workqueue.c 141.1 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67 68
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
69
	 * create_worker() is in progress.
70
	 */
71
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
72
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
74

T
Tejun Heo 已提交
75 76 77 78
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
79
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83

84 85
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
86

87
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88

89
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
90
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91

92 93 94
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

95 96 97
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
98 99 100 101 102 103 104 105
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
106
	HIGHPRI_NICE_LEVEL	= -20,
107 108

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
109
};
L
Linus Torvalds 已提交
110 111

/*
T
Tejun Heo 已提交
112 113
 * Structure fields follow one of the following exclusion rules.
 *
114 115
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
116
 *
117 118 119
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
120
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
121
 *
122 123 124 125
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
126
 *
127 128 129
 * MG: pool->manager_mutex and pool->lock protected.  Writes require both
 *     locks.  Reads can happen under either lock.
 *
130
 * PL: wq_pool_mutex protected.
131
 *
132
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
133
 *
134 135
 * WQ: wq->mutex protected.
 *
136
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
137 138
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
139 140
 */

141
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
142

143
struct worker_pool {
144
	spinlock_t		lock;		/* the pool lock */
145
	int			cpu;		/* I: the associated cpu */
146
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
147
	int			id;		/* I: pool ID */
148
	unsigned int		flags;		/* X: flags */
149 150 151

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
152 153

	/* nr_idle includes the ones off idle_list for rebinding */
154 155 156 157 158 159
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

160
	/* a workers is either on busy_hash or idle_list, or the manager */
161 162 163
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

164
	/* see manage_workers() for details on the two manager mutexes */
165
	struct mutex		manager_arb;	/* manager arbitration */
166
	struct mutex		manager_mutex;	/* manager exclusion */
167
	struct idr		worker_idr;	/* MG: worker IDs and iteration */
168

T
Tejun Heo 已提交
169
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 171
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
172

173 174 175 176 177 178
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 180 181 182 183 184

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
185 186
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
187
/*
188 189 190 191
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
192
 */
193
struct pool_workqueue {
194
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
195
	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 197
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
198
	int			refcnt;		/* L: reference count */
199 200
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
201
	int			nr_active;	/* L: nr of active works */
202
	int			max_active;	/* L: max active works */
203
	struct list_head	delayed_works;	/* L: delayed works */
204
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
206 207 208 209 210

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
211
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
212 213 214
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
215
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
216

217 218 219 220
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
221 222
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
223 224 225
	struct completion	done;		/* flush completion */
};

226 227
struct wq_device;

L
Linus Torvalds 已提交
228
/*
229 230
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
231 232
 */
struct workqueue_struct {
233
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234
	struct list_head	list;		/* PL: list of all workqueues */
235

236 237 238
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
239
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 241 242
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243

244
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 246
	struct worker		*rescuer;	/* I: rescue worker */

247
	int			nr_drainers;	/* WQ: drain in progress */
248
	int			saved_max_active; /* WQ: saved pwq max_active */
249

250
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252

253 254 255
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
256
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
257
	struct lockdep_map	lockdep_map;
258
#endif
259
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260 261 262 263

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
265 266
};

267 268
static struct kmem_cache *pwq_cache;

269 270 271 272
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

273 274 275
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

276 277 278 279 280 281 282 283 284
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

285 286
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

287 288 289
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

290
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
291
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
292

293 294
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
295 296 297 298 299

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

300
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
301

302
/* PL: hash of all unbound pools keyed by pool->attrs */
303 304
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

305
/* I: attributes used when instantiating standard unbound pools on demand */
306 307
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

308 309 310
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

311
struct workqueue_struct *system_wq __read_mostly;
312
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
313
struct workqueue_struct *system_highpri_wq __read_mostly;
314
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
315
struct workqueue_struct *system_long_wq __read_mostly;
316
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
317
struct workqueue_struct *system_unbound_wq __read_mostly;
318
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
319
struct workqueue_struct *system_freezable_wq __read_mostly;
320
EXPORT_SYMBOL_GPL(system_freezable_wq);
321 322 323 324
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
325

326 327 328 329
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

330 331 332
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

333
#define assert_rcu_or_pool_mutex()					\
334
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
335 336
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
337

338
#define assert_rcu_or_wq_mutex(wq)					\
339
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
340
			   lockdep_is_held(&wq->mutex),			\
341
			   "sched RCU or wq->mutex should be held")
342

343 344
#ifdef CONFIG_LOCKDEP
#define assert_manager_or_pool_lock(pool)				\
345 346
	WARN_ONCE(debug_locks &&					\
		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
347 348 349 350 351 352
		  !lockdep_is_held(&(pool)->lock),			\
		  "pool->manager_mutex or ->lock should be held")
#else
#define assert_manager_or_pool_lock(pool)	do { } while (0)
#endif

353 354 355
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
356
	     (pool)++)
357

T
Tejun Heo 已提交
358 359 360
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
361
 * @pi: integer used for iteration
362
 *
363 364 365
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
366 367 368
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
369
 */
370 371
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
372
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
373
		else
T
Tejun Heo 已提交
374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
 * This must be called with either @pool->manager_mutex or ->lock held.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
		else

391 392 393 394
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
395
 *
396
 * This must be called either with wq->mutex held or sched RCU read locked.
397 398
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
399 400 401
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
402 403
 */
#define for_each_pwq(pwq, wq)						\
404
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
405
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
406
		else
407

408 409 410 411
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

412 413 414 415 416
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
452
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
488
	.debug_hint	= work_debug_hint,
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

519 520 521 522 523 524 525
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

526 527 528 529 530
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

531 532 533 534 535 536 537
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
538 539 540 541
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

542
	lockdep_assert_held(&wq_pool_mutex);
543

544 545
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
546
	if (ret >= 0) {
T
Tejun Heo 已提交
547
		pool->id = ret;
548 549
		return 0;
	}
550
	return ret;
551 552
}

553 554 555 556 557 558 559 560
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
561 562
 *
 * Return: The unbound pool_workqueue for @node.
563 564 565 566 567 568 569 570
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
586

587
/*
588 589
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
590
 * is cleared and the high bits contain OFFQ flags and pool ID.
591
 *
592 593
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
594 595
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
596
 *
597
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
598
 * corresponding to a work.  Pool is available once the work has been
599
 * queued anywhere after initialization until it is sync canceled.  pwq is
600
 * available only while the work item is queued.
601
 *
602 603 604 605
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
606
 */
607 608
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
609
{
610
	WARN_ON_ONCE(!work_pending(work));
611 612
	atomic_long_set(&work->data, data | flags | work_static(work));
}
613

614
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
615 616
			 unsigned long extra_flags)
{
617 618
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
619 620
}

621 622 623 624 625 626 627
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

628 629
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
630
{
631 632 633 634 635 636 637
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
638
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
639
}
640

641
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
642
{
643 644
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
645 646
}

647
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
648
{
649
	unsigned long data = atomic_long_read(&work->data);
650

651
	if (data & WORK_STRUCT_PWQ)
652 653 654
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
655 656
}

657 658 659 660
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
661 662 663
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
664 665 666 667 668
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
669 670
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
671 672
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
673
{
674
	unsigned long data = atomic_long_read(&work->data);
675
	int pool_id;
676

677
	assert_rcu_or_pool_mutex();
678

679 680
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
681
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
682

683 684
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
685 686
		return NULL;

687
	return idr_find(&worker_pool_idr, pool_id);
688 689 690 691 692 693
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
694
 * Return: The worker_pool ID @work was last associated with.
695 696 697 698
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
699 700
	unsigned long data = atomic_long_read(&work->data);

701 702
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
703
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
704

705
	return data >> WORK_OFFQ_POOL_SHIFT;
706 707
}

708 709
static void mark_work_canceling(struct work_struct *work)
{
710
	unsigned long pool_id = get_work_pool_id(work);
711

712 713
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
714 715 716 717 718 719
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

720
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
721 722
}

723
/*
724 725
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
726
 * they're being called with pool->lock held.
727 728
 */

729
static bool __need_more_worker(struct worker_pool *pool)
730
{
731
	return !atomic_read(&pool->nr_running);
732 733
}

734
/*
735 736
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
737 738
 *
 * Note that, because unbound workers never contribute to nr_running, this
739
 * function will always return %true for unbound pools as long as the
740
 * worklist isn't empty.
741
 */
742
static bool need_more_worker(struct worker_pool *pool)
743
{
744
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
745
}
746

747
/* Can I start working?  Called from busy but !running workers. */
748
static bool may_start_working(struct worker_pool *pool)
749
{
750
	return pool->nr_idle;
751 752 753
}

/* Do I need to keep working?  Called from currently running workers. */
754
static bool keep_working(struct worker_pool *pool)
755
{
756 757
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
758 759 760
}

/* Do we need a new worker?  Called from manager. */
761
static bool need_to_create_worker(struct worker_pool *pool)
762
{
763
	return need_more_worker(pool) && !may_start_working(pool);
764
}
765

