workqueue.c 122.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/jhash.h>
45
#include <linux/hashtable.h>
46
#include <linux/rculist.h>
47

48
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
49

T
Tejun Heo 已提交
50
enum {
51 52
	/*
	 * worker_pool flags
53
	 *
54
	 * A bound pool is either associated or disassociated with its CPU.
55 56 57 58 59 60
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
61
	 * be executing on any CPU.  The pool behaves as an unbound one.
62
	 *
63 64
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
65
	 * create_worker() is in progress.
66
	 */
67
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
68
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
69
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
79

80 81
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
82

83
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
84

85
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
86
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
87

88 89 90
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

91 92 93
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
94 95 96 97 98 99 100 101
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
102
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
103
};
L
Linus Torvalds 已提交
104 105

/*
T
Tejun Heo 已提交
106 107
 * Structure fields follow one of the following exclusion rules.
 *
108 109
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
110
 *
111 112 113
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
114
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
115
 *
116 117 118 119
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
120
 *
121 122 123
 * MG: pool->manager_mutex and pool->lock protected.  Writes require both
 *     locks.  Reads can happen under either lock.
 *
124
 * PL: wq_pool_mutex protected.
125
 *
126
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
127
 *
128 129
 * WQ: wq->mutex protected.
 *
130
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
131 132
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
133 134
 */

135
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
136

137
struct worker_pool {
138
	spinlock_t		lock;		/* the pool lock */
139
	int			cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
140
	int			id;		/* I: pool ID */
141
	unsigned int		flags;		/* X: flags */
142 143 144

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
145 146

	/* nr_idle includes the ones off idle_list for rebinding */
147 148 149 150 151 152
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

153
	/* a workers is either on busy_hash or idle_list, or the manager */
154 155 156
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

157
	/* see manage_workers() for details on the two manager mutexes */
158
	struct mutex		manager_arb;	/* manager arbitration */
159
	struct mutex		manager_mutex;	/* manager exclusion */
160
	struct idr		worker_idr;	/* MG: worker IDs and iteration */
161

T
Tejun Heo 已提交
162
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
163 164
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
165

166 167 168 169 170 171
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
172 173 174 175 176 177

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
178 179
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
180
/*
181 182 183 184
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
185
 */
186
struct pool_workqueue {
187
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
188
	struct workqueue_struct *wq;		/* I: the owning workqueue */
189 190
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
191
	int			refcnt;		/* L: reference count */
192 193
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
194
	int			nr_active;	/* L: nr of active works */
195
	int			max_active;	/* L: max active works */
196
	struct list_head	delayed_works;	/* L: delayed works */
197
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
198
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
199 200 201 202 203

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
204
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
205 206 207
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
208
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
209

210 211 212 213
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
214 215
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
216 217 218
	struct completion	done;		/* flush completion */
};

219 220
struct wq_device;

L
Linus Torvalds 已提交
221
/*
222 223
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
224 225
 */
struct workqueue_struct {
226
	unsigned int		flags;		/* WQ: WQ_* flags */
227
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
228
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
229
	struct list_head	list;		/* PL: list of all workqueues */
230

231 232 233
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
234
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
235 236 237
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
238

239
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
240 241
	struct worker		*rescuer;	/* I: rescue worker */

242
	int			nr_drainers;	/* WQ: drain in progress */
243
	int			saved_max_active; /* WQ: saved pwq max_active */
244 245 246 247

#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
248
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
249
	struct lockdep_map	lockdep_map;
250
#endif
251
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
252 253
};

254 255
static struct kmem_cache *pwq_cache;

256
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
257
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
258

259 260
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
261 262 263 264 265

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

266
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
267

268
/* PL: hash of all unbound pools keyed by pool->attrs */
269 270
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

271
/* I: attributes used when instantiating standard unbound pools on demand */
272 273
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

274 275
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
276
struct workqueue_struct *system_highpri_wq __read_mostly;
277
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
278
struct workqueue_struct *system_long_wq __read_mostly;
279
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
280
struct workqueue_struct *system_unbound_wq __read_mostly;
281
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
282
struct workqueue_struct *system_freezable_wq __read_mostly;
283
EXPORT_SYMBOL_GPL(system_freezable_wq);
284

285 286 287 288
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

289 290 291
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

292
#define assert_rcu_or_pool_mutex()					\
293
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
294 295
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
296

297
#define assert_rcu_or_wq_mutex(wq)					\
298
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
299
			   lockdep_is_held(&wq->mutex),			\
300
			   "sched RCU or wq->mutex should be held")
301

302 303
#ifdef CONFIG_LOCKDEP
#define assert_manager_or_pool_lock(pool)				\
304 305
	WARN_ONCE(debug_locks &&					\
		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
306 307 308 309 310 311
		  !lockdep_is_held(&(pool)->lock),			\
		  "pool->manager_mutex or ->lock should be held")
#else
#define assert_manager_or_pool_lock(pool)	do { } while (0)
#endif

312 313 314
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
315
	     (pool)++)
316

T
Tejun Heo 已提交
317 318 319
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
320
 * @pi: integer used for iteration
321
 *
322 323 324
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
325 326 327
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
328
 */
329 330
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
331
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
332
		else
T
Tejun Heo 已提交
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
 * This must be called with either @pool->manager_mutex or ->lock held.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
		else

350 351 352 353
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
354
 *
355
 * This must be called either with wq->mutex held or sched RCU read locked.
356 357
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
358 359 360
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
361 362
 */
#define for_each_pwq(pwq, wq)						\
363
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
364
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
365
		else
366

367 368 369 370
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

371 372 373 374 375
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
411
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
447
	.debug_hint	= work_debug_hint,
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

T
Tejun Heo 已提交
483 484 485 486 487
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

488
	lockdep_assert_held(&wq_pool_mutex);
489

490 491 492 493 494
	do {
		if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
			return -ENOMEM;
		ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	} while (ret == -EAGAIN);
T
Tejun Heo 已提交
495

496
	return ret;
497 498
}

499 500 501 502
/**
 * first_pwq - return the first pool_workqueue of the specified workqueue
 * @wq: the target workqueue
 *
503
 * This must be called either with wq->mutex held or sched RCU read locked.
504 505
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
506
 */
507
static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
508
{
509
	assert_rcu_or_wq_mutex(wq);
510 511
	return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
				      pwqs_node);
512 513
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
529

530
/*
531 532
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
533
 * is cleared and the high bits contain OFFQ flags and pool ID.
534
 *
535 536
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
537 538
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
539
 *
540
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
541
 * corresponding to a work.  Pool is available once the work has been
542
 * queued anywhere after initialization until it is sync canceled.  pwq is
543
 * available only while the work item is queued.
544
 *
545 546 547 548
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
549
 */
550 551
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
552
{
553
	WARN_ON_ONCE(!work_pending(work));
554 555
	atomic_long_set(&work->data, data | flags | work_static(work));
}
556

557
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
558 559
			 unsigned long extra_flags)
{
560 561
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
562 563
}

564 565 566 567 568 569 570
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

571 572
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
573
{
574 575 576 577 578 579 580
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
581
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
582
}
583

584
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
585
{
586 587
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
588 589
}

590
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
591
{
592
	unsigned long data = atomic_long_read(&work->data);
593

594
	if (data & WORK_STRUCT_PWQ)
595 596 597
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
598 599
}

600 601 602 603 604
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
605
 *
606 607 608
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
609 610 611 612 613
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
614 615
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
616
{
617
	unsigned long data = atomic_long_read(&work->data);
618
	int pool_id;
619

620
	assert_rcu_or_pool_mutex();
621

622 623
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
624
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
625

626 627
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
628 629
		return NULL;

630
	return idr_find(&worker_pool_idr, pool_id);
631 632 633 634 635 636 637 638 639 640 641
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
642 643
	unsigned long data = atomic_long_read(&work->data);

644 645
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
646
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
647

648
	return data >> WORK_OFFQ_POOL_SHIFT;
649 650
}

651 652
static void mark_work_canceling(struct work_struct *work)
{
653
	unsigned long pool_id = get_work_pool_id(work);
654

655 656
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
657 658 659 660 661 662
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

663
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
664 665
}

666
/*
667 668
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
669
 * they're being called with pool->lock held.
670 671
 */

672
static bool __need_more_worker(struct worker_pool *pool)
673
{
674
	return !atomic_read(&pool->nr_running);
675 676
}

677
/*
678 679
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
680 681
 *
 * Note that, because unbound workers never contribute to nr_running, this
682
 * function will always return %true for unbound pools as long as the
683
 * worklist isn't empty.
684
 */
685
static bool need_more_worker(struct worker_pool *pool)
686
{
687
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
688
}
689

