workqueue.c 139.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * create_worker() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
73

T
Tejun Heo 已提交
74 75 76
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
77
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
78
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
79
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
80
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
81

82 83
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
84

85
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
86

87
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
88
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
89

90 91 92
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

93 94 95
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
96 97 98 99 100 101 102 103
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
104
	HIGHPRI_NICE_LEVEL	= -20,
105 106

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
107
};
L
Linus Torvalds 已提交
108 109

/*
T
Tejun Heo 已提交
110 111
 * Structure fields follow one of the following exclusion rules.
 *
112 113
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
114
 *
115 116 117
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
118
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
119
 *
120 121 122 123
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
124
 *
125
 * A: pool->attach_mutex protected.
126
 *
127
 * PL: wq_pool_mutex protected.
128
 *
129
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
130
 *
131 132
 * WQ: wq->mutex protected.
 *
133
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
134 135
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
136 137
 */

138
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
139

140
struct worker_pool {
141
	spinlock_t		lock;		/* the pool lock */
142
	int			cpu;		/* I: the associated cpu */
143
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
144
	int			id;		/* I: pool ID */
145
	unsigned int		flags;		/* X: flags */
146 147 148

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
149 150

	/* nr_idle includes the ones off idle_list for rebinding */
151 152 153 154 155 156
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

157
	/* a workers is either on busy_hash or idle_list, or the manager */
158 159 160
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

161
	/* see manage_workers() for details on the two manager mutexes */
162
	struct mutex		manager_arb;	/* manager arbitration */
163 164
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
165
	struct completion	*detach_completion; /* all workers detached */
166

167 168
	struct ida		worker_ida;	/* worker IDs for task name */

T
Tejun Heo 已提交
169
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 171
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
172

173 174 175 176 177 178
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 180 181 182 183 184

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
185 186
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
187
/*
188 189 190 191
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
192
 */
193
struct pool_workqueue {
194
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
195
	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 197
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
198
	int			refcnt;		/* L: reference count */
199 200
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
201
	int			nr_active;	/* L: nr of active works */
202
	int			max_active;	/* L: max active works */
203
	struct list_head	delayed_works;	/* L: delayed works */
204
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
206 207 208 209 210

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
211
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
212 213 214
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
215
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
216

217 218 219 220
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
221 222
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
223 224 225
	struct completion	done;		/* flush completion */
};

226 227
struct wq_device;

L
Linus Torvalds 已提交
228
/*
229 230
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
231 232
 */
struct workqueue_struct {
233
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234
	struct list_head	list;		/* PL: list of all workqueues */
235

236 237 238
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
239
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 241 242
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243

244
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 246
	struct worker		*rescuer;	/* I: rescue worker */

247
	int			nr_drainers;	/* WQ: drain in progress */
248
	int			saved_max_active; /* WQ: saved pwq max_active */
249

250
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252

253 254 255
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
256
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
257
	struct lockdep_map	lockdep_map;
258
#endif
259
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260 261 262 263

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
265 266
};

267 268
static struct kmem_cache *pwq_cache;

269 270 271 272
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

273 274 275
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

276 277 278 279 280 281 282 283 284
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

285 286
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

287 288 289
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

290
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
291
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
292

293 294
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
295 296 297 298 299

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

300
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
301

302
/* PL: hash of all unbound pools keyed by pool->attrs */
303 304
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

305
/* I: attributes used when instantiating standard unbound pools on demand */
306 307
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

308 309 310
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

311
struct workqueue_struct *system_wq __read_mostly;
312
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
313
struct workqueue_struct *system_highpri_wq __read_mostly;
314
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
315
struct workqueue_struct *system_long_wq __read_mostly;
316
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
317
struct workqueue_struct *system_unbound_wq __read_mostly;
318
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
319
struct workqueue_struct *system_freezable_wq __read_mostly;
320
EXPORT_SYMBOL_GPL(system_freezable_wq);
321 322 323 324
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
325

326 327 328 329
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

330 331 332
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

333
#define assert_rcu_or_pool_mutex()					\
334
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
335 336
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
337

338
#define assert_rcu_or_wq_mutex(wq)					\
339
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
340
			   lockdep_is_held(&wq->mutex),			\
341
			   "sched RCU or wq->mutex should be held")
342

343 344 345
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
346
	     (pool)++)
347

T
Tejun Heo 已提交
348 349 350
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
351
 * @pi: integer used for iteration
352
 *
353 354 355
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
356 357 358
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
359
 */
360 361
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
362
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
363
		else
T
Tejun Heo 已提交
364

365 366 367 368 369
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
370
 * This must be called with @pool->attach_mutex.
371 372 373 374
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
375 376
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
377
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
378 379
		else

