workqueue.c 110.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/jhash.h>
45
#include <linux/hashtable.h>
46
#include <linux/rculist.h>
47

48
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
49

T
Tejun Heo 已提交
50
enum {
51 52
	/*
	 * worker_pool flags
53
	 *
54
	 * A bound pool is either associated or disassociated with its CPU.
55 56 57 58 59 60
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
61
	 * be executing on any CPU.  The pool behaves as an unbound one.
62 63
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
64 65
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
66
	 */
67
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
68
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
69
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78

79
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
80
				  WORKER_CPU_INTENSIVE,
81

82
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
83

84
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
85
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
86

87 88 89
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

90 91 92
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
93 94 95 96 97 98 99 100
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
101
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
102
};
L
Linus Torvalds 已提交
103 104

/*
T
Tejun Heo 已提交
105 106
 * Structure fields follow one of the following exclusion rules.
 *
107 108
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
109
 *
110 111 112
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
113
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
114
 *
115 116 117 118
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
119
 *
120 121
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
122
 * W: workqueue_lock protected.
123 124
 *
 * R: workqueue_lock protected for writes.  Sched-RCU protected for reads.
L
Linus Torvalds 已提交
125 126
 */

127
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
128

129
struct worker_pool {
130
	spinlock_t		lock;		/* the pool lock */
131
	int			cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
132
	int			id;		/* I: pool ID */
133
	unsigned int		flags;		/* X: flags */
134 135 136

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
137 138

	/* nr_idle includes the ones off idle_list for rebinding */
139 140 141 142 143 144
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

145 146 147 148
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

149
	struct mutex		manager_arb;	/* manager arbitration */
150
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
151
	struct ida		worker_ida;	/* L: for worker IDs */
152

T
Tejun Heo 已提交
153
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
154 155
	struct hlist_node	hash_node;	/* R: unbound_pool_hash node */
	int			refcnt;		/* refcnt for unbound pools */
T
Tejun Heo 已提交
156

157 158 159 160 161 162
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
163 164 165 166 167 168

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
169 170
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
171
/*
172 173 174 175
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
176
 */
177
struct pool_workqueue {
178
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
179
	struct workqueue_struct *wq;		/* I: the owning workqueue */
180 181 182 183
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
184
	int			nr_active;	/* L: nr of active works */
185
	int			max_active;	/* L: max active works */
186
	struct list_head	delayed_works;	/* L: delayed works */
187
	struct list_head	pwqs_node;	/* R: node on wq->pwqs */
188
	struct list_head	mayday_node;	/* W: node on wq->maydays */
189
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
190

191 192 193 194 195 196 197 198 199
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

L
Linus Torvalds 已提交
200 201 202 203 204
/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
205
	unsigned int		flags;		/* W: WQ_* flags */
206
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
207
	struct list_head	pwqs;		/* R: all pwqs of this wq */
T
Tejun Heo 已提交
208
	struct list_head	list;		/* W: list of all workqueues */
209 210 211 212

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
213
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
214 215 216 217
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

218
	struct list_head	maydays;	/* W: pwqs requesting rescue */
219 220
	struct worker		*rescuer;	/* I: rescue worker */

221
	int			nr_drainers;	/* W: drain in progress */
222
	int			saved_max_active; /* W: saved pwq max_active */
223
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
224
	struct lockdep_map	lockdep_map;
225
#endif
226
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
227 228
};

229 230
static struct kmem_cache *pwq_cache;

231 232 233 234 235
/* hash of all unbound pools keyed by pool->attrs */
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

236 237
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
238
struct workqueue_struct *system_highpri_wq __read_mostly;
239
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
240
struct workqueue_struct *system_long_wq __read_mostly;
241
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
242
struct workqueue_struct *system_unbound_wq __read_mostly;
243
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
244
struct workqueue_struct *system_freezable_wq __read_mostly;
245
EXPORT_SYMBOL_GPL(system_freezable_wq);
246

247 248 249
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

250 251 252 253 254
#define assert_rcu_or_wq_lock()						\
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
			   lockdep_is_held(&workqueue_lock),		\
			   "sched RCU or workqueue lock should be held")

255 256 257
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
258
	     (pool)++)
259

260 261
#define for_each_busy_worker(worker, i, pool)				\
	hash_for_each(pool->busy_hash, i, worker, hentry)
262

T
Tejun Heo 已提交
263 264 265 266
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
 * @id: integer used for iteration
267 268 269 270 271 272 273
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
274 275
 */
#define for_each_pool(pool, id)						\
276 277 278
	idr_for_each_entry(&worker_pool_idr, pool, id)			\
		if (({ assert_rcu_or_wq_lock(); false; })) { }		\
		else
T
Tejun Heo 已提交
279

280 281 282 283
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
284 285 286 287 288 289 290
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
291 292
 */
#define for_each_pwq(pwq, wq)						\
293 294 295
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
		if (({ assert_rcu_or_wq_lock(); false; })) { }		\
		else
296

297 298 299 300
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

301 302 303 304 305
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
341
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
377
	.debug_hint	= work_debug_hint,
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

413 414
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
415
static LIST_HEAD(workqueues);
416
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
417

418
/*
419 420
 * The CPU and unbound standard worker pools.  The unbound ones have
 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
421
 */
422
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
423
				     cpu_worker_pools);
424

425 426 427 428
/*
 * idr of all pools.  Modifications are protected by workqueue_lock.  Read
 * accesses are protected by sched-RCU protected.
 */
T
Tejun Heo 已提交
429 430
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
431
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
432

T
Tejun Heo 已提交
433 434 435 436 437
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

438 439 440
	do {
		if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
			return -ENOMEM;
T
Tejun Heo 已提交
441

442 443 444 445
		spin_lock_irq(&workqueue_lock);
		ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
		spin_unlock_irq(&workqueue_lock);
	} while (ret == -EAGAIN);
T
Tejun Heo 已提交
446

447
	return ret;
448 449
}

450 451 452 453 454 455 456 457
/**
 * first_pwq - return the first pool_workqueue of the specified workqueue
 * @wq: the target workqueue
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 */
458
static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
459
{
460 461 462
	assert_rcu_or_wq_lock();
	return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
				      pwqs_node);
463 464
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
480

481
/*
482 483
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
484
 * is cleared and the high bits contain OFFQ flags and pool ID.
485
 *
486 487
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
488 489
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
490
 *
491
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
492
 * corresponding to a work.  Pool is available once the work has been
493
 * queued anywhere after initialization until it is sync canceled.  pwq is
494
 * available only while the work item is queued.
495
 *
496 497 498 499
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
500
 */
501 502
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
503
{
504
	WARN_ON_ONCE(!work_pending(work));
505 506
	atomic_long_set(&work->data, data | flags | work_static(work));
}
507

508
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
509 510
			 unsigned long extra_flags)
{
511 512
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
513 514
}

515 516 517 518 519 520 521
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

522 523
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
524
{
525 526 527 528 529 530 531
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
532
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
533
}
534

535
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
536
{
537 538
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
539 540
}

541
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
542
{
543
	unsigned long data = atomic_long_read(&work->data);
544

545
	if (data & WORK_STRUCT_PWQ)
546 547 548
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
549 550
}

551 552 553 554 555
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
556 557 558 559 560 561 562 563 564
 *
 * Pools are created and destroyed under workqueue_lock, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under workqueue_lock or with preemption disabled.
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
565 566
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
567
{
568
	unsigned long data = atomic_long_read(&work->data);
569
	int pool_id;
570

571 572
	assert_rcu_or_wq_lock();

573 574
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
575
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
576

577 578
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
579 580
		return NULL;

581
	return idr_find(&worker_pool_idr, pool_id);
582 583 584 585 586 587 588 589 590 591 592
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
593 594
	unsigned long data = atomic_long_read(&work->data);

595 596
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
597
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
598

599
	return data >> WORK_OFFQ_POOL_SHIFT;
600 601
}

602 603
static void mark_work_canceling(struct work_struct *work)
{
604
	unsigned long pool_id = get_work_pool_id(work);
605

606 607
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
608 609 610 611 612 613
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

614
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
615 616
}

617
/*
618 619
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
620
 * they're being called with pool->lock held.
621 622
 */

623
static bool __need_more_worker(struct worker_pool *pool)
624
{
625
	return !atomic_read(&pool->nr_running);
626 627
}

628
/*
629 630
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
631 632
 *
 * Note that, because unbound workers never contribute to nr_running, this
633
 * function will always return %true for unbound pools as long as the
634
 * worklist isn't empty.
635
 */
636
static bool need_more_worker(struct worker_pool *pool)
637
{
638
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
639
}
640

641
/* Can I start working?  Called from busy but !running workers. */
642
static bool may_start_working(struct worker_pool *pool)
643
{
644
	return pool->nr_idle;
645 646 647
}