766
/* Do I need to be the manager? */
767
static bool need_to_manage_workers(struct worker_pool *pool)
768
{
769
	return need_to_create_worker(pool) ||
770
		(pool->flags & POOL_MANAGE_WORKERS);
771 772 773
}

/* Do we have too many workers and should some go away? */
774
static bool too_many_workers(struct worker_pool *pool)
775
{
776
	bool managing = mutex_is_locked(&pool->manager_arb);
777 778
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
779

780 781 782 783 784 785 786
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

787
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
788 789
}

790
/*
791 792 793
 * Wake up functions.
 */

794
/* Return the first worker.  Safe with preemption disabled */
795
static struct worker *first_worker(struct worker_pool *pool)
796
{
797
	if (unlikely(list_empty(&pool->idle_list)))
798 799
		return NULL;

800
	return list_first_entry(&pool->idle_list, struct worker, entry);
801 802 803 804
}

/**
 * wake_up_worker - wake up an idle worker
805
 * @pool: worker pool to wake worker from
806
 *
807
 * Wake up the first idle worker of @pool.
808 809
 *
 * CONTEXT:
810
 * spin_lock_irq(pool->lock).
811
 */
812
static void wake_up_worker(struct worker_pool *pool)
813
{
814
	struct worker *worker = first_worker(pool);
815 816 817 818 819

	if (likely(worker))
		wake_up_process(worker->task);
}

820
/**
821 822 823 824 825 826 827 828 829 830
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
831
void wq_worker_waking_up(struct task_struct *task, int cpu)
832 833 834
{
	struct worker *worker = kthread_data(task);

835
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
836
		WARN_ON_ONCE(worker->pool->cpu != cpu);
837
		atomic_inc(&worker->pool->nr_running);
838
	}
839 840 841 842 843 844 845 846 847 848 849 850 851 852
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
853
 * Return:
854 855
 * Worker task on @cpu to wake up, %NULL if none.
 */
856
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
857 858
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
859
	struct worker_pool *pool;
860

861 862 863 864 865
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
866
	if (worker->flags & WORKER_NOT_RUNNING)
867 868
		return NULL;

869 870
	pool = worker->pool;

871
	/* this can only happen on the local cpu */
872 873
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
874 875 876 877 878 879

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
880 881 882
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
883
	 * manipulating idle_list, so dereferencing idle_list without pool
884
	 * lock is safe.
885
	 */
886 887
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
888
		to_wakeup = first_worker(pool);
889 890 891 892 893
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
894
 * @worker: self
895 896 897
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
898 899 900
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
901
 *
902
 * CONTEXT:
903
 * spin_lock_irq(pool->lock)
904 905 906 907
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
908
	struct worker_pool *pool = worker->pool;
909

910 911
	WARN_ON_ONCE(worker->task != current);

912 913 914 915 916 917 918 919
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
920
			if (atomic_dec_and_test(&pool->nr_running) &&
921
			    !list_empty(&pool->worklist))
922
				wake_up_worker(pool);
923
		} else
924
			atomic_dec(&pool->nr_running);
925 926
	}

927 928 929 930
	worker->flags |= flags;
}

/**
931
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
932
 * @worker: self
933 934
 * @flags: flags to clear
 *
935
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
936
 *
937
 * CONTEXT:
938
 * spin_lock_irq(pool->lock)
939 940 941
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
942
	struct worker_pool *pool = worker->pool;
943 944
	unsigned int oflags = worker->flags;

945 946
	WARN_ON_ONCE(worker->task != current);

947
	worker->flags &= ~flags;
948

949 950 951 952 953
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
954 955
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
956
			atomic_inc(&pool->nr_running);
957 958
}

959 960
/**
 * find_worker_executing_work - find worker which is executing a work
961
 * @pool: pool of interest
962 963
 * @work: work to find worker for
 *
964 965
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
966 967 968 969 970 971 972 973 974 975 976 977
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
978 979 980 981 982 983
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
984 985
 *
 * CONTEXT:
986
 * spin_lock_irq(pool->lock).
987
 *
988 989
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
990
 * otherwise.
991
 */
992
static struct worker *find_worker_executing_work(struct worker_pool *pool,
993
						 struct work_struct *work)
994
{
995 996
	struct worker *worker;

997
	hash_for_each_possible(pool->busy_hash, worker, hentry,
998 999 1000
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
1001 1002 1003
			return worker;

	return NULL;
1004 1005
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1021
 * spin_lock_irq(pool->lock).
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1105
static void pwq_activate_delayed_work(struct work_struct *work)
1106
{
1107
	struct pool_workqueue *pwq = get_work_pwq(work);
1108 1109

	trace_workqueue_activate_work(work);
1110
	move_linked_works(work, &pwq->pool->worklist, NULL);
1111
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1112
	pwq->nr_active++;
1113 1114
}

1115
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1116
{
1117
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1118 1119
						    struct work_struct, entry);

1120
	pwq_activate_delayed_work(work);
1121 1122
}

1123
/**
1124 1125
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1126 1127 1128
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1129
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1130 1131
 *
 * CONTEXT:
1132
 * spin_lock_irq(pool->lock).
1133
 */
1134
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1135
{
T
Tejun Heo 已提交
1136
	/* uncolored work items don't participate in flushing or nr_active */
1137
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1138
		goto out_put;
1139

1140
	pwq->nr_in_flight[color]--;
1141

1142 1143
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1144
		/* one down, submit a delayed one */
1145 1146
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1147 1148 1149
	}

	/* is flush in progress and are we at the flushing tip? */
1150
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1151
		goto out_put;
1152 1153

	/* are there still in-flight works? */
1154
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1155
		goto out_put;
1156

1157 1158
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1159 1160

	/*
1161
	 * If this was the last pwq, wake up the first flusher.  It
1162 1163
	 * will handle the rest.
	 */
1164 1165
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1166 1167
out_put:
	put_pwq(pwq);
1168 1169
}

1170
/**
1171
 * try_to_grab_pending - steal work item from worklist and disable irq
1172 1173
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1174
 * @flags: place to store irq state
1175 1176
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1177
 * stable state - idle, on timer or on worklist.
1178
 *
1179
 * Return:
1180 1181 1182
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1183 1184
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1185
 *
1186
 * Note:
1187
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1188 1189 1190
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1191 1192 1193 1194
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1195
 * This function is safe to call from any context including IRQ handler.
1196
 */
1197 1198
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1199
{
1200
	struct worker_pool *pool;
1201
	struct pool_workqueue *pwq;
1202

1203 1204
	local_irq_save(*flags);

1205 1206 1207 1208
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1209 1210 1211 1212 1213
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1214 1215 1216 1217 1218
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1219 1220 1221 1222 1223 1224 1225
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1226 1227
	pool = get_work_pool(work);
	if (!pool)
1228
		goto fail;
1229

1230
	spin_lock(&pool->lock);
1231
	/*
1232 1233 1234 1235 1236
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1237 1238
	 * item is currently queued on that pool.
	 */
1239 1240
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1241 1242 1243 1244 1245
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1246
		 * on the delayed_list, will confuse pwq->nr_active
1247 1248 1249 1250
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1251
			pwq_activate_delayed_work(work);
1252 1253

		list_del_init(&work->entry);
1254
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1255

1256
		/* work->data points to pwq iff queued, point to pool */
1257 1258 1259 1260
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1261
	}
1262
	spin_unlock(&pool->lock);
1263 1264 1265 1266 1267
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1268
	return -EAGAIN;
1269 1270
}

T
Tejun Heo 已提交
1271
/**
1272
 * insert_work - insert a work into a pool
1273
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1274 1275 1276 1277
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1278
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1279
 * work_struct flags.
T
Tejun Heo 已提交
1280 1281
 *
 * CONTEXT:
1282
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1283
 */
1284 1285
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1286
{
1287
	struct worker_pool *pool = pwq->pool;
1288

T
Tejun Heo 已提交
1289
	/* we own @work, set data and link */
1290
	set_work_pwq(work, pwq, extra_flags);
1291
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1292
	get_pwq(pwq);
1293 1294

	/*
1295 1296 1297
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1298 1299 1300
	 */
	smp_mb();

1301 1302
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1303 1304
}

1305 1306
/*
 * Test whether @work is being queued from another work executing on the
1307
 * same workqueue.
1308 1309 1310
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1311 1312 1313 1314 1315 1316 1317
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1318
	return worker && worker->current_pwq->wq == wq;
1319 1320
}

1321
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1322 1323
			 struct work_struct *work)
{
1324
	struct pool_workqueue *pwq;
1325
	struct worker_pool *last_pool;
1326
	struct list_head *worklist;
1327
	unsigned int work_flags;
1328
	unsigned int req_cpu = cpu;
1329 1330 1331 1332 1333 1334 1335 1336