380 381 382 383
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
384
 *
385
 * This must be called either with wq->mutex held or sched RCU read locked.
386 387
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
388 389 390
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
391 392
 */
#define for_each_pwq(pwq, wq)						\
393
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
394
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
395
		else
396

397 398 399 400
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

401 402 403 404 405
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
441
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
477
	.debug_hint	= work_debug_hint,
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

508 509 510 511 512 513 514
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

515 516 517 518 519
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

520 521 522 523 524 525 526
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
527 528 529 530
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

531
	lockdep_assert_held(&wq_pool_mutex);
532

533 534
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
535
	if (ret >= 0) {
T
Tejun Heo 已提交
536
		pool->id = ret;
537 538
		return 0;
	}
539
	return ret;
540 541
}

542 543 544 545 546 547 548 549
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
550 551
 *
 * Return: The unbound pool_workqueue for @node.
552 553 554 555 556 557 558 559
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
575

576
/*
577 578
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
579
 * is cleared and the high bits contain OFFQ flags and pool ID.
580
 *
581 582
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
583 584
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
585
 *
586
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
587
 * corresponding to a work.  Pool is available once the work has been
588
 * queued anywhere after initialization until it is sync canceled.  pwq is
589
 * available only while the work item is queued.
590
 *
591 592 593 594
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
595
 */
596 597
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
598
{
599
	WARN_ON_ONCE(!work_pending(work));
600 601
	atomic_long_set(&work->data, data | flags | work_static(work));
}
602

603
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
604 605
			 unsigned long extra_flags)
{
606 607
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
608 609
}

610 611 612 613 614 615 616
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

617 618
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
619
{
620 621 622 623 624 625 626
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
627
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
628
}
629

630
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
631
{
632 633
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
634 635
}

636
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
637
{
638
	unsigned long data = atomic_long_read(&work->data);
639

640
	if (data & WORK_STRUCT_PWQ)
641 642 643
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
644 645
}

646 647 648 649
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
650 651 652
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
653 654 655 656 657
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
658 659
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
660 661
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
662
{
663
	unsigned long data = atomic_long_read(&work->data);
664
	int pool_id;
665

666
	assert_rcu_or_pool_mutex();
667

668 669
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
670
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
671

672 673
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
674 675
		return NULL;

676
	return idr_find(&worker_pool_idr, pool_id);
677 678 679 680 681 682
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
683
 * Return: The worker_pool ID @work was last associated with.
684 685 686 687
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
688 689
	unsigned long data = atomic_long_read(&work->data);

690 691
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
692
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
693

694
	return data >> WORK_OFFQ_POOL_SHIFT;
695 696
}

697 698
static void mark_work_canceling(struct work_struct *work)
{
699
	unsigned long pool_id = get_work_pool_id(work);
700

701 702
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
703 704 705 706 707 708
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

709
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
710 711
}

712
/*
713 714
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
715
 * they're being called with pool->lock held.
716 717
 */

718
static bool __need_more_worker(struct worker_pool *pool)
719
{
720
	return !atomic_read(&pool->nr_running);
721 722
}

723
/*
724 725
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
726 727
 *
 * Note that, because unbound workers never contribute to nr_running, this
728
 * function will always return %true for unbound pools as long as the
729
 * worklist isn't empty.
730
 */
731
static bool need_more_worker(struct worker_pool *pool)
732
{
733
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
734
}
735

736
/* Can I start working?  Called from busy but !running workers. */
737
static bool may_start_working(struct worker_pool *pool)
738
{
739
	return pool->nr_idle;
740 741 742
}

/* Do I need to keep working?  Called from currently running workers. */
743
static bool keep_working(struct worker_pool *pool)
744
{
745 746
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
747 748 749
}

/* Do we need a new worker?  Called from manager. */
750
static bool need_to_create_worker(struct worker_pool *pool)
751
{
752
	return need_more_worker(pool) && !may_start_working(pool);
753
}
754

755
/* Do we have too many workers and should some go away? */
756
static bool too_many_workers(struct worker_pool *pool)
757
{
758
	bool managing = mutex_is_locked(&pool->manager_arb);
759 760
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
761

762 763 764 765 766 767 768
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

769
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
770 771
}

772
/*
773 774 775
 * Wake up functions.
 */

776
/* Return the first worker.  Safe with preemption disabled */
777
static struct worker *first_worker(struct worker_pool *pool)
778
{
779
	if (unlikely(list_empty(&pool->idle_list)))
780 781
		return NULL;

782
	return list_first_entry(&pool->idle_list, struct worker, entry);
783 784 785 786
}