/* Do I need to keep working?  Called from currently running workers. */
648
static bool keep_working(struct worker_pool *pool)
649
{
650 651
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
652 653 654
}

/* Do we need a new worker?  Called from manager. */
655
static bool need_to_create_worker(struct worker_pool *pool)
656
{
657
	return need_more_worker(pool) && !may_start_working(pool);
658
}
659

660
/* Do I need to be the manager? */
661
static bool need_to_manage_workers(struct worker_pool *pool)
662
{
663
	return need_to_create_worker(pool) ||
664
		(pool->flags & POOL_MANAGE_WORKERS);
665 666 667
}

/* Do we have too many workers and should some go away? */
668
static bool too_many_workers(struct worker_pool *pool)
669
{
670
	bool managing = mutex_is_locked(&pool->manager_arb);
671 672
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
673

674 675 676 677 678 679 680
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

681
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
682 683
}

684
/*
685 686 687
 * Wake up functions.
 */

688
/* Return the first worker.  Safe with preemption disabled */
689
static struct worker *first_worker(struct worker_pool *pool)
690
{
691
	if (unlikely(list_empty(&pool->idle_list)))
692 693
		return NULL;

694
	return list_first_entry(&pool->idle_list, struct worker, entry);
695 696 697 698
}

/**
 * wake_up_worker - wake up an idle worker
699
 * @pool: worker pool to wake worker from
700
 *
701
 * Wake up the first idle worker of @pool.
702 703
 *
 * CONTEXT:
704
 * spin_lock_irq(pool->lock).
705
 */
706
static void wake_up_worker(struct worker_pool *pool)
707
{
708
	struct worker *worker = first_worker(pool);
709 710 711 712 713

	if (likely(worker))
		wake_up_process(worker->task);
}

714
/**
715 716 717 718 719 720 721 722 723 724
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
725
void wq_worker_waking_up(struct task_struct *task, int cpu)
726 727 728
{
	struct worker *worker = kthread_data(task);

729
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
730
		WARN_ON_ONCE(worker->pool->cpu != cpu);
731
		atomic_inc(&worker->pool->nr_running);
732
	}
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
750
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
751 752
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
753
	struct worker_pool *pool;
754

755 756 757 758 759
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
760
	if (worker->flags & WORKER_NOT_RUNNING)
761 762
		return NULL;

763 764
	pool = worker->pool;

765
	/* this can only happen on the local cpu */
766 767
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
768 769 770 771 772 773

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
774 775 776
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
777
	 * manipulating idle_list, so dereferencing idle_list without pool
778
	 * lock is safe.
779
	 */
780 781
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
782
		to_wakeup = first_worker(pool);
783 784 785 786 787
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
788
 * @worker: self
789 790 791
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
792 793 794
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
795
 *
796
 * CONTEXT:
797
 * spin_lock_irq(pool->lock)
798 799 800 801
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
802
	struct worker_pool *pool = worker->pool;
803

804 805
	WARN_ON_ONCE(worker->task != current);

806 807 808 809 810 811 812 813
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
814
			if (atomic_dec_and_test(&pool->nr_running) &&
815
			    !list_empty(&pool->worklist))
816
				wake_up_worker(pool);
817
		} else
818
			atomic_dec(&pool->nr_running);
819 820
	}

821 822 823 824
	worker->flags |= flags;
}

/**
825
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
826
 * @worker: self
827 828
 * @flags: flags to clear
 *
829
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
830
 *
831
 * CONTEXT:
832
 * spin_lock_irq(pool->lock)
833 834 835
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
836
	struct worker_pool *pool = worker->pool;
837 838
	unsigned int oflags = worker->flags;

839 840
	WARN_ON_ONCE(worker->task != current);

841
	worker->flags &= ~flags;
842

843 844 845 846 847
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
848 849
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
850
			atomic_inc(&pool->nr_running);
851 852
}

853 854
/**
 * find_worker_executing_work - find worker which is executing a work
855
 * @pool: pool of interest
856 857
 * @work: work to find worker for
 *
858 859
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
879 880
 *
 * CONTEXT:
881
 * spin_lock_irq(pool->lock).
882 883 884 885
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
886
 */
887
static struct worker *find_worker_executing_work(struct worker_pool *pool,
888
						 struct work_struct *work)
889
{
890 891
	struct worker *worker;

892
	hash_for_each_possible(pool->busy_hash, worker, hentry,
893 894 895
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
896 897 898
			return worker;

	return NULL;
899 900
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
916
 * spin_lock_irq(pool->lock).
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

942
static void pwq_activate_delayed_work(struct work_struct *work)
943
{
944
	struct pool_workqueue *pwq = get_work_pwq(work);
945 946

	trace_workqueue_activate_work(work);
947
	move_linked_works(work, &pwq->pool->worklist, NULL);
948
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
949
	pwq->nr_active++;
950 951
}

952
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
953
{
954
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
955 956
						    struct work_struct, entry);

957
	pwq_activate_delayed_work(work);
958 959
}

960
/**
961 962
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
963 964 965
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
966
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
967 968
 *
 * CONTEXT:
969
 * spin_lock_irq(pool->lock).
970
 */
971
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
972 973 974 975 976
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

977
	pwq->nr_in_flight[color]--;
978

979 980
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
981
		/* one down, submit a delayed one */
982 983
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
984 985 986
	}

	/* is flush in progress and are we at the flushing tip? */
987
	if (likely(pwq->flush_color != color))
988 989 990
		return;

	/* are there still in-flight works? */
991
	if (pwq->nr_in_flight[color])
992 993
		return;

994 995
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
996 997

	/*
998
	 * If this was the last pwq, wake up the first flusher.  It
999 1000
	 * will handle the rest.
	 */
1001 1002
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
1003 1004
}

1005
/**
1006
 * try_to_grab_pending - steal work item from worklist and disable irq
1007 1008
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1009
 * @flags: place to store irq state
1010 1011 1012 1013 1014 1015 1016
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1017 1018
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1019
 *
1020
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1021 1022 1023
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1024 1025 1026 1027
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1028
 * This function is safe to call from any context including IRQ handler.
1029
 */
1030 1031
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1032
{
1033
	struct worker_pool *pool;
1034
	struct pool_workqueue *pwq;
1035

1036 1037
	local_irq_save(*flags);

1038 1039 1040 1041
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1042 1043 1044 1045 1046
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1047 1048 1049 1050 1051
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1052 1053 1054 1055 1056 1057 1058
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1059 1060
	pool = get_work_pool(work);
	if (!pool)
1061
		goto fail;
1062

1063
	spin_lock(&pool->lock);
1064
	/*
1065 1066 1067 1068 1069
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1070 1071
	 * item is currently queued on that pool.
	 */
1072 1073
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1074 1075 1076 1077 1078
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1079
		 * on the delayed_list, will confuse pwq->nr_active
1080 1081 1082 1083
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1084
			pwq_activate_delayed_work(work);
1085 1086

		list_del_init(&work->entry);
1087
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1088

1089
		/* work->data points to pwq iff queued, point to pool */
1090 1091 1092 1093
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1094
	}
1095
	spin_unlock(&pool->lock);
1096 1097 1098 1099 1100
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1101
	return -EAGAIN;
1102 1103
}

T
Tejun Heo 已提交
1104
/**
1105
 * insert_work - insert a work into a pool
1106
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1107 1108 1109 1110
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1111
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1112
 * work_struct flags.
T
Tejun Heo 已提交
1113 1114
 *
 * CONTEXT:
1115
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1116
 */
1117 1118
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1119
{
1120
	struct worker_pool *pool = pwq->pool;
1121

T
Tejun Heo 已提交
1122
	/* we own @work, set data and link */
1123
	set_work_pwq(work, pwq, extra_flags);
1124
	list_add_tail(&work->entry, head);
1125 1126 1127 1128 1129 1130 1131 1132

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1133 1134
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1135 1136
}

1137 1138
/*
 * Test whether @work is being queued from another work executing on the
1139
 * same workqueue.
1140 1141 1142
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1143 1144 1145 1146 1147 1148 1149
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1150
	return worker && worker->current_pwq->wq == wq;
1151 1152
}

1153
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1154 1155
			 struct work_struct *work)
{
1156
	struct pool_workqueue *pwq;
1157
	struct list_head *worklist;
1158
	unsigned int work_flags;
1159
	unsigned int req_cpu = cpu;
1160 1161 1162 1163 1164 1165 1166 1167

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1168

1169
	debug_work_activate(work);
1170

1171
	/* if dying, only works from the same workqueue are allowed */
1172
	if (unlikely(wq->flags & WQ_DRAINING) &&
1173
	    WARN_ON_ONCE(!is_chained_work(wq)))
1174 1175
		return;