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1337

1338
	debug_work_activate(work);
1339

1340
	/* if draining, only works from the same workqueue are allowed */
1341
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1342
	    WARN_ON_ONCE(!is_chained_work(wq)))
1343
		return;
1344
retry:
1345 1346 1347
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1348
	/* pwq which will be used unless @work is executing elsewhere */
1349
	if (!(wq->flags & WQ_UNBOUND))
1350
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1351 1352
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1353

1354 1355 1356 1357 1358 1359 1360 1361
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1362

1363
		spin_lock(&last_pool->lock);
1364

1365
		worker = find_worker_executing_work(last_pool, work);
1366

1367 1368
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1369
		} else {
1370 1371
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1372
			spin_lock(&pwq->pool->lock);
1373
		}
1374
	} else {
1375
		spin_lock(&pwq->pool->lock);
1376 1377
	}

1378 1379 1380 1381
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1382 1383
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1397 1398
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1399

1400
	if (WARN_ON(!list_empty(&work->entry))) {
1401
		spin_unlock(&pwq->pool->lock);
1402 1403
		return;
	}
1404

1405 1406
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1407

1408
	if (likely(pwq->nr_active < pwq->max_active)) {
1409
		trace_workqueue_activate_work(work);
1410 1411
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1412 1413
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1414
		worklist = &pwq->delayed_works;
1415
	}
1416

1417
	insert_work(pwq, work, worklist, work_flags);
1418

1419
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1420 1421
}

1422
/**
1423 1424
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1425 1426 1427
 * @wq: workqueue to use
 * @work: work to queue
 *
1428 1429
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1430 1431
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1432
 */
1433 1434
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1435
{
1436
	bool ret = false;
1437
	unsigned long flags;
1438

1439
	local_irq_save(flags);
1440

1441
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1442
		__queue_work(cpu, wq, work);
1443
		ret = true;
1444
	}
1445

1446
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1447 1448
	return ret;
}
1449
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1450

1451
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1452
{
1453
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1454

1455
	/* should have been called from irqsafe timer with irq already off */
1456
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1457
}
1458
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1459

1460 1461
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1462
{
1463 1464 1465 1466 1467
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1468 1469
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1470

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1482
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1483

1484
	dwork->wq = wq;
1485
	dwork->cpu = cpu;
1486 1487 1488 1489 1490 1491
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1492 1493
}

1494 1495 1496 1497
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1498
 * @dwork: work to queue
1499 1500
 * @delay: number of jiffies to wait before queueing
 *
1501
 * Return: %false if @work was already on a queue, %true otherwise.  If
1502 1503
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1504
 */
1505 1506
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1507
{
1508
	struct work_struct *work = &dwork->work;
1509
	bool ret = false;
1510
	unsigned long flags;
1511

1512 1513
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1514

1515
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1516
		__queue_delayed_work(cpu, wq, dwork, delay);
1517
		ret = true;
1518
	}
1519

1520
	local_irq_restore(flags);
1521 1522
	return ret;
}
1523
EXPORT_SYMBOL(queue_delayed_work_on);
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1537
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1538 1539
 * pending and its timer was modified.
 *
1540
 * This function is safe to call from any context including IRQ handler.
1541 1542 1543 1544 1545 1546 1547
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1548

1549 1550 1551
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1552

1553 1554 1555
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1556
	}
1557 1558

	/* -ENOENT from try_to_grab_pending() becomes %true */
1559 1560
	return ret;
}
1561 1562
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1563 1564 1565 1566 1567 1568 1569 1570
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1571
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1572 1573
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1574
{
1575
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1576

1577 1578 1579 1580
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1581

1582 1583
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1584
	pool->nr_idle++;
1585
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1586 1587

	/* idle_list is LIFO */
1588
	list_add(&worker->entry, &pool->idle_list);
1589

1590 1591
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1592

1593
	/*
1594
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1595
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1596 1597
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1598
	 */
1599
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1600
		     pool->nr_workers == pool->nr_idle &&
1601
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1611
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1612 1613 1614
 */
static void worker_leave_idle(struct worker *worker)
{
1615
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1616

1617 1618
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1619
	worker_clr_flags(worker, WORKER_IDLE);
1620
	pool->nr_idle--;
T
Tejun Heo 已提交
1621 1622 1623
	list_del_init(&worker->entry);
}

1624
/**
1625 1626 1627 1628
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1629 1630 1631 1632 1633 1634
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1635
 * This function is to be used by unbound workers and rescuers to bind
1636 1637 1638
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1639
 * verbatim as it's best effort and blocking and pool may be
1640 1641
 * [dis]associated in the meantime.
 *
1642
 * This function tries set_cpus_allowed() and locks pool and verifies the
1643
 * binding against %POOL_DISASSOCIATED which is set during
1644 1645 1646
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1647 1648
 *
 * CONTEXT:
1649
 * Might sleep.  Called without any lock but returns with pool->lock
1650 1651
 * held.
 *
1652
 * Return:
1653
 * %true if the associated pool is online (@worker is successfully
1654 1655
 * bound), %false if offline.
 */
1656
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1657
__acquires(&pool->lock)
1658 1659
{
	while (true) {
1660
		/*
1661 1662 1663
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1664
		 * against POOL_DISASSOCIATED.
1665
		 */
1666
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1667
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1668

1669
		spin_lock_irq(&pool->lock);
1670
		if (pool->flags & POOL_DISASSOCIATED)
1671
			return false;
1672
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1673
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1674
			return true;
1675
		spin_unlock_irq(&pool->lock);
1676

1677 1678 1679 1680 1681 1682
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1683
		cpu_relax();
1684
		cond_resched();
1685 1686 1687
	}
}

T
Tejun Heo 已提交
1688 1689 1690 1691 1692
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1693 1694
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1695
		INIT_LIST_HEAD(&worker->scheduled);
1696 1697
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1698
	}
T
Tejun Heo 已提交
1699 1700 1701 1702 1703
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1704
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1705
 *
1706
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1707 1708 1709 1710 1711 1712
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1713
 * Return:
T
Tejun Heo 已提交
1714 1715
 * Pointer to the newly created worker.
 */
1716
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1717 1718
{
	struct worker *worker = NULL;
1719
	int id = -1;
1720
	char id_buf[16];
T
Tejun Heo 已提交
1721

1722 1723
	lockdep_assert_held(&pool->manager_mutex);

1724 1725 1726 1727 1728
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
	idr_preload(GFP_KERNEL);
1729
	spin_lock_irq(&pool->lock);
1730 1731 1732

	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);

1733
	spin_unlock_irq(&pool->lock);
1734 1735 1736
	idr_preload_end();
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1737 1738 1739 1740 1741

	worker = alloc_worker();
	if (!worker)
		goto fail;

1742
	worker->pool = pool;
T
Tejun Heo 已提交
1743 1744
	worker->id = id;

1745
	if (pool->cpu >= 0)
1746 1747
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1748
	else
1749 1750
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1751
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1752
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1753 1754 1755
	if (IS_ERR(worker->task))
		goto fail;

1756 1757 1758 1759 1760
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1761 1762 1763 1764
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1765
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1766

T
Tejun Heo 已提交
1767 1768 1769 1770 1771 1772
	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1773
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1774

1775 1776 1777 1778 1779
	/* successful, commit the pointer to idr */
	spin_lock_irq(&pool->lock);
	idr_replace(&pool->worker_idr, worker, worker->id);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1780
	return worker;
1781

T
Tejun Heo 已提交
1782 1783
fail:
	if (id >= 0) {
1784
		spin_lock_irq(&pool->lock);
1785
		idr_remove(&pool->worker_idr, id);
1786
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1796
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1797 1798
 *
 * CONTEXT:
1799
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1800 1801 1802
 */
static void start_worker(struct worker *worker)
{
1803
	worker->flags |= WORKER_STARTED;
1804
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1805
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1806 1807 1808
	wake_up_process(worker->task);
}

1809 1810 1811 1812
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1813
 * Grab the managership of @pool and create and start a new worker for it.
1814 1815
 *
 * Return: 0 on success. A negative error code otherwise.
1816 1817 1818 1819 1820
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1821 1822
	mutex_lock(&pool->manager_mutex);

1823 1824 1825 1826 1827 1828 1829
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1830 1831
	mutex_unlock(&pool->manager_mutex);

1832 1833 1834
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1835 1836 1837 1838
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1839
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1840 1841
 *
 * CONTEXT:
1842
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1843 1844 1845
 */
static void destroy_worker(struct worker *worker)
{
1846
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1847

1848 1849 1850
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1851
	/* sanity check frenzy */
1852 1853 1854
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1855

T
Tejun Heo 已提交
1856
	if (worker->flags & WORKER_STARTED)
1857
		pool->nr_workers--;
T
Tejun Heo 已提交
1858
	if (worker->flags & WORKER_IDLE)
1859
		pool->nr_idle--;
T
Tejun Heo 已提交
1860

