISASSOCIATED.
1561
		 */
1562
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1563
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1564

1565
		spin_lock_irq(&pool->lock);
1566
		if (pool->flags & POOL_DISASSOCIATED)
1567
			return false;
1568
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1569
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1570
			return true;
1571
		spin_unlock_irq(&pool->lock);
1572

1573 1574 1575 1576 1577 1578
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1579
		cpu_relax();
1580
		cond_resched();
1581 1582 1583
	}
}

1584
/*
1585
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1586
 * list_empty(@worker->entry) before leaving idle and call this function.
1587 1588 1589
 */
static void idle_worker_rebind(struct worker *worker)
{
1590
	/* CPU may go down again inbetween, clear UNBOUND only on success */
1591
	if (worker_maybe_bind_and_lock(worker->pool))
1592
		worker_clr_flags(worker, WORKER_UNBOUND);
1593

1594 1595
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1596
	spin_unlock_irq(&worker->pool->lock);
1597 1598
}

1599
/*
1600
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1601 1602 1603
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1604
 */
1605
static void busy_worker_rebind_fn(struct work_struct *work)
1606 1607 1608
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1609
	if (worker_maybe_bind_and_lock(worker->pool))
1610
		worker_clr_flags(worker, WORKER_UNBOUND);
1611

1612
	spin_unlock_irq(&worker->pool->lock);
1613 1614
}

1615
/**
1616 1617
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1618
 *
1619
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1620 1621
 * is different for idle and busy ones.
 *
1622 1623 1624 1625
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1626
 *
1627 1628 1629 1630
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1631
 *
1632 1633 1634 1635
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1636
 */
1637
static void rebind_workers(struct worker_pool *pool)
1638
{
1639
	struct worker *worker, *n;
1640 1641
	int i;

1642
	lockdep_assert_held(&pool->manager_mutex);
1643
	lockdep_assert_held(&pool->lock);
1644

1645
	/* dequeue and kick idle ones */
1646 1647 1648 1649 1650 1651
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1652

1653 1654 1655 1656 1657 1658
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1659

1660
	/* rebind busy workers */
1661
	for_each_busy_worker(worker, i, pool) {
1662 1663
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1664

1665 1666 1667
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1668

1669
		debug_work_activate(rebind_work);
1670

1671 1672
		/*
		 * wq doesn't really matter but let's keep @worker->pool
1673
		 * and @pwq->pool consistent for sanity.
1674
		 */
T
Tejun Heo 已提交
1675
		if (worker->pool->attrs->nice < 0)
1676 1677 1678 1679
			wq = system_highpri_wq;
		else
			wq = system_wq;

1680
		insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
1681 1682
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1683
	}
1684 1685
}

T
Tejun Heo 已提交
1686 1687 1688 1689 1690
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1691 1692
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1693
		INIT_LIST_HEAD(&worker->scheduled);
1694
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1695 1696
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1697
	}
T
Tejun Heo 已提交
1698 1699 1700 1701 1702
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1703
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1704
 *
1705
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1715
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1716
{
T
Tejun Heo 已提交
1717
	const char *pri = pool->attrs->nice < 0  ? "H" : "";
T
Tejun Heo 已提交
1718
	struct worker *worker = NULL;
1719
	int id = -1;
T
Tejun Heo 已提交
1720

1721 1722
	lockdep_assert_held(&pool->manager_mutex);

1723
	spin_lock_irq(&pool->lock);
1724
	while (ida_get_new(&pool->worker_ida, &id)) {
1725
		spin_unlock_irq(&pool->lock);
1726
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1727
			goto fail;
1728
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1729
	}
1730
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1731 1732 1733 1734 1735

	worker = alloc_worker();
	if (!worker)
		goto fail;

1736
	worker->pool = pool;
T
Tejun Heo 已提交
1737 1738
	worker->id = id;

1739
	if (pool->cpu >= 0)
1740
		worker->task = kthread_create_on_node(worker_thread,
1741
					worker, cpu_to_node(pool->cpu),
1742
					"kworker/%d:%d%s", pool->cpu, id, pri);
1743 1744
	else
		worker->task = kthread_create(worker_thread, worker,
1745 1746
					      "kworker/u%d:%d%s",
					      pool->id, id, pri);
T
Tejun Heo 已提交
1747 1748 1749
	if (IS_ERR(worker->task))
		goto fail;

1750 1751 1752 1753
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1754 1755
	set_user_nice(worker->task, pool->attrs->nice);
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1756

1757
	/*
T
Tejun Heo 已提交
1758 1759 1760
	 * %PF_THREAD_BOUND is used to prevent userland from meddling with
	 * cpumask of workqueue workers.  This is an abuse.  We need
	 * %PF_NO_SETAFFINITY.
1761
	 */
T
Tejun Heo 已提交
1762 1763 1764 1765 1766 1767 1768 1769
	worker->task->flags |= PF_THREAD_BOUND;

	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1770
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1771 1772 1773 1774

	return worker;
fail:
	if (id >= 0) {
1775
		spin_lock_irq(&pool->lock);
1776
		ida_remove(&pool->worker_ida, id);
1777
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1787
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1788 1789
 *
 * CONTEXT:
1790
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1791 1792 1793
 */
static void start_worker(struct worker *worker)
{
1794
	worker->flags |= WORKER_STARTED;
1795
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1796
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1797 1798 1799
	wake_up_process(worker->task);
}

1800 1801 1802 1803
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1804
 * Grab the managership of @pool and create and start a new worker for it.
1805 1806 1807 1808 1809
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1810 1811
	mutex_lock(&pool->manager_mutex);

1812 1813 1814 1815 1816 1817 1818
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1819 1820
	mutex_unlock(&pool->manager_mutex);

1821 1822 1823
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1824 1825 1826 1827
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1828
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1829 1830
 *
 * CONTEXT:
1831
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1832 1833 1834
 */
static void destroy_worker(struct worker *worker)
{
1835
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1836 1837
	int id = worker->id;

1838 1839 1840
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1841
	/* sanity check frenzy */
1842 1843 1844
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1845