/**
 * wake_up_worker - wake up an idle worker
787
 * @pool: worker pool to wake worker from
788
 *
789
 * Wake up the first idle worker of @pool.
790 791
 *
 * CONTEXT:
792
 * spin_lock_irq(pool->lock).
793
 */
794
static void wake_up_worker(struct worker_pool *pool)
795
{
796
	struct worker *worker = first_worker(pool);
797 798 799 800 801

	if (likely(worker))
		wake_up_process(worker->task);
}

802
/**
803 804 805 806 807 808 809 810 811 812
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
813
void wq_worker_waking_up(struct task_struct *task, int cpu)
814 815 816
{
	struct worker *worker = kthread_data(task);

817
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
818
		WARN_ON_ONCE(worker->pool->cpu != cpu);
819
		atomic_inc(&worker->pool->nr_running);
820
	}
821 822 823 824 825 826 827 828 829 830 831 832 833 834
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
835
 * Return:
836 837
 * Worker task on @cpu to wake up, %NULL if none.
 */
838
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
839 840
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
841
	struct worker_pool *pool;
842

843 844 845 846 847
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
848
	if (worker->flags & WORKER_NOT_RUNNING)
849 850
		return NULL;

851 852
	pool = worker->pool;

853
	/* this can only happen on the local cpu */
854 855
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
856 857 858 859 860 861

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
862 863 864
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
865
	 * manipulating idle_list, so dereferencing idle_list without pool
866
	 * lock is safe.
867
	 */
868 869
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
870
		to_wakeup = first_worker(pool);
871 872 873 874 875
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
876
 * @worker: self
877 878 879
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
880 881 882
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
883
 *
884
 * CONTEXT:
885
 * spin_lock_irq(pool->lock)
886 887 888 889
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
890
	struct worker_pool *pool = worker->pool;
891

892 893
	WARN_ON_ONCE(worker->task != current);

894 895 896 897 898 899 900 901
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
902
			if (atomic_dec_and_test(&pool->nr_running) &&
903
			    !list_empty(&pool->worklist))
904
				wake_up_worker(pool);
905
		} else
906
			atomic_dec(&pool->nr_running);
907 908
	}

909 910 911 912
	worker->flags |= flags;
}

/**
913
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
914
 * @worker: self
915 916
 * @flags: flags to clear
 *
917
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
918
 *
919
 * CONTEXT:
920
 * spin_lock_irq(pool->lock)
921 922 923
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
924
	struct worker_pool *pool = worker->pool;
925 926
	unsigned int oflags = worker->flags;

927 928
	WARN_ON_ONCE(worker->task != current);

929
	worker->flags &= ~flags;
930

931 932 933 934 935
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
936 937
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
938
			atomic_inc(&pool->nr_running);
939 940
}

941 942
/**
 * find_worker_executing_work - find worker which is executing a work
943
 * @pool: pool of interest
944 945
 * @work: work to find worker for
 *
946 947
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
948 949 950 951 952 953 954 955 956 957 958 959
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
960 961 962 963 964 965
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
966 967
 *
 * CONTEXT:
968
 * spin_lock_irq(pool->lock).
969
 *
970 971
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
972
 * otherwise.
973
 */
974
static struct worker *find_worker_executing_work(struct worker_pool *pool,
975
						 struct work_struct *work)
976
{
977 978
	struct worker *worker;

979
	hash_for_each_possible(pool->busy_hash, worker, hentry,
980 981 982
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
983 984 985
			return worker;

	return NULL;
986 987
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1003
 * spin_lock_irq(pool->lock).
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1087
static void pwq_activate_delayed_work(struct work_struct *work)
1088
{
1089
	struct pool_workqueue *pwq = get_work_pwq(work);
1090 1091

	trace_workqueue_activate_work(work);
1092
	move_linked_works(work, &pwq->pool->worklist, NULL);
1093
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1094
	pwq->nr_active++;
1095 1096
}

1097
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1098
{
1099
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1100 1101
						    struct work_struct, entry);

1102
	pwq_activate_delayed_work(work);
1103 1104
}

1105
/**
1106 1107
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1108 1109 1110
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1111
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1112 1113
 *
 * CONTEXT:
1114
 * spin_lock_irq(pool->lock).
1115
 */
1116
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1117
{
T
Tejun Heo 已提交
1118
	/* uncolored work items don't participate in flushing or nr_active */
1119
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1120
		goto out_put;
1121

1122
	pwq->nr_in_flight[color]--;
1123

1124 1125
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1126
		/* one down, submit a delayed one */
1127 1128
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1129 1130 1131
	}

	/* is flush in progress and are we at the flushing tip? */
1132
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1133
		goto out_put;
1134 1135

	/* are there still in-flight works? */
1136
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1137
		goto out_put;
1138

1139 1140
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1141 1142

	/*
1143
	 * If this was the last pwq, wake up the first flusher.  It
1144 1145
	 * will handle the rest.
	 */
1146 1147
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1148 1149
out_put:
	put_pwq(pwq);
1150 1151
}

