workqueue.c 137.1 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131
 * WQ: wq->mutex protected.
 *
132
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
133 134
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
135 136
 */

137
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
138

139
struct worker_pool {
140
	spinlock_t		lock;		/* the pool lock */
141
	int			cpu;		/* I: the associated cpu */
142
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
143
	int			id;		/* I: pool ID */
144
	unsigned int		flags;		/* X: flags */
145 146 147

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
148 149

	/* nr_idle includes the ones off idle_list for rebinding */
150 151 152 153 154 155
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

156
	/* a workers is either on busy_hash or idle_list, or the manager */
157 158 159
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

160
	/* see manage_workers() for details on the two manager mutexes */
161
	struct mutex		manager_arb;	/* manager arbitration */
162 163
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
164
	struct completion	*detach_completion; /* all workers detached */
165

166
	struct ida		worker_ida;	/* worker IDs for task name */
167

T
Tejun Heo 已提交
168
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 170
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
171

172 173 174 175 176 177
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 179 180 181 182 183

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
184 185
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
186
/*
187 188 189 190
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
191
 */
192
struct pool_workqueue {
193
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
194
	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 196
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
197
	int			refcnt;		/* L: reference count */
198 199
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
200
	int			nr_active;	/* L: nr of active works */
201
	int			max_active;	/* L: max active works */
202
	struct list_head	delayed_works;	/* L: delayed works */
203
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
205 206 207 208 209

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
210
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
211 212 213
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
214
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
215

216 217 218 219
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
220 221
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
222 223 224
	struct completion	done;		/* flush completion */
};

225 226
struct wq_device;

L
Linus Torvalds 已提交
227
/*
228 229
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
230 231
 */
struct workqueue_struct {
232
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233
	struct list_head	list;		/* PL: list of all workqueues */
234

235 236 237
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
238
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 240 241
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242

243
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 245
	struct worker		*rescuer;	/* I: rescue worker */

246
	int			nr_drainers;	/* WQ: drain in progress */
247
	int			saved_max_active; /* WQ: saved pwq max_active */
248

249
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251

252 253 254
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
255
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
256
	struct lockdep_map	lockdep_map;
257
#endif
258
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 260 261 262

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
264 265
};

266 267
static struct kmem_cache *pwq_cache;

268 269 270 271
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

272 273 274
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

275 276 277 278 279 280 281 282 283
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

284 285
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

286 287 288
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

289
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
290
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
291

292 293
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
294 295 296 297 298

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

299
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
300

301
/* PL: hash of all unbound pools keyed by pool->attrs */
302 303
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

304
/* I: attributes used when instantiating standard unbound pools on demand */
305 306
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

307 308 309
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

310
struct workqueue_struct *system_wq __read_mostly;
311
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
312
struct workqueue_struct *system_highpri_wq __read_mostly;
313
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
314
struct workqueue_struct *system_long_wq __read_mostly;
315
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
316
struct workqueue_struct *system_unbound_wq __read_mostly;
317
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
318
struct workqueue_struct *system_freezable_wq __read_mostly;
319
EXPORT_SYMBOL_GPL(system_freezable_wq);
320 321 322 323
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
324

325 326 327 328
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

329 330 331
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

332
#define assert_rcu_or_pool_mutex()					\
333
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
334 335
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
336

337
#define assert_rcu_or_wq_mutex(wq)					\
338
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
339
			   lockdep_is_held(&wq->mutex),			\
340
			   "sched RCU or wq->mutex should be held")
341

342 343 344
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
345
	     (pool)++)
346

T
Tejun Heo 已提交
347 348 349
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
350
 * @pi: integer used for iteration
351
 *
352 353 354
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
355 356 357
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
358
 */
359 360
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
361
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
362
		else
T
Tejun Heo 已提交
363

364 365 366 367 368
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
369
 * This must be called with @pool->attach_mutex.
370 371 372 373
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
374 375
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
376
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
377 378
		else

379 380 381 382
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
383
 *
384
 * This must be called either with wq->mutex held or sched RCU read locked.
385 386
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
387 388 389
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
390 391
 */
#define for_each_pwq(pwq, wq)						\
392
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
393
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
394
		else
395

396 397 398 399
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

400 401 402 403 404
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
440
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
476
	.debug_hint	= work_debug_hint,
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

507 508 509 510 511 512 513
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

514 515 516 517 518
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

519 520 521 522 523 524 525
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
526 527 528 529
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

530
	lockdep_assert_held(&wq_pool_mutex);
531

532 533
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
534
	if (ret >= 0) {
T
Tejun Heo 已提交
535
		pool->id = ret;
536 537
		return 0;
	}
538
	return ret;
539 540
}

541 542 543 544 545 546 547 548
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
549 550
 *
 * Return: The unbound pool_workqueue for @node.
551 552 553 554 555 556 557 558
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
574

575
/*
576 577
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
578
 * is cleared and the high bits contain OFFQ flags and pool ID.
579
 *
580 581
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
582 583
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
584
 *
585
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
586
 * corresponding to a work.  Pool is available once the work has been
587
 * queued anywhere after initialization until it is sync canceled.  pwq is
588
 * available only while the work item is queued.
589
 *
590 591 592 593
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
594
 */
595 596
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
597
{
598
	WARN_ON_ONCE(!work_pending(work));
599 600
	atomic_long_set(&work->data, data | flags | work_static(work));
}
601

602
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
603 604
			 unsigned long extra_flags)
{
605 606
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
607 608
}

609 610 611 612 613 614 615
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

616 617
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
618
{
619 620 621 622 623 624 625
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
626
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
627
}
628

629
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
630
{
631 632
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
633 634
}

635
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
636
{
637
	unsigned long data = atomic_long_read(&work->data);
638

639
	if (data & WORK_STRUCT_PWQ)
640 641 642
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
643 644
}

645 646 647 648
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
649 650 651
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
652 653 654 655 656
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
657 658
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
659 660
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
661
{
662
	unsigned long data = atomic_long_read(&work->data);
663
	int pool_id;
664

665
	assert_rcu_or_pool_mutex();
666

667 668
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
669
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
670

671 672
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
673 674
		return NULL;

675
	return idr_find(&worker_pool_idr, pool_id);
676 677 678 679 680 681
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
682
 * Return: The worker_pool ID @work was last associated with.
683 684 685 686
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
687 688
	unsigned long data = atomic_long_read(&work->data);

689 690
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
691
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
692

693
	return data >> WORK_OFFQ_POOL_SHIFT;
694 695
}

696 697
static void mark_work_canceling(struct work_struct *work)
{
698
	unsigned long pool_id = get_work_pool_id(work);
699

700 701
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
702 703 704 705 706 707
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

708
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
709 710
}

711
/*
712 713
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
714
 * they're being called with pool->lock held.
715 716
 */

717
static bool __need_more_worker(struct worker_pool *pool)
718
{
719
	return !atomic_read(&pool->nr_running);
720 721
}

722
/*
723 724
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
725 726
 *
 * Note that, because unbound workers never contribute to nr_running, this
727
 * function will always return %true for unbound pools as long as the
728
 * worklist isn't empty.
729
 */
730
static bool need_more_worker(struct worker_pool *pool)
731
{
732
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
733
}
734

735
/* Can I start working?  Called from busy but !running workers. */
736
static bool may_start_working(struct worker_pool *pool)
737
{
738
	return pool->nr_idle;
739 740 741
}

/* Do I need to keep working?  Called from currently running workers. */
742
static bool keep_working(struct worker_pool *pool)
743
{
744 745
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
746 747 748
}

/* Do we need a new worker?  Called from manager. */
749
static bool need_to_create_worker(struct worker_pool *pool)
750
{
751
	return need_more_worker(pool) && !may_start_working(pool);
752
}
753

754
/* Do we have too many workers and should some go away? */
755
static bool too_many_workers(struct worker_pool *pool)
756
{
757
	bool managing = mutex_is_locked(&pool->manager_arb);
758 759
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
760 761

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
762 763
}

764
/*
765 766 767
 * Wake up functions.
 */

768 769
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
770
{
771
	if (unlikely(list_empty(&pool->idle_list)))
772 773
		return NULL;

774
	return list_first_entry(&pool->idle_list, struct worker, entry);
775 776 777 778
}