690
/* Can I start working?  Called from busy but !running workers. */
691
static bool may_start_working(struct worker_pool *pool)
692
{
693
	return pool->nr_idle;
694 695 696
}

/* Do I need to keep working?  Called from currently running workers. */
697
static bool keep_working(struct worker_pool *pool)
698
{
699 700
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
701 702 703
}

/* Do we need a new worker?  Called from manager. */
704
static bool need_to_create_worker(struct worker_pool *pool)
705
{
706
	return need_more_worker(pool) && !may_start_working(pool);
707
}
708

709
/* Do I need to be the manager? */
710
static bool need_to_manage_workers(struct worker_pool *pool)
711
{
712
	return need_to_create_worker(pool) ||
713
		(pool->flags & POOL_MANAGE_WORKERS);
714 715 716
}

/* Do we have too many workers and should some go away? */
717
static bool too_many_workers(struct worker_pool *pool)
718
{
719
	bool managing = mutex_is_locked(&pool->manager_arb);
720 721
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
722

723 724 725 726 727 728 729
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

730
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
731 732
}

733
/*
734 735 736
 * Wake up functions.
 */

737
/* Return the first worker.  Safe with preemption disabled */
738
static struct worker *first_worker(struct worker_pool *pool)
739
{
740
	if (unlikely(list_empty(&pool->idle_list)))
741 742
		return NULL;

743
	return list_first_entry(&pool->idle_list, struct worker, entry);
744 745 746 747
}

/**
 * wake_up_worker - wake up an idle worker
748
 * @pool: worker pool to wake worker from
749
 *
750
 * Wake up the first idle worker of @pool.
751 752
 *
 * CONTEXT:
753
 * spin_lock_irq(pool->lock).
754
 */
755
static void wake_up_worker(struct worker_pool *pool)
756
{
757
	struct worker *worker = first_worker(pool);
758 759 760 761 762

	if (likely(worker))
		wake_up_process(worker->task);
}

763
/**
764 765 766 767 768 769 770 771 772 773
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
774
void wq_worker_waking_up(struct task_struct *task, int cpu)
775 776 777
{
	struct worker *worker = kthread_data(task);

778
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
779
		WARN_ON_ONCE(worker->pool->cpu != cpu);
780
		atomic_inc(&worker->pool->nr_running);
781
	}
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
799
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
800 801
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
802
	struct worker_pool *pool;
803

804 805 806 807 808
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
809
	if (worker->flags & WORKER_NOT_RUNNING)
810 811
		return NULL;

812 813
	pool = worker->pool;

814
	/* this can only happen on the local cpu */
815 816
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
817 818 819 820 821 822

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
823 824 825
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
826
	 * manipulating idle_list, so dereferencing idle_list without pool
827
	 * lock is safe.
828
	 */
829 830
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
831
		to_wakeup = first_worker(pool);
832 833 834 835 836
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
837
 * @worker: self
838 839 840
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
841 842 843
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
844
 *
845
 * CONTEXT:
846
 * spin_lock_irq(pool->lock)
847 848 849 850
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
851
	struct worker_pool *pool = worker->pool;
852

853 854
	WARN_ON_ONCE(worker->task != current);

855 856 857 858 859 860 861 862
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
863
			if (atomic_dec_and_test(&pool->nr_running) &&
864
			    !list_empty(&pool->worklist))
865
				wake_up_worker(pool);
866
		} else
867
			atomic_dec(&pool->nr_running);
868 869
	}

870 871 872 873
	worker->flags |= flags;
}

/**
874
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
875
 * @worker: self
876 877
 * @flags: flags to clear
 *
878
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
879
 *
880
 * CONTEXT:
881
 * spin_lock_irq(pool->lock)
882 883 884
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
885
	struct worker_pool *pool = worker->pool;
886 887
	unsigned int oflags = worker->flags;

888 889
	WARN_ON_ONCE(worker->task != current);

890
	worker->flags &= ~flags;
891

892 893 894 895 896
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
897 898
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
899
			atomic_inc(&pool->nr_running);
900 901
}

902 903
/**
 * find_worker_executing_work - find worker which is executing a work
904
 * @pool: pool of interest
905 906
 * @work: work to find worker for
 *
907 908
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
909 910 911 912 913 914 915 916 917 918 919 920
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
921 922 923 924 925 926
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
927 928
 *
 * CONTEXT:
929
 * spin_lock_irq(pool->lock).
930 931 932 933
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
934
 */
935
static struct worker *find_worker_executing_work(struct worker_pool *pool,
936
						 struct work_struct *work)
937
{
938 939
	struct worker *worker;

940
	hash_for_each_possible(pool->busy_hash, worker, hentry,
941 942 943
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
944 945 946
			return worker;

	return NULL;
947 948
}

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
964
 * spin_lock_irq(pool->lock).
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1029
static void pwq_activate_delayed_work(struct work_struct *work)
1030
{
1031
	struct pool_workqueue *pwq = get_work_pwq(work);
1032 1033

	trace_workqueue_activate_work(work);
1034
	move_linked_works(work, &pwq->pool->worklist, NULL);
1035
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1036
	pwq->nr_active++;
1037 1038
}

1039
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1040
{
1041
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1042 1043
						    struct work_struct, entry);

1044
	pwq_activate_delayed_work(work);
1045 1046
}

1047
/**
1048 1049
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1050 1051 1052
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1053
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1054 1055
 *
 * CONTEXT:
1056
 * spin_lock_irq(pool->lock).
1057
 */
1058
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1059
{
T
Tejun Heo 已提交
1060
	/* uncolored work items don't participate in flushing or nr_active */
1061
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1062
		goto out_put;
1063

1064
	pwq->nr_in_flight[color]--;
1065

1066 1067
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1068
		/* one down, submit a delayed one */
1069 1070
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1071 1072 1073
	}

	/* is flush in progress and are we at the flushing tip? */
1074
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1075
		goto out_put;
1076 1077

	/* are there still in-flight works? */
1078
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1079
		goto out_put;
1080

1081 1082
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1083 1084

	/*
1085
	 * If this was the last pwq, wake up the first flusher.  It
1086 1087
	 * will handle the rest.
	 */
1088 1089
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1090 1091
out_put:
	put_pwq(pwq);
1092 1093
}

1094
/**
1095
 * try_to_grab_pending - steal work item from worklist and disable irq
1096 1097
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1098
 * @flags: place to store irq state
1099 1100 1101 1102 1103 1104 1105
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1106 1107
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1108
 *
1109
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1110 1111 1112
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1113 1114 1115 1116
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1117
 * This function is safe to call from any context including IRQ handler.
1118
 */
1119 1120
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1121
{
1122
	struct worker_pool *pool;
1123
	struct pool_workqueue *pwq;
1124

1125 1126
	local_irq_save(*flags);

1127 1128 1129 1130
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1131 1132 1133 1134 1135
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1136 1137 1138 1139 1140
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1141 1142 1143 1144 1145 1146 1147
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1148 1149
	pool = get_work_pool(work);
	if (!pool)
1150
		goto fail;
1151

1152
	spin_lock(&pool->lock);
1153
	/*
1154 1155 1156 1157 1158
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1159 1160
	 * item is currently queued on that pool.
	 */
1161 1162
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1163 1164 1165 1166 1167
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1168
		 * on the delayed_list, will confuse pwq->nr_active
1169 1170 1171 1172
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1173
			pwq_activate_delayed_work(work);
1174 1175

		list_del_init(&work->entry);
1176
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1177

1178
		/* work->data points to pwq iff queued, point to pool */
1179 1180 1181 1182
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1183
	}
1184
	spin_unlock(&pool->lock);
1185 1186 1187 1188 1189
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1190
	return -EAGAIN;
1191 1192
}

T
Tejun Heo 已提交
1193
/**
1194
 * insert_work - insert a work into a pool
1195
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1196 1197 1198 1199
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1200
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1201
 * work_struct flags.
T
Tejun Heo 已提交
1202 1203
 *
 * CONTEXT:
1204
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1205
 */
1206 1207
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1208
{
1209
	struct worker_pool *pool = pwq->pool;
1210

T
Tejun Heo 已提交
1211
	/* we own @work, set data and link */
1212
	set_work_pwq(work, pwq, extra_flags);
1213
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1214
	get_pwq(pwq);
1215 1216

	/*
1217 1218 1219
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1220 1221 1222
	 */
	smp_mb();

