workqueue.c 106.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45

46
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50 51 52 53 54 55 56 57 58 59 60 61
	/*
	 * global_cwq flags
	 *
	 * A bound gcwq is either associated or disassociated with its CPU.
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
	 * be executing on any CPU.  The gcwq behaves as an unbound one.
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62
	 * assoc_mutex of all pools on the gcwq to avoid changing binding
63 64
	 * state while create_worker() is in progress.
	 */
65 66 67 68 69
	GCWQ_DISASSOCIATED	= 1 << 0,	/* cpu can't serve workers */
	GCWQ_FREEZING		= 1 << 1,	/* freeze in progress */

	/* pool flags */
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
70
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
71

T
Tejun Heo 已提交
72 73 74 75
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79

80
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
81
				  WORKER_CPU_INTENSIVE,
82

83
	NR_WORKER_POOLS		= 2,		/* # worker pools per gcwq */
84

T
Tejun Heo 已提交
85
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
86

87 88 89
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

90 91 92
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
93 94 95 96 97 98 99 100
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
101
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
102
};
L
Linus Torvalds 已提交
103 104

/*
T
Tejun Heo 已提交
105 106
 * Structure fields follow one of the following exclusion rules.
 *
107 108
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
109
 *
110 111 112
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
113
 * L: gcwq->lock protected.  Access with gcwq->lock held.
T
Tejun Heo 已提交
114
 *
115 116 117
 * X: During normal operation, modification requires gcwq->lock and
 *    should be done only from local cpu.  Either disabling preemption
 *    on local cpu or grabbing gcwq->lock is enough for read access.
118
 *    If GCWQ_DISASSOCIATED is set, it's identical to L.
119
 *
120 121
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
122
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
123 124
 */

125
struct global_cwq;
126
struct worker_pool;
L
Linus Torvalds 已提交
127

128 129 130 131
/*
 * The poor guys doing the actual heavy lifting.  All on-duty workers
 * are either serving the manager role, on idle list or on busy hash.
 */
T
Tejun Heo 已提交
132
struct worker {
T
Tejun Heo 已提交
133 134 135 136 137
	/* on idle list while idle, on busy hash table while busy */
	union {
		struct list_head	entry;	/* L: while idle */
		struct hlist_node	hentry;	/* L: while busy */
	};
L
Linus Torvalds 已提交
138

T
Tejun Heo 已提交
139
	struct work_struct	*current_work;	/* L: work being processed */
140
	work_func_t		current_func;	/* L: current_work's fn */
141
	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
142
	struct list_head	scheduled;	/* L: scheduled works */
T
Tejun Heo 已提交
143
	struct task_struct	*task;		/* I: worker task */
144
	struct worker_pool	*pool;		/* I: the associated pool */
145 146 147
	/* 64 bytes boundary on 64bit, 32 on 32bit */
	unsigned long		last_active;	/* L: last active timestamp */
	unsigned int		flags;		/* X: flags */
T
Tejun Heo 已提交
148
	int			id;		/* I: worker id */
149 150 151

	/* for rebinding worker to CPU */
	struct work_struct	rebind_work;	/* L: for busy worker */
152 153 154

	/* used only by rescuers to point to the target workqueue */
	struct workqueue_struct	*rescue_wq;	/* I: the workqueue to rescue */
T
Tejun Heo 已提交
155 156
};

157 158
struct worker_pool {
	struct global_cwq	*gcwq;		/* I: the owning gcwq */
159
	unsigned int		flags;		/* X: flags */
160 161 162

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
163 164

	/* nr_idle includes the ones off idle_list for rebinding */
165 166 167 168 169 170
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

171
	struct mutex		assoc_mutex;	/* protect GCWQ_DISASSOCIATED */
172 173 174
	struct ida		worker_ida;	/* L: for worker IDs */
};

175
/*
176 177 178
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
179 180 181 182
 */
struct global_cwq {
	spinlock_t		lock;		/* the gcwq lock */
	unsigned int		cpu;		/* I: the associated cpu */
183
	unsigned int		flags;		/* L: GCWQ_* flags */
T
Tejun Heo 已提交
184

185
	/* workers are chained either in busy_hash or pool idle_list */
186
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
T
Tejun Heo 已提交
187 188
						/* L: hash of busy workers */

189 190
	struct worker_pool	pools[NR_WORKER_POOLS];
						/* normal and highpri pools */
191 192
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
193
/*
194
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
195 196
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
197 198
 */
struct cpu_workqueue_struct {
199
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
200
	struct workqueue_struct *wq;		/* I: the owning workqueue */
201 202 203 204
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
205
	int			nr_active;	/* L: nr of active works */
206
	int			max_active;	/* L: max active works */
207
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
208
};
L
Linus Torvalds 已提交
209

210 211 212 213 214 215 216 217 218
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

219 220 221 222 223 224 225 226 227 228
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
229
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
230 231 232 233 234 235 236 237 238
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
239 240 241 242 243 244

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
245
	unsigned int		flags;		/* W: WQ_* flags */
246 247 248 249 250
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
251
	struct list_head	list;		/* W: list of all workqueues */
252 253 254 255 256 257 258 259 260

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

261
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
262 263
	struct worker		*rescuer;	/* I: rescue worker */

264
	int			nr_drainers;	/* W: drain in progress */
265
	int			saved_max_active; /* W: saved cwq max_active */
266
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
267
	struct lockdep_map	lockdep_map;
268
#endif
269
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
270 271
};

272 273
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
274
struct workqueue_struct *system_highpri_wq __read_mostly;
275
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
276
struct workqueue_struct *system_long_wq __read_mostly;
277
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
278
struct workqueue_struct *system_unbound_wq __read_mostly;
279
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
280
struct workqueue_struct *system_freezable_wq __read_mostly;
281
EXPORT_SYMBOL_GPL(system_freezable_wq);
282

283 284 285
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

286
#define for_each_worker_pool(pool, gcwq)				\
287 288
	for ((pool) = &(gcwq)->pools[0];				\
	     (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
289

290
#define for_each_busy_worker(worker, i, pos, gcwq)			\
291
	hash_for_each(gcwq->busy_hash, i, pos, worker, hentry)
292

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

314 315 316 317 318 319 320 321 322 323 324 325 326
/*
 * CPU iterators
 *
 * An extra gcwq is defined for an invalid cpu number
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 * specific CPU.  The following iterators are similar to
 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 *
 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

342 343 344 345
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

346 347 348 349 350
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
386
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
422
	.debug_hint	= work_debug_hint,
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

458 459
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
460
static LIST_HEAD(workqueues);
461
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
462

463 464 465 466 467
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
468
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
469
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
470

471 472 473 474 475 476
/*
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The
 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
 * workers have WORKER_UNBOUND set.
 */
static struct global_cwq unbound_global_cwq;
477 478 479
static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
	[0 ... NR_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
};
480

T
Tejun Heo 已提交
481
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
482

483 484 485 486 487
static int worker_pool_pri(struct worker_pool *pool)
{
	return pool - pool->gcwq->pools;
}

488 489
static struct global_cwq *get_gcwq(unsigned int cpu)
{
490 491 492 493
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
494 495
}

496
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
497
{
498
	int cpu = pool->gcwq->cpu;
499
	int idx = worker_pool_pri(pool);
500

501
	if (cpu != WORK_CPU_UNBOUND)
502
		return &per_cpu(pool_nr_running, cpu)[idx];
503
	else
504
		return &unbound_pool_nr_running[idx];
505 506
}

T
Tejun Heo 已提交
507 508
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
509
{
510
	if (!(wq->flags & WQ_UNBOUND)) {
511
		if (likely(cpu < nr_cpu_ids))
512 513 514 515
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
516 517
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
533

534
/*
535 536 537
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
 * is cleared and the high bits contain OFFQ flags and CPU number.
538
 *
539 540 541 542
 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, cpu or clear
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
543
 *
544 545 546 547
 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
 * a work.  gcwq is available once the work has been queued anywhere after
 * initialization until it is sync canceled.  cwq is available only while
 * the work item is queued.
548
 *
549 550 551 552
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
553
 */
554 555
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
556
{
557
	BUG_ON(!work_pending(work));
558 559
	atomic_long_set(&work->data, data | flags | work_static(work));
}
560