/**
 * wake_up_worker - wake up an idle worker
779
 * @pool: worker pool to wake worker from
780
 *
781
 * Wake up the first idle worker of @pool.
782 783
 *
 * CONTEXT:
784
 * spin_lock_irq(pool->lock).
785
 */
786
static void wake_up_worker(struct worker_pool *pool)
787
{
788
	struct worker *worker = first_idle_worker(pool);
789 790 791 792 793

	if (likely(worker))
		wake_up_process(worker->task);
}

794
/**
795 796 797 798 799 800 801 802 803 804
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
805
void wq_worker_waking_up(struct task_struct *task, int cpu)
806 807 808
{
	struct worker *worker = kthread_data(task);

809
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
810
		WARN_ON_ONCE(worker->pool->cpu != cpu);
811
		atomic_inc(&worker->pool->nr_running);
812
	}
813 814 815 816 817 818 819 820 821 822 823 824 825 826
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
827
 * Return:
828 829
 * Worker task on @cpu to wake up, %NULL if none.
 */
830
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
831 832
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
833
	struct worker_pool *pool;
834

835 836 837 838 839
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
840
	if (worker->flags & WORKER_NOT_RUNNING)
841 842
		return NULL;

843 844
	pool = worker->pool;

845
	/* this can only happen on the local cpu */
846 847
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
848 849 850 851 852 853

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
854 855 856
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
857
	 * manipulating idle_list, so dereferencing idle_list without pool
858
	 * lock is safe.
859
	 */
860 861
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
862
		to_wakeup = first_idle_worker(pool);
863 864 865 866 867
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
868
 * @worker: self
869 870 871
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
872 873 874
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
875
 *
876
 * CONTEXT:
877
 * spin_lock_irq(pool->lock)
878 879 880 881
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
882
	struct worker_pool *pool = worker->pool;
883

884 885
	WARN_ON_ONCE(worker->task != current);

886 887 888 889 890 891 892 893
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
894
			if (atomic_dec_and_test(&pool->nr_running) &&
895
			    !list_empty(&pool->worklist))
896
				wake_up_worker(pool);
897
		} else
898
			atomic_dec(&pool->nr_running);
899 900
	}

901 902 903 904
	worker->flags |= flags;
}

/**
905
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
906
 * @worker: self
907 908
 * @flags: flags to clear
 *
909
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
910
 *
911
 * CONTEXT:
912
 * spin_lock_irq(pool->lock)
913 914 915
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
916
	struct worker_pool *pool = worker->pool;
917 918
	unsigned int oflags = worker->flags;

919 920
	WARN_ON_ONCE(worker->task != current);

921
	worker->flags &= ~flags;
922

923 924 925 926 927
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
928 929
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
930
			atomic_inc(&pool->nr_running);
931 932
}

933 934
/**
 * find_worker_executing_work - find worker which is executing a work
935
 * @pool: pool of interest
936 937
 * @work: work to find worker for
 *
938 939
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
940 941 942 943 944 945 946 947 948 949 950 951
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
952 953 954 955 956 957
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
958 959
 *
 * CONTEXT:
960
 * spin_lock_irq(pool->lock).
961
 *
962 963
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
964
 * otherwise.
965
 */
966
static struct worker *find_worker_executing_work(struct worker_pool *pool,
967
						 struct work_struct *work)
968
{
969 970
	struct worker *worker;

971
	hash_for_each_possible(pool->busy_hash, worker, hentry,
972 973 974
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
975 976 977
			return worker;

	return NULL;
978 979
}

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
995
 * spin_lock_irq(pool->lock).
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1079
static void pwq_activate_delayed_work(struct work_struct *work)
1080
{
1081
	struct pool_workqueue *pwq = get_work_pwq(work);
1082 1083

	trace_workqueue_activate_work(work);
1084
	move_linked_works(work, &pwq->pool->worklist, NULL);
1085
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1086
	pwq->nr_active++;
1087 1088
}

1089
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1090
{
1091
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1092 1093
						    struct work_struct, entry);

1094
	pwq_activate_delayed_work(work);
1095 1096
}

1097
/**
1098 1099
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1100 1101 1102
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1103
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1104 1105
 *
 * CONTEXT:
1106
 * spin_lock_irq(pool->lock).
1107
 */
1108
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1109
{
T
Tejun Heo 已提交
1110
	/* uncolored work items don't participate in flushing or nr_active */
1111
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1112
		goto out_put;
1113

1114
	pwq->nr_in_flight[color]--;
1115

1116 1117
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1118
		/* one down, submit a delayed one */
1119 1120
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1121 1122 1123
	}

	/* is flush in progress and are we at the flushing tip? */
1124
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1125
		goto out_put;
1126 1127

	/* are there still in-flight works? */
1128
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1129
		goto out_put;
1130

1131 1132
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1133 1134

	/*
1135
	 * If this was the last pwq, wake up the first flusher.  It
1136 1137
	 * will handle the rest.
	 */
1138 1139
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1140 1141
out_put:
	put_pwq(pwq);
1142 1143
}

1144
/**
1145
 * try_to_grab_pending - steal work item from worklist and disable irq
1146 1147
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1148
 * @flags: place to store irq state
1149 1150
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1151
 * stable state - idle, on timer or on worklist.
1152
 *
1153
 * Return:
1154 1155 1156
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1157 1158
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1159
 *
1160
 * Note:
1161
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1162 1163 1164
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1165 1166 1167 1168
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1169
 * This function is safe to call from any context including IRQ handler.
1170
 */
1171 1172
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1173
{
1174
	struct worker_pool *pool;
1175
	struct pool_workqueue *pwq;
1176

1177 1178
	local_irq_save(*flags);

1179 1180 1181 1182
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1183 1184 1185 1186 1187
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1188 1189 1190 1191 1192
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1193 1194 1195 1196 1197 1198 1199
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1200 1201
	pool = get_work_pool(work);
	if (!pool)
1202
		goto fail;
1203

1204
	spin_lock(&pool->lock);
1205
	/*
1206 1207 1208 1209 1210
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1211 1212
	 * item is currently queued on that pool.
	 */
1213 1214
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1215 1216 1217 1218 1219
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1220
		 * on the delayed_list, will confuse pwq->nr_active
1221 1222 1223 1224
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1225
			pwq_activate_delayed_work(work);
1226 1227

		list_del_init(&work->entry);
1228
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1229

1230
		/* work->data points to pwq iff queued, point to pool */
1231 1232 1233 1234
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1235
	}
1236
	spin_unlock(&pool->lock);
1237 1238 1239 1240 1241
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1242
	return -EAGAIN;
1243 1244
}

T
Tejun Heo 已提交
1245
/**
1246
 * insert_work - insert a work into a pool
1247
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1248 1249 1250 1251
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1252
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1253
 * work_struct flags.
T
Tejun Heo 已提交
1254 1255
 *
 * CONTEXT:
1256
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1257
 */
1258 1259
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1260
{
1261
	struct worker_pool *pool = pwq->pool;
1262

T
Tejun Heo 已提交
1263
	/* we own @work, set data and link */
1264
	set_work_pwq(work, pwq, extra_flags);
1265
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1266
	get_pwq(pwq);
1267 1268

	/*
1269 1270 1271
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1272 1273 1274
	 */
	smp_mb();

1275 1276
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1277 1278
}

1279 1280
/*
 * Test whether @work is being queued from another work executing on the
1281
 * same workqueue.
1282 1283 1284
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1285 1286 1287 1288 1289 1290 1291
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1292
	return worker && worker->current_pwq->wq == wq;
1293 1294
}

1295
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1296 1297
			 struct work_struct *work)
{
1298
	struct pool_workqueue *pwq;
1299
	struct worker_pool *last_pool;
1300
	struct list_head *worklist;
1301
	unsigned int work_flags;
1302
	unsigned int req_cpu = cpu;
1303 1304 1305 1306 1307 1308 1309 1310

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1311

1312
	debug_work_activate(work);
1313

1314
	/* if draining, only works from the same workqueue are allowed */
1315
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1316
	    WARN_ON_ONCE(!is_chained_work(wq)))
1317
		return;
1318
retry:
1319 1320 1321
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1322
	/* pwq which will be used unless @work is executing elsewhere */
1323
	if (!(wq->flags & WQ_UNBOUND))
1324
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1325 1326
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1327

1328 1329 1330 1331 1332 1333 1334 1335
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1336