1223 1224
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1225 1226
}

1227 1228
/*
 * Test whether @work is being queued from another work executing on the
1229
 * same workqueue.
1230 1231 1232
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1233 1234 1235 1236 1237 1238 1239
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1240
	return worker && worker->current_pwq->wq == wq;
1241 1242
}

1243
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1244 1245
			 struct work_struct *work)
{
1246
	struct pool_workqueue *pwq;
1247
	struct worker_pool *last_pool;
1248
	struct list_head *worklist;
1249
	unsigned int work_flags;
1250
	unsigned int req_cpu = cpu;
1251 1252 1253 1254 1255 1256 1257 1258

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1259

1260
	debug_work_activate(work);
1261

1262
	/* if dying, only works from the same workqueue are allowed */
1263
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1264
	    WARN_ON_ONCE(!is_chained_work(wq)))
1265
		return;
1266
retry:
1267
	/* pwq which will be used unless @work is executing elsewhere */
1268
	if (!(wq->flags & WQ_UNBOUND)) {
1269
		if (cpu == WORK_CPU_UNBOUND)
1270
			cpu = raw_smp_processor_id();
1271
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1272 1273 1274
	} else {
		pwq = first_pwq(wq);
	}
1275

1276 1277 1278 1279 1280 1281 1282 1283
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1284

1285
		spin_lock(&last_pool->lock);
1286

1287
		worker = find_worker_executing_work(last_pool, work);
1288

1289 1290
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1291
		} else {
1292 1293
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1294
			spin_lock(&pwq->pool->lock);
1295
		}
1296
	} else {
1297
		spin_lock(&pwq->pool->lock);
1298 1299
	}

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
	 * without another pwq replacing it as the first pwq or while a
	 * work item is executing on it, so the retying is guaranteed to
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1319 1320
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1321

1322
	if (WARN_ON(!list_empty(&work->entry))) {
1323
		spin_unlock(&pwq->pool->lock);
1324 1325
		return;
	}
1326

1327 1328
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1329

1330
	if (likely(pwq->nr_active < pwq->max_active)) {
1331
		trace_workqueue_activate_work(work);
1332 1333
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1334 1335
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1336
		worklist = &pwq->delayed_works;
1337
	}
1338

1339
	insert_work(pwq, work, worklist, work_flags);
1340

1341
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1342 1343
}

1344
/**
1345 1346
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1347 1348 1349
 * @wq: workqueue to use
 * @work: work to queue
 *
1350
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1351
 *
1352 1353
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1354
 */
1355 1356
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1357
{
1358
	bool ret = false;
1359
	unsigned long flags;
1360

1361
	local_irq_save(flags);
1362

1363
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1364
		__queue_work(cpu, wq, work);
1365
		ret = true;
1366
	}
1367

1368
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1369 1370
	return ret;
}
1371
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1372

1373
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1374
{
1375
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1376

1377
	/* should have been called from irqsafe timer with irq already off */
1378
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1379
}
1380
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1381

1382 1383
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1384
{
1385 1386 1387 1388 1389
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1390 1391
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1392

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1404
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1405

1406
	dwork->wq = wq;
1407
	dwork->cpu = cpu;
1408 1409 1410 1411 1412 1413
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1414 1415
}

1416 1417 1418 1419
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1420
 * @dwork: work to queue
1421 1422
 * @delay: number of jiffies to wait before queueing
 *
1423 1424 1425
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1426
 */
1427 1428
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1429
{
1430
	struct work_struct *work = &dwork->work;
1431
	bool ret = false;
1432
	unsigned long flags;
1433

1434 1435
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1436

1437
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1438
		__queue_delayed_work(cpu, wq, dwork, delay);
1439
		ret = true;
1440
	}
1441

1442
	local_irq_restore(flags);
1443 1444
	return ret;
}
1445
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1446

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1462
 * This function is safe to call from any context including IRQ handler.
1463 1464 1465 1466 1467 1468 1469
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1470

1471 1472 1473
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1474

1475 1476 1477
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1478
	}
1479 1480

	/* -ENOENT from try_to_grab_pending() becomes %true */
1481 1482
	return ret;
}
1483 1484
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1485 1486 1487 1488 1489 1490 1491 1492
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1493
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1494 1495
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1496
{
1497
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1498

1499 1500 1501 1502
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1503

1504 1505
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1506
	pool->nr_idle++;
1507
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1508 1509

	/* idle_list is LIFO */
1510
	list_add(&worker->entry, &pool->idle_list);
1511

1512 1513
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1514

1515
	/*
1516
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1517
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1518 1519
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1520
	 */
1521
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1522
		     pool->nr_workers == pool->nr_idle &&
1523
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1533
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1534 1535 1536
 */
static void worker_leave_idle(struct worker *worker)
{
1537
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1538

1539 1540
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1541
	worker_clr_flags(worker, WORKER_IDLE);
1542
	pool->nr_idle--;
T
Tejun Heo 已提交
1543 1544 1545
	list_del_init(&worker->entry);
}

1546
/**
1547 1548 1549 1550
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1551 1552 1553 1554 1555 1556
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1557
 * This function is to be used by unbound workers and rescuers to bind
1558 1559 1560
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1561
 * verbatim as it's best effort and blocking and pool may be
1562 1563
 * [dis]associated in the meantime.
 *
1564
 * This function tries set_cpus_allowed() and locks pool and verifies the
1565
 * binding against %POOL_DISASSOCIATED which is set during
1566 1567 1568
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1569 1570
 *
 * CONTEXT:
1571
 * Might sleep.  Called without any lock but returns with pool->lock
1572 1573 1574
 * held.
 *
 * RETURNS:
1575
 * %true if the associated pool is online (@worker is successfully
1576 1577
 * bound), %false if offline.
 */
1578
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1579
__acquires(&pool->lock)
1580 1581
{
	while (true) {
1582
		/*
1583 1584 1585
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1586
		 * against POOL_DISASSOCIATED.
1587
		 */
1588
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1589
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1590

1591
		spin_lock_irq(&pool->lock);
1592
		if (pool->flags & POOL_DISASSOCIATED)
1593
			return false;
1594
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1595
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1596
			return true;
1597
		spin_unlock_irq(&pool->lock);
1598

1599 1600 1601 1602 1603 1604
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1605
		cpu_relax();
1606
		cond_resched();
1607 1608 1609
	}
}

T
Tejun Heo 已提交
1610 1611 1612 1613 1614
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1615 1616
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1617
		INIT_LIST_HEAD(&worker->scheduled);
1618 1619
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1620
	}
T
Tejun Heo 已提交
1621 1622 1623 1624 1625
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1626
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1627
 *
1628
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1638
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1639
{
T
Tejun Heo 已提交
1640
	const char *pri = pool->attrs->nice < 0  ? "H" : "";
T
Tejun Heo 已提交
1641
	struct worker *worker = NULL;
1642
	int id = -1;
T
Tejun Heo 已提交
1643

1644 1645
	lockdep_assert_held(&pool->manager_mutex);

1646 1647 1648 1649 1650
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
	idr_preload(GFP_KERNEL);
1651
	spin_lock_irq(&pool->lock);
1652 1653 1654

	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);

1655
	spin_unlock_irq(&pool->lock);
1656 1657 1658
	idr_preload_end();
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1659 1660 1661 1662 1663

	worker = alloc_worker();
	if (!worker)
		goto fail;

1664
	worker->pool = pool;
T
Tejun Heo 已提交
1665 1666
	worker->id = id;

1667
	if (pool->cpu >= 0)
1668
		worker->task = kthread_create_on_node(worker_thread,
1669
					worker, cpu_to_node(pool->cpu),
1670
					"kworker/%d:%d%s", pool->cpu, id, pri);
1671 1672
	else
		worker->task = kthread_create(worker_thread, worker,
1673 1674
					      "kworker/u%d:%d%s",
					      pool->id, id, pri);
T
Tejun Heo 已提交
1675 1676 1677
	if (IS_ERR(worker->task))
		goto fail;

1678 1679 1680 1681
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1682 1683
	set_user_nice(worker->task, pool->attrs->nice);
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1684

1685 1686
	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;
T
Tejun Heo 已提交
1687 1688 1689 1690 1691 1692 1693

	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1694
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1695

1696 1697 1698 1699 1700
	/* successful, commit the pointer to idr */
	spin_lock_irq(&pool->lock);
	idr_replace(&pool->worker_idr, worker, worker->id);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1701
	return worker;
1702

T
Tejun Heo 已提交
1703 1704
fail:
	if (id >= 0) {
1705
		spin_lock_irq(&pool->lock);
1706
		idr_remove(&pool->worker_idr, id);
1707
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1717
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1718 1719
 *
 * CONTEXT:
1720
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1721 1722 1723
 */
static void start_worker(struct worker *worker)
{
1724
	worker->flags |= WORKER_STARTED;
1725
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1726
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1727 1728 1729
	wake_up_process(worker->task);
}