T
Tejun Heo 已提交
1846
	if (worker->flags & WORKER_STARTED)
1847
		pool->nr_workers--;
T
Tejun Heo 已提交
1848
	if (worker->flags & WORKER_IDLE)
1849
		pool->nr_idle--;
T
Tejun Heo 已提交
1850 1851

	list_del_init(&worker->entry);
1852
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1853

1854
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1855

T
Tejun Heo 已提交
1856 1857 1858
	kthread_stop(worker->task);
	kfree(worker);

1859
	spin_lock_irq(&pool->lock);
1860
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1861 1862
}

1863
static void idle_worker_timeout(unsigned long __pool)
1864
{
1865
	struct worker_pool *pool = (void *)__pool;
1866

1867
	spin_lock_irq(&pool->lock);
1868

1869
	if (too_many_workers(pool)) {
1870 1871 1872 1873
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1874
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1875 1876 1877
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1878
			mod_timer(&pool->idle_timer, expires);
1879 1880
		else {
			/* it's been idle for too long, wake up manager */
1881
			pool->flags |= POOL_MANAGE_WORKERS;
1882
			wake_up_worker(pool);
1883
		}
1884 1885
	}

1886
	spin_unlock_irq(&pool->lock);
1887
}
1888

1889
static void send_mayday(struct work_struct *work)
1890
{
1891 1892
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1893 1894

	lockdep_assert_held(&workqueue_lock);
1895

1896
	if (!wq->rescuer)
1897
		return;
1898 1899

	/* mayday mayday mayday */
1900 1901
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1902
		wake_up_process(wq->rescuer->task);
1903
	}
1904 1905
}

1906
static void pool_mayday_timeout(unsigned long __pool)
1907
{
1908
	struct worker_pool *pool = (void *)__pool;
1909 1910
	struct work_struct *work;

1911 1912
	spin_lock_irq(&workqueue_lock);		/* for wq->maydays */
	spin_lock(&pool->lock);
1913

1914
	if (need_to_create_worker(pool)) {
1915 1916 1917 1918 1919 1920
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1921
		list_for_each_entry(work, &pool->worklist, entry)
1922
			send_mayday(work);
L
Linus Torvalds 已提交
1923
	}
1924

1925 1926
	spin_unlock(&pool->lock);
	spin_unlock_irq(&workqueue_lock);
1927

1928
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1929 1930
}

1931 1932
/**
 * maybe_create_worker - create a new worker if necessary
1933
 * @pool: pool to create a new worker for
1934
 *
1935
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1936 1937
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1938
 * sent to all rescuers with works scheduled on @pool to resolve
1939 1940
 * possible allocation deadlock.
 *
1941 1942
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1943 1944
 *
 * LOCKING:
1945
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1946 1947 1948 1949
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1950
 * %false if no action was taken and pool->lock stayed locked, %true
1951 1952
 * otherwise.
 */
1953
static bool maybe_create_worker(struct worker_pool *pool)
1954 1955
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1956
{
1957
	if (!need_to_create_worker(pool))
1958 1959
		return false;
restart:
1960
	spin_unlock_irq(&pool->lock);
1961

1962
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1963
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1964 1965 1966 1967

	while (true) {
		struct worker *worker;

1968
		worker = create_worker(pool);
1969
		if (worker) {
1970
			del_timer_sync(&pool->mayday_timer);
1971
			spin_lock_irq(&pool->lock);
1972
			start_worker(worker);
1973 1974
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1975 1976 1977
			return true;
		}

1978
		if (!need_to_create_worker(pool))
1979
			break;
L
Linus Torvalds 已提交
1980

1981 1982
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1983

1984
		if (!need_to_create_worker(pool))
1985 1986 1987
			break;
	}

1988
	del_timer_sync(&pool->mayday_timer);
1989
	spin_lock_irq(&pool->lock);
1990
	if (need_to_create_worker(pool))
1991 1992 1993 1994 1995 1996
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1997
 * @pool: pool to destroy workers for
1998
 *
1999
 * Destroy @pool workers which have been idle for longer than
2000 2001 2002
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
2003
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2004 2005 2006
 * multiple times.  Called only from manager.
 *
 * RETURNS:
2007
 * %false if no action was taken and pool->lock stayed locked, %true
2008 2009
 * otherwise.
 */
2010
static bool maybe_destroy_workers(struct worker_pool *pool)
2011 2012
{
	bool ret = false;
L
Linus Torvalds 已提交
2013

2014
	while (too_many_workers(pool)) {
2015 2016
		struct worker *worker;
		unsigned long expires;
2017

2018
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2019
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2020

2021
		if (time_before(jiffies, expires)) {
2022
			mod_timer(&pool->idle_timer, expires);
2023
			break;
2024
		}
L
Linus Torvalds 已提交
2025

2026 2027
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2028
	}
2029

2030
	return ret;
2031 2032
}

2033
/**
2034 2035
 * manage_workers - manage worker pool
 * @worker: self
2036
 *
2037
 * Assume the manager role and manage the worker pool @worker belongs
2038
 * to.  At any given time, there can be only zero or one manager per
2039
 * pool.  The exclusion is handled automatically by this function.
2040 2041 2042 2043
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2044 2045
 *
 * CONTEXT:
2046
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2047 2048 2049
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2050 2051
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2052
 */
2053
static bool manage_workers(struct worker *worker)
2054
{
2055
	struct worker_pool *pool = worker->pool;
2056
	bool ret = false;
2057

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2079
	if (!mutex_trylock(&pool->manager_arb))
2080
		return ret;
2081

2082
	/*
2083 2084
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2085
	 */
2086
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2087
		spin_unlock_irq(&pool->lock);
2088
		mutex_lock(&pool->manager_mutex);
2089 2090
		/*
		 * CPU hotplug could have happened while we were waiting
2091
		 * for assoc_mutex.  Hotplug itself can't handle us
2092
		 * because manager isn't either on idle or busy list, and
2093
		 * @pool's state and ours could have deviated.
2094
		 *
2095
		 * As hotplug is now excluded via manager_mutex, we can
2096
		 * simply try to bind.  It will succeed or fail depending
2097
		 * on @pool's current state.  Try it and adjust
2098 2099
		 * %WORKER_UNBOUND accordingly.
		 */
2100
		if (worker_maybe_bind_and_lock(pool))
2101 2102 2103
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2104