1337
		spin_lock(&last_pool->lock);
1338

1339
		worker = find_worker_executing_work(last_pool, work);
1340

1341 1342
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1343
		} else {
1344 1345
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1346
			spin_lock(&pwq->pool->lock);
1347
		}
1348
	} else {
1349
		spin_lock(&pwq->pool->lock);
1350 1351
	}

1352 1353 1354 1355
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1356 1357
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1371 1372
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1373

1374
	if (WARN_ON(!list_empty(&work->entry))) {
1375
		spin_unlock(&pwq->pool->lock);
1376 1377
		return;
	}
1378

1379 1380
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1381

1382
	if (likely(pwq->nr_active < pwq->max_active)) {
1383
		trace_workqueue_activate_work(work);
1384 1385
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1386 1387
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1388
		worklist = &pwq->delayed_works;
1389
	}
1390

1391
	insert_work(pwq, work, worklist, work_flags);
1392

1393
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1394 1395
}

1396
/**
1397 1398
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1399 1400 1401
 * @wq: workqueue to use
 * @work: work to queue
 *
1402 1403
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1404 1405
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1406
 */
1407 1408
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1409
{
1410
	bool ret = false;
1411
	unsigned long flags;
1412

1413
	local_irq_save(flags);
1414

1415
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1416
		__queue_work(cpu, wq, work);
1417
		ret = true;
1418
	}
1419

1420
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1421 1422
	return ret;
}
1423
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1424

1425
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1426
{
1427
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1428

1429
	/* should have been called from irqsafe timer with irq already off */
1430
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1431
}
1432
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1433

1434 1435
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1436
{
1437 1438 1439 1440 1441
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1442 1443
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1456
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1457

1458
	dwork->wq = wq;
1459
	dwork->cpu = cpu;
1460 1461 1462 1463 1464 1465
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1466 1467
}

1468 1469 1470 1471
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1472
 * @dwork: work to queue
1473 1474
 * @delay: number of jiffies to wait before queueing
 *
1475
 * Return: %false if @work was already on a queue, %true otherwise.  If
1476 1477
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1478
 */
1479 1480
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1481
{
1482
	struct work_struct *work = &dwork->work;
1483
	bool ret = false;
1484
	unsigned long flags;
1485

1486 1487
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1488

1489
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1490
		__queue_delayed_work(cpu, wq, dwork, delay);
1491
		ret = true;
1492
	}
1493

1494
	local_irq_restore(flags);
1495 1496
	return ret;
}
1497
EXPORT_SYMBOL(queue_delayed_work_on);
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1511
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1512 1513
 * pending and its timer was modified.
 *
1514
 * This function is safe to call from any context including IRQ handler.
1515 1516 1517 1518 1519 1520 1521
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1522

1523 1524 1525
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1526

1527 1528 1529
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1530
	}
1531 1532

	/* -ENOENT from try_to_grab_pending() becomes %true */
1533 1534
	return ret;
}
1535 1536
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1537 1538 1539 1540 1541 1542 1543 1544
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1545
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1546 1547
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1548
{
1549
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1550

1551 1552 1553 1554
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1555

1556 1557
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1558
	pool->nr_idle++;
1559
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1560 1561

	/* idle_list is LIFO */
1562
	list_add(&worker->entry, &pool->idle_list);
1563

1564 1565
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1566

1567
	/*
1568
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1569
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1570 1571
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1572
	 */
1573
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1574
		     pool->nr_workers == pool->nr_idle &&
1575
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1585
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1586 1587 1588
 */
static void worker_leave_idle(struct worker *worker)
{
1589
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1590

1591 1592
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1593
	worker_clr_flags(worker, WORKER_IDLE);
1594
	pool->nr_idle--;
T
Tejun Heo 已提交
1595 1596 1597
	list_del_init(&worker->entry);
}

T
Tejun Heo 已提交
1598 1599 1600 1601 1602
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1603 1604
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1605
		INIT_LIST_HEAD(&worker->scheduled);
1606
		INIT_LIST_HEAD(&worker->node);
1607 1608
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1609
	}
T
Tejun Heo 已提交
1610 1611 1612
	return worker;
}

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1646 1647 1648 1649 1650
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1651 1652 1653
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1654 1655 1656 1657 1658 1659
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1660
	mutex_lock(&pool->attach_mutex);
1661 1662
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1663
		detach_completion = pool->detach_completion;
1664
	mutex_unlock(&pool->attach_mutex);
1665

1666 1667 1668
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1669 1670 1671 1672
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1673 1674
/**
 * create_worker - create a new workqueue worker
1675
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1676
 *
1677 1678
 * Create a new worker which is attached to @pool.  The new worker must be
 * started by start_worker().
T
Tejun Heo 已提交
1679 1680 1681 1682
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1683
 * Return:
T
Tejun Heo 已提交
1684 1685
 * Pointer to the newly created worker.
 */
1686
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1687 1688
{
	struct worker *worker = NULL;
1689
	int id = -1;
1690
	char id_buf[16];
T
Tejun Heo 已提交
1691

1692 1693
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1694 1695
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1696 1697 1698 1699 1700

	worker = alloc_worker();
	if (!worker)
		goto fail;

1701
	worker->pool = pool;
T
Tejun Heo 已提交
1702 1703
	worker->id = id;

1704
	if (pool->cpu >= 0)
1705 1706
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1707
	else
1708 1709
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1710
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1711
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1712 1713 1714
	if (IS_ERR(worker->task))
		goto fail;

1715 1716 1717 1718 1719
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1720
	/* successful, attach the worker to the pool */
1721
	worker_attach_to_pool(worker, pool);
1722

T
Tejun Heo 已提交
1723
	return worker;
1724

T
Tejun Heo 已提交
1725
fail:
1726
	if (id >= 0)
1727
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1728 1729 1730 1731 1732 1733 1734 1735
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1736
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1737 1738
 *
 * CONTEXT:
1739
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1740 1741 1742
 */
static void start_worker(struct worker *worker)
{
1743
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1744
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1745 1746 1747
	wake_up_process(worker->task);
}

1748 1749 1750 1751
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1752
 * Grab the managership of @pool and create and start a new worker for it.
1753 1754
 *
 * Return: 0 on success. A negative error code otherwise.
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1770 1771 1772 1773
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1774 1775
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1776 1777
 *
 * CONTEXT:
1778
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1779 1780 1781
 */
static void destroy_worker(struct worker *worker)
{
1782
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1783

1784 1785
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1786
	/* sanity check frenzy */
1787
	if (WARN_ON(worker->current_work) ||
1788 1789
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1790
		return;
T
Tejun Heo 已提交
1791

1792 1793
	pool->nr_workers--;
	pool->nr_idle--;
1794

T
Tejun Heo 已提交
1795
	list_del_init(&worker->entry);
1796
	worker->flags |= WORKER_DIE;
1797
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1798 1799
}

1800
static void idle_worker_timeout(unsigned long __pool)
1801
{
1802
	struct worker_pool *pool = (void *)__pool;
1803

1804
	spin_lock_irq(&pool->lock);
1805

1806
	while (too_many_workers(pool)) {
1807 1808 1809 1810
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1811
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1812 1813
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1814
		if (time_before(jiffies, expires)) {
1815
			mod_timer(&pool->idle_timer, expires);
1816
			break;
1817
		}
1818 1819

		destroy_worker(worker);
1820 1821
	}

1822
	spin_unlock_irq(&pool->lock);
1823
}
1824

1825
static void send_mayday(struct work_struct *work)
1826
{
1827 1828
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1829

1830
	lockdep_assert_held(&wq_mayday_lock);
1831

1832
	if (!wq->rescuer)
1833
		return;
1834 1835

	/* mayday mayday mayday */
1836
	if (list_empty(&pwq->mayday_node)) {
1837 1838 1839 1840 1841 1842
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1843
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1844
		wake_up_process(wq->rescuer->task);
1845
	}
1846 1847
}

1848
static void pool_mayday_timeout(unsigned long __pool)
1849
{
1850
	struct worker_pool *pool = (void *)__pool;
1851 1852
	struct work_struct *work;

1853
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1854
	spin_lock(&pool->lock);
1855

1856
	if (need_to_create_worker(pool)) {
1857 1858 1859 1860 1861 1862
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1863
		list_for_each_entry(work, &pool->worklist, entry)
1864
			send_mayday(work);
L
Linus Torvalds 已提交
1865
	}
1866