561 562 563 564 565
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
566
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
567 568
}

569 570
static void set_work_cpu_and_clear_pending(struct work_struct *work,
					   unsigned int cpu)
571
{
572 573 574 575 576 577 578
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
579
	set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
580
}
581

582
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
583
{
584
	smp_wmb();	/* see set_work_cpu_and_clear_pending() */
585
	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
L
Linus Torvalds 已提交
586 587
}

588
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
589
{
590
	unsigned long data = atomic_long_read(&work->data);
591

592 593 594 595
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
596 597
}

598
static struct global_cwq *get_work_gcwq(struct work_struct *work)
599
{
600
	unsigned long data = atomic_long_read(&work->data);
601 602
	unsigned int cpu;

603 604
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
605
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
606

607
	cpu = data >> WORK_OFFQ_CPU_SHIFT;
608
	if (cpu == WORK_CPU_NONE)
609 610
		return NULL;

611
	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
612
	return get_gcwq(cpu);
613 614
}

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
static void mark_work_canceling(struct work_struct *work)
{
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;

	set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
		      WORK_STRUCT_PENDING);
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

631
/*
632 633 634
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
 * they're being called with gcwq->lock held.
635 636
 */

637
static bool __need_more_worker(struct worker_pool *pool)
638
{
639
	return !atomic_read(get_pool_nr_running(pool));
640 641
}

642
/*
643 644
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
645 646 647 648
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound gcwq as long as the
 * worklist isn't empty.
649
 */
650
static bool need_more_worker(struct worker_pool *pool)
651
{
652
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
653
}
654

655
/* Can I start working?  Called from busy but !running workers. */
656
static bool may_start_working(struct worker_pool *pool)
657
{
658
	return pool->nr_idle;
659 660 661
}

/* Do I need to keep working?  Called from currently running workers. */
662
static bool keep_working(struct worker_pool *pool)
663
{
664
	atomic_t *nr_running = get_pool_nr_running(pool);
665

666
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
667 668 669
}

/* Do we need a new worker?  Called from manager. */
670
static bool need_to_create_worker(struct worker_pool *pool)
671
{
672
	return need_more_worker(pool) && !may_start_working(pool);
673
}
674

675
/* Do I need to be the manager? */
676
static bool need_to_manage_workers(struct worker_pool *pool)
677
{
678
	return need_to_create_worker(pool) ||
679
		(pool->flags & POOL_MANAGE_WORKERS);
680 681 682
}

/* Do we have too many workers and should some go away? */
683
static bool too_many_workers(struct worker_pool *pool)
684
{
685
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
686 687
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
688

689 690 691 692 693 694 695
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

696
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
697 698
}

699
/*
700 701 702
 * Wake up functions.
 */

703
/* Return the first worker.  Safe with preemption disabled */
704
static struct worker *first_worker(struct worker_pool *pool)
705
{
706
	if (unlikely(list_empty(&pool->idle_list)))
707 708
		return NULL;

709
	return list_first_entry(&pool->idle_list, struct worker, entry);
710 711 712 713
}

/**
 * wake_up_worker - wake up an idle worker
714
 * @pool: worker pool to wake worker from
715
 *
716
 * Wake up the first idle worker of @pool.
717 718 719 720
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
721
static void wake_up_worker(struct worker_pool *pool)
722
{
723
	struct worker *worker = first_worker(pool);
724 725 726 727 728

	if (likely(worker))
		wake_up_process(worker->task);
}

729
/**
730 731 732 733 734 735 736 737 738 739 740 741 742 743
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

744 745
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
		WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
746
		atomic_inc(get_pool_nr_running(worker->pool));
747
	}
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
769 770
	struct worker_pool *pool;
	atomic_t *nr_running;
771

772 773 774 775 776
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
777
	if (worker->flags & WORKER_NOT_RUNNING)
778 779
		return NULL;

780 781 782
	pool = worker->pool;
	nr_running = get_pool_nr_running(pool);

783 784 785 786 787 788 789 790
	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
791 792 793 794 795
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
	 * manipulating idle_list, so dereferencing idle_list without gcwq
	 * lock is safe.
796
	 */
797
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
798
		to_wakeup = first_worker(pool);
799 800 801 802 803
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
804
 * @worker: self
805 806 807
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
808 809 810
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
811
 *
812 813
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
814 815 816 817
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
818
	struct worker_pool *pool = worker->pool;
819

820 821
	WARN_ON_ONCE(worker->task != current);

822 823 824 825 826 827 828
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
829
		atomic_t *nr_running = get_pool_nr_running(pool);
830 831 832

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
833
			    !list_empty(&pool->worklist))
834
				wake_up_worker(pool);
835 836 837 838
		} else
			atomic_dec(nr_running);
	}

839 840 841 842
	worker->flags |= flags;
}

/**
843
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
844
 * @worker: self
845 846
 * @flags: flags to clear
 *
847
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
848
 *
849 850
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
851 852 853
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
854
	struct worker_pool *pool = worker->pool;
855 856
	unsigned int oflags = worker->flags;

857 858
	WARN_ON_ONCE(worker->task != current);

859
	worker->flags &= ~flags;
860

861 862 863 864 865
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
866 867
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
868
			atomic_inc(get_pool_nr_running(pool));
869 870
}

871 872 873 874 875
/**
 * find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @work: work to find worker for
 *
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
 * Find a worker which is executing @work on @gcwq by searching
 * @gcwq->busy_hash which is keyed by the address of @work.  For a worker
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
897 898 899 900 901 902 903
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
904
 */
905 906
static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
						 struct work_struct *work)
907
{
908 909 910
	struct worker *worker;
	struct hlist_node *tmp;

911 912 913 914
	hash_for_each_possible(gcwq->busy_hash, worker, tmp, hentry,
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
915 916 917
			return worker;

	return NULL;
918 919
}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

961
static void cwq_activate_delayed_work(struct work_struct *work)
962
{
963
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
964 965 966 967 968 969 970

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

971 972 973 974 975 976 977 978
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	cwq_activate_delayed_work(work);
}

979 980 981 982 983 984 985 986 987 988 989
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
990
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
991 992 993 994 995 996 997
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

998 999 1000 1001 1002
	cwq->nr_active--;
	if (!list_empty(&cwq->delayed_works)) {
		/* one down, submit a delayed one */
		if (cwq->nr_active < cwq->max_active)
			cwq_activate_first_delayed(cwq);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1024
/**
1025
 * try_to_grab_pending - steal work item from worklist and disable irq
1026 1027
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1028
 * @flags: place to store irq state
1029 1030 1031 1032 1033 1034 1035
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1036 1037
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1038
 *
1039
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1040 1041 1042
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1043 1044 1045 1046
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1047
 * This function is safe to call from any context including IRQ handler.
1048
 */
1049 1050
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1051 1052 1053
{
	struct global_cwq *gcwq;

1054 1055
	local_irq_save(*flags);

1056 1057 1058 1059
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1060 1061 1062 1063 1064
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1065 1066 1067 1068 1069
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1070 1071 1072 1073 1074 1075 1076 1077 1078
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
	gcwq = get_work_gcwq(work);
	if (!gcwq)
1079
		goto fail;
1080

1081
	spin_lock(&gcwq->lock);
1082 1083 1084 1085 1086 1087 1088 1089 1090
	if (!list_empty(&work->entry)) {
		/*
		 * This work is queued, but perhaps we locked the wrong gcwq.
		 * In that case we must see the new value after rmb(), see
		 * insert_work()->wmb().
		 */
		smp_rmb();
		if (gcwq == get_work_gcwq(work)) {
			debug_work_deactivate(work);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

			/*
			 * A delayed work item cannot be grabbed directly
			 * because it might have linked NO_COLOR work items
			 * which, if left on the delayed_list, will confuse
			 * cwq->nr_active management later on and cause
			 * stall.  Make sure the work item is activated
			 * before grabbing.
			 */
			if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
				cwq_activate_delayed_work(work);

1103 1104
			list_del_init(&work->entry);
			cwq_dec_nr_in_flight(get_work_cwq(work),
1105
				get_work_color(work));
1106