1152
/**
1153
 * try_to_grab_pending - steal work item from worklist and disable irq
1154 1155
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1156
 * @flags: place to store irq state
1157 1158
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1159
 * stable state - idle, on timer or on worklist.
1160
 *
1161
 * Return:
1162 1163 1164
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1165 1166
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1167
 *
1168
 * Note:
1169
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1170 1171 1172
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1173 1174 1175 1176
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1177
 * This function is safe to call from any context including IRQ handler.
1178
 */
1179 1180
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1181
{
1182
	struct worker_pool *pool;
1183
	struct pool_workqueue *pwq;
1184

1185 1186
	local_irq_save(*flags);

1187 1188 1189 1190
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1191 1192 1193 1194 1195
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1196 1197 1198 1199 1200
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1201 1202 1203 1204 1205 1206 1207
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1208 1209
	pool = get_work_pool(work);
	if (!pool)
1210
		goto fail;
1211

1212
	spin_lock(&pool->lock);
1213
	/*
1214 1215 1216 1217 1218
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1219 1220
	 * item is currently queued on that pool.
	 */
1221 1222
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1223 1224 1225 1226 1227
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1228
		 * on the delayed_list, will confuse pwq->nr_active
1229 1230 1231 1232
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1233
			pwq_activate_delayed_work(work);
1234 1235

		list_del_init(&work->entry);
1236
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1237

1238
		/* work->data points to pwq iff queued, point to pool */
1239 1240 1241 1242
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1243
	}
1244
	spin_unlock(&pool->lock);
1245 1246 1247 1248 1249
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1250
	return -EAGAIN;
1251 1252
}

T
Tejun Heo 已提交
1253
/**
1254
 * insert_work - insert a work into a pool
1255
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1256 1257 1258 1259
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1260
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1261
 * work_struct flags.
T
Tejun Heo 已提交
1262 1263
 *
 * CONTEXT:
1264
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1265
 */
1266 1267
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1268
{
1269
	struct worker_pool *pool = pwq->pool;
1270

T
Tejun Heo 已提交
1271
	/* we own @work, set data and link */
1272
	set_work_pwq(work, pwq, extra_flags);
1273
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1274
	get_pwq(pwq);
1275 1276

	/*
1277 1278 1279
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1280 1281 1282
	 */
	smp_mb();

1283 1284
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1285 1286
}

1287 1288
/*
 * Test whether @work is being queued from another work executing on the
1289
 * same workqueue.
1290 1291 1292
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1293 1294 1295 1296 1297 1298 1299
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1300
	return worker && worker->current_pwq->wq == wq;
1301 1302
}

1303
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1304 1305
			 struct work_struct *work)
{
1306
	struct pool_workqueue *pwq;
1307
	struct worker_pool *last_pool;
1308
	struct list_head *worklist;
1309
	unsigned int work_flags;
1310
	unsigned int req_cpu = cpu;
1311 1312 1313 1314 1315 1316 1317 1318

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1319

1320
	debug_work_activate(work);
1321

1322
	/* if draining, only works from the same workqueue are allowed */
1323
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1324
	    WARN_ON_ONCE(!is_chained_work(wq)))
1325
		return;
1326
retry:
1327 1328 1329
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1330
	/* pwq which will be used unless @work is executing elsewhere */
1331
	if (!(wq->flags & WQ_UNBOUND))
1332
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1333 1334
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1335

1336 1337 1338 1339 1340 1341 1342 1343
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1344

1345
		spin_lock(&last_pool->lock);
1346

1347
		worker = find_worker_executing_work(last_pool, work);
1348

1349 1350
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1351
		} else {
1352 1353
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1354
			spin_lock(&pwq->pool->lock);
1355
		}
1356
	} else {
1357
		spin_lock(&pwq->pool->lock);
1358 1359
	}

1360 1361 1362 1363
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1364 1365
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1379 1380
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1381

1382
	if (WARN_ON(!list_empty(&work->entry))) {
1383
		spin_unlock(&pwq->pool->lock);
1384 1385
		return;
	}
1386

1387 1388
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1389

1390
	if (likely(pwq->nr_active < pwq->max_active)) {
1391
		trace_workqueue_activate_work(work);
1392 1393
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1394 1395
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1396
		worklist = &pwq->delayed_works;
1397
	}
1398

1399
	insert_work(pwq, work, worklist, work_flags);
1400

1401
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1402 1403
}

1404
/**
1405 1406
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1407 1408 1409
 * @wq: workqueue to use
 * @work: work to queue
 *
1410 1411
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1412 1413
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1414
 */
1415 1416
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1417
{
1418
	bool ret = false;
1419
	unsigned long flags;
1420

1421
	local_irq_save(flags);
1422

1423
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1424
		__queue_work(cpu, wq, work);
1425
		ret = true;
1426
	}
1427