2105 2106
		ret = true;
	}
2107

2108
	pool->flags &= ~POOL_MANAGE_WORKERS;
2109 2110

	/*
2111 2112
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2113
	 */
2114 2115
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2116

2117
	mutex_unlock(&pool->manager_mutex);
2118
	mutex_unlock(&pool->manager_arb);
2119
	return ret;
2120 2121
}

2122 2123
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2124
 * @worker: self
2125 2126 2127 2128 2129 2130 2131 2132 2133
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2134
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2135
 */
T
Tejun Heo 已提交
2136
static void process_one_work(struct worker *worker, struct work_struct *work)
2137 2138
__releases(&pool->lock)
__acquires(&pool->lock)
2139
{
2140
	struct pool_workqueue *pwq = get_work_pwq(work);
2141
	struct worker_pool *pool = worker->pool;
2142
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2143
	int work_color;
2144
	struct worker *collision;
2145 2146 2147 2148 2149 2150 2151 2152
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2153 2154 2155
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2156
#endif
2157 2158 2159
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2160
	 * unbound or a disassociated pool.
2161
	 */
2162
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2163
		     !(pool->flags & POOL_DISASSOCIATED) &&
2164
		     raw_smp_processor_id() != pool->cpu);
2165

2166 2167 2168 2169 2170 2171
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2172
	collision = find_worker_executing_work(pool, work);
2173 2174 2175 2176 2177
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2178
	/* claim and dequeue */
2179
	debug_work_deactivate(work);
2180
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2181
	worker->current_work = work;
2182
	worker->current_func = work->func;
2183
	worker->current_pwq = pwq;
2184
	work_color = get_work_color(work);
2185

2186 2187
	list_del_init(&work->entry);

2188 2189 2190 2191 2192 2193 2194
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2195
	/*
2196
	 * Unbound pool isn't concurrency managed and work items should be
2197 2198
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2199 2200
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2201

2202
	/*
2203
	 * Record the last pool and clear PENDING which should be the last
2204
	 * update to @work.  Also, do this inside @pool->lock so that
2205 2206
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2207
	 */
2208
	set_work_pool_and_clear_pending(work, pool->id);
2209

2210
	spin_unlock_irq(&pool->lock);
2211

2212
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2213
	lock_map_acquire(&lockdep_map);
2214
	trace_workqueue_execute_start(work);
2215
	worker->current_func(work);
2216 2217 2218 2219 2220
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2221
	lock_map_release(&lockdep_map);
2222
	lock_map_release(&pwq->wq->lockdep_map);
2223 2224

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2225 2226
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2227 2228
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2229 2230 2231 2232
		debug_show_held_locks(current);
		dump_stack();
	}

2233
	spin_lock_irq(&pool->lock);
2234

2235 2236 2237 2238
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2239
	/* we're done with it, release */
2240
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2241
	worker->current_work = NULL;
2242
	worker->current_func = NULL;
2243 2244
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2245 2246
}

2247 2248 2249 2250 2251 2252 2253 2254 2255
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2256
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2257 2258 2259
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2260
{
2261 2262
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2263
						struct work_struct, entry);
T
Tejun Heo 已提交
2264
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2265 2266 2267
	}
}

T
Tejun Heo 已提交
2268 2269
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2270
 * @__worker: self
T
Tejun Heo 已提交
2271
 *
2272 2273 2274 2275 2276
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
T
Tejun Heo 已提交
2277
 */
T
Tejun Heo 已提交
2278
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2279
{
T
Tejun Heo 已提交
2280
	struct worker *worker = __worker;
2281
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2282

2283 2284
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2285
woke_up:
2286
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2287

2288 2289
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2290
		spin_unlock_irq(&pool->lock);
2291

2292
		/* if DIE is set, destruction is requested */
2293 2294 2295 2296 2297
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2298
		/* otherwise, rebind */
2299 2300
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2301
	}
2302

T
Tejun Heo 已提交
2303
	worker_leave_idle(worker);
2304
recheck:
2305
	/* no more worker necessary? */
2306
	if (!need_more_worker(pool))
2307 2308 2309
		goto sleep;

	/* do we need to manage? */
2310
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2311 2312
		goto recheck;

T
Tejun Heo 已提交
2313 2314 2315 2316 2317
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2318
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2319

2320 2321 2322 2323 2324 2325 2326 2327
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2328
		struct work_struct *work =
2329
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2330 2331 2332 2333 2334 2335
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2336
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2337 2338 2339
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2340
		}
2341
	} while (keep_working(pool));
2342 2343

	worker_set_flags(worker, WORKER_PREP, false);
2344
sleep:
2345
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2346
		goto recheck;
2347

T
Tejun Heo 已提交
2348
	/*
2349 2350 2351 2352 2353
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2354 2355 2356
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2357
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2358 2359
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2360 2361
}

2362 2363
/**
 * rescuer_thread - the rescuer thread function
2364
 * @__rescuer: self
2365 2366
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2367
 * workqueue which has WQ_MEM_RECLAIM set.
2368
 *
2369
 * Regular work processing on a pool may block trying to create a new
2370 2371 2372 2373 2374
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2375 2376
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2377 2378 2379 2380
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2381
static int rescuer_thread(void *__rescuer)
2382
{
2383 2384
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2385 2386 2387
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2388 2389 2390 2391 2392 2393

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2394 2395 2396
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2397 2398
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2399
		rescuer->task->flags &= ~PF_WQ_WORKER;
2400
		return 0;
2401
	}
2402

2403 2404 2405 2406 2407 2408
	/* see whether any pwq is asking for help */
	spin_lock_irq(&workqueue_lock);

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2409
		struct worker_pool *pool = pwq->pool;
2410 2411 2412
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2413 2414 2415
		list_del_init(&pwq->mayday_node);

		spin_unlock_irq(&workqueue_lock);
2416 2417

		/* migrate to the target cpu if possible */
2418
		worker_maybe_bind_and_lock(pool);
2419
		rescuer->pool = pool;
2420 2421 2422 2423 2424