1107
			spin_unlock(&gcwq->lock);
1108
			return 1;
1109 1110
		}
	}
1111 1112 1113 1114 1115 1116
	spin_unlock(&gcwq->lock);
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1117
	return -EAGAIN;
1118 1119
}

T
Tejun Heo 已提交
1120
/**
1121
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
1122 1123 1124 1125 1126
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1127 1128
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
1129 1130
 *
 * CONTEXT:
1131
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1132
 */
O
Oleg Nesterov 已提交
1133
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1134 1135
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1136
{
1137
	struct worker_pool *pool = cwq->pool;
1138

T
Tejun Heo 已提交
1139
	/* we own @work, set data and link */
1140
	set_work_cwq(work, cwq, extra_flags);
1141

1142 1143 1144 1145 1146
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
1147

1148
	list_add_tail(&work->entry, head);
1149 1150 1151 1152 1153 1154 1155 1156

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1157 1158
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1159 1160
}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

	for_each_gcwq_cpu(cpu) {
		struct global_cwq *gcwq = get_gcwq(cpu);
		struct worker *worker;
		struct hlist_node *pos;
		int i;

		spin_lock_irqsave(&gcwq->lock, flags);
		for_each_busy_worker(worker, i, pos, gcwq) {
			if (worker->task != current)
				continue;
			spin_unlock_irqrestore(&gcwq->lock, flags);
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
		spin_unlock_irqrestore(&gcwq->lock, flags);
	}
	return false;
}

T
Tejun Heo 已提交
1193
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1194 1195
			 struct work_struct *work)
{
1196 1197
	struct global_cwq *gcwq;
	struct cpu_workqueue_struct *cwq;
1198
	struct list_head *worklist;
1199
	unsigned int work_flags;
1200
	unsigned int req_cpu = cpu;
1201 1202 1203 1204 1205 1206 1207 1208

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1209

1210
	debug_work_activate(work);
1211

1212
	/* if dying, only works from the same workqueue are allowed */
1213
	if (unlikely(wq->flags & WQ_DRAINING) &&
1214
	    WARN_ON_ONCE(!is_chained_work(wq)))
1215 1216
		return;

1217 1218
	/* determine gcwq to use */
	if (!(wq->flags & WQ_UNBOUND)) {
1219 1220
		struct global_cwq *last_gcwq;

1221
		if (cpu == WORK_CPU_UNBOUND)
1222 1223
			cpu = raw_smp_processor_id();

1224
		/*
1225 1226 1227 1228
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1229
		 */
1230
		gcwq = get_gcwq(cpu);
1231 1232 1233
		last_gcwq = get_work_gcwq(work);

		if (last_gcwq && last_gcwq != gcwq) {
1234 1235
			struct worker *worker;

1236
			spin_lock(&last_gcwq->lock);
1237 1238 1239 1240 1241 1242 1243

			worker = find_worker_executing_work(last_gcwq, work);

			if (worker && worker->current_cwq->wq == wq)
				gcwq = last_gcwq;
			else {
				/* meh... not running there, queue here */
1244 1245
				spin_unlock(&last_gcwq->lock);
				spin_lock(&gcwq->lock);
1246
			}
1247 1248 1249
		} else {
			spin_lock(&gcwq->lock);
		}
1250 1251
	} else {
		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1252
		spin_lock(&gcwq->lock);
1253 1254 1255 1256
	}

	/* gcwq determined, get cwq and queue */
	cwq = get_cwq(gcwq->cpu, wq);
1257
	trace_workqueue_queue_work(req_cpu, cwq, work);
1258

1259
	if (WARN_ON(!list_empty(&work->entry))) {
1260
		spin_unlock(&gcwq->lock);
1261 1262
		return;
	}
1263

1264
	cwq->nr_in_flight[cwq->work_color]++;
1265
	work_flags = work_color_to_flags(cwq->work_color);
1266 1267

	if (likely(cwq->nr_active < cwq->max_active)) {
1268
		trace_workqueue_activate_work(work);
1269
		cwq->nr_active++;
1270
		worklist = &cwq->pool->worklist;
1271 1272
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1273
		worklist = &cwq->delayed_works;
1274
	}
1275

1276
	insert_work(cwq, work, worklist, work_flags);
1277

1278
	spin_unlock(&gcwq->lock);
L
Linus Torvalds 已提交
1279 1280
}

1281
/**
1282 1283
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1284 1285 1286
 * @wq: workqueue to use
 * @work: work to queue
 *
1287
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1288
 *
1289 1290
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1291
 */
1292 1293
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1294
{
1295
	bool ret = false;
1296
	unsigned long flags;
1297

1298
	local_irq_save(flags);
1299

1300
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1301
		__queue_work(cpu, wq, work);
1302
		ret = true;
1303
	}
1304

1305
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1306 1307
	return ret;
}
1308
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1309

1310
/**
1311
 * queue_work - queue work on a workqueue
1312 1313 1314
 * @wq: workqueue to use
 * @work: work to queue
 *
1315
 * Returns %false if @work was already on a queue, %true otherwise.
1316
 *
1317 1318
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1319
 */
1320
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1321
{
1322
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1323
}
1324
EXPORT_SYMBOL_GPL(queue_work);
1325

1326
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1327
{
1328
	struct delayed_work *dwork = (struct delayed_work *)__data;
1329
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
L
Linus Torvalds 已提交
1330

1331
	/* should have been called from irqsafe timer with irq already off */
1332
	__queue_work(dwork->cpu, cwq->wq, &dwork->work);
L
Linus Torvalds 已提交
1333
}
1334
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1335

1336 1337
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1338
{
1339 1340 1341 1342 1343 1344
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
	unsigned int lcpu;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1345 1346
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1347

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1359
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1360

1361 1362 1363 1364 1365 1366 1367 1368
	/*
	 * This stores cwq for the moment, for the timer_fn.  Note that the
	 * work's gcwq is preserved to allow reentrance detection for
	 * delayed works.
	 */
	if (!(wq->flags & WQ_UNBOUND)) {
		struct global_cwq *gcwq = get_work_gcwq(work);

1369 1370 1371 1372 1373 1374 1375
		/*
		 * If we cannot get the last gcwq from @work directly,
		 * select the last CPU such that it avoids unnecessarily
		 * triggering non-reentrancy check in __queue_work().
		 */
		lcpu = cpu;
		if (gcwq)
1376
			lcpu = gcwq->cpu;
1377
		if (lcpu == WORK_CPU_UNBOUND)
1378 1379 1380 1381 1382 1383 1384
			lcpu = raw_smp_processor_id();
	} else {
		lcpu = WORK_CPU_UNBOUND;
	}

	set_work_cwq(work, get_cwq(lcpu, wq), 0);

1385
	dwork->cpu = cpu;
1386 1387 1388 1389 1390 1391
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1392 1393
}

1394 1395 1396 1397
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1398
 * @dwork: work to queue
1399 1400
 * @delay: number of jiffies to wait before queueing
 *
1401 1402 1403
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1404
 */
1405 1406
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1407
{
1408
	struct work_struct *work = &dwork->work;
1409
	bool ret = false;
1410
	unsigned long flags;
1411

1412 1413
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1414

1415
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1416
		__queue_delayed_work(cpu, wq, dwork, delay);
1417
		ret = true;
1418
	}
1419

1420
	local_irq_restore(flags);
1421 1422
	return ret;
}
1423
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1424

1425 1426 1427 1428 1429 1430
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1431
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1432
 */
1433
bool queue_delayed_work(struct workqueue_struct *wq,
1434 1435
			struct delayed_work *dwork, unsigned long delay)
{
1436
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1437 1438
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1439

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1455
 * This function is safe to call from any context including IRQ handler.
1456 1457 1458 1459 1460 1461 1462
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1463

1464 1465 1466
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1467

1468 1469 1470
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1471
	}
1472 1473

	/* -ENOENT from try_to_grab_pending() becomes %true */
1474 1475
	return ret;
}
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1492

T
Tejun Heo 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1504
{
1505 1506
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1507 1508 1509 1510 1511

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1512 1513
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1514
	pool->nr_idle++;
1515
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1516 1517