1861 1862 1863 1864 1865 1866
	/*
	 * Once WORKER_DIE is set, the kworker may destroy itself at any
	 * point.  Pin to ensure the task stays until we're done with it.
	 */
	get_task_struct(worker->task);

T
Tejun Heo 已提交
1867
	list_del_init(&worker->entry);
1868
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1869

1870 1871
	idr_remove(&pool->worker_idr, worker->id);

1872
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1873

T
Tejun Heo 已提交
1874
	kthread_stop(worker->task);
1875
	put_task_struct(worker->task);
T
Tejun Heo 已提交
1876 1877
	kfree(worker);

1878
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1879 1880
}

1881
static void idle_worker_timeout(unsigned long __pool)
1882
{
1883
	struct worker_pool *pool = (void *)__pool;
1884

1885
	spin_lock_irq(&pool->lock);
1886

1887
	if (too_many_workers(pool)) {
1888 1889 1890 1891
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1892
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1893 1894 1895
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1896
			mod_timer(&pool->idle_timer, expires);
1897 1898
		else {
			/* it's been idle for too long, wake up manager */
1899
			pool->flags |= POOL_MANAGE_WORKERS;
1900
			wake_up_worker(pool);
1901
		}
1902 1903
	}

1904
	spin_unlock_irq(&pool->lock);
1905
}
1906

1907
static void send_mayday(struct work_struct *work)
1908
{
1909 1910
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1911

1912
	lockdep_assert_held(&wq_mayday_lock);
1913

1914
	if (!wq->rescuer)
1915
		return;
1916 1917

	/* mayday mayday mayday */
1918 1919
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1920
		wake_up_process(wq->rescuer->task);
1921
	}
1922 1923
}

1924
static void pool_mayday_timeout(unsigned long __pool)
1925
{
1926
	struct worker_pool *pool = (void *)__pool;
1927 1928
	struct work_struct *work;

1929
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1930
	spin_lock(&pool->lock);
1931

1932
	if (need_to_create_worker(pool)) {
1933 1934 1935 1936 1937 1938
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1939
		list_for_each_entry(work, &pool->worklist, entry)
1940
			send_mayday(work);
L
Linus Torvalds 已提交
1941
	}
1942

1943
	spin_unlock(&pool->lock);
1944
	spin_unlock_irq(&wq_mayday_lock);
1945

1946
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1947 1948
}

1949 1950
/**
 * maybe_create_worker - create a new worker if necessary
1951
 * @pool: pool to create a new worker for
1952
 *
1953
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1954 1955
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1956
 * sent to all rescuers with works scheduled on @pool to resolve
1957 1958
 * possible allocation deadlock.
 *
1959 1960
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1961 1962
 *
 * LOCKING:
1963
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1964 1965 1966
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1967
 * Return:
1968
 * %false if no action was taken and pool->lock stayed locked, %true
1969 1970
 * otherwise.
 */
1971
static bool maybe_create_worker(struct worker_pool *pool)
1972 1973
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1974
{
1975
	if (!need_to_create_worker(pool))
1976 1977
		return false;
restart:
1978
	spin_unlock_irq(&pool->lock);
1979

1980
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1981
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1982 1983 1984 1985

	while (true) {
		struct worker *worker;

1986
		worker = create_worker(pool);
1987
		if (worker) {
1988
			del_timer_sync(&pool->mayday_timer);
1989
			spin_lock_irq(&pool->lock);
1990
			start_worker(worker);
1991 1992
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1993 1994 1995
			return true;
		}

1996
		if (!need_to_create_worker(pool))
1997
			break;
L
Linus Torvalds 已提交
1998

1999 2000
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
2001

2002
		if (!need_to_create_worker(pool))
2003 2004 2005
			break;
	}

2006
	del_timer_sync(&pool->mayday_timer);
2007
	spin_lock_irq(&pool->lock);
2008
	if (need_to_create_worker(pool))
2009 2010 2011 2012 2013 2014
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2015
 * @pool: pool to destroy workers for
2016
 *
2017
 * Destroy @pool workers which have been idle for longer than
2018 2019 2020
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
2021
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2022 2023
 * multiple times.  Called only from manager.
 *
2024
 * Return:
2025
 * %false if no action was taken and pool->lock stayed locked, %true
2026 2027
 * otherwise.
 */
2028
static bool maybe_destroy_workers(struct worker_pool *pool)
2029 2030
{
	bool ret = false;
L
Linus Torvalds 已提交
2031

2032
	while (too_many_workers(pool)) {
2033 2034
		struct worker *worker;
		unsigned long expires;
2035

2036
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2037
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2038

2039
		if (time_before(jiffies, expires)) {
2040
			mod_timer(&pool->idle_timer, expires);
2041
			break;
2042
		}
L
Linus Torvalds 已提交
2043

2044 2045
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2046
	}
2047

2048
	return ret;
2049 2050
}

2051
/**
2052 2053
 * manage_workers - manage worker pool
 * @worker: self
2054
 *
2055
 * Assume the manager role and manage the worker pool @worker belongs
2056
 * to.  At any given time, there can be only zero or one manager per
2057
 * pool.  The exclusion is handled automatically by this function.
2058 2059 2060 2061
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2062 2063
 *
 * CONTEXT:
2064
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2065 2066
 * multiple times.  Does GFP_KERNEL allocations.
 *
2067
 * Return:
2068 2069 2070 2071 2072
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
2073
 */
2074
static bool manage_workers(struct worker *worker)
2075
{
2076
	struct worker_pool *pool = worker->pool;
2077
	bool ret = false;
2078

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2100
	if (!mutex_trylock(&pool->manager_arb))
2101
		return ret;
2102

2103
	/*
2104 2105
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2106
	 */
2107
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2108
		spin_unlock_irq(&pool->lock);
2109
		mutex_lock(&pool->manager_mutex);
2110
		spin_lock_irq(&pool->lock);
2111 2112
		ret = true;
	}
2113

2114
	pool->flags &= ~POOL_MANAGE_WORKERS;
2115 2116

	/*
2117 2118
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2119
	 */
2120 2121
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2122

2123
	mutex_unlock(&pool->manager_mutex);
2124
	mutex_unlock(&pool->manager_arb);
2125
	return ret;
2126 2127
}

2128 2129
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2130
 * @worker: self
2131 2132 2133 2134 2135 2136 2137 2138 2139
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2140
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2141
 */
T
Tejun Heo 已提交
2142
static void process_one_work(struct worker *worker, struct work_struct *work)
2143 2144
__releases(&pool->lock)
__acquires(&pool->lock)
2145
{
2146
	struct pool_workqueue *pwq = get_work_pwq(work);
2147
	struct worker_pool *pool = worker->pool;
2148
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2149
	int work_color;
2150
	struct worker *collision;
2151 2152 2153 2154 2155 2156 2157 2158
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2159 2160 2161
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2162
#endif
2163 2164 2165
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2166
	 * unbound or a disassociated pool.
2167
	 */
2168
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2169
		     !(pool->flags & POOL_DISASSOCIATED) &&
2170
		     raw_smp_processor_id() != pool->cpu);
2171

2172 2173 2174 2175 2176 2177
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2178
	collision = find_worker_executing_work(pool, work);
2179 2180 2181 2182 2183
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2184
	/* claim and dequeue */
2185
	debug_work_deactivate(work);
2186
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2187
	worker->current_work = work;
2188
	worker->current_func = work->func;
2189
	worker->current_pwq = pwq;
2190
	work_color = get_work_color(work);
2191

2192 2193
	list_del_init(&work->entry);

2194 2195 2196 2197 2198 2199 2200
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2201
	/*
2202
	 * Unbound pool isn't concurrency managed and work items should be
2203 2204
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2205 2206
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2207

2208
	/*
2209
	 * Record the last pool and clear PENDING which should be the last
2210
	 * update to @work.  Also, do this inside @pool->lock so that
2211 2212
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2213
	 */
2214
	set_work_pool_and_clear_pending(work, pool->id);
2215

2216
	spin_unlock_irq(&pool->lock);
2217

2218
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2219
	lock_map_acquire(&lockdep_map);
2220
	trace_workqueue_execute_start(work);
2221
	worker->current_func(work);
2222 2223 2224 2225 2226
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2227
	lock_map_release(&lockdep_map);
2228
	lock_map_release(&pwq->wq->lockdep_map);
2229 2230

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2231 2232
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2233 2234
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2235 2236 2237 2238
		debug_show_held_locks(current);
		dump_stack();
	}

2239 2240 2241 2242 2243 2244 2245 2246 2247
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2248
	spin_lock_irq(&pool->lock);
2249

2250 2251 2252 2253
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2254
	/* we're done with it, release */
2255
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2256
	worker->current_work = NULL;
2257
	worker->current_func = NULL;
2258
	worker->current_pwq = NULL;
2259
	worker->desc_valid = false;
2260
	pwq_dec_nr_in_flight(pwq, work_color);
2261 2262
}