1428
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1429 1430
	return ret;
}
1431
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1432

1433
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1434
{
1435
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1436

1437
	/* should have been called from irqsafe timer with irq already off */
1438
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1439
}
1440
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1441

1442 1443
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1444
{
1445 1446 1447 1448 1449
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1450 1451
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1464
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1465

1466
	dwork->wq = wq;
1467
	dwork->cpu = cpu;
1468 1469 1470 1471 1472 1473
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1474 1475
}

1476 1477 1478 1479
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1480
 * @dwork: work to queue
1481 1482
 * @delay: number of jiffies to wait before queueing
 *
1483
 * Return: %false if @work was already on a queue, %true otherwise.  If
1484 1485
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1486
 */
1487 1488
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1489
{
1490
	struct work_struct *work = &dwork->work;
1491
	bool ret = false;
1492
	unsigned long flags;
1493

1494 1495
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1496

1497
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1498
		__queue_delayed_work(cpu, wq, dwork, delay);
1499
		ret = true;
1500
	}
1501

1502
	local_irq_restore(flags);
1503 1504
	return ret;
}
1505
EXPORT_SYMBOL(queue_delayed_work_on);
1506

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1519
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1520 1521
 * pending and its timer was modified.
 *
1522
 * This function is safe to call from any context including IRQ handler.
1523 1524 1525 1526 1527 1528 1529
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1530

1531 1532 1533
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1534

1535 1536 1537
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1538
	}
1539 1540

	/* -ENOENT from try_to_grab_pending() becomes %true */
1541 1542
	return ret;
}
1543 1544
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1545 1546 1547 1548 1549 1550 1551 1552
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1553
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1554 1555
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1556
{
1557
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1558

1559 1560 1561 1562
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1563

1564 1565
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1566
	pool->nr_idle++;
1567
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1568 1569

	/* idle_list is LIFO */
1570
	list_add(&worker->entry, &pool->idle_list);
1571

1572 1573
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1574

1575
	/*
1576
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1577
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1578 1579
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1580
	 */
1581
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1582
		     pool->nr_workers == pool->nr_idle &&
1583
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1593
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1594 1595 1596
 */
static void worker_leave_idle(struct worker *worker)
{
1597
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1598

1599 1600
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1601
	worker_clr_flags(worker, WORKER_IDLE);
1602
	pool->nr_idle--;
T
Tejun Heo 已提交
1603 1604 1605
	list_del_init(&worker->entry);
}

1606
/**
1607 1608 1609 1610
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1611 1612 1613 1614 1615 1616
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1617
 * This function is to be used by unbound workers and rescuers to bind
1618 1619 1620
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1621
 * verbatim as it's best effort and blocking and pool may be
1622 1623
 * [dis]associated in the meantime.
 *
1624
 * This function tries set_cpus_allowed() and locks pool and verifies the
1625
 * binding against %POOL_DISASSOCIATED which is set during
1626 1627 1628
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1629 1630
 *
 * CONTEXT:
1631
 * Might sleep.  Called without any lock but returns with pool->lock
1632 1633
 * held.
 *
1634
 * Return:
1635
 * %true if the associated pool is online (@worker is successfully
1636 1637
 * bound), %false if offline.
 */
1638
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1639
__acquires(&pool->lock)
1640 1641
{
	while (true) {
1642
		/*
1643 1644 1645
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1646
		 * against POOL_DISASSOCIATED.
1647
		 */
1648
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1649
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1650

1651
		spin_lock_irq(&pool->lock);
1652
		if (pool->flags & POOL_DISASSOCIATED)
1653
			return false;
1654
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1655
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1656
			return true;
1657
		spin_unlock_irq(&pool->lock);
1658

1659 1660 1661 1662 1663 1664
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1665
		cpu_relax();
1666
		cond_resched();
1667 1668 1669
	}
}

T
Tejun Heo 已提交
1670 1671 1672 1673 1674
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1675 1676
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1677
		INIT_LIST_HEAD(&worker->scheduled);
1678
		INIT_LIST_HEAD(&worker->node);
1679 1680
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1681
	}
T
Tejun Heo 已提交
1682 1683 1684
	return worker;
}

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
 * Undo the attaching which had been done in create_worker().  The caller
 * worker shouldn't access to the pool after detached except it has other
 * reference to the pool.
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1699
	mutex_lock(&pool->attach_mutex);
1700 1701
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1702
		detach_completion = pool->detach_completion;
1703
	mutex_unlock(&pool->attach_mutex);
1704 1705 1706 1707 1708