1176
	/* determine the pwq to use */
1177
	if (!(wq->flags & WQ_UNBOUND)) {
1178
		struct worker_pool *last_pool;
1179

1180
		if (cpu == WORK_CPU_UNBOUND)
1181 1182
			cpu = raw_smp_processor_id();

1183
		/*
1184 1185 1186 1187
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1188
		 */
1189
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1190
		last_pool = get_work_pool(work);
1191

1192
		if (last_pool && last_pool != pwq->pool) {
1193 1194
			struct worker *worker;

1195
			spin_lock(&last_pool->lock);
1196

1197
			worker = find_worker_executing_work(last_pool, work);
1198

1199
			if (worker && worker->current_pwq->wq == wq) {
1200
				pwq = per_cpu_ptr(wq->cpu_pwqs, last_pool->cpu);
1201
			} else {
1202
				/* meh... not running there, queue here */
1203
				spin_unlock(&last_pool->lock);
1204
				spin_lock(&pwq->pool->lock);
1205
			}
1206
		} else {
1207
			spin_lock(&pwq->pool->lock);
1208
		}
1209
	} else {
1210
		pwq = first_pwq(wq);
1211
		spin_lock(&pwq->pool->lock);
1212 1213
	}

1214 1215
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1216

1217
	if (WARN_ON(!list_empty(&work->entry))) {
1218
		spin_unlock(&pwq->pool->lock);
1219 1220
		return;
	}
1221

1222 1223
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1224

1225
	if (likely(pwq->nr_active < pwq->max_active)) {
1226
		trace_workqueue_activate_work(work);
1227 1228
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1229 1230
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1231
		worklist = &pwq->delayed_works;
1232
	}
1233

1234
	insert_work(pwq, work, worklist, work_flags);
1235

1236
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1237 1238
}

1239
/**
1240 1241
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1242 1243 1244
 * @wq: workqueue to use
 * @work: work to queue
 *
1245
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1246
 *
1247 1248
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1249
 */
1250 1251
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1252
{
1253
	bool ret = false;
1254
	unsigned long flags;
1255

1256
	local_irq_save(flags);
1257

1258
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1259
		__queue_work(cpu, wq, work);
1260
		ret = true;
1261
	}
1262

1263
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1264 1265
	return ret;
}
1266
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1267

1268
/**
1269
 * queue_work - queue work on a workqueue
1270 1271 1272
 * @wq: workqueue to use
 * @work: work to queue
 *
1273
 * Returns %false if @work was already on a queue, %true otherwise.
1274
 *
1275 1276
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1277
 */
1278
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1279
{
1280
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1281
}
1282
EXPORT_SYMBOL_GPL(queue_work);
1283

1284
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1285
{
1286
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1287

1288
	/* should have been called from irqsafe timer with irq already off */
1289
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1290
}
1291
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1292

1293 1294
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1295
{
1296 1297 1298 1299 1300
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1301 1302
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1303

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1315
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1316

1317
	dwork->wq = wq;
1318
	dwork->cpu = cpu;
1319 1320 1321 1322 1323 1324
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1325 1326
}

1327 1328 1329 1330
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1331
 * @dwork: work to queue
1332 1333
 * @delay: number of jiffies to wait before queueing
 *
1334 1335 1336
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1337
 */
1338 1339
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1340
{
1341
	struct work_struct *work = &dwork->work;
1342
	bool ret = false;
1343
	unsigned long flags;
1344

1345 1346
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1347

1348
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1349
		__queue_delayed_work(cpu, wq, dwork, delay);
1350
		ret = true;
1351
	}
1352

1353
	local_irq_restore(flags);
1354 1355
	return ret;
}
1356
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1357

1358 1359 1360 1361 1362 1363
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1364
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1365
 */
1366
bool queue_delayed_work(struct workqueue_struct *wq,
1367 1368
			struct delayed_work *dwork, unsigned long delay)
{
1369
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1370 1371
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1388
 * This function is safe to call from any context including IRQ handler.
1389 1390 1391 1392 1393 1394 1395
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1396

1397 1398 1399
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1400

1401 1402 1403
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1404
	}
1405 1406

	/* -ENOENT from try_to_grab_pending() becomes %true */
1407 1408
	return ret;
}
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1425

T
Tejun Heo 已提交
1426 1427 1428 1429 1430 1431 1432 1433
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1434
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1435 1436
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1437
{
1438
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1439

1440 1441 1442 1443
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1444

1445 1446
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1447
	pool->nr_idle++;
1448
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1449 1450

	/* idle_list is LIFO */
1451
	list_add(&worker->entry, &pool->idle_list);
1452

1453 1454
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1455

1456
	/*
1457
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1458
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1459 1460
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1461
	 */
1462
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1463
		     pool->nr_workers == pool->nr_idle &&
1464
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1474
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1475 1476 1477
 */
static void worker_leave_idle(struct worker *worker)
{
1478
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1479

1480 1481
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1482
	worker_clr_flags(worker, WORKER_IDLE);
1483
	pool->nr_idle--;
T
Tejun Heo 已提交
1484 1485 1486
	list_del_init(&worker->entry);
}

1487
/**
1488 1489 1490 1491
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1492 1493 1494 1495 1496 1497
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1498
 * This function is to be used by unbound workers and rescuers to bind
1499 1500 1501
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1502
 * verbatim as it's best effort and blocking and pool may be
1503 1504
 * [dis]associated in the meantime.
 *
1505
 * This function tries set_cpus_allowed() and locks pool and verifies the
1506
 * binding against %POOL_DISASSOCIATED which is set during
1507 1508 1509
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1510 1511
 *
 * CONTEXT:
1512
 * Might sleep.  Called without any lock but returns with pool->lock
1513 1514 1515
 * held.
 *
 * RETURNS:
1516
 * %true if the associated pool is online (@worker is successfully
1517 1518
 * bound), %false if offline.
 */
1519
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1520
__acquires(&pool->lock)
1521 1522
{
	while (true) {
1523
		/*
1524 1525 1526
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1527
		 * against POOL_DISASSOCIATED.
1528
		 */
1529
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1530
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1531

1532
		spin_lock_irq(&pool->lock);
1533
		if (pool->flags & POOL_DISASSOCIATED)
1534
			return false;
1535
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1536
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1537
			return true;
1538
		spin_unlock_irq(&pool->lock);
1539

1540 1541 1542 1543 1544 1545
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1546
		cpu_relax();
1547
		cond_resched();
1548 1549 1550
	}
}

1551
/*
1552
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1553
 * list_empty(@worker->entry) before leaving idle and call this function.
1554 1555 1556
 */
static void idle_worker_rebind(struct worker *worker)
{
1557
	/* CPU may go down again inbetween, clear UNBOUND only on success */
1558
	if (worker_maybe_bind_and_lock(worker->pool))
1559
		worker_clr_flags(worker, WORKER_UNBOUND);
1560

1561 1562
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1563
	spin_unlock_irq(&worker->pool->lock);
1564 1565
}

1566
/*
1567
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1568 1569 1570
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1571
 */
1572
static void busy_worker_rebind_fn(struct work_struct *work)
1573 1574 1575
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1576
	if (worker_maybe_bind_and_lock(worker->pool))
1577
		worker_clr_flags(worker, WORKER_UNBOUND);
1578

1579
	spin_unlock_irq(&worker->pool->lock);
1580 1581
}

1582
/**
1583 1584
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1585
 *
1586
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1587 1588
 * is different for idle and busy ones.
 *
1589 1590 1591 1592
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1593
 *
1594 1595 1596 1597
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1598
 *
1599 1600 1601 1602
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1603
 */
1604
static void rebind_workers(struct worker_pool *pool)
1605
{
1606
	struct worker *worker, *n;
1607 1608
	int i;

1609 1610
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1611

1612
	/* dequeue and kick idle ones */
1613 1614 1615 1616 1617 1618
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1619

1620 1621 1622 1623 1624 1625
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1626

1627
	/* rebind busy workers */
1628
	for_each_busy_worker(worker, i, pool) {
1629 1630
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1631

1632 1633 1634
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1635

1636
		debug_work_activate(rebind_work);
1637

1638 1639
		/*
		 * wq doesn't really matter but let's keep @worker->pool
1640
		 * and @pwq->pool consistent for sanity.
1641
		 */
T
Tejun Heo 已提交
1642
		if (worker->pool->attrs->nice < 0)
1643 1644 1645 1646
			wq = system_highpri_wq;
		else
			wq = system_wq;

1647
		insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
1648 1649
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1650
	}
1651 1652
}