	/* idle_list is LIFO */
1518
	list_add(&worker->entry, &pool->idle_list);
1519

1520 1521
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1522

1523
	/*
1524 1525 1526 1527
	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1528
	 */
1529
	WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1530
		     pool->nr_workers == pool->nr_idle &&
1531
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_leave_idle(struct worker *worker)
{
1545
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1546 1547

	BUG_ON(!(worker->flags & WORKER_IDLE));
1548
	worker_clr_flags(worker, WORKER_IDLE);
1549
	pool->nr_idle--;
T
Tejun Heo 已提交
1550 1551 1552
	list_del_init(&worker->entry);
}

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
1569 1570 1571 1572 1573
 * This function tries set_cpus_allowed() and locks gcwq and verifies the
 * binding against %GCWQ_DISASSOCIATED which is set during
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
 *
 * CONTEXT:
 * Might sleep.  Called without any lock but returns with gcwq->lock
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1584
__acquires(&gcwq->lock)
1585
{
1586
	struct global_cwq *gcwq = worker->pool->gcwq;
1587 1588 1589
	struct task_struct *task = worker->task;

	while (true) {
1590
		/*
1591 1592 1593 1594
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
		 * against GCWQ_DISASSOCIATED.
1595
		 */
1596 1597
		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

		spin_lock_irq(&gcwq->lock);
		if (gcwq->flags & GCWQ_DISASSOCIATED)
			return false;
		if (task_cpu(task) == gcwq->cpu &&
		    cpumask_equal(&current->cpus_allowed,
				  get_cpu_mask(gcwq->cpu)))
			return true;
		spin_unlock_irq(&gcwq->lock);

1608 1609 1610 1611 1612 1613
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1614
		cpu_relax();
1615
		cond_resched();
1616 1617 1618
	}
}

1619
/*
1620
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1621
 * list_empty(@worker->entry) before leaving idle and call this function.
1622 1623 1624 1625 1626
 */
static void idle_worker_rebind(struct worker *worker)
{
	struct global_cwq *gcwq = worker->pool->gcwq;

1627 1628 1629
	/* CPU may go down again inbetween, clear UNBOUND only on success */
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1630

1631 1632 1633
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
	spin_unlock_irq(&gcwq->lock);
1634 1635
}

1636
/*
1637
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1638 1639 1640
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1641
 */
1642
static void busy_worker_rebind_fn(struct work_struct *work)
1643 1644
{
	struct worker *worker = container_of(work, struct worker, rebind_work);
1645
	struct global_cwq *gcwq = worker->pool->gcwq;
1646

1647 1648
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1649 1650 1651 1652

	spin_unlock_irq(&gcwq->lock);
}

1653 1654 1655 1656 1657 1658 1659
/**
 * rebind_workers - rebind all workers of a gcwq to the associated CPU
 * @gcwq: gcwq of interest
 *
 * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
 * is different for idle and busy ones.
 *
1660 1661 1662 1663
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1664
 *
1665 1666 1667 1668
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1669
 *
1670 1671 1672 1673
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1674 1675 1676 1677
 */
static void rebind_workers(struct global_cwq *gcwq)
{
	struct worker_pool *pool;
1678
	struct worker *worker, *n;
1679 1680 1681 1682 1683 1684
	struct hlist_node *pos;
	int i;

	lockdep_assert_held(&gcwq->lock);

	for_each_worker_pool(pool, gcwq)
1685
		lockdep_assert_held(&pool->assoc_mutex);
1686

1687
	/* dequeue and kick idle ones */
1688
	for_each_worker_pool(pool, gcwq) {
1689 1690 1691 1692 1693 1694 1695
		list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
			/*
			 * idle workers should be off @pool->idle_list
			 * until rebind is complete to avoid receiving
			 * premature local wake-ups.
			 */
			list_del_init(&worker->entry);
1696

1697 1698 1699 1700
			/*
			 * worker_thread() will see the above dequeuing
			 * and call idle_worker_rebind().
			 */
1701 1702 1703 1704
			wake_up_process(worker->task);
		}
	}

1705
	/* rebind busy workers */
1706 1707
	for_each_busy_worker(worker, i, pos, gcwq) {
		struct work_struct *rebind_work = &worker->rebind_work;
1708
		struct workqueue_struct *wq;
1709 1710 1711 1712 1713 1714

		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;

		debug_work_activate(rebind_work);
1715

1716 1717 1718 1719 1720 1721 1722 1723
		/*
		 * wq doesn't really matter but let's keep @worker->pool
		 * and @cwq->pool consistent for sanity.
		 */
		if (worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;
1724

1725 1726 1727
		insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
			worker->scheduled.next,
			work_color_to_flags(WORK_NO_COLOR));
1728
	}
1729 1730
}

T
Tejun Heo 已提交
1731 1732 1733 1734 1735
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1736 1737
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1738
		INIT_LIST_HEAD(&worker->scheduled);
1739
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1740 1741
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1742
	}
T
Tejun Heo 已提交
1743 1744 1745 1746 1747
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1748
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1749
 *
1750
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1760
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1761
{
1762
	struct global_cwq *gcwq = pool->gcwq;
1763
	const char *pri = worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1764
	struct worker *worker = NULL;
1765
	int id = -1;
T
Tejun Heo 已提交
1766

1767
	spin_lock_irq(&gcwq->lock);
1768
	while (ida_get_new(&pool->worker_ida, &id)) {
1769
		spin_unlock_irq(&gcwq->lock);
1770
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1771
			goto fail;
1772
		spin_lock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1773
	}
1774
	spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1775 1776 1777 1778 1779

	worker = alloc_worker();
	if (!worker)
		goto fail;

1780
	worker->pool = pool;
T
Tejun Heo 已提交
1781 1782
	worker->id = id;

1783
	if (gcwq->cpu != WORK_CPU_UNBOUND)
1784
		worker->task = kthread_create_on_node(worker_thread,
1785 1786
					worker, cpu_to_node(gcwq->cpu),
					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1787 1788
	else
		worker->task = kthread_create(worker_thread, worker,
1789
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1790 1791 1792
	if (IS_ERR(worker->task))
		goto fail;

1793 1794 1795
	if (worker_pool_pri(pool))
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1796
	/*
1797 1798 1799 1800 1801 1802 1803
	 * Determine CPU binding of the new worker depending on
	 * %GCWQ_DISASSOCIATED.  The caller is responsible for ensuring the
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1804
	 */
1805
	if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1806
		kthread_bind(worker->task, gcwq->cpu);
1807
	} else {
1808
		worker->task->flags |= PF_THREAD_BOUND;
1809
		worker->flags |= WORKER_UNBOUND;
1810
	}
T
Tejun Heo 已提交
1811 1812 1813 1814

	return worker;
fail:
	if (id >= 0) {
1815
		spin_lock_irq(&gcwq->lock);
1816
		ida_remove(&pool->worker_ida, id);
1817
		spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1827
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1828 1829
 *
 * CONTEXT:
1830
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1831 1832 1833
 */
static void start_worker(struct worker *worker)
{
1834
	worker->flags |= WORKER_STARTED;
1835
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1836
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1837 1838 1839 1840 1841 1842 1843
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1844 1845 1846 1847
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1848 1849 1850
 */
static void destroy_worker(struct worker *worker)
{
1851 1852
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1853 1854 1855 1856
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1857
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1858

T
Tejun Heo 已提交
1859
	if (worker->flags & WORKER_STARTED)
1860
		pool->nr_workers--;
T
Tejun Heo 已提交
1861
	if (worker->flags & WORKER_IDLE)
1862
		pool->nr_idle--;
T
Tejun Heo 已提交
1863 1864

	list_del_init(&worker->entry);
1865
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1866 1867 1868

	spin_unlock_irq(&gcwq->lock);

T
Tejun Heo 已提交
1869 1870 1871
	kthread_stop(worker->task);
	kfree(worker);

1872
	spin_lock_irq(&gcwq->lock);
1873
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1874 1875
}

1876
static void idle_worker_timeout(unsigned long __pool)
1877
{
1878 1879
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1880 1881 1882

	spin_lock_irq(&gcwq->lock);