2263 2264 2265 2266 2267 2268 2269 2270 2271
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2272
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2273 2274 2275
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2276
{
2277 2278
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2279
						struct work_struct, entry);
T
Tejun Heo 已提交
2280
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2281 2282 2283
	}
}

T
Tejun Heo 已提交
2284 2285
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2286
 * @__worker: self
T
Tejun Heo 已提交
2287
 *
2288 2289 2290 2291 2292
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2293 2294
 *
 * Return: 0
T
Tejun Heo 已提交
2295
 */
T
Tejun Heo 已提交
2296
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2297
{
T
Tejun Heo 已提交
2298
	struct worker *worker = __worker;
2299
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2300

2301 2302
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2303
woke_up:
2304
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2305

2306 2307
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2308
		spin_unlock_irq(&pool->lock);
2309 2310 2311
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
		return 0;
T
Tejun Heo 已提交
2312
	}
2313

T
Tejun Heo 已提交
2314
	worker_leave_idle(worker);
2315
recheck:
2316
	/* no more worker necessary? */
2317
	if (!need_more_worker(pool))
2318 2319 2320
		goto sleep;

	/* do we need to manage? */
2321
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2322 2323
		goto recheck;

T
Tejun Heo 已提交
2324 2325 2326 2327 2328
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2329
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2330

2331
	/*
2332 2333 2334 2335 2336
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2337
	 */
2338
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2339 2340

	do {
T
Tejun Heo 已提交
2341
		struct work_struct *work =
2342
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2343 2344 2345 2346 2347 2348
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2349
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2350 2351 2352
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2353
		}
2354
	} while (keep_working(pool));
2355 2356

	worker_set_flags(worker, WORKER_PREP, false);
2357
sleep:
2358
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2359
		goto recheck;
2360

T
Tejun Heo 已提交
2361
	/*
2362 2363 2364 2365 2366
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2367 2368 2369
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2370
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2371 2372
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2373 2374
}

2375 2376
/**
 * rescuer_thread - the rescuer thread function
2377
 * @__rescuer: self
2378 2379
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2380
 * workqueue which has WQ_MEM_RECLAIM set.
2381
 *
2382
 * Regular work processing on a pool may block trying to create a new
2383 2384 2385 2386 2387
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2388 2389
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2390 2391 2392
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2393 2394
 *
 * Return: 0
2395
 */
2396
static int rescuer_thread(void *__rescuer)
2397
{
2398 2399
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2400 2401 2402
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2403 2404 2405 2406 2407 2408

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2409 2410 2411
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2412 2413
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2414
		rescuer->task->flags &= ~PF_WQ_WORKER;
2415
		return 0;
2416
	}
2417

2418
	/* see whether any pwq is asking for help */
2419
	spin_lock_irq(&wq_mayday_lock);
2420 2421 2422 2423

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2424
		struct worker_pool *pool = pwq->pool;
2425 2426 2427
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2428 2429
		list_del_init(&pwq->mayday_node);

2430
		spin_unlock_irq(&wq_mayday_lock);
2431 2432

		/* migrate to the target cpu if possible */
2433
		worker_maybe_bind_and_lock(pool);
2434
		rescuer->pool = pool;
2435 2436 2437 2438 2439

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2440
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2441
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2442
			if (get_work_pwq(work) == pwq)
2443 2444 2445
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2446 2447

		/*
2448
		 * Leave this pool.  If keep_working() is %true, notify a
2449 2450 2451
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2452 2453
		if (keep_working(pool))
			wake_up_worker(pool);
2454

2455
		rescuer->pool = NULL;
2456
		spin_unlock(&pool->lock);
2457
		spin_lock(&wq_mayday_lock);
2458 2459
	}

2460
	spin_unlock_irq(&wq_mayday_lock);
2461

2462 2463
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2464 2465
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2466 2467
}

O
Oleg Nesterov 已提交
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2479 2480
/**
 * insert_wq_barrier - insert a barrier work
2481
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2482
 * @barr: wq_barrier to insert
2483 2484
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2485
 *
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2498
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2499 2500
 *
 * CONTEXT:
2501
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2502
 */
2503
static void insert_wq_barrier(struct pool_workqueue *pwq,
2504 2505
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2506
{
2507 2508 2509
	struct list_head *head;
	unsigned int linked = 0;

2510
	/*
2511
	 * debugobject calls are safe here even with pool->lock locked
2512 2513 2514 2515
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2516
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2517
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2518
	init_completion(&barr->done);
2519

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2535
	debug_work_activate(&barr->work);
2536
	insert_work(pwq, &barr->work, head,
2537
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2538 2539
}

2540
/**
2541
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2542 2543 2544 2545
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2546
 * Prepare pwqs for workqueue flushing.
2547
 *
2548 2549 2550 2551 2552
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2553 2554 2555 2556 2557 2558 2559
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2560
 * If @work_color is non-negative, all pwqs should have the same
2561 2562 2563 2564
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2565
 * mutex_lock(wq->mutex).
2566
 *
2567
 * Return:
2568 2569 2570
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2571
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2572
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2573
{
2574
	bool wait = false;
2575
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2576

2577
	if (flush_color >= 0) {
2578
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2579
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2580
	}
2581

2582
	for_each_pwq(pwq, wq) {
2583
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2584

2585
		spin_lock_irq(&pool->lock);
2586

2587
		if (flush_color >= 0) {
2588
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2589

2590 2591 2592
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2593 2594 2595
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2596

2597
		if (work_color >= 0) {
2598
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2599
			pwq->work_color = work_color;
2600
		}
L
Linus Torvalds 已提交
2601

2602
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2603
	}
2604

2605
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2606
		complete(&wq->first_flusher->done);
2607

2608
	return wait;
L
Linus Torvalds 已提交
2609 2610
}

2611
/**
L
Linus Torvalds 已提交
2612
 * flush_workqueue - ensure that any scheduled work has run to completion.
2613
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2614
 *
2615 2616
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2617
 */
2618
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2619
{
2620 2621 2622 2623 2624 2625
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2626

2627 2628
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2629

2630
	mutex_lock(&wq->mutex);
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2643
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2644 2645 2646 2647 2648
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2649
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2650 2651 2652

			wq->first_flusher = &this_flusher;

2653
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2654 2655 2656 2657 2658 2659 2660 2661
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2662
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2663
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2664
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2675
	mutex_unlock(&wq->mutex);
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2688
	mutex_lock(&wq->mutex);
2689

2690 2691 2692 2693
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2694 2695
	wq->first_flusher = NULL;

2696 2697
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2710 2711
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2731
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2732 2733 2734
		}

		if (list_empty(&wq->flusher_queue)) {
2735
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2736 2737 2738 2739 2740
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2741
		 * the new first flusher and arm pwqs.
2742
		 */
2743 2744
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2745 2746 2747 2748

		list_del_init(&next->list);
		wq->first_flusher = next;

2749
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2760
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2761
}
2762
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2763

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2778
	struct pool_workqueue *pwq;
2779 2780 2781 2782

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2783
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2784
	 */
2785
	mutex_lock(&wq->mutex);
2786
	if (!wq->nr_drainers++)
2787
		wq->flags |= __WQ_DRAINING;
2788
	mutex_unlock(&wq->mutex);
2789 2790 2791
reflush:
	flush_workqueue(wq);

2792
	mutex_lock(&wq->mutex);
2793

2794
	for_each_pwq(pwq, wq) {
2795
		bool drained;
2796

2797
		spin_lock_irq(&pwq->pool->lock);
2798
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2799
		spin_unlock_irq(&pwq->pool->lock);
2800 2801

		if (drained)
2802 2803 2804 2805
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2806
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2807
				wq->name, flush_cnt);
2808

2809
		mutex_unlock(&wq->mutex);
2810 2811 2812 2813
		goto reflush;
	}

	if (!--wq->nr_drainers)
2814
		wq->flags &= ~__WQ_DRAINING;
2815
	mutex_unlock(&wq->mutex);
2816 2817 2818
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2819
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2820
{
2821
	struct worker *worker = NULL;
2822
	struct worker_pool *pool;
2823
	struct pool_workqueue *pwq;
2824 2825

	might_sleep();
2826 2827

	local_irq_disable();
2828
	pool = get_work_pool(work);
2829 2830
	if (!pool) {
		local_irq_enable();
2831
		return false;
2832
	}
2833

2834
	spin_lock(&pool->lock);
2835
	/* see the comment in try_to_grab_pending() with the same code */
2836 2837 2838
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2839
			goto already_gone;
2840
	} else {
2841
		worker = find_worker_executing_work(pool, work);
2842
		if (!worker)
T
Tejun Heo 已提交
2843
			goto already_gone;
2844
		pwq = worker->current_pwq;
2845
	}
2846