1867
	spin_unlock(&pool->lock);
1868
	spin_unlock_irq(&wq_mayday_lock);
1869

1870
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1871 1872
}

1873 1874
/**
 * maybe_create_worker - create a new worker if necessary
1875
 * @pool: pool to create a new worker for
1876
 *
1877
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1878 1879
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1880
 * sent to all rescuers with works scheduled on @pool to resolve
1881 1882
 * possible allocation deadlock.
 *
1883 1884
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1885 1886
 *
 * LOCKING:
1887
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1888 1889 1890
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1891
 * Return:
1892
 * %false if no action was taken and pool->lock stayed locked, %true
1893 1894
 * otherwise.
 */
1895
static bool maybe_create_worker(struct worker_pool *pool)
1896 1897
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1898
{
1899
	if (!need_to_create_worker(pool))
1900 1901
		return false;
restart:
1902
	spin_unlock_irq(&pool->lock);
1903

1904
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1905
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1906 1907 1908 1909

	while (true) {
		struct worker *worker;

1910
		worker = create_worker(pool);
1911
		if (worker) {
1912
			del_timer_sync(&pool->mayday_timer);
1913
			spin_lock_irq(&pool->lock);
1914
			start_worker(worker);
1915 1916
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1917 1918 1919
			return true;
		}

1920
		if (!need_to_create_worker(pool))
1921
			break;
L
Linus Torvalds 已提交
1922

1923
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1924

1925
		if (!need_to_create_worker(pool))
1926 1927 1928
			break;
	}

1929
	del_timer_sync(&pool->mayday_timer);
1930
	spin_lock_irq(&pool->lock);
1931
	if (need_to_create_worker(pool))
1932 1933 1934 1935
		goto restart;
	return true;
}

1936
/**
1937 1938
 * manage_workers - manage worker pool
 * @worker: self
1939
 *
1940
 * Assume the manager role and manage the worker pool @worker belongs
1941
 * to.  At any given time, there can be only zero or one manager per
1942
 * pool.  The exclusion is handled automatically by this function.
1943 1944 1945 1946
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1947 1948
 *
 * CONTEXT:
1949
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1950 1951
 * multiple times.  Does GFP_KERNEL allocations.
 *
1952
 * Return:
1953 1954 1955 1956 1957
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
1958
 */
1959
static bool manage_workers(struct worker *worker)
1960
{
1961
	struct worker_pool *pool = worker->pool;
1962
	bool ret = false;
1963

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1974
	if (!mutex_trylock(&pool->manager_arb))
1975
		return ret;
1976

1977
	ret |= maybe_create_worker(pool);
1978

1979
	mutex_unlock(&pool->manager_arb);
1980
	return ret;
1981 1982
}

1983 1984
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1985
 * @worker: self
1986 1987 1988 1989 1990 1991 1992 1993 1994
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1995
 * spin_lock_irq(pool->lock) which is released and regrabbed.
1996
 */
T
Tejun Heo 已提交
1997
static void process_one_work(struct worker *worker, struct work_struct *work)
1998 1999
__releases(&pool->lock)
__acquires(&pool->lock)
2000
{
2001
	struct pool_workqueue *pwq = get_work_pwq(work);
2002
	struct worker_pool *pool = worker->pool;
2003
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2004
	int work_color;
2005
	struct worker *collision;
2006 2007 2008 2009 2010 2011 2012 2013
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2014 2015 2016
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2017
#endif
2018 2019 2020
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2021
	 * unbound or a disassociated pool.
2022
	 */
2023
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2024
		     !(pool->flags & POOL_DISASSOCIATED) &&
2025
		     raw_smp_processor_id() != pool->cpu);
2026

2027 2028 2029 2030 2031 2032
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2033
	collision = find_worker_executing_work(pool, work);
2034 2035 2036 2037 2038
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2039
	/* claim and dequeue */
2040
	debug_work_deactivate(work);
2041
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2042
	worker->current_work = work;
2043
	worker->current_func = work->func;
2044
	worker->current_pwq = pwq;
2045
	work_color = get_work_color(work);
2046

2047 2048
	list_del_init(&work->entry);

2049 2050 2051 2052 2053 2054 2055
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2056
	/*
2057
	 * Unbound pool isn't concurrency managed and work items should be
2058 2059
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2060 2061
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2062

2063
	/*
2064
	 * Record the last pool and clear PENDING which should be the last
2065
	 * update to @work.  Also, do this inside @pool->lock so that
2066 2067
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2068
	 */
2069
	set_work_pool_and_clear_pending(work, pool->id);
2070

2071
	spin_unlock_irq(&pool->lock);
2072

2073
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2074
	lock_map_acquire(&lockdep_map);
2075
	trace_workqueue_execute_start(work);
2076
	worker->current_func(work);
2077 2078 2079 2080 2081
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2082
	lock_map_release(&lockdep_map);
2083
	lock_map_release(&pwq->wq->lockdep_map);
2084 2085

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2086 2087
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2088 2089
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2090 2091 2092 2093
		debug_show_held_locks(current);
		dump_stack();
	}

2094 2095 2096 2097 2098 2099 2100 2101 2102
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2103
	spin_lock_irq(&pool->lock);
2104

2105 2106 2107 2108
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2109
	/* we're done with it, release */
2110
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2111
	worker->current_work = NULL;
2112
	worker->current_func = NULL;
2113
	worker->current_pwq = NULL;
2114
	worker->desc_valid = false;
2115
	pwq_dec_nr_in_flight(pwq, work_color);
2116 2117
}

2118 2119 2120 2121 2122 2123 2124 2125 2126
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2127
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2128 2129 2130
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2131
{
2132 2133
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2134
						struct work_struct, entry);
T
Tejun Heo 已提交
2135
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2136 2137 2138
	}
}

T
Tejun Heo 已提交
2139 2140
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2141
 * @__worker: self
T
Tejun Heo 已提交
2142
 *
2143 2144 2145 2146 2147
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2148 2149
 *
 * Return: 0
T
Tejun Heo 已提交
2150
 */
T
Tejun Heo 已提交
2151
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2152
{
T
Tejun Heo 已提交
2153
	struct worker *worker = __worker;
2154
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2155

2156 2157
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2158
woke_up:
2159
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2160

2161 2162
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2163
		spin_unlock_irq(&pool->lock);
2164 2165
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2166 2167

		set_task_comm(worker->task, "kworker/dying");
2168
		ida_simple_remove(&pool->worker_ida, worker->id);
2169 2170
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2171
		return 0;
T
Tejun Heo 已提交
2172
	}
2173

T
Tejun Heo 已提交
2174
	worker_leave_idle(worker);
2175
recheck:
2176
	/* no more worker necessary? */
2177
	if (!need_more_worker(pool))
2178 2179 2180
		goto sleep;

	/* do we need to manage? */
2181
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2182 2183
		goto recheck;

T
Tejun Heo 已提交
2184 2185 2186 2187 2188
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2189
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2190

2191
	/*
2192 2193 2194 2195 2196
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2197
	 */
2198
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2199 2200

	do {
T
Tejun Heo 已提交
2201
		struct work_struct *work =
2202
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2203 2204 2205 2206 2207 2208
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2209
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2210 2211 2212
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2213
		}
2214
	} while (keep_working(pool));
2215 2216

	worker_set_flags(worker, WORKER_PREP, false);
2217
sleep:
T
Tejun Heo 已提交
2218
	/*
2219 2220 2221 2222 2223
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2224 2225 2226
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2227
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2228 2229
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2230 2231
}

2232 2233
/**
 * rescuer_thread - the rescuer thread function
2234
 * @__rescuer: self
2235 2236
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2237
 * workqueue which has WQ_MEM_RECLAIM set.
2238
 *
2239
 * Regular work processing on a pool may block trying to create a new
2240 2241 2242 2243 2244
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2245 2246
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2247 2248 2249
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2250 2251
 *
 * Return: 0
2252
 */
2253
static int rescuer_thread(void *__rescuer)
2254
{
2255 2256
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2257
	struct list_head *scheduled = &rescuer->scheduled;
2258
	bool should_stop;
2259 2260

	set_user_nice(current, RESCUER_NICE_LEVEL);
2261 2262 2263 2264 2265 2266

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2267 2268 2269
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2270 2271 2272 2273 2274 2275 2276 2277 2278
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2279