1883
	if (too_many_workers(pool)) {
1884 1885 1886 1887
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1888
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1889 1890 1891
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1892
			mod_timer(&pool->idle_timer, expires);
1893 1894
		else {
			/* it's been idle for too long, wake up manager */
1895
			pool->flags |= POOL_MANAGE_WORKERS;
1896
			wake_up_worker(pool);
1897
		}
1898 1899 1900 1901
	}

	spin_unlock_irq(&gcwq->lock);
}
1902

1903 1904 1905 1906
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1907
	unsigned int cpu;
1908 1909 1910 1911 1912

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1913
	cpu = cwq->pool->gcwq->cpu;
1914 1915 1916
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1917
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1918 1919 1920 1921
		wake_up_process(wq->rescuer->task);
	return true;
}

1922
static void gcwq_mayday_timeout(unsigned long __pool)
1923
{
1924 1925
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1926 1927 1928 1929
	struct work_struct *work;

	spin_lock_irq(&gcwq->lock);

1930
	if (need_to_create_worker(pool)) {
1931 1932 1933 1934 1935 1936
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1937
		list_for_each_entry(work, &pool->worklist, entry)
1938
			send_mayday(work);
L
Linus Torvalds 已提交
1939
	}
1940 1941 1942

	spin_unlock_irq(&gcwq->lock);

1943
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1944 1945
}

1946 1947
/**
 * maybe_create_worker - create a new worker if necessary
1948
 * @pool: pool to create a new worker for
1949
 *
1950
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1951 1952
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1953
 * sent to all rescuers with works scheduled on @pool to resolve
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
1968
static bool maybe_create_worker(struct worker_pool *pool)
1969 1970
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
L
Linus Torvalds 已提交
1971
{
1972 1973 1974
	struct global_cwq *gcwq = pool->gcwq;

	if (!need_to_create_worker(pool))
1975 1976
		return false;
restart:
1977 1978
	spin_unlock_irq(&gcwq->lock);

1979
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1980
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1981 1982 1983 1984

	while (true) {
		struct worker *worker;

1985
		worker = create_worker(pool);
1986
		if (worker) {
1987
			del_timer_sync(&pool->mayday_timer);
1988 1989
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
1990
			BUG_ON(need_to_create_worker(pool));
1991 1992 1993
			return true;
		}

1994
		if (!need_to_create_worker(pool))
1995
			break;
L
Linus Torvalds 已提交
1996

1997 1998
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1999

2000
		if (!need_to_create_worker(pool))
2001 2002 2003
			break;
	}

2004
	del_timer_sync(&pool->mayday_timer);
2005
	spin_lock_irq(&gcwq->lock);
2006
	if (need_to_create_worker(pool))
2007 2008 2009 2010 2011 2012
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2013
 * @pool: pool to destroy workers for
2014
 *
2015
 * Destroy @pool workers which have been idle for longer than
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Called only from manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
2026
static bool maybe_destroy_workers(struct worker_pool *pool)
2027 2028
{
	bool ret = false;
L
Linus Torvalds 已提交
2029

2030
	while (too_many_workers(pool)) {
2031 2032
		struct worker *worker;
		unsigned long expires;
2033

2034
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2035
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2036

2037
		if (time_before(jiffies, expires)) {
2038
			mod_timer(&pool->idle_timer, expires);
2039
			break;
2040
		}
L
Linus Torvalds 已提交
2041

2042 2043
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2044
	}
2045

2046
	return ret;
2047 2048
}

2049
/**
2050 2051
 * manage_workers - manage worker pool
 * @worker: self
2052
 *
2053 2054 2055 2056 2057 2058 2059
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2060 2061
 *
 * CONTEXT:
2062 2063 2064 2065 2066 2067
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true if
 * some action was taken.
2068
 */
2069
static bool manage_workers(struct worker *worker)
2070
{
2071
	struct worker_pool *pool = worker->pool;
2072
	bool ret = false;
2073

2074
	if (pool->flags & POOL_MANAGING_WORKERS)
2075
		return ret;
2076

2077
	pool->flags |= POOL_MANAGING_WORKERS;
2078

2079 2080 2081 2082 2083 2084
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2085
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2086 2087
	 * manager against CPU hotplug.
	 *
2088
	 * assoc_mutex would always be free unless CPU hotplug is in
2089 2090
	 * progress.  trylock first without dropping @gcwq->lock.
	 */
2091
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2092
		spin_unlock_irq(&pool->gcwq->lock);
2093
		mutex_lock(&pool->assoc_mutex);
2094 2095
		/*
		 * CPU hotplug could have happened while we were waiting
2096
		 * for assoc_mutex.  Hotplug itself can't handle us
2097 2098 2099
		 * because manager isn't either on idle or busy list, and
		 * @gcwq's state and ours could have deviated.
		 *
2100
		 * As hotplug is now excluded via assoc_mutex, we can
2101 2102 2103 2104 2105 2106 2107 2108
		 * simply try to bind.  It will succeed or fail depending
		 * on @gcwq's current state.  Try it and adjust
		 * %WORKER_UNBOUND accordingly.
		 */
		if (worker_maybe_bind_and_lock(worker))
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2109

2110 2111
		ret = true;
	}
2112

2113
	pool->flags &= ~POOL_MANAGE_WORKERS;
2114 2115

	/*
2116 2117
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2118
	 */
2119 2120
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2121

2122
	pool->flags &= ~POOL_MANAGING_WORKERS;
2123
	mutex_unlock(&pool->assoc_mutex);
2124
	return ret;
2125 2126
}

2127 2128
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2129
 * @worker: self
2130 2131 2132 2133 2134 2135 2136 2137 2138
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2139
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2140
 */
T
Tejun Heo 已提交
2141
static void process_one_work(struct worker *worker, struct work_struct *work)
2142 2143
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
2144
{
2145
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2146 2147
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
2148
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2149
	int work_color;
2150
	struct worker *collision;
2151 2152 2153 2154 2155 2156 2157 2158
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2159 2160 2161
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2162
#endif
2163 2164 2165 2166 2167
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
	 * unbound or a disassociated gcwq.
	 */
2168
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2169
		     !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2170 2171
		     raw_smp_processor_id() != gcwq->cpu);

2172 2173 2174 2175 2176 2177
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2178
	collision = find_worker_executing_work(gcwq, work);
2179 2180 2181 2182 2183
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2184
	/* claim and dequeue */
2185
	debug_work_deactivate(work);
2186
	hash_add(gcwq->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2187
	worker->current_work = work;
2188
	worker->current_func = work->func;
2189
	worker->current_cwq = cwq;
2190
	work_color = get_work_color(work);
2191

2192 2193
	list_del_init(&work->entry);

2194 2195 2196 2197 2198 2199 2200
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2201 2202 2203 2204
	/*
	 * Unbound gcwq isn't concurrency managed and work items should be
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2205 2206
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2207

2208
	/*
2209 2210 2211 2212
	 * Record the last CPU and clear PENDING which should be the last
	 * update to @work.  Also, do this inside @gcwq->lock so that
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2213 2214
	 */
	set_work_cpu_and_clear_pending(work, gcwq->cpu);
2215

2216
	spin_unlock_irq(&gcwq->lock);
2217

2218
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2219
	lock_map_acquire(&lockdep_map);
2220
	trace_workqueue_execute_start(work);
2221
	worker->current_func(work);
2222 2223 2224 2225 2226
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2227 2228 2229 2230
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2231 2232
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2233 2234
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2235 2236 2237 2238
		debug_show_held_locks(current);
		dump_stack();
	}

2239
	spin_lock_irq(&gcwq->lock);
2240

2241 2242 2243 2244
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2245
	/* we're done with it, release */
2246
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2247
	worker->current_work = NULL;
2248
	worker->current_func = NULL;
2249
	worker->current_cwq = NULL;
2250
	cwq_dec_nr_in_flight(cwq, work_color);
2251 2252
}

2253 2254 2255 2256 2257 2258 2259 2260 2261
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2262
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2263 2264 2265
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2266
{
2267 2268
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2269
						struct work_struct, entry);
T
Tejun Heo 已提交
2270
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2271 2272 2273
	}
}