2847
	insert_wq_barrier(pwq, barr, work, worker);
2848
	spin_unlock_irq(&pool->lock);
2849

2850 2851 2852 2853 2854 2855
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2856
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2857
		lock_map_acquire(&pwq->wq->lockdep_map);
2858
	else
2859 2860
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2861

2862
	return true;
T
Tejun Heo 已提交
2863
already_gone:
2864
	spin_unlock_irq(&pool->lock);
2865
	return false;
2866
}
2867 2868 2869 2870 2871

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2872 2873
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2874
 *
2875
 * Return:
2876 2877 2878 2879 2880
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2881 2882
	struct wq_barrier barr;

2883 2884 2885
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2886 2887 2888 2889 2890 2891 2892
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2893
}
2894
EXPORT_SYMBOL_GPL(flush_work);
2895

2896
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2897
{
2898
	unsigned long flags;
2899 2900 2901
	int ret;

	do {
2902 2903 2904 2905 2906 2907
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2908
			flush_work(work);
2909 2910
	} while (unlikely(ret < 0));

2911 2912 2913 2914
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2915
	flush_work(work);
2916
	clear_work_data(work);
2917 2918 2919
	return ret;
}

2920
/**
2921 2922
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2923
 *
2924 2925 2926 2927
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2928
 *
2929 2930
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2931
 *
2932
 * The caller must ensure that the workqueue on which @work was last
2933
 * queued can't be destroyed before this function returns.
2934
 *
2935
 * Return:
2936
 * %true if @work was pending, %false otherwise.
2937
 */
2938
bool cancel_work_sync(struct work_struct *work)
2939
{
2940
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2941
}
2942
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2943

2944
/**
2945 2946
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2947
 *
2948 2949 2950
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2951
 *
2952
 * Return:
2953 2954
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2955
 */
2956 2957
bool flush_delayed_work(struct delayed_work *dwork)
{
2958
	local_irq_disable();
2959
	if (del_timer_sync(&dwork->timer))
2960
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2961
	local_irq_enable();
2962 2963 2964 2965
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2966
/**
2967 2968
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2969
 *
2970 2971 2972 2973 2974 2975 2976 2977 2978
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2979
 *
2980
 * This function is safe to call from any context including IRQ handler.
2981
 */
2982
bool cancel_delayed_work(struct delayed_work *dwork)
2983
{
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2994 2995
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2996
	local_irq_restore(flags);
2997
	return ret;
2998
}
2999
EXPORT_SYMBOL(cancel_delayed_work);
3000

3001 3002 3003 3004 3005 3006
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
3007
 * Return:
3008 3009 3010
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3011
{
3012
	return __cancel_work_timer(&dwork->work, true);
3013
}
3014
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3015

3016
/**
3017
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3018 3019
 * @func: the function to call
 *
3020 3021
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3022
 * schedule_on_each_cpu() is very slow.
3023
 *
3024
 * Return:
3025
 * 0 on success, -errno on failure.
3026
 */
3027
int schedule_on_each_cpu(work_func_t func)
3028 3029
{
	int cpu;
3030
	struct work_struct __percpu *works;
3031

3032 3033
	works = alloc_percpu(struct work_struct);
	if (!works)
3034
		return -ENOMEM;
3035

3036 3037
	get_online_cpus();

3038
	for_each_online_cpu(cpu) {
3039 3040 3041
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3042
		schedule_work_on(cpu, work);
3043
	}
3044 3045 3046 3047

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3048
	put_online_cpus();
3049
	free_percpu(works);
3050 3051 3052
	return 0;
}

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3077 3078
void flush_scheduled_work(void)
{
3079
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3080
}
3081
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3082

3083 3084 3085 3086 3087 3088 3089 3090 3091
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3092
 * Return:	0 - function was executed
3093 3094
 *		1 - function was scheduled for execution
 */
3095
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3096 3097
{
	if (!in_interrupt()) {
3098
		fn(&ew->work);
3099 3100 3101
		return 0;
	}

3102
	INIT_WORK(&ew->work, fn);
3103 3104 3105 3106 3107 3108
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3136 3137
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3138 3139 3140 3141 3142
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3143
static DEVICE_ATTR_RO(per_cpu);
3144

3145 3146
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3147 3148 3149 3150 3151 3152
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3153 3154 3155
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3166
static DEVICE_ATTR_RW(max_active);
3167

3168 3169 3170 3171
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3172
};
3173
ATTRIBUTE_GROUPS(wq_sysfs);
3174

3175 3176
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3177 3178
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3179 3180
	const char *delim = "";
	int node, written = 0;
3181 3182

	rcu_read_lock_sched();
3183 3184 3185 3186 3187 3188 3189
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3201 3202 3203
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3217 3218 3219
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3235
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3250 3251 3252
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3313
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3314
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3315 3316
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3317
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3318 3319 3320 3321 3322
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3323
	.dev_groups			= wq_sysfs_groups,
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3352
 * Return: 0 on success, -errno on failure.
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3445 3446 3447
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3459
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3460 3461 3462 3463 3464 3465
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3466 3467 3468 3469 3470
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3471 3472 3473 3474 3475 3476
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3477 3478 3479 3480 3481 3482 3483 3484
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3485 3486
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3501 3502 3503 3504 3505
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3506 3507
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3508 3509
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3510 3511
 */
static int init_worker_pool(struct worker_pool *pool)
3512 3513
{
	spin_lock_init(&pool->lock);
3514 3515
	pool->id = -1;
	pool->cpu = -1;
3516
	pool->node = NUMA_NO_NODE;
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3530
	mutex_init(&pool->manager_mutex);
3531
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3532

3533 3534 3535 3536
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3537 3538 3539 3540
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3541 3542
}

3543 3544 3545 3546
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3547
	idr_destroy(&pool->worker_idr);
3548 3549 3550 3551 3552 3553 3554 3555 3556
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3557 3558 3559
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3560 3561
 *
 * Should be called with wq_pool_mutex held.
3562 3563 3564 3565 3566
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3567 3568 3569
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3570 3571 3572 3573
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3574
	    WARN_ON(!list_empty(&pool->worklist)))
3575 3576 3577 3578 3579 3580 3581
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3582 3583 3584 3585 3586
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3587
	mutex_lock(&pool->manager_arb);
3588
	mutex_lock(&pool->manager_mutex);
3589 3590 3591 3592 3593 3594 3595
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3596
	mutex_unlock(&pool->manager_mutex);
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3614
 * create a new one.
3615 3616
 *
 * Should be called with wq_pool_mutex held.
3617 3618 3619
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3620 3621 3622 3623 3624
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3625
	int node;
3626

3627
	lockdep_assert_held(&wq_pool_mutex);
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3642 3643 3644
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3645
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3646 3647
	copy_workqueue_attrs(pool->attrs, attrs);

3648 3649 3650 3651 3652 3653
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3665 3666 3667 3668
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3669
	if (create_and_start_worker(pool) < 0)
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3698
	bool is_last;
T
Tejun Heo 已提交
3699 3700 3701 3702

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3703
	/*
3704
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3705 3706 3707
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3708
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3709
	list_del_rcu(&pwq->pwqs_node);
3710
	is_last = list_empty(&wq->pwqs);
3711
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3712

3713
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3714
	put_unbound_pool(pool);
3715 3716
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3717 3718 3719 3720 3721 3722
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3723 3724
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3725
		kfree(wq);
3726
	}
T
Tejun Heo 已提交
3727 3728
}

3729
/**
3730
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3731 3732
 * @pwq: target pool_workqueue
 *
3733 3734 3735
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3736
 */
3737
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3738
{
3739 3740 3741 3742
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3743
	lockdep_assert_held(&wq->mutex);
3744 3745 3746 3747 3748

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3749
	spin_lock_irq(&pwq->pool->lock);
3750 3751 3752

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3753

3754 3755 3756
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3757 3758 3759 3760 3761 3762

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3763 3764 3765 3766
	} else {
		pwq->max_active = 0;
	}

3767
	spin_unlock_irq(&pwq->pool->lock);
3768 3769
}

3770
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3771 3772
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3773 3774 3775
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3776 3777
	memset(pwq, 0, sizeof(*pwq));

3778 3779 3780
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3781
	pwq->refcnt = 1;
3782
	INIT_LIST_HEAD(&pwq->delayed_works);
3783
	INIT_LIST_HEAD(&pwq->pwqs_node);
3784
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3785
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3786
}
3787

3788
/* sync @pwq with the current state of its associated wq and link it */
3789
static void link_pwq(struct pool_workqueue *pwq)
3790 3791 3792 3793
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3794

3795 3796 3797 3798
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3799 3800
	/*
	 * Set the matching work_color.  This is synchronized with
3801
	 * wq->mutex to avoid confusing flush_workqueue().
3802
	 */
3803
	pwq->work_color = wq->work_color;
3804 3805 3806 3807 3808

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3809
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3810
}
3811