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2425
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2426
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2427
			if (get_work_pwq(work) == pwq)
2428 2429 2430
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2431 2432

		/*
2433
		 * Leave this pool.  If keep_working() is %true, notify a
2434 2435 2436
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2437 2438
		if (keep_working(pool))
			wake_up_worker(pool);
2439

2440
		rescuer->pool = NULL;
2441 2442
		spin_unlock(&pool->lock);
		spin_lock(&workqueue_lock);
2443 2444
	}

2445 2446
	spin_unlock_irq(&workqueue_lock);

2447 2448
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2449 2450
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2451 2452
}

O
Oleg Nesterov 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2464 2465
/**
 * insert_wq_barrier - insert a barrier work
2466
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2467
 * @barr: wq_barrier to insert
2468 2469
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2470
 *
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2483
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2484 2485
 *
 * CONTEXT:
2486
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2487
 */
2488
static void insert_wq_barrier(struct pool_workqueue *pwq,
2489 2490
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2491
{
2492 2493 2494
	struct list_head *head;
	unsigned int linked = 0;

2495
	/*
2496
	 * debugobject calls are safe here even with pool->lock locked
2497 2498 2499 2500
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2501
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2502
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2503
	init_completion(&barr->done);
2504

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2520
	debug_work_activate(&barr->work);
2521
	insert_work(pwq, &barr->work, head,
2522
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2523 2524
}

2525
/**
2526
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2527 2528 2529 2530
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2531
 * Prepare pwqs for workqueue flushing.
2532
 *
2533 2534 2535 2536 2537
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2538 2539 2540 2541 2542 2543 2544
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2545
 * If @work_color is non-negative, all pwqs should have the same
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2556
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2557
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2558
{
2559
	bool wait = false;
2560
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2561

2562
	if (flush_color >= 0) {
2563
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2564
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2565
	}
2566

2567 2568
	local_irq_disable();

2569
	for_each_pwq(pwq, wq) {
2570
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2571

2572
		spin_lock(&pool->lock);
2573

2574
		if (flush_color >= 0) {
2575
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2576

2577 2578 2579
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2580 2581 2582
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2583

2584
		if (work_color >= 0) {
2585
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2586
			pwq->work_color = work_color;
2587
		}
L
Linus Torvalds 已提交
2588

2589
		spin_unlock(&pool->lock);
L
Linus Torvalds 已提交
2590
	}
2591

2592 2593
	local_irq_enable();

2594
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2595
		complete(&wq->first_flusher->done);
2596

2597
	return wait;
L
Linus Torvalds 已提交
2598 2599
}

2600
/**
L
Linus Torvalds 已提交
2601
 * flush_workqueue - ensure that any scheduled work has run to completion.
2602
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2603
 *
2604 2605
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2606
 */
2607
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2608
{
2609 2610 2611 2612 2613 2614
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2615

2616 2617
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2632
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2633 2634 2635 2636 2637
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2638
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2639 2640 2641

			wq->first_flusher = &this_flusher;

2642
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2643 2644 2645 2646 2647 2648 2649 2650
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2651
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2652
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2653
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2679 2680 2681 2682
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2683 2684
	wq->first_flusher = NULL;

2685 2686
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2699 2700
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2720
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2721 2722 2723
		}

		if (list_empty(&wq->flusher_queue)) {
2724
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2725 2726 2727 2728 2729
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2730
		 * the new first flusher and arm pwqs.
2731
		 */
2732 2733
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2734 2735 2736 2737

		list_del_init(&next->list);
		wq->first_flusher = next;

2738
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2750
}
2751
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2752

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2767
	struct pool_workqueue *pwq;
2768 2769 2770 2771

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2772
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2773
	 */
2774
	mutex_lock(&wq_mutex);
2775
	if (!wq->nr_drainers++)
2776
		wq->flags |= __WQ_DRAINING;
2777
	mutex_unlock(&wq_mutex);
2778 2779 2780
reflush:
	flush_workqueue(wq);

2781 2782
	local_irq_disable();

2783
	for_each_pwq(pwq, wq) {
2784
		bool drained;
2785

2786
		spin_lock(&pwq->pool->lock);
2787
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2788
		spin_unlock(&pwq->pool->lock);
2789 2790

		if (drained)
2791 2792 2793 2794
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2795
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2796
				wq->name, flush_cnt);
2797 2798

		local_irq_enable();
2799 2800 2801
		goto reflush;
	}

2802 2803 2804
	local_irq_enable();

	mutex_lock(&wq_mutex);
2805
	if (!--wq->nr_drainers)
2806
		wq->flags &= ~__WQ_DRAINING;
2807
	mutex_unlock(&wq_mutex);
2808 2809 2810
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2811
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2812
{
2813
	struct worker *worker = NULL;
2814
	struct worker_pool *pool;
2815
	struct pool_workqueue *pwq;
2816 2817

	might_sleep();
2818 2819

	local_irq_disable();
2820
	pool = get_work_pool(work);
2821 2822
	if (!pool) {
		local_irq_enable();
2823
		return false;
2824
	}
2825

2826
	spin_lock(&pool->lock);
2827
	/* see the comment in try_to_grab_pending() with the same code */
2828 2829 2830
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2831
			goto already_gone;
2832
	} else {
2833
		worker = find_worker_executing_work(pool, work);
2834
		if (!worker)
T
Tejun Heo 已提交
2835
			goto already_gone;
2836
		pwq = worker->current_pwq;
2837
	}
2838

2839
	insert_wq_barrier(pwq, barr, work, worker);
2840
	spin_unlock_irq(&pool->lock);
2841

2842 2843 2844 2845 2846 2847
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2848
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2849
		lock_map_acquire(&pwq->wq->lockdep_map);
2850
	else
2851 2852
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2853

2854
	return true;
T
Tejun Heo 已提交
2855
already_gone:
2856
	spin_unlock_irq(&pool->lock);
2857
	return false;
2858
}
2859 2860 2861 2862 2863

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2864 2865
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2866 2867 2868 2869 2870 2871 2872 2873 2874
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2875 2876 2877
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2878
	if (start_flush_work(work, &barr)) {
2879 2880 2881
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2882
	} else {
2883
		return false;
2884 2885
	}
}
2886
EXPORT_SYMBOL_GPL(flush_work);
2887