T
Tejun Heo 已提交
1653 1654 1655 1656 1657
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1658 1659
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1660
		INIT_LIST_HEAD(&worker->scheduled);
1661
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1662 1663
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1664
	}
T
Tejun Heo 已提交
1665 1666 1667 1668 1669
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1670
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1671
 *
1672
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1682
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1683
{
T
Tejun Heo 已提交
1684
	const char *pri = pool->attrs->nice < 0  ? "H" : "";
T
Tejun Heo 已提交
1685
	struct worker *worker = NULL;
1686
	int id = -1;
T
Tejun Heo 已提交
1687

1688
	spin_lock_irq(&pool->lock);
1689
	while (ida_get_new(&pool->worker_ida, &id)) {
1690
		spin_unlock_irq(&pool->lock);
1691
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1692
			goto fail;
1693
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1694
	}
1695
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1696 1697 1698 1699 1700

	worker = alloc_worker();
	if (!worker)
		goto fail;

1701
	worker->pool = pool;
T
Tejun Heo 已提交
1702 1703
	worker->id = id;

1704
	if (pool->cpu >= 0)
1705
		worker->task = kthread_create_on_node(worker_thread,
1706
					worker, cpu_to_node(pool->cpu),
1707
					"kworker/%d:%d%s", pool->cpu, id, pri);
1708 1709
	else
		worker->task = kthread_create(worker_thread, worker,
1710 1711
					      "kworker/u%d:%d%s",
					      pool->id, id, pri);
T
Tejun Heo 已提交
1712 1713 1714
	if (IS_ERR(worker->task))
		goto fail;

T
Tejun Heo 已提交
1715 1716
	set_user_nice(worker->task, pool->attrs->nice);
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1717

1718
	/*
T
Tejun Heo 已提交
1719 1720 1721
	 * %PF_THREAD_BOUND is used to prevent userland from meddling with
	 * cpumask of workqueue workers.  This is an abuse.  We need
	 * %PF_NO_SETAFFINITY.
1722
	 */
T
Tejun Heo 已提交
1723 1724 1725 1726 1727 1728 1729 1730
	worker->task->flags |= PF_THREAD_BOUND;

	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1731
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1732 1733 1734 1735

	return worker;
fail:
	if (id >= 0) {
1736
		spin_lock_irq(&pool->lock);
1737
		ida_remove(&pool->worker_ida, id);
1738
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1748
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1749 1750
 *
 * CONTEXT:
1751
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1752 1753 1754
 */
static void start_worker(struct worker *worker)
{
1755
	worker->flags |= WORKER_STARTED;
1756
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1757
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1758 1759 1760 1761 1762 1763 1764
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1765
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1766 1767
 *
 * CONTEXT:
1768
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1769 1770 1771
 */
static void destroy_worker(struct worker *worker)
{
1772
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1773 1774 1775
	int id = worker->id;

	/* sanity check frenzy */
1776 1777 1778
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1779

T
Tejun Heo 已提交
1780
	if (worker->flags & WORKER_STARTED)
1781
		pool->nr_workers--;
T
Tejun Heo 已提交
1782
	if (worker->flags & WORKER_IDLE)
1783
		pool->nr_idle--;
T
Tejun Heo 已提交
1784 1785

	list_del_init(&worker->entry);
1786
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1787

1788
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1789

T
Tejun Heo 已提交
1790 1791 1792
	kthread_stop(worker->task);
	kfree(worker);

1793
	spin_lock_irq(&pool->lock);
1794
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1795 1796
}

1797
static void idle_worker_timeout(unsigned long __pool)
1798
{
1799
	struct worker_pool *pool = (void *)__pool;
1800

1801
	spin_lock_irq(&pool->lock);
1802

1803
	if (too_many_workers(pool)) {
1804 1805 1806 1807
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1808
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1809 1810 1811
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1812
			mod_timer(&pool->idle_timer, expires);
1813 1814
		else {
			/* it's been idle for too long, wake up manager */
1815
			pool->flags |= POOL_MANAGE_WORKERS;
1816
			wake_up_worker(pool);
1817
		}
1818 1819
	}

1820
	spin_unlock_irq(&pool->lock);
1821
}
1822

1823
static void send_mayday(struct work_struct *work)
1824
{
1825 1826
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1827 1828

	lockdep_assert_held(&workqueue_lock);
1829

1830
	if (!wq->rescuer)
1831
		return;
1832 1833

	/* mayday mayday mayday */
1834 1835
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1836
		wake_up_process(wq->rescuer->task);
1837
	}
1838 1839
}

1840
static void pool_mayday_timeout(unsigned long __pool)
1841
{
1842
	struct worker_pool *pool = (void *)__pool;
1843 1844
	struct work_struct *work;

1845 1846
	spin_lock_irq(&workqueue_lock);		/* for wq->maydays */
	spin_lock(&pool->lock);
1847

1848
	if (need_to_create_worker(pool)) {
1849 1850 1851 1852 1853 1854
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1855
		list_for_each_entry(work, &pool->worklist, entry)
1856
			send_mayday(work);
L
Linus Torvalds 已提交
1857
	}
1858

1859 1860
	spin_unlock(&pool->lock);
	spin_unlock_irq(&workqueue_lock);
1861

1862
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1863 1864
}

1865 1866
/**
 * maybe_create_worker - create a new worker if necessary
1867
 * @pool: pool to create a new worker for
1868
 *
1869
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1870 1871
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1872
 * sent to all rescuers with works scheduled on @pool to resolve
1873 1874 1875 1876 1877 1878
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1879
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1880 1881 1882 1883
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1884
 * false if no action was taken and pool->lock stayed locked, true
1885 1886
 * otherwise.
 */
1887
static bool maybe_create_worker(struct worker_pool *pool)
1888 1889
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1890
{
1891
	if (!need_to_create_worker(pool))
1892 1893
		return false;
restart:
1894
	spin_unlock_irq(&pool->lock);
1895

1896
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1897
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1898 1899 1900 1901

	while (true) {
		struct worker *worker;

1902
		worker = create_worker(pool);
1903
		if (worker) {
1904
			del_timer_sync(&pool->mayday_timer);
1905
			spin_lock_irq(&pool->lock);
1906
			start_worker(worker);
1907 1908
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1909 1910 1911
			return true;
		}

1912
		if (!need_to_create_worker(pool))
1913
			break;
L
Linus Torvalds 已提交
1914

1915 1916
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1917

1918
		if (!need_to_create_worker(pool))
1919 1920 1921
			break;
	}

1922
	del_timer_sync(&pool->mayday_timer);
1923
	spin_lock_irq(&pool->lock);
1924
	if (need_to_create_worker(pool))
1925 1926 1927 1928 1929 1930
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1931
 * @pool: pool to destroy workers for
1932
 *
1933
 * Destroy @pool workers which have been idle for longer than
1934 1935 1936
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1937
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1938 1939 1940
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1941
 * false if no action was taken and pool->lock stayed locked, true
1942 1943
 * otherwise.
 */
1944
static bool maybe_destroy_workers(struct worker_pool *pool)
1945 1946
{
	bool ret = false;
L
Linus Torvalds 已提交
1947

1948
	while (too_many_workers(pool)) {
1949 1950
		struct worker *worker;
		unsigned long expires;
1951

1952
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1953
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1954

1955
		if (time_before(jiffies, expires)) {
1956
			mod_timer(&pool->idle_timer, expires);
1957
			break;
1958
		}
L
Linus Torvalds 已提交
1959

1960 1961
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1962
	}
1963

1964
	return ret;
1965 1966
}

1967
/**
1968 1969
 * manage_workers - manage worker pool
 * @worker: self
1970
 *
1971
 * Assume the manager role and manage the worker pool @worker belongs
1972
 * to.  At any given time, there can be only zero or one manager per
1973
 * pool.  The exclusion is handled automatically by this function.
1974 1975 1976 1977
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1978 1979
 *
 * CONTEXT:
1980
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1981 1982 1983
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
1984 1985
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
1986
 */
1987
static bool manage_workers(struct worker *worker)
1988
{
1989
	struct worker_pool *pool = worker->pool;
1990
	bool ret = false;
1991

1992
	if (!mutex_trylock(&pool->manager_arb))
1993
		return ret;
1994

1995 1996 1997
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
1998 1999 2000 2001 2002
	 * grab @pool->manager_arb to achieve this because that can lead to
	 * idle worker depletion (all become busy thinking someone else is
	 * managing) which in turn can result in deadlock under extreme
	 * circumstances.  Use @pool->assoc_mutex to synchronize manager
	 * against CPU hotplug.
2003
	 *
2004
	 * assoc_mutex would always be free unless CPU hotplug is in
2005
	 * progress.  trylock first without dropping @pool->lock.
2006
	 */
2007
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2008
		spin_unlock_irq(&pool->lock);
2009
		mutex_lock(&pool->assoc_mutex);
2010 2011
		/*
		 * CPU hotplug could have happened while we were waiting
2012
		 * for assoc_mutex.  Hotplug itself can't handle us
2013
		 * because manager isn't either on idle or busy list, and
2014
		 * @pool's state and ours could have deviated.
2015
		 *
2016
		 * As hotplug is now excluded via assoc_mutex, we can
2017
		 * simply try to bind.  It will succeed or fail depending
2018
		 * on @pool's current state.  Try it and adjust
2019 2020
		 * %WORKER_UNBOUND accordingly.
		 */
2021
		if (worker_maybe_bind_and_lock(pool))
2022 2023 2024
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2025