T
Tejun Heo 已提交
2274 2275
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2276
 * @__worker: self
T
Tejun Heo 已提交
2277
 *
2278 2279 2280 2281 2282
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2283
 */
T
Tejun Heo 已提交
2284
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2285
{
T
Tejun Heo 已提交
2286
	struct worker *worker = __worker;
2287 2288
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
L
Linus Torvalds 已提交
2289

2290 2291
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2292 2293
woke_up:
	spin_lock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2294

2295 2296
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
T
Tejun Heo 已提交
2297
		spin_unlock_irq(&gcwq->lock);
2298

2299
		/* if DIE is set, destruction is requested */
2300 2301 2302 2303 2304
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2305
		/* otherwise, rebind */
2306 2307
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2308
	}
2309

T
Tejun Heo 已提交
2310
	worker_leave_idle(worker);
2311
recheck:
2312
	/* no more worker necessary? */
2313
	if (!need_more_worker(pool))
2314 2315 2316
		goto sleep;

	/* do we need to manage? */
2317
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2318 2319
		goto recheck;

T
Tejun Heo 已提交
2320 2321 2322 2323 2324 2325 2326
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2327 2328 2329 2330 2331 2332 2333 2334
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2335
		struct work_struct *work =
2336
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2337 2338 2339 2340 2341 2342
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2343
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2344 2345 2346
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2347
		}
2348
	} while (keep_working(pool));
2349 2350

	worker_set_flags(worker, WORKER_PREP, false);
2351
sleep:
2352
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2353
		goto recheck;
2354

T
Tejun Heo 已提交
2355
	/*
2356 2357 2358 2359 2360
	 * gcwq->lock is held and there's no work to process and no
	 * need to manage, sleep.  Workers are woken up only while
	 * holding gcwq->lock or from local cpu, so setting the
	 * current state before releasing gcwq->lock is enough to
	 * prevent losing any event.
T
Tejun Heo 已提交
2361 2362 2363 2364 2365 2366
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
	spin_unlock_irq(&gcwq->lock);
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2367 2368
}

2369 2370
/**
 * rescuer_thread - the rescuer thread function
2371
 * @__rescuer: self
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2388
static int rescuer_thread(void *__rescuer)
2389
{
2390 2391
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2392
	struct list_head *scheduled = &rescuer->scheduled;
2393
	bool is_unbound = wq->flags & WQ_UNBOUND;
2394 2395 2396
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2397 2398 2399 2400 2401 2402

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2403 2404 2405
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2406 2407
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2408
		rescuer->task->flags &= ~PF_WQ_WORKER;
2409
		return 0;
2410
	}
2411

2412 2413 2414 2415
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2416
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2417 2418
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2419 2420
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
2421 2422 2423
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2424
		mayday_clear_cpu(cpu, wq->mayday_mask);
2425 2426

		/* migrate to the target cpu if possible */
2427
		rescuer->pool = pool;
2428 2429 2430 2431 2432 2433 2434
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2435
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2436 2437 2438 2439
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2440 2441 2442 2443 2444 2445

		/*
		 * Leave this gcwq.  If keep_working() is %true, notify a
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2446 2447
		if (keep_working(pool))
			wake_up_worker(pool);
2448

2449 2450 2451
		spin_unlock_irq(&gcwq->lock);
	}

2452 2453
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2454 2455
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2456 2457
}

O
Oleg Nesterov 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2469 2470 2471 2472
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2473 2474
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2475
 *
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2489 2490
 *
 * CONTEXT:
2491
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
2492
 */
2493
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2494 2495
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2496
{
2497 2498 2499
	struct list_head *head;
	unsigned int linked = 0;

2500
	/*
2501
	 * debugobject calls are safe here even with gcwq->lock locked
2502 2503 2504 2505
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2506
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2507
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2508
	init_completion(&barr->done);
2509

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2525
	debug_work_activate(&barr->work);
2526 2527
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2528 2529
}

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2563
{
2564 2565
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2566

2567 2568 2569
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2570
	}
2571

2572
	for_each_cwq_cpu(cpu, wq) {
2573
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2574
		struct global_cwq *gcwq = cwq->pool->gcwq;
O
Oleg Nesterov 已提交
2575

2576
		spin_lock_irq(&gcwq->lock);
2577

2578 2579
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2580

2581 2582 2583 2584 2585 2586
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2587

2588 2589 2590 2591
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2592

2593
		spin_unlock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2594
	}
2595

2596 2597
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2598

2599
	return wait;
L
Linus Torvalds 已提交
2600 2601
}

2602
/**
L
Linus Torvalds 已提交
2603
 * flush_workqueue - ensure that any scheduled work has run to completion.
2604
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2605 2606 2607 2608
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2609 2610
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2611
 */
2612
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2613
{
2614 2615 2616 2617 2618 2619
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2620

2621 2622
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2684 2685 2686 2687
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2755
}
2756
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2757

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2788
		bool drained;
2789

2790
		spin_lock_irq(&cwq->pool->gcwq->lock);
2791
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2792
		spin_unlock_irq(&cwq->pool->gcwq->lock);
2793 2794

		if (drained)
2795 2796 2797 2798
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2799 2800
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2811
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2812
{
2813
	struct worker *worker = NULL;
2814
	struct global_cwq *gcwq;
2815 2816 2817
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2818 2819
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2820
		return false;
2821

2822
	spin_lock_irq(&gcwq->lock);
2823 2824 2825
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2826 2827
		 * If it was re-queued to a different gcwq under us, we
		 * are not going to wait.
2828 2829
		 */
		smp_rmb();
2830
		cwq = get_work_cwq(work);
2831
		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
T
Tejun Heo 已提交
2832
			goto already_gone;
2833
	} else {
2834
		worker = find_worker_executing_work(gcwq, work);
2835
		if (!worker)
T
Tejun Heo 已提交
2836
			goto already_gone;
2837
		cwq = worker->current_cwq;
2838
	}
2839

2840
	insert_wq_barrier(cwq, barr, work, worker);
2841
	spin_unlock_irq(&gcwq->lock);
2842

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2853
	lock_map_release(&cwq->wq->lockdep_map);
2854

2855
	return true;
T
Tejun Heo 已提交
2856
already_gone:
2857
	spin_unlock_irq(&gcwq->lock);
2858
	return false;
2859
}
2860 2861 2862 2863 2864

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2865 2866
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2867 2868 2869 2870 2871 2872 2873 2874 2875
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2876 2877 2878
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2879
	if (start_flush_work(work, &barr)) {
2880 2881 2882
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2883
	} else {
2884
		return false;
2885 2886
	}
}
2887
EXPORT_SYMBOL_GPL(flush_work);
2888

2889
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2890
{
2891
	unsigned long flags;
2892 2893 2894
	int ret;

	do {
2895 2896 2897 2898 2899 2900
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2901
			flush_work(work);
2902 2903
	} while (unlikely(ret < 0));

2904 2905 2906 2907
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2908
	flush_work(work);
2909
	clear_work_data(work);
2910 2911 2912
	return ret;
}

2913
/**
2914 2915
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2916
 *
2917 2918 2919 2920
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2921
 *
2922 2923
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2924
 *
2925
 * The caller must ensure that the workqueue on which @work was last
2926
 * queued can't be destroyed before this function returns.
2927 2928 2929
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2930
 */
2931
bool cancel_work_sync(struct work_struct *work)
2932
{
2933
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2934
}
2935
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2936

2937
/**
2938 2939
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2940
 *
2941 2942 2943
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2944
 *
2945 2946 2947
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2948
 */
2949 2950
bool flush_delayed_work(struct delayed_work *dwork)
{
2951
	local_irq_disable();
2952
	if (del_timer_sync(&dwork->timer))
2953
		__queue_work(dwork->cpu,
2954
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2955
	local_irq_enable();
2956 2957 2958 2959
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2960
/**
2961 2962
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2963
 *
2964 2965 2966 2967 2968
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2969
 *
2970
 * This function is safe to call from any context including IRQ handler.
2971
 */
2972
bool cancel_delayed_work(struct delayed_work *dwork)
2973
{
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

	set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
	local_irq_restore(flags);
2986
	return ret;
2987
}
2988
EXPORT_SYMBOL(cancel_delayed_work);
2989

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3000
{
3001
	return __cancel_work_timer(&dwork->work, true);
3002
}
3003
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3004