2888
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2889
{
2890
	unsigned long flags;
2891 2892 2893
	int ret;

	do {
2894 2895 2896 2897 2898 2899
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2900
			flush_work(work);
2901 2902
	} while (unlikely(ret < 0));

2903 2904 2905 2906
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2907
	flush_work(work);
2908
	clear_work_data(work);
2909 2910 2911
	return ret;
}

2912
/**
2913 2914
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2915
 *
2916 2917 2918 2919
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2920
 *
2921 2922
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2923
 *
2924
 * The caller must ensure that the workqueue on which @work was last
2925
 * queued can't be destroyed before this function returns.
2926 2927 2928
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2929
 */
2930
bool cancel_work_sync(struct work_struct *work)
2931
{
2932
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2933
}
2934
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2935

2936
/**
2937 2938
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2939
 *
2940 2941 2942
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2943
 *
2944 2945 2946
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2947
 */
2948 2949
bool flush_delayed_work(struct delayed_work *dwork)
{
2950
	local_irq_disable();
2951
	if (del_timer_sync(&dwork->timer))
2952
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2953
	local_irq_enable();
2954 2955 2956 2957
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2958
/**
2959 2960
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2961
 *
2962 2963 2964 2965 2966
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2967
 *
2968
 * This function is safe to call from any context including IRQ handler.
2969
 */
2970
bool cancel_delayed_work(struct delayed_work *dwork)
2971
{
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2982 2983
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2984
	local_irq_restore(flags);
2985
	return ret;
2986
}
2987
EXPORT_SYMBOL(cancel_delayed_work);
2988

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2999
{
3000
	return __cancel_work_timer(&dwork->work, true);
3001
}
3002
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3003

3004
/**
3005
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3006 3007
 * @func: the function to call
 *
3008 3009
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3010
 * schedule_on_each_cpu() is very slow.
3011 3012 3013
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3014
 */
3015
int schedule_on_each_cpu(work_func_t func)
3016 3017
{
	int cpu;
3018
	struct work_struct __percpu *works;
3019

3020 3021
	works = alloc_percpu(struct work_struct);
	if (!works)
3022
		return -ENOMEM;
3023

3024 3025
	get_online_cpus();

3026
	for_each_online_cpu(cpu) {
3027 3028 3029
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3030
		schedule_work_on(cpu, work);
3031
	}
3032 3033 3034 3035

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3036
	put_online_cpus();
3037
	free_percpu(works);
3038 3039 3040
	return 0;
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3065 3066
void flush_scheduled_work(void)
{
3067
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3068
}
3069
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3070

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3083
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3084 3085
{
	if (!in_interrupt()) {
3086
		fn(&ew->work);
3087 3088 3089
		return 0;
	}

3090
	INIT_WORK(&ew->work, fn);
3091 3092 3093 3094 3095 3096
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t wq_per_cpu_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}

static ssize_t wq_max_active_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t wq_max_active_store(struct device *dev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}

static struct device_attribute wq_sysfs_attrs[] = {
	__ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
	__ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
	__ATTR_NULL,
};

static ssize_t wq_pool_id_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct worker_pool *pool;
	int written;

	rcu_read_lock_sched();
	pool = first_pwq(wq)->pool;
	written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	rcu_read_lock_sched();
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    first_pwq(wq)->pool->attrs->nice);
	rcu_read_unlock_sched();

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	rcu_read_lock_sched();
	copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
	rcu_read_unlock_sched();
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= -20 && attrs->nice <= 19)
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	rcu_read_lock_sched();
	written = cpumask_scnprintf(buf, PAGE_SIZE,
				    first_pwq(wq)->pool->attrs->cpumask);
	rcu_read_unlock_sched();

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_id, 0444, wq_pool_id_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_attrs			= wq_sysfs_attrs,
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Returns 0 on success, -errno on failure.
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.  Returns NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_setall(attrs->cpumask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
}

/*
 * Hacky implementation of jhash of bitmaps which only considers the
 * specified number of bits.  We probably want a proper implementation in
 * include/linux/jhash.h.
 */
static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
{
	int nr_longs = bits / BITS_PER_LONG;
	int nr_leftover = bits % BITS_PER_LONG;
	unsigned long leftover = 0;

	if (nr_longs)
		hash = jhash(bitmap, nr_longs * sizeof(long), hash);
	if (nr_leftover) {
		bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
		hash = jhash(&leftover, sizeof(long), hash);
	}
	return hash;
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
	hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3458 3459 3460 3461 3462
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3463 3464 3465
 * Returns 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3466 3467
 */
static int init_worker_pool(struct worker_pool *pool)
3468 3469
{
	spin_lock_init(&pool->lock);
3470 3471
	pool->id = -1;
	pool->cpu = -1;
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3485
	mutex_init(&pool->manager_mutex);
3486
	ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3487

3488 3489 3490 3491
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3492 3493 3494 3495
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3496 3497
}

3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3512 3513 3514
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3515 3516 3517 3518 3519
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3520
	mutex_lock(&wq_mutex);
3521
	if (--pool->refcnt) {
3522
		mutex_unlock(&wq_mutex);
3523 3524 3525 3526 3527 3528
		return;
	}

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
	    WARN_ON(!list_empty(&pool->worklist))) {
3529
		mutex_unlock(&wq_mutex);
3530 3531 3532 3533 3534 3535 3536 3537
		return;
	}

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3538
	mutex_unlock(&wq_mutex);
3539

3540 3541 3542 3543 3544
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3545
	mutex_lock(&pool->manager_arb);
3546
	mutex_lock(&pool->manager_mutex);
3547 3548 3549 3550 3551 3552 3553
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3554
	mutex_unlock(&pool->manager_mutex);
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.  On failure, returns NULL.
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;

3579
	mutex_lock(&wq_mutex);
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

T
Tejun Heo 已提交
3594
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3595 3596 3597 3598 3599 3600
	copy_workqueue_attrs(pool->attrs, attrs);