2026 2027
		ret = true;
	}
2028

2029
	pool->flags &= ~POOL_MANAGE_WORKERS;
2030 2031

	/*
2032 2033
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2034
	 */
2035 2036
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2037

2038
	mutex_unlock(&pool->assoc_mutex);
2039
	mutex_unlock(&pool->manager_arb);
2040
	return ret;
2041 2042
}

2043 2044
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2045
 * @worker: self
2046 2047 2048 2049 2050 2051 2052 2053 2054
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2055
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2056
 */
T
Tejun Heo 已提交
2057
static void process_one_work(struct worker *worker, struct work_struct *work)
2058 2059
__releases(&pool->lock)
__acquires(&pool->lock)
2060
{
2061
	struct pool_workqueue *pwq = get_work_pwq(work);
2062
	struct worker_pool *pool = worker->pool;
2063
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2064
	int work_color;
2065
	struct worker *collision;
2066 2067 2068 2069 2070 2071 2072 2073
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2074 2075 2076
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2077
#endif
2078 2079 2080
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2081
	 * unbound or a disassociated pool.
2082
	 */
2083
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2084
		     !(pool->flags & POOL_DISASSOCIATED) &&
2085
		     raw_smp_processor_id() != pool->cpu);
2086

2087 2088 2089 2090 2091 2092
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2093
	collision = find_worker_executing_work(pool, work);
2094 2095 2096 2097 2098
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2099
	/* claim and dequeue */
2100
	debug_work_deactivate(work);
2101
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2102
	worker->current_work = work;
2103
	worker->current_func = work->func;
2104
	worker->current_pwq = pwq;
2105
	work_color = get_work_color(work);
2106

2107 2108
	list_del_init(&work->entry);

2109 2110 2111 2112 2113 2114 2115
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2116
	/*
2117
	 * Unbound pool isn't concurrency managed and work items should be
2118 2119
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2120 2121
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2122

2123
	/*
2124
	 * Record the last pool and clear PENDING which should be the last
2125
	 * update to @work.  Also, do this inside @pool->lock so that
2126 2127
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2128
	 */
2129
	set_work_pool_and_clear_pending(work, pool->id);
2130

2131
	spin_unlock_irq(&pool->lock);
2132

2133
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2134
	lock_map_acquire(&lockdep_map);
2135
	trace_workqueue_execute_start(work);
2136
	worker->current_func(work);
2137 2138 2139 2140 2141
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2142
	lock_map_release(&lockdep_map);
2143
	lock_map_release(&pwq->wq->lockdep_map);
2144 2145

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2146 2147
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2148 2149
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2150 2151 2152 2153
		debug_show_held_locks(current);
		dump_stack();
	}

2154
	spin_lock_irq(&pool->lock);
2155

2156 2157 2158 2159
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2160
	/* we're done with it, release */
2161
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2162
	worker->current_work = NULL;
2163
	worker->current_func = NULL;
2164 2165
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2166 2167
}

2168 2169 2170 2171 2172 2173 2174 2175 2176
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2177
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2178 2179 2180
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2181
{
2182 2183
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2184
						struct work_struct, entry);
T
Tejun Heo 已提交
2185
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2186 2187 2188
	}
}

T
Tejun Heo 已提交
2189 2190
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2191
 * @__worker: self
T
Tejun Heo 已提交
2192
 *
2193 2194
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2195 2196 2197
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2198
 */
T
Tejun Heo 已提交
2199
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2200
{
T
Tejun Heo 已提交
2201
	struct worker *worker = __worker;
2202
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2203

2204 2205
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2206
woke_up:
2207
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2208

2209 2210
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2211
		spin_unlock_irq(&pool->lock);
2212

2213
		/* if DIE is set, destruction is requested */
2214 2215 2216 2217 2218
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2219
		/* otherwise, rebind */
2220 2221
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2222
	}
2223

T
Tejun Heo 已提交
2224
	worker_leave_idle(worker);
2225
recheck:
2226
	/* no more worker necessary? */
2227
	if (!need_more_worker(pool))
2228 2229 2230
		goto sleep;

	/* do we need to manage? */
2231
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2232 2233
		goto recheck;

T
Tejun Heo 已提交
2234 2235 2236 2237 2238
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2239
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2240

2241 2242 2243 2244 2245 2246 2247 2248
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2249
		struct work_struct *work =
2250
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2251 2252 2253 2254 2255 2256
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2257
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2258 2259 2260
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2261
		}
2262
	} while (keep_working(pool));
2263 2264

	worker_set_flags(worker, WORKER_PREP, false);
2265
sleep:
2266
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2267
		goto recheck;
2268

T
Tejun Heo 已提交
2269
	/*
2270 2271 2272 2273 2274
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2275 2276 2277
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2278
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2279 2280
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2281 2282
}

2283 2284
/**
 * rescuer_thread - the rescuer thread function
2285
 * @__rescuer: self
2286 2287
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2288
 * workqueue which has WQ_MEM_RECLAIM set.
2289
 *
2290
 * Regular work processing on a pool may block trying to create a new
2291 2292 2293 2294 2295
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2296 2297
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2298 2299 2300 2301
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2302
static int rescuer_thread(void *__rescuer)
2303
{
2304 2305
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2306 2307 2308
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2309 2310 2311 2312 2313 2314

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2315 2316 2317
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2318 2319
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2320
		rescuer->task->flags &= ~PF_WQ_WORKER;
2321
		return 0;
2322
	}
2323

2324 2325 2326 2327 2328 2329
	/* see whether any pwq is asking for help */
	spin_lock_irq(&workqueue_lock);

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2330
		struct worker_pool *pool = pwq->pool;
2331 2332 2333
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2334 2335 2336
		list_del_init(&pwq->mayday_node);

		spin_unlock_irq(&workqueue_lock);
2337 2338

		/* migrate to the target cpu if possible */
2339
		worker_maybe_bind_and_lock(pool);
2340
		rescuer->pool = pool;
2341 2342 2343 2344 2345

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2346
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2347
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2348
			if (get_work_pwq(work) == pwq)
2349 2350 2351
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2352 2353

		/*
2354
		 * Leave this pool.  If keep_working() is %true, notify a
2355 2356 2357
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2358 2359
		if (keep_working(pool))
			wake_up_worker(pool);
2360

2361
		rescuer->pool = NULL;
2362 2363
		spin_unlock(&pool->lock);
		spin_lock(&workqueue_lock);
2364 2365
	}

2366 2367
	spin_unlock_irq(&workqueue_lock);

2368 2369
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2370 2371
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2372 2373
}

O
Oleg Nesterov 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2385 2386
/**
 * insert_wq_barrier - insert a barrier work
2387
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2388
 * @barr: wq_barrier to insert
2389 2390
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2391
 *
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2404
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2405 2406
 *
 * CONTEXT:
2407
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2408
 */
2409
static void insert_wq_barrier(struct pool_workqueue *pwq,
2410 2411
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2412
{
2413 2414 2415
	struct list_head *head;
	unsigned int linked = 0;

2416
	/*
2417
	 * debugobject calls are safe here even with pool->lock locked
2418 2419 2420 2421
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2422
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2423
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2424
	init_completion(&barr->done);
2425

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2441
	debug_work_activate(&barr->work);
2442
	insert_work(pwq, &barr->work, head,
2443
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2444 2445
}

2446
/**
2447
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2448 2449 2450 2451
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2452
 * Prepare pwqs for workqueue flushing.
2453
 *
2454 2455 2456 2457 2458
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2459 2460 2461 2462 2463 2464 2465
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2466
 * If @work_color is non-negative, all pwqs should have the same
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2477
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2478
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2479
{
2480
	bool wait = false;
2481
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2482

2483
	if (flush_color >= 0) {
2484
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2485
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2486
	}
2487

2488 2489
	local_irq_disable();

2490
	for_each_pwq(pwq, wq) {
2491
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2492

2493
		spin_lock(&pool->lock);
2494

2495
		if (flush_color >= 0) {
2496
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2497

2498 2499 2500
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2501 2502 2503
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2504