1730 1731 1732 1733
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1734
 * Grab the managership of @pool and create and start a new worker for it.
1735 1736 1737 1738 1739
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1740 1741
	mutex_lock(&pool->manager_mutex);

1742 1743 1744 1745 1746 1747 1748
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1749 1750
	mutex_unlock(&pool->manager_mutex);

1751 1752 1753
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1754 1755 1756 1757
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1758
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1759 1760
 *
 * CONTEXT:
1761
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1762 1763 1764
 */
static void destroy_worker(struct worker *worker)
{
1765
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1766

1767 1768 1769
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1770
	/* sanity check frenzy */
1771 1772 1773
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1774

T
Tejun Heo 已提交
1775
	if (worker->flags & WORKER_STARTED)
1776
		pool->nr_workers--;
T
Tejun Heo 已提交
1777
	if (worker->flags & WORKER_IDLE)
1778
		pool->nr_idle--;
T
Tejun Heo 已提交
1779 1780

	list_del_init(&worker->entry);
1781
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1782

1783 1784
	idr_remove(&pool->worker_idr, worker->id);

1785
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1786

T
Tejun Heo 已提交
1787 1788 1789
	kthread_stop(worker->task);
	kfree(worker);

1790
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1791 1792
}

1793
static void idle_worker_timeout(unsigned long __pool)
1794
{
1795
	struct worker_pool *pool = (void *)__pool;
1796

1797
	spin_lock_irq(&pool->lock);
1798

1799
	if (too_many_workers(pool)) {
1800 1801 1802 1803
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1804
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1805 1806 1807
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1808
			mod_timer(&pool->idle_timer, expires);
1809 1810
		else {
			/* it's been idle for too long, wake up manager */
1811
			pool->flags |= POOL_MANAGE_WORKERS;
1812
			wake_up_worker(pool);
1813
		}
1814 1815
	}

1816
	spin_unlock_irq(&pool->lock);
1817
}
1818

1819
static void send_mayday(struct work_struct *work)
1820
{
1821 1822
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1823

1824
	lockdep_assert_held(&wq_mayday_lock);
1825

1826
	if (!wq->rescuer)
1827
		return;
1828 1829

	/* mayday mayday mayday */
1830 1831
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1832
		wake_up_process(wq->rescuer->task);
1833
	}
1834 1835
}

1836
static void pool_mayday_timeout(unsigned long __pool)
1837
{
1838
	struct worker_pool *pool = (void *)__pool;
1839 1840
	struct work_struct *work;

1841
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1842
	spin_lock(&pool->lock);
1843

1844
	if (need_to_create_worker(pool)) {
1845 1846 1847 1848 1849 1850
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1851
		list_for_each_entry(work, &pool->worklist, entry)
1852
			send_mayday(work);
L
Linus Torvalds 已提交
1853
	}
1854

1855
	spin_unlock(&pool->lock);
1856
	spin_unlock_irq(&wq_mayday_lock);
1857

1858
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1859 1860
}

1861 1862
/**
 * maybe_create_worker - create a new worker if necessary
1863
 * @pool: pool to create a new worker for
1864
 *
1865
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1866 1867
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1868
 * sent to all rescuers with works scheduled on @pool to resolve
1869 1870
 * possible allocation deadlock.
 *
1871 1872
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1873 1874
 *
 * LOCKING:
1875
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1876 1877 1878 1879
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1880
 * %false if no action was taken and pool->lock stayed locked, %true
1881 1882
 * otherwise.
 */
1883
static bool maybe_create_worker(struct worker_pool *pool)
1884 1885
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1886
{
1887
	if (!need_to_create_worker(pool))
1888 1889
		return false;
restart:
1890
	spin_unlock_irq(&pool->lock);
1891

1892
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1893
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1894 1895 1896 1897

	while (true) {
		struct worker *worker;

1898
		worker = create_worker(pool);
1899
		if (worker) {
1900
			del_timer_sync(&pool->mayday_timer);
1901
			spin_lock_irq(&pool->lock);
1902
			start_worker(worker);
1903 1904
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1905 1906 1907
			return true;
		}

1908
		if (!need_to_create_worker(pool))
1909
			break;
L
Linus Torvalds 已提交
1910

1911 1912
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1913

1914
		if (!need_to_create_worker(pool))
1915 1916 1917
			break;
	}

1918
	del_timer_sync(&pool->mayday_timer);
1919
	spin_lock_irq(&pool->lock);
1920
	if (need_to_create_worker(pool))
1921 1922 1923 1924 1925 1926
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1927
 * @pool: pool to destroy workers for
1928
 *
1929
 * Destroy @pool workers which have been idle for longer than
1930 1931 1932
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1933
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1934 1935 1936
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1937
 * %false if no action was taken and pool->lock stayed locked, %true
1938 1939
 * otherwise.
 */
1940
static bool maybe_destroy_workers(struct worker_pool *pool)
1941 1942
{
	bool ret = false;
L
Linus Torvalds 已提交
1943

1944
	while (too_many_workers(pool)) {
1945 1946
		struct worker *worker;
		unsigned long expires;
1947

1948
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1949
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1950

1951
		if (time_before(jiffies, expires)) {
1952
			mod_timer(&pool->idle_timer, expires);
1953
			break;
1954
		}
L
Linus Torvalds 已提交
1955

1956 1957
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1958
	}
1959

1960
	return ret;
1961 1962
}

1963
/**
1964 1965
 * manage_workers - manage worker pool
 * @worker: self
1966
 *
1967
 * Assume the manager role and manage the worker pool @worker belongs
1968
 * to.  At any given time, there can be only zero or one manager per
1969
 * pool.  The exclusion is handled automatically by this function.
1970 1971 1972 1973
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1974 1975
 *
 * CONTEXT:
1976
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1977 1978 1979
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
1980 1981
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
1982
 */
1983
static bool manage_workers(struct worker *worker)
1984
{
1985
	struct worker_pool *pool = worker->pool;
1986
	bool ret = false;
1987

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2009
	if (!mutex_trylock(&pool->manager_arb))
2010
		return ret;
2011

2012
	/*
2013 2014
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2015
	 */
2016
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2017
		spin_unlock_irq(&pool->lock);
2018
		mutex_lock(&pool->manager_mutex);
2019 2020
		ret = true;
	}
2021

2022
	pool->flags &= ~POOL_MANAGE_WORKERS;
2023 2024

	/*
2025 2026
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2027
	 */
2028 2029
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2030

2031
	mutex_unlock(&pool->manager_mutex);
2032
	mutex_unlock(&pool->manager_arb);
2033
	return ret;
2034 2035
}

2036 2037
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2038
 * @worker: self
2039 2040 2041 2042 2043 2044 2045 2046 2047
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2048
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2049
 */
T
Tejun Heo 已提交
2050
static void process_one_work(struct worker *worker, struct work_struct *work)
2051 2052
__releases(&pool->lock)
__acquires(&pool->lock)
2053
{
2054
	struct pool_workqueue *pwq = get_work_pwq(work);
2055
	struct worker_pool *pool = worker->pool;
2056
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2057
	int work_color;
2058
	struct worker *collision;
2059 2060 2061 2062 2063 2064 2065 2066
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2067 2068 2069
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2070
#endif
2071 2072 2073
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2074
	 * unbound or a disassociated pool.
2075
	 */
2076
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2077
		     !(pool->flags & POOL_DISASSOCIATED) &&
2078
		     raw_smp_processor_id() != pool->cpu);
2079

2080 2081 2082 2083 2084 2085
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2086
	collision = find_worker_executing_work(pool, work);
2087 2088 2089 2090 2091
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2092
	/* claim and dequeue */
2093
	debug_work_deactivate(work);
2094
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2095
	worker->current_work = work;
2096
	worker->current_func = work->func;
2097
	worker->current_pwq = pwq;
2098
	work_color = get_work_color(work);
2099

2100 2101
	list_del_init(&work->entry);

2102 2103 2104 2105 2106 2107 2108
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2109
	/*
2110
	 * Unbound pool isn't concurrency managed and work items should be
2111 2112
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2113 2114
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2115

2116
	/*
2117
	 * Record the last pool and clear PENDING which should be the last
2118
	 * update to @work.  Also, do this inside @pool->lock so that
2119 2120
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2121
	 */
2122
	set_work_pool_and_clear_pending(work, pool->id);
2123