2280
	/* see whether any pwq is asking for help */
2281
	spin_lock_irq(&wq_mayday_lock);
2282 2283 2284 2285

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2286
		struct worker_pool *pool = pwq->pool;
2287 2288 2289
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2290 2291
		list_del_init(&pwq->mayday_node);

2292
		spin_unlock_irq(&wq_mayday_lock);
2293

2294 2295 2296
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2297
		rescuer->pool = pool;
2298 2299 2300 2301 2302

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2303
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2304
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2305
			if (get_work_pwq(work) == pwq)
2306 2307 2308
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2309 2310 2311 2312 2313
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2314

2315 2316 2317 2318 2319 2320
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
		 * go away while we're holding its lock.
		 */
		put_pwq(pwq);

2321
		/*
2322
		 * Leave this pool.  If keep_working() is %true, notify a
2323 2324 2325
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2326 2327
		if (keep_working(pool))
			wake_up_worker(pool);
2328

2329
		rescuer->pool = NULL;
2330
		spin_unlock(&pool->lock);
2331
		spin_lock(&wq_mayday_lock);
2332 2333
	}

2334
	spin_unlock_irq(&wq_mayday_lock);
2335

2336 2337 2338 2339 2340 2341
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2342 2343
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2344 2345
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2346 2347
}

O
Oleg Nesterov 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2359 2360
/**
 * insert_wq_barrier - insert a barrier work
2361
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2362
 * @barr: wq_barrier to insert
2363 2364
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2365
 *
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2378
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2379 2380
 *
 * CONTEXT:
2381
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2382
 */
2383
static void insert_wq_barrier(struct pool_workqueue *pwq,
2384 2385
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2386
{
2387 2388 2389
	struct list_head *head;
	unsigned int linked = 0;

2390
	/*
2391
	 * debugobject calls are safe here even with pool->lock locked
2392 2393 2394 2395
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2396
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2397
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2398
	init_completion(&barr->done);
2399

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2415
	debug_work_activate(&barr->work);
2416
	insert_work(pwq, &barr->work, head,
2417
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2418 2419
}

2420
/**
2421
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2422 2423 2424 2425
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2426
 * Prepare pwqs for workqueue flushing.
2427
 *
2428 2429 2430 2431 2432
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2433 2434 2435 2436 2437 2438 2439
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2440
 * If @work_color is non-negative, all pwqs should have the same
2441 2442 2443 2444
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2445
 * mutex_lock(wq->mutex).
2446
 *
2447
 * Return:
2448 2449 2450
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2451
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2452
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2453
{
2454
	bool wait = false;
2455
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2456

2457
	if (flush_color >= 0) {
2458
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2459
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2460
	}
2461

2462
	for_each_pwq(pwq, wq) {
2463
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2464

2465
		spin_lock_irq(&pool->lock);
2466

2467
		if (flush_color >= 0) {
2468
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2469

2470 2471 2472
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2473 2474 2475
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2476

2477
		if (work_color >= 0) {
2478
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2479
			pwq->work_color = work_color;
2480
		}
L
Linus Torvalds 已提交
2481

2482
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2483
	}
2484

2485
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2486
		complete(&wq->first_flusher->done);
2487

2488
	return wait;
L
Linus Torvalds 已提交
2489 2490
}

2491
/**
L
Linus Torvalds 已提交
2492
 * flush_workqueue - ensure that any scheduled work has run to completion.
2493
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2494
 *
2495 2496
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2497
 */
2498
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2499
{
2500 2501 2502 2503 2504 2505
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2506

2507 2508
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2509

2510
	mutex_lock(&wq->mutex);
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2523
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2524 2525 2526 2527 2528
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2529
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2530 2531 2532

			wq->first_flusher = &this_flusher;

2533
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2534 2535 2536 2537 2538 2539 2540 2541
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2542
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2543
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2544
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2555
	mutex_unlock(&wq->mutex);
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2568
	mutex_lock(&wq->mutex);
2569

2570 2571 2572 2573
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2574 2575
	wq->first_flusher = NULL;

2576 2577
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2590 2591
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2611
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2612 2613 2614
		}

		if (list_empty(&wq->flusher_queue)) {
2615
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2616 2617 2618 2619 2620
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2621
		 * the new first flusher and arm pwqs.
2622
		 */
2623 2624
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2625 2626 2627 2628

		list_del_init(&next->list);
		wq->first_flusher = next;

2629
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2640
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2641
}
2642
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2643

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2658
	struct pool_workqueue *pwq;
2659 2660 2661 2662

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2663
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2664
	 */
2665
	mutex_lock(&wq->mutex);
2666
	if (!wq->nr_drainers++)
2667
		wq->flags |= __WQ_DRAINING;
2668
	mutex_unlock(&wq->mutex);
2669 2670 2671
reflush:
	flush_workqueue(wq);

2672
	mutex_lock(&wq->mutex);
2673

2674
	for_each_pwq(pwq, wq) {
2675
		bool drained;
2676

2677
		spin_lock_irq(&pwq->pool->lock);
2678
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2679
		spin_unlock_irq(&pwq->pool->lock);
2680 2681

		if (drained)
2682 2683 2684 2685
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2686
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2687
				wq->name, flush_cnt);
2688

2689
		mutex_unlock(&wq->mutex);
2690 2691 2692 2693
		goto reflush;
	}

	if (!--wq->nr_drainers)
2694
		wq->flags &= ~__WQ_DRAINING;
2695
	mutex_unlock(&wq->mutex);
2696 2697 2698
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2699
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2700
{
2701
	struct worker *worker = NULL;
2702
	struct worker_pool *pool;
2703
	struct pool_workqueue *pwq;
2704 2705

	might_sleep();
2706 2707

	local_irq_disable();
2708
	pool = get_work_pool(work);
2709 2710
	if (!pool) {
		local_irq_enable();
2711
		return false;
2712
	}
2713

2714
	spin_lock(&pool->lock);
2715
	/* see the comment in try_to_grab_pending() with the same code */
2716 2717 2718
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2719
			goto already_gone;
2720
	} else {
2721
		worker = find_worker_executing_work(pool, work);
2722
		if (!worker)
T
Tejun Heo 已提交
2723
			goto already_gone;
2724
		pwq = worker->current_pwq;
2725
	}
2726

2727
	insert_wq_barrier(pwq, barr, work, worker);
2728
	spin_unlock_irq(&pool->lock);
2729

2730 2731 2732 2733 2734 2735
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2736
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2737
		lock_map_acquire(&pwq->wq->lockdep_map);
2738
	else
2739 2740
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2741

2742
	return true;
T
Tejun Heo 已提交
2743
already_gone:
2744
	spin_unlock_irq(&pool->lock);
2745
	return false;
2746
}
2747 2748 2749 2750 2751

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2752 2753
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2754
 *
2755
 * Return:
2756 2757 2758 2759 2760
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2761 2762
	struct wq_barrier barr;

2763 2764 2765
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2766 2767 2768 2769 2770 2771 2772
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2773
}
2774
EXPORT_SYMBOL_GPL(flush_work);
2775

2776
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2777
{
2778
	unsigned long flags;
2779 2780 2781
	int ret;

	do {
2782 2783 2784 2785 2786 2787
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2788
			flush_work(work);
2789 2790
	} while (unlikely(ret < 0));

2791 2792 2793 2794
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2795
	flush_work(work);
2796
	clear_work_data(work);
2797 2798 2799
	return ret;
}

2800
/**
2801 2802
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2803
 *
2804 2805 2806 2807
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2808
 *
2809 2810
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2811
 *
2812
 * The caller must ensure that the workqueue on which @work was last
2813
 * queued can't be destroyed before this function returns.
2814
 *
2815
 * Return:
2816
 * %true if @work was pending, %false otherwise.
2817
 */
2818
bool cancel_work_sync(struct work_struct *work)
2819
{
2820
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2821
}
2822
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2823

2824
/**
2825 2826
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2827
 *
2828 2829 2830
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2831
 *
2832
 * Return:
2833 2834
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2835
 */
2836 2837
bool flush_delayed_work(struct delayed_work *dwork)
{
2838
	local_irq_disable();
2839
	if (del_timer_sync(&dwork->timer))
2840
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2841
	local_irq_enable();
2842 2843 2844 2845
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2846
/**
2847 2848
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2849
 *
2850 2851 2852 2853 2854 2855 2856 2857 2858
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2859
 *
2860
 * This function is safe to call from any context including IRQ handler.
2861
 */
2862
bool cancel_delayed_work(struct delayed_work *dwork)
2863
{
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2874 2875
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2876
	local_irq_restore(flags);
2877
	return ret;
2878
}
2879
EXPORT_SYMBOL(cancel_delayed_work);
2880