2505
		if (work_color >= 0) {
2506
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2507
			pwq->work_color = work_color;
2508
		}
L
Linus Torvalds 已提交
2509

2510
		spin_unlock(&pool->lock);
L
Linus Torvalds 已提交
2511
	}
2512

2513 2514
	local_irq_enable();

2515
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2516
		complete(&wq->first_flusher->done);
2517

2518
	return wait;
L
Linus Torvalds 已提交
2519 2520
}

2521
/**
L
Linus Torvalds 已提交
2522
 * flush_workqueue - ensure that any scheduled work has run to completion.
2523
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2524 2525 2526 2527
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2528 2529
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2530
 */
2531
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2532
{
2533 2534 2535 2536 2537 2538
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2539

2540 2541
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2556
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2557 2558 2559 2560 2561
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2562
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2563 2564 2565

			wq->first_flusher = &this_flusher;

2566
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2567 2568 2569 2570 2571 2572 2573 2574
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2575
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2576
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2577
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2603 2604 2605 2606
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2607 2608
	wq->first_flusher = NULL;

2609 2610
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2623 2624
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2644
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2645 2646 2647
		}

		if (list_empty(&wq->flusher_queue)) {
2648
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2649 2650 2651 2652 2653
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2654
		 * the new first flusher and arm pwqs.
2655
		 */
2656 2657
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2658 2659 2660 2661

		list_del_init(&next->list);
		wq->first_flusher = next;

2662
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2674
}
2675
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2676

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2691
	struct pool_workqueue *pwq;
2692 2693 2694 2695 2696 2697

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
2698
	spin_lock_irq(&workqueue_lock);
2699 2700
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
2701
	spin_unlock_irq(&workqueue_lock);
2702 2703 2704
reflush:
	flush_workqueue(wq);

2705 2706
	local_irq_disable();

2707
	for_each_pwq(pwq, wq) {
2708
		bool drained;
2709

2710
		spin_lock(&pwq->pool->lock);
2711
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2712
		spin_unlock(&pwq->pool->lock);
2713 2714

		if (drained)
2715 2716 2717 2718
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2719 2720
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2721 2722

		local_irq_enable();
2723 2724 2725
		goto reflush;
	}

2726
	spin_lock(&workqueue_lock);
2727 2728
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
2729 2730 2731
	spin_unlock(&workqueue_lock);

	local_irq_enable();
2732 2733 2734
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2735
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2736
{
2737
	struct worker *worker = NULL;
2738
	struct worker_pool *pool;
2739
	struct pool_workqueue *pwq;
2740 2741

	might_sleep();
2742 2743

	local_irq_disable();
2744
	pool = get_work_pool(work);
2745 2746
	if (!pool) {
		local_irq_enable();
2747
		return false;
2748
	}
2749

2750
	spin_lock(&pool->lock);
2751
	/* see the comment in try_to_grab_pending() with the same code */
2752 2753 2754
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2755
			goto already_gone;
2756
	} else {
2757
		worker = find_worker_executing_work(pool, work);
2758
		if (!worker)
T
Tejun Heo 已提交
2759
			goto already_gone;
2760
		pwq = worker->current_pwq;
2761
	}
2762

2763
	insert_wq_barrier(pwq, barr, work, worker);
2764
	spin_unlock_irq(&pool->lock);
2765

2766 2767 2768 2769 2770 2771
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2772
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2773
		lock_map_acquire(&pwq->wq->lockdep_map);
2774
	else
2775 2776
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2777

2778
	return true;
T
Tejun Heo 已提交
2779
already_gone:
2780
	spin_unlock_irq(&pool->lock);
2781
	return false;
2782
}
2783 2784 2785 2786 2787

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2788 2789
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2790 2791 2792 2793 2794 2795 2796 2797 2798
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2799 2800 2801
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2802
	if (start_flush_work(work, &barr)) {
2803 2804 2805
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2806
	} else {
2807
		return false;
2808 2809
	}
}
2810
EXPORT_SYMBOL_GPL(flush_work);
2811

2812
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2813
{
2814
	unsigned long flags;
2815 2816 2817
	int ret;

	do {
2818 2819 2820 2821 2822 2823
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2824
			flush_work(work);
2825 2826
	} while (unlikely(ret < 0));

2827 2828 2829 2830
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2831
	flush_work(work);
2832
	clear_work_data(work);
2833 2834 2835
	return ret;
}

2836
/**
2837 2838
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2839
 *
2840 2841 2842 2843
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2844
 *
2845 2846
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2847
 *
2848
 * The caller must ensure that the workqueue on which @work was last
2849
 * queued can't be destroyed before this function returns.
2850 2851 2852
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2853
 */
2854
bool cancel_work_sync(struct work_struct *work)
2855
{
2856
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2857
}
2858
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2859

2860
/**
2861 2862
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2863
 *
2864 2865 2866
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2867
 *
2868 2869 2870
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2871
 */
2872 2873
bool flush_delayed_work(struct delayed_work *dwork)
{
2874
	local_irq_disable();
2875
	if (del_timer_sync(&dwork->timer))
2876
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2877
	local_irq_enable();
2878 2879 2880 2881
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2882
/**
2883 2884
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2885
 *
2886 2887 2888 2889 2890
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2891
 *
2892
 * This function is safe to call from any context including IRQ handler.
2893
 */
2894
bool cancel_delayed_work(struct delayed_work *dwork)
2895
{
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2906 2907
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2908
	local_irq_restore(flags);
2909
	return ret;
2910
}
2911
EXPORT_SYMBOL(cancel_delayed_work);
2912

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2923
{
2924
	return __cancel_work_timer(&dwork->work, true);
2925
}
2926
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2927

2928
/**
2929 2930 2931 2932 2933 2934
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2935
bool schedule_work_on(int cpu, struct work_struct *work)
2936
{
2937
	return queue_work_on(cpu, system_wq, work);
2938 2939 2940
}
EXPORT_SYMBOL(schedule_work_on);

2941 2942 2943 2944
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2945 2946
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2947 2948 2949 2950
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2951
 */
2952
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2953
{
2954
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
2955
}
2956
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
2957

2958 2959 2960
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
2961
 * @dwork: job to be done
2962 2963 2964 2965 2966
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
2967 2968
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
2969
{
2970
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
2971
}
2972
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
2973

2974 2975
/**
 * schedule_delayed_work - put work task in global workqueue after delay
2976 2977
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
2978 2979 2980 2981
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
2982
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
2983
{
2984
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
2985
}
2986
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
2987

2988
/**
2989
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2990 2991
 * @func: the function to call
 *
2992 2993
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2994
 * schedule_on_each_cpu() is very slow.
2995 2996 2997
 *
 * RETURNS:
 * 0 on success, -errno on failure.
2998
 */
2999
int schedule_on_each_cpu(work_func_t func)
3000 3001
{
	int cpu;
3002
	struct work_struct __percpu *works;
3003

3004 3005
	works = alloc_percpu(struct work_struct);
	if (!works)
3006
		return -ENOMEM;
3007

3008 3009
	get_online_cpus();

3010
	for_each_online_cpu(cpu) {
3011 3012 3013
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3014
		schedule_work_on(cpu, work);
3015
	}
3016 3017 3018 3019

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3020
	put_online_cpus();
3021
	free_percpu(works);
3022 3023 3024
	return 0;
}

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3049 3050
void flush_scheduled_work(void)
{
3051
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3052
}
3053
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3054

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3067
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3068 3069
{
	if (!in_interrupt()) {
3070
		fn(&ew->work);
3071 3072 3073
		return 0;
	}

3074
	INIT_WORK(&ew->work, fn);
3075 3076 3077 3078 3079 3080
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3081 3082
int keventd_up(void)
{
3083
	return system_wq != NULL;
L
Linus Torvalds 已提交
3084 3085
}

T
Tejun Heo 已提交
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.  Returns NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_setall(attrs->cpumask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
}

/*
 * Hacky implementation of jhash of bitmaps which only considers the
 * specified number of bits.  We probably want a proper implementation in
 * include/linux/jhash.h.
 */
static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
{
	int nr_longs = bits / BITS_PER_LONG;
	int nr_leftover = bits % BITS_PER_LONG;
	unsigned long leftover = 0;

	if (nr_longs)
		hash = jhash(bitmap, nr_longs * sizeof(long), hash);
	if (nr_leftover) {
		bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
		hash = jhash(&leftover, sizeof(long), hash);
	}
	return hash;
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
	hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3172 3173 3174 3175 3176
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3177 3178 3179
 * Returns 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3180 3181
 */
static int init_worker_pool(struct worker_pool *pool)
3182 3183
{
	spin_lock_init(&pool->lock);
3184 3185
	pool->id = -1;
	pool->cpu = -1;
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
	mutex_init(&pool->assoc_mutex);
	ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3201