	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3601
	if (create_and_start_worker(pool) < 0)
3602 3603 3604 3605 3606
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
3607
	mutex_unlock(&wq_mutex);
3608 3609
	return pool;
fail:
3610
	mutex_unlock(&wq_mutex);
3611 3612 3613 3614 3615
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3636 3637 3638 3639 3640 3641
	/*
	 * Unlink @pwq.  Synchronization against flush_mutex isn't strictly
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
	mutex_lock(&wq->flush_mutex);
T
Tejun Heo 已提交
3642 3643 3644
	spin_lock_irq(&workqueue_lock);
	list_del_rcu(&pwq->pwqs_node);
	spin_unlock_irq(&workqueue_lock);
3645
	mutex_unlock(&wq->flush_mutex);
T
Tejun Heo 已提交
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657

	put_unbound_pool(pool);
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
	if (list_empty(&wq->pwqs))
		kfree(wq);
}

3658
/**
3659
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3660 3661
 * @pwq: target pool_workqueue
 *
3662 3663 3664
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3665
 */
3666
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3667
{
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
	lockdep_assert_held(&workqueue_lock);

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

	spin_lock(&pwq->pool->lock);

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3682

3683 3684 3685 3686 3687 3688 3689 3690
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
	} else {
		pwq->max_active = 0;
	}

	spin_unlock(&pwq->pool->lock);
3691 3692
}

3693 3694
static void init_and_link_pwq(struct pool_workqueue *pwq,
			      struct workqueue_struct *wq,
3695 3696
			      struct worker_pool *pool,
			      struct pool_workqueue **p_last_pwq)
3697 3698 3699 3700 3701 3702
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3703
	pwq->refcnt = 1;
3704 3705
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3706
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3707

3708 3709 3710
	mutex_lock(&wq->flush_mutex);
	spin_lock_irq(&workqueue_lock);

3711 3712 3713 3714
	/*
	 * Set the matching work_color.  This is synchronized with
	 * flush_mutex to avoid confusing flush_workqueue().
	 */
3715 3716
	if (p_last_pwq)
		*p_last_pwq = first_pwq(wq);
3717
	pwq->work_color = wq->work_color;
3718 3719 3720 3721 3722

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3723
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3724 3725 3726

	spin_unlock_irq(&workqueue_lock);
	mutex_unlock(&wq->flush_mutex);
3727 3728
}

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  If @attrs doesn't match the
 * current attributes, a new pwq is created and made the first pwq which
 * will serve all new work items.  Older pwqs are released as in-flight
 * work items finish.  Note that a work item which repeatedly requeues
 * itself back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.  Returns 0 on success and -errno on
 * failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	struct pool_workqueue *pwq, *last_pwq;
	struct worker_pool *pool;

3749
	/* only unbound workqueues can change attributes */
3750 3751 3752
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3753 3754 3755 3756
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
	if (!pwq)
		return -ENOMEM;

	pool = get_unbound_pool(attrs);
	if (!pool) {
		kmem_cache_free(pwq_cache, pwq);
		return -ENOMEM;
	}

	init_and_link_pwq(pwq, wq, pool, &last_pwq);
	if (last_pwq) {
		spin_lock_irq(&last_pwq->pool->lock);
		put_pwq(last_pwq);
		spin_unlock_irq(&last_pwq->pool->lock);
	}

	return 0;
}

3777
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3778
{
3779
	bool highpri = wq->flags & WQ_HIGHPRI;
3780 3781 3782
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3783 3784
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3785 3786 3787
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3788 3789
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3790
			struct worker_pool *cpu_pools =
3791
				per_cpu(cpu_worker_pools, cpu);
3792

3793
			init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
3794
		}
3795
		return 0;
3796
	} else {
3797
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3798
	}
T
Tejun Heo 已提交
3799 3800
}

3801 3802
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3803
{
3804 3805 3806
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3807 3808
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3809

3810
	return clamp_val(max_active, 1, lim);
3811 3812
}

3813
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3814 3815 3816
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3817
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3818
{
3819
	va_list args, args1;
L
Linus Torvalds 已提交
3820
	struct workqueue_struct *wq;
3821
	struct pool_workqueue *pwq;
3822 3823 3824 3825 3826 3827 3828 3829 3830
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
3831
		return NULL;
3832 3833 3834 3835

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3836

3837
	max_active = max_active ?: WQ_DFL_ACTIVE;
3838
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3839

3840
	/* init wq */
3841
	wq->flags = flags;
3842
	wq->saved_max_active = max_active;
3843
	mutex_init(&wq->flush_mutex);
3844
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3845
	INIT_LIST_HEAD(&wq->pwqs);
3846 3847
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3848
	INIT_LIST_HEAD(&wq->maydays);
3849

3850
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3851
	INIT_LIST_HEAD(&wq->list);
3852

3853
	if (alloc_and_link_pwqs(wq) < 0)
3854
		goto err_free_wq;
T
Tejun Heo 已提交
3855

3856 3857 3858 3859 3860
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3861 3862
		struct worker *rescuer;

3863
		rescuer = alloc_worker();
3864
		if (!rescuer)
3865
			goto err_destroy;
3866

3867 3868
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3869
					       wq->name);
3870 3871 3872 3873
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3874

3875
		wq->rescuer = rescuer;
3876 3877
		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3878 3879
	}

3880 3881 3882
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

3883
	/*
3884 3885
	 * wq_mutex protects global freeze state and workqueues list.  Grab
	 * it, adjust max_active and add the new @wq to workqueues list.
3886
	 */
3887
	mutex_lock(&wq_mutex);
3888

3889
	spin_lock_irq(&workqueue_lock);
3890 3891
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3892
	spin_unlock_irq(&workqueue_lock);
3893

T
Tejun Heo 已提交
3894
	list_add(&wq->list, &workqueues);
3895

3896
	mutex_unlock(&wq_mutex);
T
Tejun Heo 已提交
3897

3898
	return wq;
3899 3900 3901 3902 3903 3904

err_free_wq:
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3905
	return NULL;
3906
}
3907
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3908

3909 3910 3911 3912 3913 3914 3915 3916
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3917
	struct pool_workqueue *pwq;
3918

3919 3920
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3921

3922
	/* sanity checks */
3923
	spin_lock_irq(&workqueue_lock);
3924
	for_each_pwq(pwq, wq) {
3925 3926
		int i;