2881 2882 2883 2884 2885 2886
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2887
 * Return:
2888 2889 2890
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2891
{
2892
	return __cancel_work_timer(&dwork->work, true);
2893
}
2894
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2895

2896
/**
2897
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2898 2899
 * @func: the function to call
 *
2900 2901
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2902
 * schedule_on_each_cpu() is very slow.
2903
 *
2904
 * Return:
2905
 * 0 on success, -errno on failure.
2906
 */
2907
int schedule_on_each_cpu(work_func_t func)
2908 2909
{
	int cpu;
2910
	struct work_struct __percpu *works;
2911

2912 2913
	works = alloc_percpu(struct work_struct);
	if (!works)
2914
		return -ENOMEM;
2915

2916 2917
	get_online_cpus();

2918
	for_each_online_cpu(cpu) {
2919 2920 2921
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2922
		schedule_work_on(cpu, work);
2923
	}
2924 2925 2926 2927

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2928
	put_online_cpus();
2929
	free_percpu(works);
2930 2931 2932
	return 0;
}

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
2957 2958
void flush_scheduled_work(void)
{
2959
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
2960
}
2961
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
2962

2963 2964 2965 2966 2967 2968 2969 2970 2971
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
2972
 * Return:	0 - function was executed
2973 2974
 *		1 - function was scheduled for execution
 */
2975
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2976 2977
{
	if (!in_interrupt()) {
2978
		fn(&ew->work);
2979 2980 2981
		return 0;
	}

2982
	INIT_WORK(&ew->work, fn);
2983 2984 2985 2986 2987 2988
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3016 3017
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3018 3019 3020 3021 3022
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3023
static DEVICE_ATTR_RO(per_cpu);
3024

3025 3026
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3027 3028 3029 3030 3031 3032
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3033 3034 3035
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3046
static DEVICE_ATTR_RW(max_active);
3047

3048 3049 3050 3051
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3052
};
3053
ATTRIBUTE_GROUPS(wq_sysfs);
3054

3055 3056
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3057 3058
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3059 3060
	const char *delim = "";
	int node, written = 0;
3061 3062

	rcu_read_lock_sched();
3063 3064 3065 3066 3067 3068 3069
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3081 3082 3083
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3097 3098 3099
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3115
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3130 3131 3132
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3193
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3194
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3195 3196
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3197
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3198 3199 3200 3201 3202
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3203
	.dev_groups			= wq_sysfs_groups,
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3232
 * Return: 0 on success, -errno on failure.
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3325 3326 3327
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3339
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3340 3341 3342 3343 3344 3345
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3346 3347 3348 3349 3350
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3351 3352 3353 3354 3355 3356
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3357 3358 3359 3360 3361 3362 3363 3364
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3365 3366
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3381 3382 3383 3384 3385
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3386 3387
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3388 3389
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3390 3391
 */
static int init_worker_pool(struct worker_pool *pool)
3392 3393
{
	spin_lock_init(&pool->lock);
3394 3395
	pool->id = -1;
	pool->cpu = -1;
3396
	pool->node = NUMA_NO_NODE;
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3410
	mutex_init(&pool->attach_mutex);
3411
	INIT_LIST_HEAD(&pool->workers);
T
Tejun Heo 已提交
3412

3413
	ida_init(&pool->worker_ida);
3414 3415 3416 3417
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3418 3419 3420 3421
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3422 3423
}

3424 3425 3426 3427
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3428
	ida_destroy(&pool->worker_ida);
3429 3430 3431 3432 3433 3434 3435 3436 3437
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3438 3439 3440
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3441 3442
 *
 * Should be called with wq_pool_mutex held.
3443 3444 3445
 */
static void put_unbound_pool(struct worker_pool *pool)
{
3446
	DECLARE_COMPLETION_ONSTACK(detach_completion);
3447 3448
	struct worker *worker;

3449 3450 3451
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3452 3453 3454
		return;

	/* sanity checks */
3455
	if (WARN_ON(!(pool->cpu < 0)) ||
3456
	    WARN_ON(!list_empty(&pool->worklist)))
3457 3458 3459 3460 3461 3462 3463
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3464 3465 3466
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
3467
	 * attach_mutex.
3468
	 */
3469 3470
	mutex_lock(&pool->manager_arb);

3471
	spin_lock_irq(&pool->lock);
3472
	while ((worker = first_idle_worker(pool)))
3473 3474 3475
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3476

3477
	mutex_lock(&pool->attach_mutex);
3478
	if (!list_empty(&pool->workers))
3479
		pool->detach_completion = &detach_completion;
3480
	mutex_unlock(&pool->attach_mutex);
3481 3482 3483 3484

	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3502
 * create a new one.
3503 3504
 *
 * Should be called with wq_pool_mutex held.
3505 3506 3507
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3508 3509 3510 3511 3512
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3513
	int node;
3514

3515
	lockdep_assert_held(&wq_pool_mutex);
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

T
Tejun Heo 已提交
3530
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3531 3532
	copy_workqueue_attrs(pool->attrs, attrs);

3533 3534 3535 3536 3537 3538
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3550 3551 3552 3553
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3554
	if (create_and_start_worker(pool) < 0)
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3583
	bool is_last;
T
Tejun Heo 已提交
3584 3585 3586 3587

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3588
	/*
3589
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3590 3591 3592
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3593
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3594
	list_del_rcu(&pwq->pwqs_node);
3595
	is_last = list_empty(&wq->pwqs);
3596
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3597

3598
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3599
	put_unbound_pool(pool);
3600 3601
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3602 3603 3604 3605 3606 3607
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3608 3609
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3610
		kfree(wq);
3611
	}
T
Tejun Heo 已提交
3612 3613
}

3614
/**
3615
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3616 3617
 * @pwq: target pool_workqueue
 *
3618 3619 3620
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3621
 */
3622
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3623
{
3624 3625 3626 3627
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3628
	lockdep_assert_held(&wq->mutex);
3629 3630 3631 3632 3633

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3634
	spin_lock_irq(&pwq->pool->lock);
3635

3636 3637 3638 3639 3640 3641
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
3642
		pwq->max_active = wq->saved_max_active;
3643

3644 3645 3646
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3647 3648 3649 3650 3651 3652

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3653 3654 3655 3656
	} else {
		pwq->max_active = 0;
	}

3657
	spin_unlock_irq(&pwq->pool->lock);
3658 3659
}

3660
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3661 3662
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3663 3664 3665
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3666 3667
	memset(pwq, 0, sizeof(*pwq));

3668 3669 3670
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3671
	pwq->refcnt = 1;
3672
	INIT_LIST_HEAD(&pwq->delayed_works);
3673
	INIT_LIST_HEAD(&pwq->pwqs_node);
3674
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3675
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3676
}
3677

3678
/* sync @pwq with the current state of its associated wq and link it */
3679
static void link_pwq(struct pool_workqueue *pwq)
3680 3681 3682 3683
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3684

3685 3686 3687 3688
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3689 3690
	/*
	 * Set the matching work_color.  This is synchronized with
3691
	 * wq->mutex to avoid confusing flush_workqueue().
3692
	 */
3693
	pwq->work_color = wq->work_color;
3694 3695 3696 3697 3698

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3699
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3700
}
3701

3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3715
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3716 3717 3718
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3719
	}
3720

3721 3722
	init_pwq(pwq, wq, pool);
	return pwq;
3723 3724
}

3725 3726 3727 3728 3729 3730 3731
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3732
		kmem_cache_free(pwq_cache, pwq);
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3745
 * calculation.  The result is stored in @cpumask.
3746 3747 3748 3749 3750 3751 3752 3753
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3754 3755 3756
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3757 3758 3759 3760
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3761
	if (!wq_numa_enabled || attrs->no_numa)
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3798 3799 3800 3801 3802
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3803 3804 3805 3806 3807 3808
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3809
 *
3810 3811 3812
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3813 3814 3815 3816
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3817 3818
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3819
	int node, ret;
3820