2124
	spin_unlock_irq(&pool->lock);
2125

2126
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2127
	lock_map_acquire(&lockdep_map);
2128
	trace_workqueue_execute_start(work);
2129
	worker->current_func(work);
2130 2131 2132 2133 2134
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2135
	lock_map_release(&lockdep_map);
2136
	lock_map_release(&pwq->wq->lockdep_map);
2137 2138

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2139 2140
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2141 2142
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2143 2144 2145 2146
		debug_show_held_locks(current);
		dump_stack();
	}

2147
	spin_lock_irq(&pool->lock);
2148

2149 2150 2151 2152
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2153
	/* we're done with it, release */
2154
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2155
	worker->current_work = NULL;
2156
	worker->current_func = NULL;
2157 2158
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2159 2160
}

2161 2162 2163 2164 2165 2166 2167 2168 2169
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2170
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2171 2172 2173
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2174
{
2175 2176
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2177
						struct work_struct, entry);
T
Tejun Heo 已提交
2178
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2179 2180 2181
	}
}

T
Tejun Heo 已提交
2182 2183
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2184
 * @__worker: self
T
Tejun Heo 已提交
2185
 *
2186 2187 2188 2189 2190
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
T
Tejun Heo 已提交
2191
 */
T
Tejun Heo 已提交
2192
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2193
{
T
Tejun Heo 已提交
2194
	struct worker *worker = __worker;
2195
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2196

2197 2198
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2199
woke_up:
2200
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2201

2202 2203
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2204
		spin_unlock_irq(&pool->lock);
2205 2206 2207
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
		return 0;
T
Tejun Heo 已提交
2208
	}
2209

T
Tejun Heo 已提交
2210
	worker_leave_idle(worker);
2211
recheck:
2212
	/* no more worker necessary? */
2213
	if (!need_more_worker(pool))
2214 2215 2216
		goto sleep;

	/* do we need to manage? */
2217
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2218 2219
		goto recheck;

T
Tejun Heo 已提交
2220 2221 2222 2223 2224
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2225
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2226

2227
	/*
2228 2229 2230 2231 2232
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2233
	 */
2234
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2235 2236

	do {
T
Tejun Heo 已提交
2237
		struct work_struct *work =
2238
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2239 2240 2241 2242 2243 2244
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2245
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2246 2247 2248
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2249
		}
2250
	} while (keep_working(pool));
2251 2252

	worker_set_flags(worker, WORKER_PREP, false);
2253
sleep:
2254
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2255
		goto recheck;
2256

T
Tejun Heo 已提交
2257
	/*
2258 2259 2260 2261 2262
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2263 2264 2265
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2266
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2267 2268
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2269 2270
}

2271 2272
/**
 * rescuer_thread - the rescuer thread function
2273
 * @__rescuer: self
2274 2275
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2276
 * workqueue which has WQ_MEM_RECLAIM set.
2277
 *
2278
 * Regular work processing on a pool may block trying to create a new
2279 2280 2281 2282 2283
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2284 2285
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2286 2287 2288 2289
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2290
static int rescuer_thread(void *__rescuer)
2291
{
2292 2293
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2294 2295 2296
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2297 2298 2299 2300 2301 2302

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2303 2304 2305
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2306 2307
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2308
		rescuer->task->flags &= ~PF_WQ_WORKER;
2309
		return 0;
2310
	}
2311

2312
	/* see whether any pwq is asking for help */
2313
	spin_lock_irq(&wq_mayday_lock);
2314 2315 2316 2317

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2318
		struct worker_pool *pool = pwq->pool;
2319 2320 2321
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2322 2323
		list_del_init(&pwq->mayday_node);

2324
		spin_unlock_irq(&wq_mayday_lock);
2325 2326

		/* migrate to the target cpu if possible */
2327
		worker_maybe_bind_and_lock(pool);
2328
		rescuer->pool = pool;
2329 2330 2331 2332 2333

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2334
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2335
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2336
			if (get_work_pwq(work) == pwq)
2337 2338 2339
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2340 2341

		/*
2342
		 * Leave this pool.  If keep_working() is %true, notify a
2343 2344 2345
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2346 2347
		if (keep_working(pool))
			wake_up_worker(pool);
2348

2349
		rescuer->pool = NULL;
2350
		spin_unlock(&pool->lock);
2351
		spin_lock(&wq_mayday_lock);
2352 2353
	}

2354
	spin_unlock_irq(&wq_mayday_lock);
2355

2356 2357
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2358 2359
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2360 2361
}

O
Oleg Nesterov 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2373 2374
/**
 * insert_wq_barrier - insert a barrier work
2375
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2376
 * @barr: wq_barrier to insert
2377 2378
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2379
 *
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2392
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2393 2394
 *
 * CONTEXT:
2395
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2396
 */
2397
static void insert_wq_barrier(struct pool_workqueue *pwq,
2398 2399
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2400
{
2401 2402 2403
	struct list_head *head;
	unsigned int linked = 0;

2404
	/*
2405
	 * debugobject calls are safe here even with pool->lock locked
2406 2407 2408 2409
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2410
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2411
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2412
	init_completion(&barr->done);
2413

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2429
	debug_work_activate(&barr->work);
2430
	insert_work(pwq, &barr->work, head,
2431
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2432 2433
}

2434
/**
2435
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2436 2437 2438 2439
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2440
 * Prepare pwqs for workqueue flushing.
2441
 *
2442 2443 2444 2445 2446
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2447 2448 2449 2450 2451 2452 2453
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2454
 * If @work_color is non-negative, all pwqs should have the same
2455 2456 2457 2458
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2459
 * mutex_lock(wq->mutex).
2460 2461 2462 2463 2464
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2465
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2466
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2467
{
2468
	bool wait = false;
2469
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2470

2471
	if (flush_color >= 0) {
2472
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2473
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2474
	}
2475

2476
	for_each_pwq(pwq, wq) {
2477
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2478

2479
		spin_lock_irq(&pool->lock);
2480

2481
		if (flush_color >= 0) {
2482
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2483

2484 2485 2486
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2487 2488 2489
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2490

2491
		if (work_color >= 0) {
2492
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2493
			pwq->work_color = work_color;
2494
		}
L
Linus Torvalds 已提交
2495

2496
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2497
	}
2498

2499
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2500
		complete(&wq->first_flusher->done);
2501

2502
	return wait;
L
Linus Torvalds 已提交
2503 2504
}

2505
/**
L
Linus Torvalds 已提交
2506
 * flush_workqueue - ensure that any scheduled work has run to completion.
2507
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2508
 *
2509 2510
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2511
 */
2512
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2513
{
2514 2515 2516 2517 2518 2519
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2520

2521 2522
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2523

2524
	mutex_lock(&wq->mutex);
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2537
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2538 2539 2540 2541 2542
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2543
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2544 2545 2546

			wq->first_flusher = &this_flusher;

2547
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2548 2549 2550 2551 2552 2553 2554 2555
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2556
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2557
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2558
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2569
	mutex_unlock(&wq->mutex);
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2582
	mutex_lock(&wq->mutex);
2583

2584 2585 2586 2587
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2588 2589
	wq->first_flusher = NULL;

2590 2591
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2604 2605
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2625
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2626 2627 2628
		}

		if (list_empty(&wq->flusher_queue)) {
2629
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2630 2631 2632 2633 2634
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2635
		 * the new first flusher and arm pwqs.
2636
		 */
2637 2638
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2639 2640 2641 2642

		list_del_init(&next->list);
		wq->first_flusher = next;

2643
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2654
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2655
}
2656
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2657

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2672
	struct pool_workqueue *pwq;
2673 2674 2675 2676

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2677
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2678
	 */
2679
	mutex_lock(&wq->mutex);
2680
	if (!wq->nr_drainers++)
2681
		wq->flags |= __WQ_DRAINING;
2682
	mutex_unlock(&wq->mutex);
2683 2684 2685
reflush:
	flush_workqueue(wq);

2686
	mutex_lock(&wq->mutex);
2687

2688
	for_each_pwq(pwq, wq) {
2689
		bool drained;
2690

2691
		spin_lock_irq(&pwq->pool->lock);
2692
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2693
		spin_unlock_irq(&pwq->pool->lock);
2694 2695

		if (drained)
2696 2697 2698 2699
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2700
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2701
				wq->name, flush_cnt);
2702

2703
		mutex_unlock(&wq->mutex);
2704 2705 2706 2707
		goto reflush;
	}

	if (!--wq->nr_drainers)
2708
		wq->flags &= ~__WQ_DRAINING;
2709
	mutex_unlock(&wq->mutex);
2710 2711 2712
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2713
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2714
{
2715
	struct worker *worker = NULL;
2716
	struct worker_pool *pool;
2717
	struct pool_workqueue *pwq;
2718 2719

	might_sleep();
2720 2721

	local_irq_disable();
2722
	pool = get_work_pool(work);
2723 2724
	if (!pool) {
		local_irq_enable();
2725
		return false;
2726
	}
2727