	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1709 1710
/**
 * create_worker - create a new workqueue worker
1711
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1712
 *
1713 1714
 * Create a new worker which is attached to @pool.  The new worker must be
 * started by start_worker().
T
Tejun Heo 已提交
1715 1716 1717 1718
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1719
 * Return:
T
Tejun Heo 已提交
1720 1721
 * Pointer to the newly created worker.
 */
1722
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1723 1724
{
	struct worker *worker = NULL;
1725
	int id = -1;
1726
	char id_buf[16];
T
Tejun Heo 已提交
1727

1728 1729
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1730 1731
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1732 1733 1734 1735 1736

	worker = alloc_worker();
	if (!worker)
		goto fail;

1737
	worker->pool = pool;
T
Tejun Heo 已提交
1738 1739
	worker->id = id;

1740
	if (pool->cpu >= 0)
1741 1742
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1743
	else
1744 1745
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1746
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1747
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1748 1749 1750
	if (IS_ERR(worker->task))
		goto fail;

1751 1752 1753 1754 1755
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1756
	mutex_lock(&pool->attach_mutex);
1757

1758 1759 1760 1761
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1762
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1763

T
Tejun Heo 已提交
1764
	/*
1765
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED
T
Tejun Heo 已提交
1766 1767 1768 1769
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1770
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1771

1772 1773
	/* successful, attach the worker to the pool */
	list_add_tail(&worker->node, &pool->workers);
1774

1775
	mutex_unlock(&pool->attach_mutex);
1776

T
Tejun Heo 已提交
1777
	return worker;
1778

T
Tejun Heo 已提交
1779
fail:
1780
	if (id >= 0)
1781
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1782 1783 1784 1785 1786 1787 1788 1789
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1790
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1791 1792
 *
 * CONTEXT:
1793
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1794 1795 1796
 */
static void start_worker(struct worker *worker)
{
1797
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1798
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1799 1800 1801
	wake_up_process(worker->task);
}

1802 1803 1804 1805
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1806
 * Grab the managership of @pool and create and start a new worker for it.
1807 1808
 *
 * Return: 0 on success. A negative error code otherwise.
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1824 1825 1826 1827
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1828 1829
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1830 1831
 *
 * CONTEXT:
1832
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1833 1834 1835
 */
static void destroy_worker(struct worker *worker)
{
1836
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1837

1838 1839
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1840
	/* sanity check frenzy */
1841
	if (WARN_ON(worker->current_work) ||
1842 1843
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1844
		return;
T
Tejun Heo 已提交
1845

1846 1847
	pool->nr_workers--;
	pool->nr_idle--;
T
Tejun Heo 已提交
1848 1849

	list_del_init(&worker->entry);
1850
	worker->flags |= WORKER_DIE;
1851
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1852 1853
}

1854
static void idle_worker_timeout(unsigned long __pool)
1855
{
1856
	struct worker_pool *pool = (void *)__pool;
1857

1858
	spin_lock_irq(&pool->lock);
1859

1860
	while (too_many_workers(pool)) {
1861 1862 1863 1864
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1865
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1866 1867
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1868
		if (time_before(jiffies, expires)) {
1869
			mod_timer(&pool->idle_timer, expires);
1870
			break;
1871
		}
1872 1873

		destroy_worker(worker);
1874 1875
	}

1876
	spin_unlock_irq(&pool->lock);
1877
}
1878

1879
static void send_mayday(struct work_struct *work)
1880
{
1881 1882
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1883

1884
	lockdep_assert_held(&wq_mayday_lock);
1885

1886
	if (!wq->rescuer)
1887
		return;
1888 1889

	/* mayday mayday mayday */
1890
	if (list_empty(&pwq->mayday_node)) {
1891 1892 1893 1894 1895 1896
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1897
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1898
		wake_up_process(wq->rescuer->task);
1899
	}
1900 1901
}

1902
static void pool_mayday_timeout(unsigned long __pool)
1903
{
1904
	struct worker_pool *pool = (void *)__pool;
1905 1906
	struct work_struct *work;

1907
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1908
	spin_lock(&pool->lock);
1909

1910
	if (need_to_create_worker(pool)) {
1911 1912 1913 1914 1915 1916
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1917
		list_for_each_entry(work, &pool->worklist, entry)
1918
			send_mayday(work);
L
Linus Torvalds 已提交
1919
	}
1920

1921
	spin_unlock(&pool->lock);
1922
	spin_unlock_irq(&wq_mayday_lock);
1923

1924
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1925 1926
}

1927 1928
/**
 * maybe_create_worker - create a new worker if necessary
1929
 * @pool: pool to create a new worker for
1930
 *
1931
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1932 1933
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1934
 * sent to all rescuers with works scheduled on @pool to resolve
1935 1936
 * possible allocation deadlock.
 *
1937 1938
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1939 1940
 *
 * LOCKING:
1941
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1942 1943 1944
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1945
 * Return:
1946
 * %false if no action was taken and pool->lock stayed locked, %true
1947 1948
 * otherwise.
 */
1949
static bool maybe_create_worker(struct worker_pool *pool)
1950 1951
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1952
{
1953
	if (!need_to_create_worker(pool))
1954 1955
		return false;
restart:
1956
	spin_unlock_irq(&pool->lock);
1957