3821
	/* only unbound workqueues can change attributes */
3822 3823 3824
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3825 3826 3827 3828
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3829
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3830
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3831 3832
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3833 3834
		goto enomem;

3835
	/* make a copy of @attrs and sanitize it */
3836 3837 3838
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3853
	mutex_lock(&wq_pool_mutex);
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3875
	mutex_unlock(&wq_pool_mutex);
3876

3877
	/* all pwqs have been created successfully, let's install'em */
3878
	mutex_lock(&wq->mutex);
3879

3880
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3881 3882

	/* save the previous pwq and install the new one */
3883
	for_each_node(node)
3884 3885 3886 3887 3888
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3889 3890

	mutex_unlock(&wq->mutex);
3891

3892 3893 3894 3895 3896 3897
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3898 3899 3900
	ret = 0;
	/* fall through */
out_free:
3901
	free_workqueue_attrs(tmp_attrs);
3902
	free_workqueue_attrs(new_attrs);
3903
	kfree(pwq_tbl);
3904
	return ret;
3905

3906 3907 3908 3909 3910 3911 3912
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3913
enomem:
3914 3915
	ret = -ENOMEM;
	goto out_free;
3916 3917
}

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
3963 3964
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
3965 3966 3967 3968 3969 3970 3971 3972

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
3973
	 * wq's, the default pwq should be used.
3974 3975 3976 3977 3978
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
3979
		goto use_dfl_pwq;
3980 3981 3982 3983 3984 3985 3986
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3987 3988
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3989 3990
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4013
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4014
{
4015
	bool highpri = wq->flags & WQ_HIGHPRI;
4016
	int cpu, ret;
4017 4018

	if (!(wq->flags & WQ_UNBOUND)) {
4019 4020
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4021 4022 4023
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4024 4025
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4026
			struct worker_pool *cpu_pools =
4027
				per_cpu(cpu_worker_pools, cpu);
4028

4029 4030 4031
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4032
			link_pwq(pwq);
4033
			mutex_unlock(&wq->mutex);
4034
		}
4035
		return 0;
4036 4037 4038 4039 4040 4041 4042
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4043
	} else {
4044
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4045
	}
T
Tejun Heo 已提交
4046 4047
}

4048 4049
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4050
{
4051 4052 4053
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4054 4055
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4056

4057
	return clamp_val(max_active, 1, lim);
4058 4059
}

4060
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4061 4062 4063
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4064
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4065
{
4066
	size_t tbl_size = 0;
4067
	va_list args;
L
Linus Torvalds 已提交
4068
	struct workqueue_struct *wq;
4069
	struct pool_workqueue *pwq;
4070

4071 4072 4073 4074
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4075
	/* allocate wq and format name */
4076 4077 4078 4079
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4080
	if (!wq)
4081
		return NULL;
4082

4083 4084 4085 4086 4087 4088
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4089 4090
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4091
	va_end(args);
L
Linus Torvalds 已提交
4092

4093
	max_active = max_active ?: WQ_DFL_ACTIVE;
4094
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4095

4096
	/* init wq */
4097
	wq->flags = flags;
4098
	wq->saved_max_active = max_active;
4099
	mutex_init(&wq->mutex);
4100
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4101
	INIT_LIST_HEAD(&wq->pwqs);
4102 4103
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4104
	INIT_LIST_HEAD(&wq->maydays);
4105

4106
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4107
	INIT_LIST_HEAD(&wq->list);
4108

4109
	if (alloc_and_link_pwqs(wq) < 0)
4110
		goto err_free_wq;
T
Tejun Heo 已提交
4111

4112 4113 4114 4115 4116
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4117 4118
		struct worker *rescuer;

4119
		rescuer = alloc_worker();
4120
		if (!rescuer)
4121
			goto err_destroy;
4122

4123 4124
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4125
					       wq->name);
4126 4127 4128 4129
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4130

4131
		wq->rescuer = rescuer;
4132
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4133
		wake_up_process(rescuer->task);
4134 4135
	}

4136 4137 4138
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4139
	/*
4140 4141 4142
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4143
	 */
4144
	mutex_lock(&wq_pool_mutex);
4145

4146
	mutex_lock(&wq->mutex);
4147 4148
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4149
	mutex_unlock(&wq->mutex);
4150

T
Tejun Heo 已提交
4151
	list_add(&wq->list, &workqueues);
4152

4153
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4154

4155
	return wq;
4156 4157

err_free_wq:
4158
	free_workqueue_attrs(wq->unbound_attrs);
4159 4160 4161 4162
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4163
	return NULL;
4164
}
4165
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4166

4167 4168 4169 4170 4171 4172 4173 4174
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4175
	struct pool_workqueue *pwq;
4176
	int node;
4177

4178 4179
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4180

4181
	/* sanity checks */
4182
	mutex_lock(&wq->mutex);
4183
	for_each_pwq(pwq, wq) {
4184 4185
		int i;

4186 4187
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4188
				mutex_unlock(&wq->mutex);
4189
				return;
4190 4191 4192
			}
		}

4193
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4194
		    WARN_ON(pwq->nr_active) ||
4195
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4196
			mutex_unlock(&wq->mutex);
4197
			return;
4198
		}
4199
	}
4200
	mutex_unlock(&wq->mutex);
4201

4202 4203 4204 4205
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4206
	mutex_lock(&wq_pool_mutex);
4207
	list_del_init(&wq->list);
4208
	mutex_unlock(&wq_pool_mutex);
4209

4210 4211
	workqueue_sysfs_unregister(wq);

4212
	if (wq->rescuer) {
4213
		kthread_stop(wq->rescuer->task);
4214
		kfree(wq->rescuer);
4215
		wq->rescuer = NULL;
4216 4217
	}

T
Tejun Heo 已提交
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4228 4229
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4230
		 */
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4243
		put_pwq_unlocked(pwq);
4244
	}
4245 4246 4247
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4260
	struct pool_workqueue *pwq;
4261

4262 4263 4264 4265
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4266
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4267

4268
	mutex_lock(&wq->mutex);
4269 4270 4271

	wq->saved_max_active = max_active;

4272 4273
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4274

4275
	mutex_unlock(&wq->mutex);
4276
}
4277
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4278

4279 4280 4281 4282 4283
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4284 4285
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4286 4287 4288 4289 4290
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4291
	return worker && worker->rescue_wq;
4292 4293
}

4294
/**
4295 4296 4297
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4298
 *
4299 4300 4301
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4302
 *
4303 4304 4305 4306 4307 4308
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4309
 * Return:
4310
 * %true if congested, %false otherwise.
4311
 */
4312
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4313
{
4314
	struct pool_workqueue *pwq;
4315 4316
	bool ret;

4317
	rcu_read_lock_sched();
4318

4319 4320 4321
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4322 4323 4324
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4325
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4326

4327
	ret = !list_empty(&pwq->delayed_works);
4328
	rcu_read_unlock_sched();
4329 4330

	return ret;
L
Linus Torvalds 已提交
4331
}
4332
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4333

4334 4335 4336 4337 4338 4339 4340 4341
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4342
 * Return:
4343 4344 4345
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4346
{
4347
	struct worker_pool *pool;
4348 4349
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4350

4351 4352
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4353

4354 4355
	local_irq_save(flags);
	pool = get_work_pool(work);
4356
	if (pool) {
4357
		spin_lock(&pool->lock);
4358 4359
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4360
		spin_unlock(&pool->lock);
4361
	}
4362
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4363

4364
	return ret;
L
Linus Torvalds 已提交
4365
}
4366
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4367

4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4445 4446 4447
/*
 * CPU hotplug.
 *
4448
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4449
 * are a lot of assumptions on strong associations among work, pwq and
4450
 * pool which make migrating pending and scheduled works very
4451
 * difficult to implement without impacting hot paths.  Secondly,
4452
 * worker pools serve mix of short, long and very long running works making
4453 4454
 * blocked draining impractical.
 *
4455
 * This is solved by allowing the pools to be disassociated from the CPU
4456 4457
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4458
 */
L
Linus Torvalds 已提交
4459

4460
static void wq_unbind_fn(struct work_struct *work)
4461
{
4462
	int cpu = smp_processor_id();
4463
	struct worker_pool *pool;
4464
	struct worker *worker;
4465

4466
	for_each_cpu_worker_pool(pool, cpu) {
4467
		mutex_lock(&pool->attach_mutex);
4468
		spin_lock_irq(&pool->lock);
4469