2728
	spin_lock(&pool->lock);
2729
	/* see the comment in try_to_grab_pending() with the same code */
2730 2731 2732
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2733
			goto already_gone;
2734
	} else {
2735
		worker = find_worker_executing_work(pool, work);
2736
		if (!worker)
T
Tejun Heo 已提交
2737
			goto already_gone;
2738
		pwq = worker->current_pwq;
2739
	}
2740

2741
	insert_wq_barrier(pwq, barr, work, worker);
2742
	spin_unlock_irq(&pool->lock);
2743

2744 2745 2746 2747 2748 2749
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2750
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2751
		lock_map_acquire(&pwq->wq->lockdep_map);
2752
	else
2753 2754
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2755

2756
	return true;
T
Tejun Heo 已提交
2757
already_gone:
2758
	spin_unlock_irq(&pool->lock);
2759
	return false;
2760
}
2761 2762 2763 2764 2765

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2766 2767
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2768 2769 2770 2771 2772 2773 2774 2775 2776
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2777 2778 2779
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2780
	if (start_flush_work(work, &barr)) {
2781 2782 2783
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2784
	} else {
2785
		return false;
2786 2787
	}
}
2788
EXPORT_SYMBOL_GPL(flush_work);
2789

2790
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2791
{
2792
	unsigned long flags;
2793 2794 2795
	int ret;

	do {
2796 2797 2798 2799 2800 2801
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2802
			flush_work(work);
2803 2804
	} while (unlikely(ret < 0));

2805 2806 2807 2808
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2809
	flush_work(work);
2810
	clear_work_data(work);
2811 2812 2813
	return ret;
}

2814
/**
2815 2816
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2817
 *
2818 2819 2820 2821
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2822
 *
2823 2824
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2825
 *
2826
 * The caller must ensure that the workqueue on which @work was last
2827
 * queued can't be destroyed before this function returns.
2828 2829 2830
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2831
 */
2832
bool cancel_work_sync(struct work_struct *work)
2833
{
2834
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2835
}
2836
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2837

2838
/**
2839 2840
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2841
 *
2842 2843 2844
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2845
 *
2846 2847 2848
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2849
 */
2850 2851
bool flush_delayed_work(struct delayed_work *dwork)
{
2852
	local_irq_disable();
2853
	if (del_timer_sync(&dwork->timer))
2854
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2855
	local_irq_enable();
2856 2857 2858 2859
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2860
/**
2861 2862
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2863
 *
2864 2865 2866 2867 2868
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2869
 *
2870
 * This function is safe to call from any context including IRQ handler.
2871
 */
2872
bool cancel_delayed_work(struct delayed_work *dwork)
2873
{
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2884 2885
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2886
	local_irq_restore(flags);
2887
	return ret;
2888
}
2889
EXPORT_SYMBOL(cancel_delayed_work);
2890

2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2901
{
2902
	return __cancel_work_timer(&dwork->work, true);
2903
}
2904
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2905

2906
/**
2907
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2908 2909
 * @func: the function to call
 *
2910 2911
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2912
 * schedule_on_each_cpu() is very slow.
2913 2914 2915
 *
 * RETURNS:
 * 0 on success, -errno on failure.
2916
 */
2917
int schedule_on_each_cpu(work_func_t func)
2918 2919
{
	int cpu;
2920
	struct work_struct __percpu *works;
2921

2922 2923
	works = alloc_percpu(struct work_struct);
	if (!works)
2924
		return -ENOMEM;
2925

2926 2927
	get_online_cpus();

2928
	for_each_online_cpu(cpu) {
2929 2930 2931
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2932
		schedule_work_on(cpu, work);
2933
	}
2934 2935 2936 2937

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2938
	put_online_cpus();
2939
	free_percpu(works);
2940 2941 2942
	return 0;
}

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
2967 2968
void flush_scheduled_work(void)
{
2969
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
2970
}
2971
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
2972

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
2985
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2986 2987
{
	if (!in_interrupt()) {
2988
		fn(&ew->work);
2989 2990 2991
		return 0;
	}

2992
	INIT_WORK(&ew->work, fn);
2993 2994 2995 2996 2997 2998
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t wq_per_cpu_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}

static ssize_t wq_max_active_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t wq_max_active_store(struct device *dev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}

static struct device_attribute wq_sysfs_attrs[] = {
	__ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
	__ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
	__ATTR_NULL,
};

static ssize_t wq_pool_id_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct worker_pool *pool;
	int written;

	rcu_read_lock_sched();
	pool = first_pwq(wq)->pool;
	written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	rcu_read_lock_sched();
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    first_pwq(wq)->pool->attrs->nice);
	rcu_read_unlock_sched();

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	rcu_read_lock_sched();
	copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
	rcu_read_unlock_sched();
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= -20 && attrs->nice <= 19)
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	rcu_read_lock_sched();
	written = cpumask_scnprintf(buf, PAGE_SIZE,
				    first_pwq(wq)->pool->attrs->cpumask);
	rcu_read_unlock_sched();

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_id, 0444, wq_pool_id_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_attrs			= wq_sysfs_attrs,
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Returns 0 on success, -errno on failure.
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.  Returns NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3305
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3306 3307 3308 3309 3310 3311
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3325 3326
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3341 3342 3343 3344 3345
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3346 3347 3348
 * Returns 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3349 3350
 */
static int init_worker_pool(struct worker_pool *pool)
3351 3352
{
	spin_lock_init(&pool->lock);
3353 3354
	pool->id = -1;
	pool->cpu = -1;
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3368
	mutex_init(&pool->manager_mutex);
3369
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3370

3371 3372 3373 3374
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3375 3376 3377 3378
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3379 3380
}

3381 3382 3383 3384
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3385
	idr_destroy(&pool->worker_idr);
3386 3387 3388 3389 3390 3391 3392 3393 3394
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3395 3396 3397
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3398 3399 3400 3401 3402
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3403
	mutex_lock(&wq_pool_mutex);
3404
	if (--pool->refcnt) {
3405
		mutex_unlock(&wq_pool_mutex);
3406 3407 3408 3409 3410 3411
		return;
	}

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
	    WARN_ON(!list_empty(&pool->worklist))) {
3412
		mutex_unlock(&wq_pool_mutex);
3413 3414 3415 3416 3417 3418 3419 3420
		return;
	}

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3421
	mutex_unlock(&wq_pool_mutex);
3422

3423 3424 3425 3426 3427
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3428
	mutex_lock(&pool->manager_arb);
3429
	mutex_lock(&pool->manager_mutex);
3430 3431 3432 3433 3434 3435 3436
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3437
	mutex_unlock(&pool->manager_mutex);
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.  On failure, returns NULL.
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;

3462
	mutex_lock(&wq_pool_mutex);
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3477 3478 3479
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3480
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3481 3482 3483 3484 3485 3486
	copy_workqueue_attrs(pool->attrs, attrs);

	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3487
	if (create_and_start_worker(pool) < 0)
3488 3489 3490 3491 3492
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
3493
	mutex_unlock(&wq_pool_mutex);
3494 3495
	return pool;
fail:
3496
	mutex_unlock(&wq_pool_mutex);
3497 3498 3499 3500 3501
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3518
	bool is_last;
T
Tejun Heo 已提交
3519 3520 3521 3522

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3523
	/*
3524
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3525 3526 3527
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3528
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3529
	list_del_rcu(&pwq->pwqs_node);
3530
	is_last = list_empty(&wq->pwqs);
3531
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3532 3533 3534 3535 3536 3537 3538 3539

	put_unbound_pool(pool);
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3540
	if (is_last)
T
Tejun Heo 已提交
3541 3542 3543
		kfree(wq);
}

3544
/**
3545
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3546 3547
 * @pwq: target pool_workqueue
 *
3548 3549 3550
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3551
 */
3552
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3553
{
3554 3555 3556 3557
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3558
	lockdep_assert_held(&wq->mutex);
3559 3560 3561 3562 3563

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3564
	spin_lock_irq(&pwq->pool->lock);
3565 3566 3567

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3568

3569 3570 3571
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3572 3573 3574 3575 3576 3577

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3578 3579 3580 3581
	} else {
		pwq->max_active = 0;
	}