3005
/**
3006 3007 3008 3009 3010 3011
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
3012
bool schedule_work_on(int cpu, struct work_struct *work)
3013
{
3014
	return queue_work_on(cpu, system_wq, work);
3015 3016 3017
}
EXPORT_SYMBOL(schedule_work_on);

3018 3019 3020 3021
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
3022 3023
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
3024 3025 3026 3027
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
3028
 */
3029
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3030
{
3031
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3032
}
3033
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3034

3035 3036 3037
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
3038
 * @dwork: job to be done
3039 3040 3041 3042 3043
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
3044 3045
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
3046
{
3047
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
3048
}
3049
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
3050

3051 3052
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3053 3054
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3055 3056 3057 3058
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3059
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3060
{
3061
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3062
}
3063
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3064

3065
/**
3066
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3067 3068
 * @func: the function to call
 *
3069 3070
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3071
 * schedule_on_each_cpu() is very slow.
3072 3073 3074
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3075
 */
3076
int schedule_on_each_cpu(work_func_t func)
3077 3078
{
	int cpu;
3079
	struct work_struct __percpu *works;
3080

3081 3082
	works = alloc_percpu(struct work_struct);
	if (!works)
3083
		return -ENOMEM;
3084

3085 3086
	get_online_cpus();

3087
	for_each_online_cpu(cpu) {
3088 3089 3090
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3091
		schedule_work_on(cpu, work);
3092
	}
3093 3094 3095 3096

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3097
	put_online_cpus();
3098
	free_percpu(works);
3099 3100 3101
	return 0;
}

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3126 3127
void flush_scheduled_work(void)
{
3128
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3129
}
3130
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3131

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3144
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3145 3146
{
	if (!in_interrupt()) {
3147
		fn(&ew->work);
3148 3149 3150
		return 0;
	}

3151
	INIT_WORK(&ew->work, fn);
3152 3153 3154 3155 3156 3157
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3158 3159
int keventd_up(void)
{
3160
	return system_wq != NULL;
L
Linus Torvalds 已提交
3161 3162
}

3163
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3164
{
3165
	/*
T
Tejun Heo 已提交
3166 3167 3168
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3169
	 */
T
Tejun Heo 已提交
3170 3171 3172
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3173

3174
	if (!(wq->flags & WQ_UNBOUND))
3175
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3176
	else {
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3189
	}
3190

3191
	/* just in case, make sure it's actually aligned */
3192 3193
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3194 3195
}

3196
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3197
{
3198
	if (!(wq->flags & WQ_UNBOUND))
3199 3200 3201
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3202
		kfree(*(void **)(wq->cpu_wq.single + 1));
3203
	}
T
Tejun Heo 已提交
3204 3205
}

3206 3207
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3208
{
3209 3210 3211
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3212 3213
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3214

3215
	return clamp_val(max_active, 1, lim);
3216 3217
}

3218
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3219 3220 3221
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3222
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3223
{
3224
	va_list args, args1;
L
Linus Torvalds 已提交
3225
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3226
	unsigned int cpu;
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3241

3242 3243 3244 3245 3246 3247 3248
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3249
	max_active = max_active ?: WQ_DFL_ACTIVE;
3250
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3251

3252
	/* init wq */
3253
	wq->flags = flags;
3254
	wq->saved_max_active = max_active;
3255 3256 3257 3258
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3259

3260
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3261
	INIT_LIST_HEAD(&wq->list);
3262

3263 3264 3265
	if (alloc_cwqs(wq) < 0)
		goto err;

3266
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3267
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3268
		struct global_cwq *gcwq = get_gcwq(cpu);
3269
		int pool_idx = (bool)(flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3270

T
Tejun Heo 已提交
3271
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3272
		cwq->pool = &gcwq->pools[pool_idx];
T
Tejun Heo 已提交
3273
		cwq->wq = wq;
3274
		cwq->flush_color = -1;
3275 3276
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3277
	}
T
Tejun Heo 已提交
3278

3279 3280 3281
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3282
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3283 3284 3285 3286 3287 3288
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3289 3290
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3291
					       wq->name);
3292 3293 3294 3295 3296
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3297 3298
	}

3299 3300 3301 3302 3303
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3304
	spin_lock(&workqueue_lock);
3305

3306
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3307
		for_each_cwq_cpu(cpu, wq)
3308 3309
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3310
	list_add(&wq->list, &workqueues);
3311

T
Tejun Heo 已提交
3312 3313
	spin_unlock(&workqueue_lock);

3314
	return wq;
T
Tejun Heo 已提交
3315 3316
err:
	if (wq) {
3317
		free_cwqs(wq);
3318
		free_mayday_mask(wq->mayday_mask);
3319
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3320 3321 3322
		kfree(wq);
	}
	return NULL;
3323
}
3324
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3325

3326 3327 3328 3329 3330 3331 3332 3333
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3334
	unsigned int cpu;
3335

3336 3337
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3338

3339 3340 3341 3342
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3343
	spin_lock(&workqueue_lock);
3344
	list_del(&wq->list);
3345
	spin_unlock(&workqueue_lock);
3346

3347
	/* sanity check */
3348
	for_each_cwq_cpu(cpu, wq) {
3349 3350 3351 3352 3353
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3354 3355
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3356
	}
3357

3358 3359
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3360
		free_mayday_mask(wq->mayday_mask);
3361
		kfree(wq->rescuer);
3362 3363
	}

3364
	free_cwqs(wq);
3365 3366 3367 3368
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
/**
 * cwq_set_max_active - adjust max_active of a cwq
 * @cwq: target cpu_workqueue_struct
 * @max_active: new max_active value.
 *
 * Set @cwq->max_active to @max_active and activate delayed works if
 * increased.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
{
	cwq->max_active = max_active;

	while (!list_empty(&cwq->delayed_works) &&
	       cwq->nr_active < cwq->max_active)
		cwq_activate_first_delayed(cwq);
}

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3403
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3404 3405 3406 3407 3408

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3409
	for_each_cwq_cpu(cpu, wq) {
3410 3411 3412 3413
		struct global_cwq *gcwq = get_gcwq(cpu);

		spin_lock_irq(&gcwq->lock);

3414
		if (!(wq->flags & WQ_FREEZABLE) ||
3415
		    !(gcwq->flags & GCWQ_FREEZING))
3416
			cwq_set_max_active(get_cwq(gcwq->cpu, wq), max_active);
3417

3418
		spin_unlock_irq(&gcwq->lock);
3419
	}
3420

3421
	spin_unlock(&workqueue_lock);
3422
}
3423
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3424

3425
/**
3426 3427 3428
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3429
 *
3430 3431 3432
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3433
 *
3434 3435
 * RETURNS:
 * %true if congested, %false otherwise.
3436
 */
3437
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3438
{
3439 3440 3441
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3442
}
3443
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3444

3445
/**
3446 3447
 * work_cpu - return the last known associated cpu for @work
 * @work: the work of interest
3448
 *
3449
 * RETURNS:
3450
 * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3451
 */
3452
unsigned int work_cpu(struct work_struct *work)
3453
{
3454
	struct global_cwq *gcwq = get_work_gcwq(work);
3455

3456
	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3457
}
3458
EXPORT_SYMBOL_GPL(work_cpu);
3459

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3474
{
3475 3476 3477
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3478

3479
	if (!gcwq)
3480
		return 0;
L
Linus Torvalds 已提交
3481

3482
	spin_lock_irqsave(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3483

3484 3485 3486 3487
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
	if (find_worker_executing_work(gcwq, work))
		ret |= WORK_BUSY_RUNNING;
L
Linus Torvalds 已提交
3488

3489
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3490

3491
	return ret;
L
Linus Torvalds 已提交
3492
}
3493
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3494

3495 3496 3497
/*
 * CPU hotplug.
 *
3498 3499 3500 3501 3502 3503 3504
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
 * gcwqs serve mix of short, long and very long running works making
 * blocked draining impractical.
 *
3505 3506 3507
 * This is solved by allowing a gcwq to be disassociated from the CPU
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3508
 */
L
Linus Torvalds 已提交
3509