3202 3203 3204 3205
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3206 3207 3208 3209
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3210 3211
}

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
 * safe manner.
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

	spin_lock_irq(&workqueue_lock);
	if (--pool->refcnt) {
		spin_unlock_irq(&workqueue_lock);
		return;
	}

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
	    WARN_ON(!list_empty(&pool->worklist))) {
		spin_unlock_irq(&workqueue_lock);
		return;
	}

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

	spin_unlock_irq(&workqueue_lock);

	/* lock out manager and destroy all workers */
	mutex_lock(&pool->manager_arb);
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.  On failure, returns NULL.
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	static DEFINE_MUTEX(create_mutex);
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	struct worker *worker;

	mutex_lock(&create_mutex);

	/* do we already have a matching pool? */
	spin_lock_irq(&workqueue_lock);
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}
	spin_unlock_irq(&workqueue_lock);

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

	copy_workqueue_attrs(pool->attrs, attrs);

	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
	worker = create_worker(pool);
	if (!worker)
		goto fail;

	spin_lock_irq(&pool->lock);
	start_worker(worker);
	spin_unlock_irq(&pool->lock);

	/* install */
	spin_lock_irq(&workqueue_lock);
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	spin_unlock_irq(&workqueue_lock);
	mutex_unlock(&create_mutex);
	return pool;
fail:
	mutex_unlock(&create_mutex);
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

3332
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3333
{
3334
	bool highpri = wq->flags & WQ_HIGHPRI;
3335 3336 3337
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3338 3339
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3340 3341 3342
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3343 3344
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3345
			struct worker_pool *cpu_pools =
3346
				per_cpu(cpu_worker_pools, cpu);
3347

3348
			pwq->pool = &cpu_pools[highpri];
3349
			list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
3350 3351 3352 3353 3354 3355 3356 3357
		}
	} else {
		struct pool_workqueue *pwq;

		pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
		if (!pwq)
			return -ENOMEM;

3358 3359 3360 3361 3362 3363
		pwq->pool = get_unbound_pool(unbound_std_wq_attrs[highpri]);
		if (!pwq->pool) {
			kmem_cache_free(pwq_cache, pwq);
			return -ENOMEM;
		}

3364
		list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
3365 3366 3367
	}

	return 0;
T
Tejun Heo 已提交
3368 3369
}

3370
static void free_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3371
{
3372
	if (!(wq->flags & WQ_UNBOUND))
3373 3374 3375 3376
		free_percpu(wq->cpu_pwqs);
	else if (!list_empty(&wq->pwqs))
		kmem_cache_free(pwq_cache, list_first_entry(&wq->pwqs,
					struct pool_workqueue, pwqs_node));
T
Tejun Heo 已提交
3377 3378
}

3379 3380
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3381
{
3382 3383 3384
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3385 3386
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3387

3388
	return clamp_val(max_active, 1, lim);
3389 3390
}

3391
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3392 3393 3394
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3395
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3396
{
3397
	va_list args, args1;
L
Linus Torvalds 已提交
3398
	struct workqueue_struct *wq;
3399
	struct pool_workqueue *pwq;
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3414

3415
	max_active = max_active ?: WQ_DFL_ACTIVE;
3416
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3417

3418
	/* init wq */
3419
	wq->flags = flags;
3420
	wq->saved_max_active = max_active;
3421
	mutex_init(&wq->flush_mutex);
3422
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3423
	INIT_LIST_HEAD(&wq->pwqs);
3424 3425
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3426
	INIT_LIST_HEAD(&wq->maydays);
3427

3428
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3429
	INIT_LIST_HEAD(&wq->list);
3430

3431
	if (alloc_and_link_pwqs(wq) < 0)
3432 3433
		goto err;

3434
	local_irq_disable();
3435
	for_each_pwq(pwq, wq) {
3436 3437 3438 3439 3440
		BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
		pwq->wq = wq;
		pwq->flush_color = -1;
		pwq->max_active = max_active;
		INIT_LIST_HEAD(&pwq->delayed_works);
3441
		INIT_LIST_HEAD(&pwq->mayday_node);
3442
	}
3443
	local_irq_enable();
T
Tejun Heo 已提交
3444

3445 3446 3447 3448 3449
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3450 3451 3452 3453 3454 3455
		struct worker *rescuer;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3456 3457
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3458
					       wq->name);
3459 3460 3461 3462 3463
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3464 3465
	}

3466 3467 3468 3469 3470
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
3471
	spin_lock_irq(&workqueue_lock);
3472

3473
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3474 3475
		for_each_pwq(pwq, wq)
			pwq->max_active = 0;
3476

T
Tejun Heo 已提交
3477
	list_add(&wq->list, &workqueues);
3478

3479
	spin_unlock_irq(&workqueue_lock);
T
Tejun Heo 已提交
3480

3481
	return wq;
T
Tejun Heo 已提交
3482 3483
err:
	if (wq) {
3484
		free_pwqs(wq);
3485
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3486 3487 3488
		kfree(wq);
	}
	return NULL;
3489
}
3490
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3491

3492 3493 3494 3495 3496 3497 3498 3499
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3500
	struct pool_workqueue *pwq;
3501

3502 3503
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3504

3505 3506
	spin_lock_irq(&workqueue_lock);

3507
	/* sanity checks */
3508
	for_each_pwq(pwq, wq) {
3509 3510
		int i;

3511 3512 3513
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
				spin_unlock_irq(&workqueue_lock);
3514
				return;
3515 3516 3517
			}
		}

3518
		if (WARN_ON(pwq->nr_active) ||
3519 3520
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
			spin_unlock_irq(&workqueue_lock);
3521
			return;
3522
		}
3523 3524
	}

3525 3526 3527 3528
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3529
	list_del(&wq->list);
3530

3531
	spin_unlock_irq(&workqueue_lock);
3532

3533
	if (wq->rescuer) {
3534
		kthread_stop(wq->rescuer->task);
3535
		kfree(wq->rescuer);
3536
		wq->rescuer = NULL;
3537 3538
	}

3539 3540 3541 3542 3543 3544 3545 3546 3547
	/*
	 * We're the sole accessor of @wq at this point.  Directly access
	 * the first pwq and put its pool.
	 */
	if (wq->flags & WQ_UNBOUND) {
		pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
				       pwqs_node);
		put_unbound_pool(pwq->pool);
	}
3548
	free_pwqs(wq);
3549 3550 3551 3552
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3553
/**
3554 3555
 * pwq_set_max_active - adjust max_active of a pwq
 * @pwq: target pool_workqueue
3556 3557
 * @max_active: new max_active value.
 *
3558
 * Set @pwq->max_active to @max_active and activate delayed works if
3559 3560 3561
 * increased.
 *
 * CONTEXT:
3562
 * spin_lock_irq(pool->lock).
3563
 */
3564
static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3565
{
3566
	pwq->max_active = max_active;
3567

3568 3569 3570
	while (!list_empty(&pwq->delayed_works) &&
	       pwq->nr_active < pwq->max_active)
		pwq_activate_first_delayed(pwq);
3571 3572
}

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3585
	struct pool_workqueue *pwq;
3586

3587
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3588

3589
	spin_lock_irq(&workqueue_lock);
3590 3591 3592

	wq->saved_max_active = max_active;

3593
	for_each_pwq(pwq, wq) {
3594
		struct worker_pool *pool = pwq->pool;
3595

3596
		spin_lock(&pool->lock);
3597

3598
		if (!(wq->flags & WQ_FREEZABLE) ||
3599
		    !(pool->flags & POOL_FREEZING))
3600
			pwq_set_max_active(pwq, max_active);
3601

3602
		spin_unlock(&pool->lock);
3603
	}
3604

3605
	spin_unlock_irq(&workqueue_lock);
3606
}
3607
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3608

3609
/**
3610 3611 3612
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3613
 *
3614 3615 3616
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3617
 *
3618 3619
 * RETURNS:
 * %true if congested, %false otherwise.
3620
 */
3621
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3622
{
3623
	struct pool_workqueue *pwq;
3624 3625 3626
	bool ret;

	preempt_disable();
3627 3628 3629 3630 3631

	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
		pwq = first_pwq(wq);
3632

3633 3634 3635 3636
	ret = !list_empty(&pwq->delayed_works);
	preempt_enable();

	return ret;
L
Linus Torvalds 已提交
3637
}
3638
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3639

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3652
{
3653
	struct worker_pool *pool;
3654 3655
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3656

3657 3658
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3659

3660 3661
	local_irq_save(flags);
	pool = get_work_pool(work);
3662
	if (pool) {
3663
		spin_lock(&pool->lock);
3664 3665
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
3666
		spin_unlock(&pool->lock);
3667
	}
3668
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3669