1958
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1959
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1960 1961 1962 1963

	while (true) {
		struct worker *worker;

1964
		worker = create_worker(pool);
1965
		if (worker) {
1966
			del_timer_sync(&pool->mayday_timer);
1967
			spin_lock_irq(&pool->lock);
1968
			start_worker(worker);
1969 1970
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1971 1972 1973
			return true;
		}

1974
		if (!need_to_create_worker(pool))
1975
			break;
L
Linus Torvalds 已提交
1976

1977 1978
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1979

1980
		if (!need_to_create_worker(pool))
1981 1982 1983
			break;
	}

1984
	del_timer_sync(&pool->mayday_timer);
1985
	spin_lock_irq(&pool->lock);
1986
	if (need_to_create_worker(pool))
1987 1988 1989 1990
		goto restart;
	return true;
}

1991
/**
1992 1993
 * manage_workers - manage worker pool
 * @worker: self
1994
 *
1995
 * Assume the manager role and manage the worker pool @worker belongs
1996
 * to.  At any given time, there can be only zero or one manager per
1997
 * pool.  The exclusion is handled automatically by this function.
1998 1999 2000 2001
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2002 2003
 *
 * CONTEXT:
2004
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2005 2006
 * multiple times.  Does GFP_KERNEL allocations.
 *
2007
 * Return:
2008 2009 2010 2011 2012
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
2013
 */
2014
static bool manage_workers(struct worker *worker)
2015
{
2016
	struct worker_pool *pool = worker->pool;
2017
	bool ret = false;
2018

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
2029
	if (!mutex_trylock(&pool->manager_arb))
2030
		return ret;
2031

2032
	ret |= maybe_create_worker(pool);
2033

2034
	mutex_unlock(&pool->manager_arb);
2035
	return ret;
2036 2037
}

2038 2039
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2040
 * @worker: self
2041 2042 2043 2044 2045 2046 2047 2048 2049
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2050
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2051
 */
T
Tejun Heo 已提交
2052
static void process_one_work(struct worker *worker, struct work_struct *work)
2053 2054
__releases(&pool->lock)
__acquires(&pool->lock)
2055
{
2056
	struct pool_workqueue *pwq = get_work_pwq(work);
2057
	struct worker_pool *pool = worker->pool;
2058
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2059
	int work_color;
2060
	struct worker *collision;
2061 2062 2063 2064 2065 2066 2067 2068
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2069 2070 2071
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2072
#endif
2073 2074 2075
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2076
	 * unbound or a disassociated pool.
2077
	 */
2078
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2079
		     !(pool->flags & POOL_DISASSOCIATED) &&
2080
		     raw_smp_processor_id() != pool->cpu);
2081

2082 2083 2084 2085 2086 2087
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2088
	collision = find_worker_executing_work(pool, work);
2089 2090 2091 2092 2093
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2094
	/* claim and dequeue */
2095
	debug_work_deactivate(work);
2096
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2097
	worker->current_work = work;
2098
	worker->current_func = work->func;
2099
	worker->current_pwq = pwq;
2100
	work_color = get_work_color(work);
2101

2102 2103
	list_del_init(&work->entry);

2104 2105 2106 2107 2108 2109 2110
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2111
	/*
2112
	 * Unbound pool isn't concurrency managed and work items should be
2113 2114
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2115 2116
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2117

2118
	/*
2119
	 * Record the last pool and clear PENDING which should be the last
2120
	 * update to @work.  Also, do this inside @pool->lock so that
2121 2122
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2123
	 */
2124
	set_work_pool_and_clear_pending(work, pool->id);
2125

2126
	spin_unlock_irq(&pool->lock);
2127

2128
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2129
	lock_map_acquire(&lockdep_map);
2130
	trace_workqueue_execute_start(work);
2131
	worker->current_func(work);
2132 2133 2134 2135 2136
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2137
	lock_map_release(&lockdep_map);
2138
	lock_map_release(&pwq->wq->lockdep_map);
2139 2140

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2141 2142
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2143 2144
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2145 2146 2147 2148
		debug_show_held_locks(current);
		dump_stack();
	}

2149 2150 2151 2152 2153 2154 2155 2156 2157
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2158
	spin_lock_irq(&pool->lock);
2159

2160 2161 2162 2163
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2164
	/* we're done with it, release */
2165
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2166
	worker->current_work = NULL;
2167
	worker->current_func = NULL;
2168
	worker->current_pwq = NULL;
2169
	worker->desc_valid = false;
2170
	pwq_dec_nr_in_flight(pwq, work_color);
2171 2172
}