3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3825
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3826 3827 3828
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3829
	}
3830

3831 3832
	init_pwq(pwq, wq, pool);
	return pwq;
3833 3834
}

3835 3836 3837 3838 3839 3840 3841
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3842
		kmem_cache_free(pwq_cache, pwq);
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3855
 * calculation.  The result is stored in @cpumask.
3856 3857 3858 3859 3860 3861 3862 3863
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3864 3865 3866
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3867 3868 3869 3870
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3871
	if (!wq_numa_enabled || attrs->no_numa)
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3908 3909 3910 3911 3912
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3913 3914 3915 3916 3917 3918
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3919
 *
3920 3921 3922
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3923 3924 3925 3926
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3927 3928
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3929
	int node, ret;
3930

3931
	/* only unbound workqueues can change attributes */
3932 3933 3934
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3935 3936 3937 3938
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3939
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3940
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3941 3942
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3943 3944
		goto enomem;

3945
	/* make a copy of @attrs and sanitize it */
3946 3947 3948
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3963
	mutex_lock(&wq_pool_mutex);
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3985
	mutex_unlock(&wq_pool_mutex);
3986

3987
	/* all pwqs have been created successfully, let's install'em */
3988
	mutex_lock(&wq->mutex);
3989

3990
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3991 3992

	/* save the previous pwq and install the new one */
3993
	for_each_node(node)
3994 3995 3996 3997 3998
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3999 4000

	mutex_unlock(&wq->mutex);
4001

4002 4003 4004 4005 4006 4007
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
4008 4009 4010
	ret = 0;
	/* fall through */
out_free:
4011
	free_workqueue_attrs(tmp_attrs);
4012
	free_workqueue_attrs(new_attrs);
4013
	kfree(pwq_tbl);
4014
	return ret;
4015

4016 4017 4018 4019 4020 4021 4022
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
4023
enomem:
4024 4025
	ret = -ENOMEM;
	goto out_free;
4026 4027
}

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
4073 4074
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
	 * wq's, the default pwq should be used.  If @pwq is already the
	 * default one, nothing to do; otherwise, install the default one.
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
		if (pwq == wq->dfl_pwq)
			goto out_unlock;
		else
			goto use_dfl_pwq;
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			   wq->name);
		goto out_unlock;
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4126
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4127
{
4128
	bool highpri = wq->flags & WQ_HIGHPRI;
4129
	int cpu, ret;
4130 4131

	if (!(wq->flags & WQ_UNBOUND)) {
4132 4133
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4134 4135 4136
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4137 4138
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4139
			struct worker_pool *cpu_pools =
4140
				per_cpu(cpu_worker_pools, cpu);
4141

4142 4143 4144
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4145
			link_pwq(pwq);
4146
			mutex_unlock(&wq->mutex);
4147
		}
4148
		return 0;
4149 4150 4151 4152 4153 4154 4155
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4156
	} else {
4157
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4158
	}
T
Tejun Heo 已提交
4159 4160
}

4161 4162
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4163
{
4164 4165 4166
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4167 4168
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4169

4170
	return clamp_val(max_active, 1, lim);
4171 4172
}

4173
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4174 4175 4176
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4177
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4178
{
4179
	size_t tbl_size = 0;
4180
	va_list args;
L
Linus Torvalds 已提交
4181
	struct workqueue_struct *wq;
4182
	struct pool_workqueue *pwq;
4183

4184 4185 4186 4187
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4188
	/* allocate wq and format name */
4189 4190 4191 4192
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4193
	if (!wq)
4194
		return NULL;
4195

4196 4197 4198 4199 4200 4201
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4202 4203
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4204
	va_end(args);
L
Linus Torvalds 已提交
4205

4206
	max_active = max_active ?: WQ_DFL_ACTIVE;
4207
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4208

4209
	/* init wq */
4210
	wq->flags = flags;
4211
	wq->saved_max_active = max_active;
4212
	mutex_init(&wq->mutex);
4213
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4214
	INIT_LIST_HEAD(&wq->pwqs);
4215 4216
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4217
	INIT_LIST_HEAD(&wq->maydays);
4218

4219
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4220
	INIT_LIST_HEAD(&wq->list);
4221

4222
	if (alloc_and_link_pwqs(wq) < 0)
4223
		goto err_free_wq;
T
Tejun Heo 已提交
4224

4225 4226 4227 4228 4229
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4230 4231
		struct worker *rescuer;

4232
		rescuer = alloc_worker();
4233
		if (!rescuer)
4234
			goto err_destroy;
4235

4236 4237
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4238
					       wq->name);
4239 4240 4241 4242
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4243

4244
		wq->rescuer = rescuer;
4245
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4246
		wake_up_process(rescuer->task);
4247 4248
	}

4249 4250 4251
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4252
	/*
4253 4254 4255
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4256
	 */
4257
	mutex_lock(&wq_pool_mutex);
4258

4259
	mutex_lock(&wq->mutex);
4260 4261
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4262
	mutex_unlock(&wq->mutex);
4263

T
Tejun Heo 已提交
4264
	list_add(&wq->list, &workqueues);
4265

4266
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4267

4268
	return wq;
4269 4270

err_free_wq:
4271
	free_workqueue_attrs(wq->unbound_attrs);
4272 4273 4274 4275
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4276
	return NULL;
4277
}
4278
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4279

4280 4281 4282 4283 4284 4285 4286 4287
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4288
	struct pool_workqueue *pwq;
4289
	int node;
4290

4291 4292
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4293

4294
	/* sanity checks */
4295
	mutex_lock(&wq->mutex);
4296
	for_each_pwq(pwq, wq) {
4297 4298
		int i;

4299 4300
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4301
				mutex_unlock(&wq->mutex);
4302
				return;
4303 4304 4305
			}
		}

4306
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4307
		    WARN_ON(pwq->nr_active) ||
4308
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4309
			mutex_unlock(&wq->mutex);
4310
			return;
4311
		}
4312
	}
4313
	mutex_unlock(&wq->mutex);
4314

4315 4316 4317 4318
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4319
	mutex_lock(&wq_pool_mutex);
4320
	list_del_init(&wq->list);
4321
	mutex_unlock(&wq_pool_mutex);
4322

4323 4324
	workqueue_sysfs_unregister(wq);

4325
	if (wq->rescuer) {
4326
		kthread_stop(wq->rescuer->task);
4327
		kfree(wq->rescuer);
4328
		wq->rescuer = NULL;
4329 4330
	}

T
Tejun Heo 已提交
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4341 4342
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4343
		 */
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4356
		put_pwq_unlocked(pwq);
4357
	}
4358 4359 4360
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4373
	struct pool_workqueue *pwq;
4374

4375 4376 4377 4378
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4379
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4380

4381
	mutex_lock(&wq->mutex);
4382 4383 4384

	wq->saved_max_active = max_active;

4385 4386
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4387

4388
	mutex_unlock(&wq->mutex);
4389
}
4390
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4391

4392 4393 4394 4395 4396
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4397 4398
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4399 4400 4401 4402 4403
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4404
	return worker && worker->rescue_wq;
4405 4406
}

4407
/**
4408 4409 4410
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4411
 *
4412 4413 4414
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4415
 *
4416 4417 4418 4419 4420 4421
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4422
 * Return:
4423
 * %true if congested, %false otherwise.
4424
 */
4425
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4426
{
4427
	struct pool_workqueue *pwq;
4428 4429
	bool ret;

4430
	rcu_read_lock_sched();
4431

4432 4433 4434
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4435 4436 4437
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4438
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4439

4440
	ret = !list_empty(&pwq->delayed_works);
4441
	rcu_read_unlock_sched();
4442 4443

	return ret;
L
Linus Torvalds 已提交
4444
}
4445
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4446

4447 4448 4449 4450 4451 4452 4453 4454
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4455
 * Return:
4456 4457 4458
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4459
{
4460
	struct worker_pool *pool;
4461 4462
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4463

4464 4465
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4466

4467 4468
	local_irq_save(flags);
	pool = get_work_pool(work);
4469
	if (pool) {
4470
		spin_lock(&pool->lock);
4471 4472
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4473
		spin_unlock(&pool->lock);
4474
	}
4475
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4476

4477
	return ret;
L
Linus Torvalds 已提交
4478
}
4479
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4480

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4558 4559 4560
/*
 * CPU hotplug.
 *
4561
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4562
 * are a lot of assumptions on strong associations among work, pwq and
4563
 * pool which make migrating pending and scheduled works very
4564
 * difficult to implement without impacting hot paths.  Secondly,
4565
 * worker pools serve mix of short, long and very long running works making
4566 4567
 * blocked draining impractical.
 *
4568
 * This is solved by allowing the pools to be disassociated from the CPU
4569 4570
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4571
 */
L
Linus Torvalds 已提交
4572