3582
	spin_unlock_irq(&pwq->pool->lock);
3583 3584
}

3585 3586
static void init_and_link_pwq(struct pool_workqueue *pwq,
			      struct workqueue_struct *wq,
3587 3588
			      struct worker_pool *pool,
			      struct pool_workqueue **p_last_pwq)
3589 3590 3591 3592 3593 3594
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3595
	pwq->refcnt = 1;
3596 3597
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3598
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3599

3600
	mutex_lock(&wq->mutex);
3601

3602 3603
	/*
	 * Set the matching work_color.  This is synchronized with
3604
	 * wq->mutex to avoid confusing flush_workqueue().
3605
	 */
3606 3607
	if (p_last_pwq)
		*p_last_pwq = first_pwq(wq);
3608
	pwq->work_color = wq->work_color;
3609 3610 3611 3612 3613

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3614
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3615

3616
	mutex_unlock(&wq->mutex);
3617 3618
}

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  If @attrs doesn't match the
 * current attributes, a new pwq is created and made the first pwq which
 * will serve all new work items.  Older pwqs are released as in-flight
 * work items finish.  Note that a work item which repeatedly requeues
 * itself back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.  Returns 0 on success and -errno on
 * failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3636 3637
	struct workqueue_attrs *new_attrs;
	struct pool_workqueue *pwq = NULL, *last_pwq;
3638
	struct worker_pool *pool;
3639
	int ret;
3640

3641
	/* only unbound workqueues can change attributes */
3642 3643 3644
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3645 3646 3647 3648
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3649 3650 3651 3652 3653 3654 3655 3656
	/* make a copy of @attrs and sanitize it */
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!new_attrs)
		goto enomem;

	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3657 3658
	pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
	if (!pwq)
3659
		goto enomem;
3660

3661 3662 3663
	pool = get_unbound_pool(new_attrs);
	if (!pool)
		goto enomem;
3664 3665 3666 3667 3668 3669 3670 3671

	init_and_link_pwq(pwq, wq, pool, &last_pwq);
	if (last_pwq) {
		spin_lock_irq(&last_pwq->pool->lock);
		put_pwq(last_pwq);
		spin_unlock_irq(&last_pwq->pool->lock);
	}

3672 3673 3674 3675 3676
	ret = 0;
	/* fall through */
out_free:
	free_workqueue_attrs(new_attrs);
	return ret;
3677 3678 3679

enomem:
	kmem_cache_free(pwq_cache, pwq);
3680 3681
	ret = -ENOMEM;
	goto out_free;
3682 3683
}

3684
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3685
{
3686
	bool highpri = wq->flags & WQ_HIGHPRI;
3687 3688 3689
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3690 3691
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3692 3693 3694
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3695 3696
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3697
			struct worker_pool *cpu_pools =
3698
				per_cpu(cpu_worker_pools, cpu);
3699

3700
			init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
3701
		}
3702
		return 0;
3703
	} else {
3704
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3705
	}
T
Tejun Heo 已提交
3706 3707
}

3708 3709
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3710
{
3711 3712 3713
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3714 3715
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3716

3717
	return clamp_val(max_active, 1, lim);
3718 3719
}

3720
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3721 3722 3723
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3724
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3725
{
3726
	va_list args, args1;
L
Linus Torvalds 已提交
3727
	struct workqueue_struct *wq;
3728
	struct pool_workqueue *pwq;
3729 3730 3731 3732 3733 3734 3735 3736 3737
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
3738
		return NULL;
3739 3740 3741 3742

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3743

3744
	max_active = max_active ?: WQ_DFL_ACTIVE;
3745
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3746

3747
	/* init wq */
3748
	wq->flags = flags;
3749
	wq->saved_max_active = max_active;
3750
	mutex_init(&wq->mutex);
3751
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3752
	INIT_LIST_HEAD(&wq->pwqs);
3753 3754
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3755
	INIT_LIST_HEAD(&wq->maydays);
3756

3757
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3758
	INIT_LIST_HEAD(&wq->list);
3759

3760
	if (alloc_and_link_pwqs(wq) < 0)
3761
		goto err_free_wq;
T
Tejun Heo 已提交
3762

3763 3764 3765 3766 3767
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3768 3769
		struct worker *rescuer;

3770
		rescuer = alloc_worker();
3771
		if (!rescuer)
3772
			goto err_destroy;
3773

3774 3775
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3776
					       wq->name);
3777 3778 3779 3780
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3781

3782
		wq->rescuer = rescuer;
3783
		rescuer->task->flags |= PF_NO_SETAFFINITY;
3784
		wake_up_process(rescuer->task);
3785 3786
	}

3787 3788 3789
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

3790
	/*
3791 3792 3793
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
3794
	 */
3795
	mutex_lock(&wq_pool_mutex);
3796

3797
	mutex_lock(&wq->mutex);
3798 3799
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3800
	mutex_unlock(&wq->mutex);
3801

T
Tejun Heo 已提交
3802
	list_add(&wq->list, &workqueues);
3803

3804
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
3805

3806
	return wq;
3807 3808 3809 3810 3811 3812

err_free_wq:
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3813
	return NULL;
3814
}
3815
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3816

3817 3818 3819 3820 3821 3822 3823 3824
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3825
	struct pool_workqueue *pwq;
3826

3827 3828
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3829

3830
	/* sanity checks */
3831
	mutex_lock(&wq->mutex);
3832
	for_each_pwq(pwq, wq) {
3833 3834
		int i;

3835 3836
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
3837
				mutex_unlock(&wq->mutex);
3838
				return;
3839 3840 3841
			}
		}

T
Tejun Heo 已提交
3842 3843
		if (WARN_ON(pwq->refcnt > 1) ||
		    WARN_ON(pwq->nr_active) ||
3844
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
3845
			mutex_unlock(&wq->mutex);
3846
			return;
3847
		}
3848
	}
3849
	mutex_unlock(&wq->mutex);
3850

3851 3852 3853 3854
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3855
	mutex_lock(&wq_pool_mutex);
3856
	list_del_init(&wq->list);
3857
	mutex_unlock(&wq_pool_mutex);
3858

3859 3860
	workqueue_sysfs_unregister(wq);

3861
	if (wq->rescuer) {
3862
		kthread_stop(wq->rescuer->task);
3863
		kfree(wq->rescuer);
3864
		wq->rescuer = NULL;
3865 3866
	}

T
Tejun Heo 已提交
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
		 * access the first pwq and put the base ref.  As both pwqs
		 * and pools are sched-RCU protected, the lock operations
		 * are safe.  @wq will be freed when the last pwq is
		 * released.
		 */
3882 3883
		pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
				       pwqs_node);
T
Tejun Heo 已提交
3884 3885 3886
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
3887
	}
3888 3889 3890
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3903
	struct pool_workqueue *pwq;
3904

3905 3906 3907 3908
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

3909
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3910

3911
	mutex_lock(&wq->mutex);
3912 3913 3914

	wq->saved_max_active = max_active;

3915 3916
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3917

3918
	mutex_unlock(&wq->mutex);
3919
}
3920
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3921

3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

3932
	return worker && worker->rescue_wq;
3933 3934
}

3935
/**
3936 3937 3938
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3939
 *
3940 3941 3942
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3943
 *
3944 3945
 * RETURNS:
 * %true if congested, %false otherwise.
3946
 */
3947
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3948
{
3949
	struct pool_workqueue *pwq;
3950 3951
	bool ret;

3952
	rcu_read_lock_sched();
3953 3954 3955 3956 3957

	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
		pwq = first_pwq(wq);
3958

3959
	ret = !list_empty(&pwq->delayed_works);
3960
	rcu_read_unlock_sched();
3961 3962

	return ret;
L
Linus Torvalds 已提交
3963
}
3964
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3965

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3978
{
3979
	struct worker_pool *pool;
3980 3981
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3982

3983 3984
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3985

3986 3987
	local_irq_save(flags);
	pool = get_work_pool(work);
3988
	if (pool) {
3989
		spin_lock(&pool->lock);
3990 3991
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
3992
		spin_unlock(&pool->lock);
3993
	}
3994
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3995

3996
	return ret;
L
Linus Torvalds 已提交
3997
}
3998
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3999

4000 4001 4002
/*
 * CPU hotplug.
 *
4003
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4004
 * are a lot of assumptions on strong associations among work, pwq and
4005
 * pool which make migrating pending and scheduled works very
4006
 * difficult to implement without impacting hot paths.  Secondly,
4007
 * worker pools serve mix of short, long and very long running works making
4008 4009
 * blocked draining impractical.
 *
4010
 * This is solved by allowing the pools to be disassociated from the CPU
4011 4012
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4013
 */
L
Linus Torvalds 已提交
4014