3510
/* claim manager positions of all pools */
3511
static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
3512 3513 3514 3515
{
	struct worker_pool *pool;

	for_each_worker_pool(pool, gcwq)
3516
		mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
T
Tejun Heo 已提交
3517
	spin_lock_irq(&gcwq->lock);
3518 3519 3520
}

/* release manager positions */
3521
static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
3522 3523 3524
{
	struct worker_pool *pool;

T
Tejun Heo 已提交
3525
	spin_unlock_irq(&gcwq->lock);
3526
	for_each_worker_pool(pool, gcwq)
3527
		mutex_unlock(&pool->assoc_mutex);
3528 3529
}

3530
static void gcwq_unbind_fn(struct work_struct *work)
3531
{
3532
	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3533
	struct worker_pool *pool;
3534 3535 3536
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3537

3538 3539
	BUG_ON(gcwq->cpu != smp_processor_id());

3540
	gcwq_claim_assoc_and_lock(gcwq);
3541

3542 3543 3544 3545 3546 3547
	/*
	 * We've claimed all manager positions.  Make all workers unbound
	 * and set DISASSOCIATED.  Before this, all workers except for the
	 * ones which are still executing works from before the last CPU
	 * down must be on the cpu.  After this, they may become diasporas.
	 */
3548
	for_each_worker_pool(pool, gcwq)
3549
		list_for_each_entry(worker, &pool->idle_list, entry)
3550
			worker->flags |= WORKER_UNBOUND;
3551

3552
	for_each_busy_worker(worker, i, pos, gcwq)
3553
		worker->flags |= WORKER_UNBOUND;
3554

3555 3556
	gcwq->flags |= GCWQ_DISASSOCIATED;

3557
	gcwq_release_assoc_and_unlock(gcwq);
3558

3559
	/*
3560
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3561 3562
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3563 3564
	 */
	schedule();
3565

3566
	/*
3567 3568 3569 3570 3571 3572 3573 3574 3575
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
	 * are always true as long as the worklist is not empty.  @gcwq now
	 * behaves as unbound (in terms of concurrency management) gcwq
	 * which is served by workers tied to the CPU.
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3576
	 */
3577 3578
	for_each_worker_pool(pool, gcwq)
		atomic_set(get_pool_nr_running(pool), 0);
3579 3580
}

T
Tejun Heo 已提交
3581 3582 3583 3584
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3585
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3586 3587
					       unsigned long action,
					       void *hcpu)
3588 3589
{
	unsigned int cpu = (unsigned long)hcpu;
3590
	struct global_cwq *gcwq = get_gcwq(cpu);
3591
	struct worker_pool *pool;
3592

T
Tejun Heo 已提交
3593
	switch (action & ~CPU_TASKS_FROZEN) {
3594
	case CPU_UP_PREPARE:
3595
		for_each_worker_pool(pool, gcwq) {
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
3608
		}
T
Tejun Heo 已提交
3609
		break;
3610

3611 3612
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3613
		gcwq_claim_assoc_and_lock(gcwq);
3614
		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3615
		rebind_workers(gcwq);
3616
		gcwq_release_assoc_and_unlock(gcwq);
3617
		break;
3618
	}
3619 3620 3621 3622 3623 3624 3625
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3626
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3627 3628 3629
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3630 3631 3632
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3633 3634
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3635 3636
		/* unbinding should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3637
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3638 3639
		flush_work(&unbind_work);
		break;
3640 3641 3642 3643
	}
	return NOTIFY_OK;
}

3644
#ifdef CONFIG_SMP
3645

3646
struct work_for_cpu {
3647
	struct work_struct work;
3648 3649 3650 3651 3652
	long (*fn)(void *);
	void *arg;
	long ret;
};

3653
static void work_for_cpu_fn(struct work_struct *work)
3654
{
3655 3656
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3657 3658 3659 3660 3661 3662 3663 3664 3665
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3666 3667
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3668
 * The caller must not hold any locks which would prevent @fn from completing.
3669 3670 3671
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3672
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3673

3674 3675 3676
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3677 3678 3679 3680 3681
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3682 3683 3684 3685 3686
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3687 3688 3689
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
 * gcwq->worklist.
3690 3691
 *
 * CONTEXT:
3692
 * Grabs and releases workqueue_lock and gcwq->lock's.
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3703
	for_each_gcwq_cpu(cpu) {
3704
		struct global_cwq *gcwq = get_gcwq(cpu);
3705
		struct workqueue_struct *wq;
3706 3707 3708

		spin_lock_irq(&gcwq->lock);

3709 3710 3711
		BUG_ON(gcwq->flags & GCWQ_FREEZING);
		gcwq->flags |= GCWQ_FREEZING;

3712 3713 3714
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3715
			if (cwq && wq->flags & WQ_FREEZABLE)
3716 3717
				cwq->max_active = 0;
		}
3718 3719

		spin_unlock_irq(&gcwq->lock);
3720 3721 3722 3723 3724 3725
	}

	spin_unlock(&workqueue_lock);
}

/**
3726
 * freeze_workqueues_busy - are freezable workqueues still busy?
3727 3728 3729 3730 3731 3732 3733 3734
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3735 3736
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3747
	for_each_gcwq_cpu(cpu) {
3748
		struct workqueue_struct *wq;
3749 3750 3751 3752 3753 3754 3755
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3756
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3775
 * frozen works are transferred to their respective gcwq worklists.
3776 3777
 *
 * CONTEXT:
3778
 * Grabs and releases workqueue_lock and gcwq->lock's.
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3789
	for_each_gcwq_cpu(cpu) {
3790
		struct global_cwq *gcwq = get_gcwq(cpu);
3791
		struct worker_pool *pool;
3792
		struct workqueue_struct *wq;
3793 3794 3795

		spin_lock_irq(&gcwq->lock);

3796 3797 3798
		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
		gcwq->flags &= ~GCWQ_FREEZING;

3799 3800 3801
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3802
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3803 3804 3805
				continue;

			/* restore max_active and repopulate worklist */
3806
			cwq_set_max_active(cwq, wq->saved_max_active);
3807
		}
3808

3809 3810
		for_each_worker_pool(pool, gcwq)
			wake_up_worker(pool);
3811

3812
		spin_unlock_irq(&gcwq->lock);
3813 3814 3815 3816 3817 3818 3819 3820
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3821
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3822
{
T
Tejun Heo 已提交
3823 3824
	unsigned int cpu;

3825 3826 3827 3828
	/* make sure we have enough bits for OFFQ CPU number */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
		     WORK_CPU_LAST);

3829
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3830
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3831 3832

	/* initialize gcwqs */
3833
	for_each_gcwq_cpu(cpu) {
3834
		struct global_cwq *gcwq = get_gcwq(cpu);
3835
		struct worker_pool *pool;
3836 3837 3838

		spin_lock_init(&gcwq->lock);
		gcwq->cpu = cpu;
3839
		gcwq->flags |= GCWQ_DISASSOCIATED;
3840

3841
		hash_init(gcwq->busy_hash);
T
Tejun Heo 已提交
3842

3843 3844 3845 3846
		for_each_worker_pool(pool, gcwq) {
			pool->gcwq = gcwq;
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3847

3848 3849 3850
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3851

3852 3853 3854
			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
				    (unsigned long)pool);

3855
			mutex_init(&pool->assoc_mutex);
3856 3857
			ida_init(&pool->worker_ida);
		}
3858 3859
	}

3860
	/* create the initial worker */
3861
	for_each_online_gcwq_cpu(cpu) {
3862
		struct global_cwq *gcwq = get_gcwq(cpu);
3863
		struct worker_pool *pool;
3864

3865 3866
		if (cpu != WORK_CPU_UNBOUND)
			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3867 3868 3869 3870

		for_each_worker_pool(pool, gcwq) {
			struct worker *worker;

3871
			worker = create_worker(pool);
3872 3873 3874 3875 3876
			BUG_ON(!worker);
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
		}
3877 3878
	}

3879
	system_wq = alloc_workqueue("events", 0, 0);
3880
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3881
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3882 3883
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3884 3885
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3886
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3887
	       !system_unbound_wq || !system_freezable_wq);
3888
	return 0;
L
Linus Torvalds 已提交
3889
}
3890
early_initcall(init_workqueues);