4573
static void wq_unbind_fn(struct work_struct *work)
4574
{
4575
	int cpu = smp_processor_id();
4576
	struct worker_pool *pool;
4577
	struct worker *worker;
4578
	int wi;
4579

4580
	for_each_cpu_worker_pool(pool, cpu) {
4581
		WARN_ON_ONCE(cpu != smp_processor_id());
4582

4583
		mutex_lock(&pool->manager_mutex);
4584
		spin_lock_irq(&pool->lock);
4585

4586
		/*
4587
		 * We've blocked all manager operations.  Make all workers
4588 4589 4590 4591 4592
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4593
		for_each_pool_worker(worker, wi, pool)
4594
			worker->flags |= WORKER_UNBOUND;
4595

4596
		pool->flags |= POOL_DISASSOCIATED;
4597

4598
		spin_unlock_irq(&pool->lock);
4599
		mutex_unlock(&pool->manager_mutex);
4600

4601 4602 4603 4604 4605 4606 4607
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4608

4609 4610 4611 4612 4613 4614 4615 4616
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4617
		atomic_set(&pool->nr_running, 0);
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4628 4629
}

T
Tejun Heo 已提交
4630 4631 4632 4633
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4634
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4635 4636 4637
 */
static void rebind_workers(struct worker_pool *pool)
{
4638 4639
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4640 4641 4642

	lockdep_assert_held(&pool->manager_mutex);

4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4653

4654
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4655

4656 4657
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4658 4659

		/*
4660 4661 4662 4663 4664 4665
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4666
		 */
4667 4668
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4669

4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4689
	}
4690 4691

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4692 4693
}

4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4727 4728 4729 4730
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4731
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4732 4733
					       unsigned long action,
					       void *hcpu)
4734
{
4735
	int cpu = (unsigned long)hcpu;
4736
	struct worker_pool *pool;
4737
	struct workqueue_struct *wq;
4738
	int pi;
4739

T
Tejun Heo 已提交
4740
	switch (action & ~CPU_TASKS_FROZEN) {
4741
	case CPU_UP_PREPARE:
4742
		for_each_cpu_worker_pool(pool, cpu) {
4743 4744
			if (pool->nr_workers)
				continue;
4745
			if (create_and_start_worker(pool) < 0)
4746
				return NOTIFY_BAD;
4747
		}
T
Tejun Heo 已提交
4748
		break;
4749

4750 4751
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4752
		mutex_lock(&wq_pool_mutex);
4753 4754

		for_each_pool(pool, pi) {
4755
			mutex_lock(&pool->manager_mutex);
4756

4757 4758 4759 4760
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4761

4762 4763 4764 4765
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4766

4767
			mutex_unlock(&pool->manager_mutex);
4768
		}
4769

4770 4771 4772 4773
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4774
		mutex_unlock(&wq_pool_mutex);
4775
		break;
4776
	}
4777 4778 4779 4780 4781 4782 4783
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4784
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4785 4786 4787
						 unsigned long action,
						 void *hcpu)
{
4788
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4789
	struct work_struct unbind_work;
4790
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4791

4792 4793
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4794
		/* unbinding per-cpu workers should happen on the local CPU */
4795
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4796
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4797 4798 4799 4800 4801 4802 4803 4804

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4805
		flush_work(&unbind_work);
4806
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4807
		break;
4808 4809 4810 4811
	}
	return NOTIFY_OK;
}

4812
#ifdef CONFIG_SMP
4813

4814
struct work_for_cpu {
4815
	struct work_struct work;
4816 4817 4818 4819 4820
	long (*fn)(void *);
	void *arg;
	long ret;
};

4821
static void work_for_cpu_fn(struct work_struct *work)
4822
{
4823 4824
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4825 4826 4827 4828 4829 4830 4831 4832 4833
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4834
 * It is up to the caller to ensure that the cpu doesn't go offline.
4835
 * The caller must not hold any locks which would prevent @fn from completing.
4836 4837
 *
 * Return: The value @fn returns.
4838
 */
4839
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4840
{
4841
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4842

4843 4844
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4845
	flush_work(&wfc.work);
4846
	destroy_work_on_stack(&wfc.work);
4847 4848 4849 4850 4851
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4852 4853 4854 4855 4856
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4857
 * Start freezing workqueues.  After this function returns, all freezable
4858
 * workqueues will queue new works to their delayed_works list instead of
4859
 * pool->worklist.
4860 4861
 *
 * CONTEXT:
4862
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4863 4864 4865
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4866
	struct worker_pool *pool;
4867 4868
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4869
	int pi;
4870

4871
	mutex_lock(&wq_pool_mutex);
4872

4873
	WARN_ON_ONCE(workqueue_freezing);
4874 4875
	workqueue_freezing = true;

4876
	/* set FREEZING */
4877
	for_each_pool(pool, pi) {
4878
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4879 4880
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4881
		spin_unlock_irq(&pool->lock);
4882
	}
4883

4884
	list_for_each_entry(wq, &workqueues, list) {
4885
		mutex_lock(&wq->mutex);
4886 4887
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4888
		mutex_unlock(&wq->mutex);
4889
	}
4890

4891
	mutex_unlock(&wq_pool_mutex);
4892 4893 4894
}

/**
4895
 * freeze_workqueues_busy - are freezable workqueues still busy?
4896 4897 4898 4899 4900
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4901
 * Grabs and releases wq_pool_mutex.
4902
 *
4903
 * Return:
4904 4905
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4906 4907 4908 4909
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4910 4911
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4912

4913
	mutex_lock(&wq_pool_mutex);
4914

4915
	WARN_ON_ONCE(!workqueue_freezing);
4916

4917 4918 4919
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4920 4921 4922 4923
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4924
		rcu_read_lock_sched();
4925
		for_each_pwq(pwq, wq) {
4926
			WARN_ON_ONCE(pwq->nr_active < 0);
4927
			if (pwq->nr_active) {
4928
				busy = true;
4929
				rcu_read_unlock_sched();
4930 4931 4932
				goto out_unlock;
			}
		}
4933
		rcu_read_unlock_sched();
4934 4935
	}
out_unlock:
4936
	mutex_unlock(&wq_pool_mutex);
4937 4938 4939 4940 4941 4942 4943
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4944
 * frozen works are transferred to their respective pool worklists.
4945 4946
 *
 * CONTEXT:
4947
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4948 4949 4950
 */
void thaw_workqueues(void)
{
4951 4952 4953
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4954
	int pi;
4955

4956
	mutex_lock(&wq_pool_mutex);
4957 4958 4959 4960

	if (!workqueue_freezing)
		goto out_unlock;

4961
	/* clear FREEZING */
4962
	for_each_pool(pool, pi) {
4963
		spin_lock_irq(&pool->lock);
4964 4965
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4966
		spin_unlock_irq(&pool->lock);
4967
	}
4968

4969 4970
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4971
		mutex_lock(&wq->mutex);
4972 4973
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4974
		mutex_unlock(&wq->mutex);
4975 4976 4977 4978
	}

	workqueue_freezing = false;
out_unlock:
4979
	mutex_unlock(&wq_pool_mutex);
4980 4981 4982
}
#endif /* CONFIG_FREEZER */

4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4995 4996 4997 4998 4999
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

5000 5001 5002
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

5003 5004 5005 5006 5007 5008 5009 5010 5011
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
5012 5013
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5029
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
5030
{
T
Tejun Heo 已提交
5031 5032
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5033

5034 5035 5036 5037
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5038
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5039
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5040

5041 5042
	wq_numa_init();

5043
	/* initialize CPU pools */
5044
	for_each_possible_cpu(cpu) {
5045
		struct worker_pool *pool;
5046

T
Tejun Heo 已提交
5047
		i = 0;
5048
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5049
			BUG_ON(init_worker_pool(pool));
5050
			pool->cpu = cpu;
5051
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5052
			pool->attrs->nice = std_nice[i++];
5053
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5054

T
Tejun Heo 已提交
5055
			/* alloc pool ID */
5056
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5057
			BUG_ON(worker_pool_assign_id(pool));
5058
			mutex_unlock(&wq_pool_mutex);
5059
		}
5060 5061
	}

5062
	/* create the initial worker */
5063
	for_each_online_cpu(cpu) {
5064
		struct worker_pool *pool;
5065

5066
		for_each_cpu_worker_pool(pool, cpu) {
5067
			pool->flags &= ~POOL_DISASSOCIATED;
5068
			BUG_ON(create_and_start_worker(pool) < 0);
5069
		}
5070 5071
	}

5072
	/* create default unbound and ordered wq attrs */
5073 5074 5075 5076 5077 5078
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5089 5090
	}

5091
	system_wq = alloc_workqueue("events", 0, 0);
5092
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5093
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5094 5095
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5096 5097
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5098 5099 5100 5101 5102
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5103
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5104 5105 5106
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5107
	return 0;
L
Linus Torvalds 已提交
5108
}
5109
early_initcall(init_workqueues);