3670
	return ret;
L
Linus Torvalds 已提交
3671
}
3672
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3673

3674 3675 3676
/*
 * CPU hotplug.
 *
3677
 * There are two challenges in supporting CPU hotplug.  Firstly, there
3678
 * are a lot of assumptions on strong associations among work, pwq and
3679
 * pool which make migrating pending and scheduled works very
3680
 * difficult to implement without impacting hot paths.  Secondly,
3681
 * worker pools serve mix of short, long and very long running works making
3682 3683
 * blocked draining impractical.
 *
3684
 * This is solved by allowing the pools to be disassociated from the CPU
3685 3686
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3687
 */
L
Linus Torvalds 已提交
3688

3689
static void wq_unbind_fn(struct work_struct *work)
3690
{
3691
	int cpu = smp_processor_id();
3692
	struct worker_pool *pool;
3693 3694
	struct worker *worker;
	int i;
3695

3696
	for_each_cpu_worker_pool(pool, cpu) {
3697
		WARN_ON_ONCE(cpu != smp_processor_id());
3698

3699 3700
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3701

3702 3703 3704 3705 3706 3707 3708
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3709
		list_for_each_entry(worker, &pool->idle_list, entry)
3710
			worker->flags |= WORKER_UNBOUND;
3711

3712
		for_each_busy_worker(worker, i, pool)
3713
			worker->flags |= WORKER_UNBOUND;
3714

3715
		pool->flags |= POOL_DISASSOCIATED;
3716

3717 3718 3719
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3720

3721
	/*
3722
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3723 3724
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3725 3726
	 */
	schedule();
3727

3728
	/*
3729 3730
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3731 3732 3733
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3734 3735 3736 3737
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3738
	 */
3739
	for_each_cpu_worker_pool(pool, cpu)
3740
		atomic_set(&pool->nr_running, 0);
3741 3742
}

T
Tejun Heo 已提交
3743 3744 3745 3746
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3747
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3748 3749
					       unsigned long action,
					       void *hcpu)
3750
{
3751
	int cpu = (unsigned long)hcpu;
3752
	struct worker_pool *pool;
3753

T
Tejun Heo 已提交
3754
	switch (action & ~CPU_TASKS_FROZEN) {
3755
	case CPU_UP_PREPARE:
3756
		for_each_cpu_worker_pool(pool, cpu) {
3757 3758 3759 3760 3761 3762 3763 3764 3765
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3766
			spin_lock_irq(&pool->lock);
3767
			start_worker(worker);
3768
			spin_unlock_irq(&pool->lock);
3769
		}
T
Tejun Heo 已提交
3770
		break;
3771

3772 3773
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3774
		for_each_cpu_worker_pool(pool, cpu) {
3775 3776 3777
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3778
			pool->flags &= ~POOL_DISASSOCIATED;
3779 3780 3781 3782 3783
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3784
		break;
3785
	}
3786 3787 3788 3789 3790 3791 3792
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3793
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3794 3795 3796
						 unsigned long action,
						 void *hcpu)
{
3797
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
3798 3799
	struct work_struct unbind_work;

3800 3801
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3802
		/* unbinding should happen on the local CPU */
3803
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3804
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3805 3806
		flush_work(&unbind_work);
		break;
3807 3808 3809 3810
	}
	return NOTIFY_OK;
}

3811
#ifdef CONFIG_SMP
3812

3813
struct work_for_cpu {
3814
	struct work_struct work;
3815 3816 3817 3818 3819
	long (*fn)(void *);
	void *arg;
	long ret;
};

3820
static void work_for_cpu_fn(struct work_struct *work)
3821
{
3822 3823
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3824 3825 3826 3827 3828 3829 3830 3831 3832
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3833 3834
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3835
 * The caller must not hold any locks which would prevent @fn from completing.
3836
 */
3837
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
3838
{
3839
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3840

3841 3842 3843
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3844 3845 3846 3847 3848
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3849 3850 3851 3852 3853
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3854 3855
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
3856
 * pool->worklist.
3857 3858
 *
 * CONTEXT:
3859
 * Grabs and releases workqueue_lock and pool->lock's.
3860 3861 3862
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
3863
	struct worker_pool *pool;
3864 3865
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
T
Tejun Heo 已提交
3866
	int id;
3867

3868
	spin_lock_irq(&workqueue_lock);
3869

3870
	WARN_ON_ONCE(workqueue_freezing);
3871 3872
	workqueue_freezing = true;

3873
	/* set FREEZING */
T
Tejun Heo 已提交
3874 3875 3876 3877
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
3878 3879
		spin_unlock(&pool->lock);
	}
3880

3881 3882 3883 3884
	/* suppress further executions by setting max_active to zero */
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3885

3886 3887 3888 3889
		for_each_pwq(pwq, wq) {
			spin_lock(&pwq->pool->lock);
			pwq->max_active = 0;
			spin_unlock(&pwq->pool->lock);
3890
		}
3891 3892
	}

3893
	spin_unlock_irq(&workqueue_lock);
3894 3895 3896
}

/**
3897
 * freeze_workqueues_busy - are freezable workqueues still busy?
3898 3899 3900 3901 3902 3903 3904 3905
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3906 3907
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3908 3909 3910 3911
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
3912 3913
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
3914

3915
	spin_lock_irq(&workqueue_lock);
3916

3917
	WARN_ON_ONCE(!workqueue_freezing);
3918

3919 3920 3921
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3922 3923 3924 3925
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
3926
		for_each_pwq(pwq, wq) {
3927
			WARN_ON_ONCE(pwq->nr_active < 0);
3928
			if (pwq->nr_active) {
3929 3930 3931 3932 3933 3934
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
3935
	spin_unlock_irq(&workqueue_lock);
3936 3937 3938 3939 3940 3941 3942
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3943
 * frozen works are transferred to their respective pool worklists.
3944 3945
 *
 * CONTEXT:
3946
 * Grabs and releases workqueue_lock and pool->lock's.
3947 3948 3949
 */
void thaw_workqueues(void)
{
3950 3951 3952 3953
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
	int id;
3954

3955
	spin_lock_irq(&workqueue_lock);
3956 3957 3958 3959

	if (!workqueue_freezing)
		goto out_unlock;

3960 3961 3962 3963 3964 3965 3966
	/* clear FREEZING */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
		spin_unlock(&pool->lock);
	}
3967

3968 3969 3970 3971
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3972

3973 3974 3975 3976
		for_each_pwq(pwq, wq) {
			spin_lock(&pwq->pool->lock);
			pwq_set_max_active(pwq, wq->saved_max_active);
			spin_unlock(&pwq->pool->lock);
3977
		}
3978 3979
	}

3980 3981 3982 3983 3984 3985 3986
	/* kick workers */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		wake_up_worker(pool);
		spin_unlock(&pool->lock);
	}

3987 3988
	workqueue_freezing = false;
out_unlock:
3989
	spin_unlock_irq(&workqueue_lock);
3990 3991 3992
}
#endif /* CONFIG_FREEZER */

3993
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3994
{
T
Tejun Heo 已提交
3995 3996
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
3997

3998 3999
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4000
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4001

4002 4003 4004 4005
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4006
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4007
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4008

4009
	/* initialize CPU pools */
4010
	for_each_possible_cpu(cpu) {
4011
		struct worker_pool *pool;
4012

T
Tejun Heo 已提交
4013
		i = 0;
4014
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4015
			BUG_ON(init_worker_pool(pool));
4016
			pool->cpu = cpu;
4017
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4018 4019
			pool->attrs->nice = std_nice[i++];

T
Tejun Heo 已提交
4020 4021
			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
4022
		}
4023 4024
	}

4025
	/* create the initial worker */
4026
	for_each_online_cpu(cpu) {
4027
		struct worker_pool *pool;
4028

4029
		for_each_cpu_worker_pool(pool, cpu) {
4030 4031
			struct worker *worker;

4032
			pool->flags &= ~POOL_DISASSOCIATED;
4033

4034
			worker = create_worker(pool);
4035
			BUG_ON(!worker);
4036
			spin_lock_irq(&pool->lock);
4037
			start_worker(worker);
4038
			spin_unlock_irq(&pool->lock);
4039
		}
4040 4041
	}

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));

		attrs->nice = std_nice[i];
		cpumask_setall(attrs->cpumask);

		unbound_std_wq_attrs[i] = attrs;
	}

4054
	system_wq = alloc_workqueue("events", 0, 0);
4055
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4056
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4057 4058
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4059 4060
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4061
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4062
	       !system_unbound_wq || !system_freezable_wq);
4063
	return 0;
L
Linus Torvalds 已提交
4064
}
4065
early_initcall(init_workqueues);