3927 3928 3929
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
				spin_unlock_irq(&workqueue_lock);
3930
				return;
3931 3932 3933
			}
		}

T
Tejun Heo 已提交
3934 3935
		if (WARN_ON(pwq->refcnt > 1) ||
		    WARN_ON(pwq->nr_active) ||
3936 3937
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
			spin_unlock_irq(&workqueue_lock);
3938
			return;
3939
		}
3940
	}
3941
	spin_unlock_irq(&workqueue_lock);
3942

3943 3944 3945 3946
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3947
	mutex_lock(&wq_mutex);
3948
	list_del_init(&wq->list);
3949
	mutex_unlock(&wq_mutex);
3950

3951 3952
	workqueue_sysfs_unregister(wq);

3953
	if (wq->rescuer) {
3954
		kthread_stop(wq->rescuer->task);
3955
		kfree(wq->rescuer);
3956
		wq->rescuer = NULL;
3957 3958
	}

T
Tejun Heo 已提交
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
		 * access the first pwq and put the base ref.  As both pwqs
		 * and pools are sched-RCU protected, the lock operations
		 * are safe.  @wq will be freed when the last pwq is
		 * released.
		 */
3974 3975
		pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
				       pwqs_node);
T
Tejun Heo 已提交
3976 3977 3978
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
3979
	}
3980 3981 3982
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3995
	struct pool_workqueue *pwq;
3996

3997 3998 3999 4000
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4001
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4002

4003
	spin_lock_irq(&workqueue_lock);
4004 4005 4006

	wq->saved_max_active = max_active;

4007 4008
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4009

4010
	spin_unlock_irq(&workqueue_lock);
4011
}
4012
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4013

4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

	return worker && worker == worker->current_pwq->wq->rescuer;
}

4027
/**
4028 4029 4030
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4031
 *
4032 4033 4034
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4035
 *
4036 4037
 * RETURNS:
 * %true if congested, %false otherwise.
4038
 */
4039
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4040
{
4041
	struct pool_workqueue *pwq;
4042 4043 4044
	bool ret;

	preempt_disable();
4045 4046 4047 4048 4049

	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
		pwq = first_pwq(wq);
4050

4051 4052 4053 4054
	ret = !list_empty(&pwq->delayed_works);
	preempt_enable();

	return ret;
L
Linus Torvalds 已提交
4055
}
4056
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4057

4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4070
{
4071
	struct worker_pool *pool;
4072 4073
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4074

4075 4076
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4077

4078 4079
	local_irq_save(flags);
	pool = get_work_pool(work);
4080
	if (pool) {
4081
		spin_lock(&pool->lock);
4082 4083
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4084
		spin_unlock(&pool->lock);
4085
	}
4086
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4087

4088
	return ret;
L
Linus Torvalds 已提交
4089
}
4090
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4091

4092 4093 4094
/*
 * CPU hotplug.
 *
4095
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4096
 * are a lot of assumptions on strong associations among work, pwq and
4097
 * pool which make migrating pending and scheduled works very
4098
 * difficult to implement without impacting hot paths.  Secondly,
4099
 * worker pools serve mix of short, long and very long running works making
4100 4101
 * blocked draining impractical.
 *
4102
 * This is solved by allowing the pools to be disassociated from the CPU
4103 4104
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4105
 */
L
Linus Torvalds 已提交
4106

4107
static void wq_unbind_fn(struct work_struct *work)
4108
{
4109
	int cpu = smp_processor_id();
4110
	struct worker_pool *pool;
4111 4112
	struct worker *worker;
	int i;
4113

4114
	for_each_cpu_worker_pool(pool, cpu) {
4115
		WARN_ON_ONCE(cpu != smp_processor_id());
4116

4117
		mutex_lock(&pool->manager_mutex);
4118
		spin_lock_irq(&pool->lock);
4119

4120
		/*
4121
		 * We've blocked all manager operations.  Make all workers
4122 4123 4124 4125 4126
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4127
		list_for_each_entry(worker, &pool->idle_list, entry)
4128
			worker->flags |= WORKER_UNBOUND;
4129

4130
		for_each_busy_worker(worker, i, pool)
4131
			worker->flags |= WORKER_UNBOUND;
4132

4133
		pool->flags |= POOL_DISASSOCIATED;
4134

4135
		spin_unlock_irq(&pool->lock);
4136
		mutex_unlock(&pool->manager_mutex);
4137
	}
4138

4139
	/*
4140
	 * Call schedule() so that we cross rq->lock and thus can guarantee
4141 4142
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
4143 4144
	 */
	schedule();
4145

4146
	/*
4147 4148
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
4149 4150 4151
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
4152 4153 4154 4155
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
4156
	 */
4157
	for_each_cpu_worker_pool(pool, cpu)
4158
		atomic_set(&pool->nr_running, 0);
4159 4160
}

T
Tejun Heo 已提交
4161 4162 4163 4164
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4165
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4166 4167
					       unsigned long action,
					       void *hcpu)
4168
{
4169
	int cpu = (unsigned long)hcpu;
4170
	struct worker_pool *pool;
4171

T
Tejun Heo 已提交
4172
	switch (action & ~CPU_TASKS_FROZEN) {
4173
	case CPU_UP_PREPARE:
4174
		for_each_cpu_worker_pool(pool, cpu) {
4175 4176
			if (pool->nr_workers)
				continue;
4177
			if (create_and_start_worker(pool) < 0)
4178
				return NOTIFY_BAD;
4179
		}
T
Tejun Heo 已提交
4180
		break;
4181

4182 4183
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4184
		for_each_cpu_worker_pool(pool, cpu) {
4185
			mutex_lock(&pool->manager_mutex);
4186 4187
			spin_lock_irq(&pool->lock);

4188
			pool->flags &= ~POOL_DISASSOCIATED;
4189 4190 4191
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
4192
			mutex_unlock(&pool->manager_mutex);
4193
		}
4194
		break;
4195
	}
4196 4197 4198 4199 4200 4201 4202
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4203
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4204 4205 4206
						 unsigned long action,
						 void *hcpu)
{
4207
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4208 4209
	struct work_struct unbind_work;