4015
static void wq_unbind_fn(struct work_struct *work)
4016
{
4017
	int cpu = smp_processor_id();
4018
	struct worker_pool *pool;
4019
	struct worker *worker;
4020
	int wi;
4021

4022
	for_each_cpu_worker_pool(pool, cpu) {
4023
		WARN_ON_ONCE(cpu != smp_processor_id());
4024

4025
		mutex_lock(&pool->manager_mutex);
4026
		spin_lock_irq(&pool->lock);
4027

4028
		/*
4029
		 * We've blocked all manager operations.  Make all workers
4030 4031 4032 4033 4034
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4035
		for_each_pool_worker(worker, wi, pool)
4036
			worker->flags |= WORKER_UNBOUND;
4037

4038
		pool->flags |= POOL_DISASSOCIATED;
4039

4040
		spin_unlock_irq(&pool->lock);
4041
		mutex_unlock(&pool->manager_mutex);
4042
	}
4043

4044
	/*
4045
	 * Call schedule() so that we cross rq->lock and thus can guarantee
4046 4047
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
4048 4049
	 */
	schedule();
4050

4051
	/*
4052 4053
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
4054 4055 4056
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
4057 4058 4059 4060
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
4061
	 */
4062
	for_each_cpu_worker_pool(pool, cpu)
4063
		atomic_set(&pool->nr_running, 0);
4064 4065
}

T
Tejun Heo 已提交
4066 4067 4068 4069
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4070
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4071 4072 4073
 */
static void rebind_workers(struct worker_pool *pool)
{
4074 4075
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4076 4077 4078

	lockdep_assert_held(&pool->manager_mutex);

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4089

4090
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4091

4092 4093
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4094 4095

		/*
4096 4097 4098 4099 4100 4101
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4102
		 */
4103 4104
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4105

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4125
	}
4126 4127

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4128 4129
}

4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4163 4164 4165 4166
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4167
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4168 4169
					       unsigned long action,
					       void *hcpu)
4170
{
4171
	int cpu = (unsigned long)hcpu;
4172
	struct worker_pool *pool;
4173
	int pi;
4174

T
Tejun Heo 已提交
4175
	switch (action & ~CPU_TASKS_FROZEN) {
4176
	case CPU_UP_PREPARE:
4177
		for_each_cpu_worker_pool(pool, cpu) {
4178 4179
			if (pool->nr_workers)
				continue;
4180
			if (create_and_start_worker(pool) < 0)
4181
				return NOTIFY_BAD;
4182
		}
T
Tejun Heo 已提交
4183
		break;
4184

4185 4186
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4187
		mutex_lock(&wq_pool_mutex);
4188 4189

		for_each_pool(pool, pi) {
4190
			mutex_lock(&pool->manager_mutex);
4191

4192 4193 4194 4195
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4196

4197 4198 4199 4200
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4201

4202
			mutex_unlock(&pool->manager_mutex);
4203
		}
4204

4205
		mutex_unlock(&wq_pool_mutex);
4206
		break;
4207
	}
4208 4209 4210 4211 4212 4213 4214
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4215
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4216 4217 4218
						 unsigned long action,
						 void *hcpu)
{
4219
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4220 4221
	struct work_struct unbind_work;

4222 4223
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
4224
		/* unbinding should happen on the local CPU */
4225
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4226
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
4227 4228
		flush_work(&unbind_work);
		break;
4229 4230 4231 4232
	}
	return NOTIFY_OK;
}

4233
#ifdef CONFIG_SMP
4234

4235
struct work_for_cpu {
4236
	struct work_struct work;
4237 4238 4239 4240 4241
	long (*fn)(void *);
	void *arg;
	long ret;
};

4242
static void work_for_cpu_fn(struct work_struct *work)
4243
{
4244 4245
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4246 4247 4248 4249 4250 4251 4252 4253 4254
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4255 4256
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
4257
 * The caller must not hold any locks which would prevent @fn from completing.
4258
 */
4259
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4260
{
4261
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4262

4263 4264 4265
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
4266 4267 4268 4269 4270
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4271 4272 4273 4274 4275
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4276
 * Start freezing workqueues.  After this function returns, all freezable
4277
 * workqueues will queue new works to their delayed_works list instead of
4278
 * pool->worklist.
4279 4280
 *
 * CONTEXT:
4281
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4282 4283 4284
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4285
	struct worker_pool *pool;
4286 4287
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4288
	int pi;
4289

4290
	mutex_lock(&wq_pool_mutex);
4291

4292
	WARN_ON_ONCE(workqueue_freezing);
4293 4294
	workqueue_freezing = true;

4295
	/* set FREEZING */
4296
	for_each_pool(pool, pi) {
4297
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4298 4299
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4300
		spin_unlock_irq(&pool->lock);
4301
	}
4302

4303
	list_for_each_entry(wq, &workqueues, list) {
4304
		mutex_lock(&wq->mutex);
4305 4306
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4307
		mutex_unlock(&wq->mutex);
4308
	}
4309

4310
	mutex_unlock(&wq_pool_mutex);
4311 4312 4313
}

/**
4314
 * freeze_workqueues_busy - are freezable workqueues still busy?
4315 4316 4317 4318 4319
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4320
 * Grabs and releases wq_pool_mutex.
4321 4322
 *
 * RETURNS:
4323 4324
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4325 4326 4327 4328
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4329 4330
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4331

4332
	mutex_lock(&wq_pool_mutex);
4333

4334
	WARN_ON_ONCE(!workqueue_freezing);
4335

4336 4337 4338
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4339 4340 4341 4342
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4343
		rcu_read_lock_sched();
4344
		for_each_pwq(pwq, wq) {
4345
			WARN_ON_ONCE(pwq->nr_active < 0);
4346
			if (pwq->nr_active) {
4347
				busy = true;
4348
				rcu_read_unlock_sched();
4349 4350 4351
				goto out_unlock;
			}
		}
4352
		rcu_read_unlock_sched();
4353 4354
	}
out_unlock:
4355
	mutex_unlock(&wq_pool_mutex);
4356 4357 4358 4359 4360 4361 4362
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4363
 * frozen works are transferred to their respective pool worklists.
4364 4365
 *
 * CONTEXT:
4366
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4367 4368 4369
 */
void thaw_workqueues(void)
{
4370 4371 4372
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4373
	int pi;
4374

4375
	mutex_lock(&wq_pool_mutex);
4376 4377 4378 4379

	if (!workqueue_freezing)
		goto out_unlock;

4380
	/* clear FREEZING */
4381
	for_each_pool(pool, pi) {
4382
		spin_lock_irq(&pool->lock);
4383 4384
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4385
		spin_unlock_irq(&pool->lock);
4386
	}
4387

4388 4389
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4390
		mutex_lock(&wq->mutex);
4391 4392
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4393
		mutex_unlock(&wq->mutex);
4394 4395 4396 4397
	}

	workqueue_freezing = false;
out_unlock:
4398
	mutex_unlock(&wq_pool_mutex);
4399 4400 4401
}
#endif /* CONFIG_FREEZER */

4402
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4403
{
T
Tejun Heo 已提交
4404 4405
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4406

4407 4408
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4409
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4410

4411 4412 4413 4414
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4415
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4416
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4417

4418
	/* initialize CPU pools */
4419
	for_each_possible_cpu(cpu) {
4420
		struct worker_pool *pool;
4421

T
Tejun Heo 已提交
4422
		i = 0;
4423
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4424
			BUG_ON(init_worker_pool(pool));
4425
			pool->cpu = cpu;
4426
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4427 4428
			pool->attrs->nice = std_nice[i++];

T
Tejun Heo 已提交
4429
			/* alloc pool ID */
4430
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4431
			BUG_ON(worker_pool_assign_id(pool));
4432
			mutex_unlock(&wq_pool_mutex);
4433
		}
4434 4435
	}

4436
	/* create the initial worker */
4437
	for_each_online_cpu(cpu) {
4438
		struct worker_pool *pool;
4439

4440
		for_each_cpu_worker_pool(pool, cpu) {
4441
			pool->flags &= ~POOL_DISASSOCIATED;
4442
			BUG_ON(create_and_start_worker(pool) < 0);
4443
		}
4444 4445
	}

4446 4447 4448 4449 4450 4451 4452 4453 4454
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
	}

4455
	system_wq = alloc_workqueue("events", 0, 0);
4456
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4457
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4458 4459
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4460 4461
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4462
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4463
	       !system_unbound_wq || !system_freezable_wq);
4464
	return 0;
L
Linus Torvalds 已提交
4465
}
4466
early_initcall(init_workqueues);