4470
		/*
4471
		 * We've blocked all attach/detach operations. Make all workers
4472 4473 4474 4475 4476
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4477
		for_each_pool_worker(worker, pool)
4478
			worker->flags |= WORKER_UNBOUND;
4479

4480
		pool->flags |= POOL_DISASSOCIATED;
4481

4482
		spin_unlock_irq(&pool->lock);
4483
		mutex_unlock(&pool->attach_mutex);
4484

4485 4486 4487 4488 4489 4490 4491
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4492

4493 4494 4495 4496 4497 4498 4499 4500
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4501
		atomic_set(&pool->nr_running, 0);
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4512 4513
}

T
Tejun Heo 已提交
4514 4515 4516 4517
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4518
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4519 4520 4521
 */
static void rebind_workers(struct worker_pool *pool)
{
4522
	struct worker *worker;
T
Tejun Heo 已提交
4523

4524
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4525

4526 4527 4528 4529 4530 4531 4532
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4533
	for_each_pool_worker(worker, pool)
4534 4535
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4536

4537
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4538

4539
	for_each_pool_worker(worker, pool) {
4540
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4541 4542

		/*
4543 4544 4545 4546 4547 4548
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4549
		 */
4550 4551
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4552

4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4572
	}
4573 4574

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4575 4576
}

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4592
	lockdep_assert_held(&pool->attach_mutex);
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4604
	for_each_pool_worker(worker, pool)
4605 4606 4607 4608
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4609 4610 4611 4612
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4613
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4614 4615
					       unsigned long action,
					       void *hcpu)
4616
{
4617
	int cpu = (unsigned long)hcpu;
4618
	struct worker_pool *pool;
4619
	struct workqueue_struct *wq;
4620
	int pi;
4621

T
Tejun Heo 已提交
4622
	switch (action & ~CPU_TASKS_FROZEN) {
4623
	case CPU_UP_PREPARE:
4624
		for_each_cpu_worker_pool(pool, cpu) {
4625 4626
			if (pool->nr_workers)
				continue;
4627
			if (create_and_start_worker(pool) < 0)
4628
				return NOTIFY_BAD;
4629
		}
T
Tejun Heo 已提交
4630
		break;
4631

4632 4633
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4634
		mutex_lock(&wq_pool_mutex);
4635 4636

		for_each_pool(pool, pi) {
4637
			mutex_lock(&pool->attach_mutex);
4638

4639 4640 4641 4642
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4643

4644 4645 4646 4647
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4648

4649
			mutex_unlock(&pool->attach_mutex);
4650
		}
4651

4652 4653 4654 4655
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4656
		mutex_unlock(&wq_pool_mutex);
4657
		break;
4658
	}
4659 4660 4661 4662 4663 4664 4665
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4666
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4667 4668 4669
						 unsigned long action,
						 void *hcpu)
{
4670
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4671
	struct work_struct unbind_work;
4672
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4673

4674 4675
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4676
		/* unbinding per-cpu workers should happen on the local CPU */
4677
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4678
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4679 4680 4681 4682 4683 4684 4685 4686

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4687
		flush_work(&unbind_work);
4688
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4689
		break;
4690 4691 4692 4693
	}
	return NOTIFY_OK;
}

4694
#ifdef CONFIG_SMP
4695

4696
struct work_for_cpu {
4697
	struct work_struct work;
4698 4699 4700 4701 4702
	long (*fn)(void *);
	void *arg;
	long ret;
};

4703
static void work_for_cpu_fn(struct work_struct *work)
4704
{
4705 4706
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4707 4708 4709 4710 4711 4712 4713 4714 4715
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4716
 * It is up to the caller to ensure that the cpu doesn't go offline.
4717
 * The caller must not hold any locks which would prevent @fn from completing.
4718 4719
 *
 * Return: The value @fn returns.
4720
 */
4721
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4722
{
4723
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4724

4725 4726
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4727
	flush_work(&wfc.work);
4728
	destroy_work_on_stack(&wfc.work);
4729 4730 4731 4732 4733
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4734 4735 4736 4737 4738
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4739
 * Start freezing workqueues.  After this function returns, all freezable
4740
 * workqueues will queue new works to their delayed_works list instead of
4741
 * pool->worklist.
4742 4743
 *
 * CONTEXT:
4744
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4745 4746 4747
 */
void freeze_workqueues_begin(void)
{
4748 4749
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4750

4751
	mutex_lock(&wq_pool_mutex);
4752

4753
	WARN_ON_ONCE(workqueue_freezing);
4754 4755
	workqueue_freezing = true;

4756
	list_for_each_entry(wq, &workqueues, list) {
4757
		mutex_lock(&wq->mutex);
4758 4759
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4760
		mutex_unlock(&wq->mutex);
4761
	}
4762

4763
	mutex_unlock(&wq_pool_mutex);
4764 4765 4766
}

/**
4767
 * freeze_workqueues_busy - are freezable workqueues still busy?
4768 4769 4770 4771 4772
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4773
 * Grabs and releases wq_pool_mutex.
4774
 *
4775
 * Return:
4776 4777
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4778 4779 4780 4781
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4782 4783
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4784

4785
	mutex_lock(&wq_pool_mutex);
4786

4787
	WARN_ON_ONCE(!workqueue_freezing);
4788

4789 4790 4791
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4792 4793 4794 4795
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4796
		rcu_read_lock_sched();
4797
		for_each_pwq(pwq, wq) {
4798
			WARN_ON_ONCE(pwq->nr_active < 0);
4799
			if (pwq->nr_active) {
4800
				busy = true;
4801
				rcu_read_unlock_sched();
4802 4803 4804
				goto out_unlock;
			}
		}
4805
		rcu_read_unlock_sched();
4806 4807
	}
out_unlock:
4808
	mutex_unlock(&wq_pool_mutex);
4809 4810 4811 4812 4813 4814 4815
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4816
 * frozen works are transferred to their respective pool worklists.
4817 4818
 *
 * CONTEXT:
4819
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4820 4821 4822
 */
void thaw_workqueues(void)
{
4823 4824
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4825

4826
	mutex_lock(&wq_pool_mutex);
4827 4828 4829 4830

	if (!workqueue_freezing)
		goto out_unlock;

4831
	workqueue_freezing = false;
4832

4833 4834
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4835
		mutex_lock(&wq->mutex);
4836 4837
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4838
		mutex_unlock(&wq->mutex);
4839 4840 4841
	}

out_unlock:
4842
	mutex_unlock(&wq_pool_mutex);
4843 4844 4845
}
#endif /* CONFIG_FREEZER */

4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4858 4859 4860 4861 4862
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4863 4864 4865
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4866 4867 4868 4869 4870 4871 4872 4873 4874
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
4875 4876
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4892
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4893
{
T
Tejun Heo 已提交
4894 4895
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4896

4897 4898 4899 4900
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4901
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4902
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4903

4904 4905
	wq_numa_init();

4906
	/* initialize CPU pools */
4907
	for_each_possible_cpu(cpu) {
4908
		struct worker_pool *pool;
4909

T
Tejun Heo 已提交
4910
		i = 0;
4911
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4912
			BUG_ON(init_worker_pool(pool));
4913
			pool->cpu = cpu;
4914
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4915
			pool->attrs->nice = std_nice[i++];
4916
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
4917

T
Tejun Heo 已提交
4918
			/* alloc pool ID */
4919
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4920
			BUG_ON(worker_pool_assign_id(pool));
4921
			mutex_unlock(&wq_pool_mutex);
4922
		}
4923 4924
	}

4925
	/* create the initial worker */
4926
	for_each_online_cpu(cpu) {
4927
		struct worker_pool *pool;
4928

4929
		for_each_cpu_worker_pool(pool, cpu) {
4930
			pool->flags &= ~POOL_DISASSOCIATED;
4931
			BUG_ON(create_and_start_worker(pool) < 0);
4932
		}
4933 4934
	}

4935
	/* create default unbound and ordered wq attrs */
4936 4937 4938 4939 4940 4941
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
4952 4953
	}

4954
	system_wq = alloc_workqueue("events", 0, 0);
4955
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4956
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4957 4958
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4959 4960
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4961 4962 4963 4964 4965
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
4966
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4967 4968 4969
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
4970
	return 0;
L
Linus Torvalds 已提交
4971
}
4972
early_initcall(init_workqueues);