4210 4211
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
4212
		/* unbinding should happen on the local CPU */
4213
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4214
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
4215 4216
		flush_work(&unbind_work);
		break;
4217 4218 4219 4220
	}
	return NOTIFY_OK;
}

4221
#ifdef CONFIG_SMP
4222

4223
struct work_for_cpu {
4224
	struct work_struct work;
4225 4226 4227 4228 4229
	long (*fn)(void *);
	void *arg;
	long ret;
};

4230
static void work_for_cpu_fn(struct work_struct *work)
4231
{
4232 4233
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4234 4235 4236 4237 4238 4239 4240 4241 4242
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4243 4244
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
4245
 * The caller must not hold any locks which would prevent @fn from completing.
4246
 */
4247
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4248
{
4249
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4250

4251 4252 4253
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
4254 4255 4256 4257 4258
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4259 4260 4261 4262 4263
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4264
 * Start freezing workqueues.  After this function returns, all freezable
4265
 * workqueues will queue new works to their delayed_works list instead of
4266
 * pool->worklist.
4267 4268
 *
 * CONTEXT:
4269
 * Grabs and releases wq_mutex, workqueue_lock and pool->lock's.
4270 4271 4272
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4273
	struct worker_pool *pool;
4274 4275
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4276
	int pi;
4277

4278
	mutex_lock(&wq_mutex);
4279

4280
	WARN_ON_ONCE(workqueue_freezing);
4281 4282
	workqueue_freezing = true;

4283
	/* set FREEZING */
4284
	for_each_pool(pool, pi) {
4285
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4286 4287
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4288
		spin_unlock_irq(&pool->lock);
4289
	}
4290

4291
	/* suppress further executions by setting max_active to zero */
4292
	spin_lock_irq(&workqueue_lock);
4293
	list_for_each_entry(wq, &workqueues, list) {
4294 4295
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4296
	}
4297
	spin_unlock_irq(&workqueue_lock);
4298 4299

	mutex_unlock(&wq_mutex);
4300 4301 4302
}

/**
4303
 * freeze_workqueues_busy - are freezable workqueues still busy?
4304 4305 4306 4307 4308
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4309
 * Grabs and releases wq_mutex.
4310 4311
 *
 * RETURNS:
4312 4313
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4314 4315 4316 4317
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4318 4319
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4320

4321
	mutex_lock(&wq_mutex);
4322

4323
	WARN_ON_ONCE(!workqueue_freezing);
4324

4325 4326 4327
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4328 4329 4330 4331
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4332
		preempt_disable();
4333
		for_each_pwq(pwq, wq) {
4334
			WARN_ON_ONCE(pwq->nr_active < 0);
4335
			if (pwq->nr_active) {
4336
				busy = true;
4337
				preempt_enable();
4338 4339 4340
				goto out_unlock;
			}
		}
4341
		preempt_enable();
4342 4343
	}
out_unlock:
4344
	mutex_unlock(&wq_mutex);
4345 4346 4347 4348 4349 4350 4351
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4352
 * frozen works are transferred to their respective pool worklists.
4353 4354
 *
 * CONTEXT:
4355
 * Grabs and releases wq_mutex, workqueue_lock and pool->lock's.
4356 4357 4358
 */
void thaw_workqueues(void)
{
4359 4360 4361
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4362
	int pi;
4363

4364
	mutex_lock(&wq_mutex);
4365 4366 4367 4368

	if (!workqueue_freezing)
		goto out_unlock;

4369
	/* clear FREEZING */
4370
	for_each_pool(pool, pi) {
4371
		spin_lock_irq(&pool->lock);
4372 4373
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4374
		spin_unlock_irq(&pool->lock);
4375
	}
4376

4377
	/* restore max_active and repopulate worklist */
4378
	spin_lock_irq(&workqueue_lock);
4379
	list_for_each_entry(wq, &workqueues, list) {
4380 4381
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4382
	}
4383
	spin_unlock_irq(&workqueue_lock);
4384

4385
	/* kick workers */
4386
	for_each_pool(pool, pi) {
4387
		spin_lock_irq(&pool->lock);
4388
		wake_up_worker(pool);
4389
		spin_unlock_irq(&pool->lock);
4390 4391
	}

4392 4393
	workqueue_freezing = false;
out_unlock:
4394
	mutex_unlock(&wq_mutex);
4395 4396 4397
}
#endif /* CONFIG_FREEZER */

4398
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4399
{
T
Tejun Heo 已提交
4400 4401
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4402

4403 4404
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4405
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4406

4407 4408 4409 4410
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4411
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4412
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4413

4414
	/* initialize CPU pools */
4415
	for_each_possible_cpu(cpu) {
4416
		struct worker_pool *pool;
4417

T
Tejun Heo 已提交
4418
		i = 0;
4419
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4420
			BUG_ON(init_worker_pool(pool));
4421
			pool->cpu = cpu;
4422
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4423 4424
			pool->attrs->nice = std_nice[i++];

T
Tejun Heo 已提交
4425
			/* alloc pool ID */
4426
			mutex_lock(&wq_mutex);
T
Tejun Heo 已提交
4427
			BUG_ON(worker_pool_assign_id(pool));
4428
			mutex_unlock(&wq_mutex);
4429
		}
4430 4431
	}

4432
	/* create the initial worker */
4433
	for_each_online_cpu(cpu) {
4434
		struct worker_pool *pool;
4435

4436
		for_each_cpu_worker_pool(pool, cpu) {
4437
			pool->flags &= ~POOL_DISASSOCIATED;
4438
			BUG_ON(create_and_start_worker(pool) < 0);
4439
		}
4440 4441
	}

4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));

		attrs->nice = std_nice[i];
		cpumask_setall(attrs->cpumask);

		unbound_std_wq_attrs[i] = attrs;
	}

4454
	system_wq = alloc_workqueue("events", 0, 0);
4455
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4456
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4457 4458
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4459 4460
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4461
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4462
	       !system_unbound_wq || !system_freezable_wq);
4463
	return 0;
L
Linus Torvalds 已提交
4464
}
4465
early_initcall(init_workqueues);