2173 2174 2175 2176 2177 2178 2179 2180 2181
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2182
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2183 2184 2185
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2186
{
2187 2188
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2189
						struct work_struct, entry);
T
Tejun Heo 已提交
2190
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2191 2192 2193
	}
}

T
Tejun Heo 已提交
2194 2195
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2196
 * @__worker: self
T
Tejun Heo 已提交
2197
 *
2198 2199 2200 2201 2202
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2203 2204
 *
 * Return: 0
T
Tejun Heo 已提交
2205
 */
T
Tejun Heo 已提交
2206
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2207
{
T
Tejun Heo 已提交
2208
	struct worker *worker = __worker;
2209
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2210

2211 2212
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2213
woke_up:
2214
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2215

2216 2217
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2218
		spin_unlock_irq(&pool->lock);
2219 2220
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2221 2222

		set_task_comm(worker->task, "kworker/dying");
2223
		ida_simple_remove(&pool->worker_ida, worker->id);
2224 2225
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2226
		return 0;
T
Tejun Heo 已提交
2227
	}
2228

T
Tejun Heo 已提交
2229
	worker_leave_idle(worker);
2230
recheck:
2231
	/* no more worker necessary? */
2232
	if (!need_more_worker(pool))
2233 2234 2235
		goto sleep;

	/* do we need to manage? */
2236
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2237 2238
		goto recheck;

T
Tejun Heo 已提交
2239 2240 2241 2242 2243
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2244
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2245

2246
	/*
2247 2248 2249 2250 2251
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2252
	 */
2253
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2254 2255

	do {
T
Tejun Heo 已提交
2256
		struct work_struct *work =
2257
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2258 2259 2260 2261 2262 2263
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2264
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2265 2266 2267
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2268
		}
2269
	} while (keep_working(pool));
2270 2271

	worker_set_flags(worker, WORKER_PREP, false);
2272
sleep:
T
Tejun Heo 已提交
2273
	/*
2274 2275 2276 2277 2278
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2279 2280 2281
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2282
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2283 2284
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2285 2286
}

2287 2288
/**
 * rescuer_thread - the rescuer thread function
2289
 * @__rescuer: self
2290 2291
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2292
 * workqueue which has WQ_MEM_RECLAIM set.
2293
 *
2294
 * Regular work processing on a pool may block trying to create a new
2295 2296 2297 2298 2299
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2300 2301
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2302 2303 2304
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2305 2306
 *
 * Return: 0
2307
 */
2308
static int rescuer_thread(void *__rescuer)
2309
{
2310 2311
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2312
	struct list_head *scheduled = &rescuer->scheduled;
2313
	bool should_stop;
2314 2315

	set_user_nice(current, RESCUER_NICE_LEVEL);
2316 2317 2318 2319 2320 2321

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2322 2323 2324
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2325 2326 2327 2328 2329 2330 2331 2332 2333
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2334

2335
	/* see whether any pwq is asking for help */
2336
	spin_lock_irq(&wq_mayday_lock);
2337 2338 2339 2340

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2341
		struct worker_pool *pool = pwq->pool;
2342 2343 2344
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2345 2346
		list_del_init(&pwq->mayday_node);

2347
		spin_unlock_irq(&wq_mayday_lock);
2348 2349

		/* migrate to the target cpu if possible */
2350
		worker_maybe_bind_and_lock(pool);
2351
		rescuer->pool = pool;
2352 2353 2354 2355 2356

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2357
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2358
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2359
			if (get_work_pwq(work) == pwq)
2360 2361 2362
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2363

2364 2365 2366 2367 2368 2369
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
		 * go away while we're holding its lock.
		 */
		put_pwq(pwq);

2370
		/*
2371
		 * Leave this pool.  If keep_working() is %true, notify a
2372 2373 2374
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2375 2376
		if (keep_working(pool))
			wake_up_worker(pool);
2377

2378
		rescuer->pool = NULL;
2379
		spin_unlock(&pool->lock);
2380
		spin_lock(&wq_mayday_lock);
2381 2382
	}

2383
	spin_unlock_irq(&wq_mayday_lock);
2384

2385 2386 2387 2388 2389 2390
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2391 2392
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2393 2394
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2395 2396
}

O
Oleg Nesterov 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2408 2409
/**
 * insert_wq_barrier - insert a barrier work
2410
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2411
 * @barr: wq_barrier to insert
2412 2413
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2414
 *
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2427
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2428 2429
 *
 * CONTEXT:
2430
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2431
 */
2432
static void insert_wq_barrier(struct pool_workqueue *pwq,
2433 2434
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2435
{
2436 2437 2438
	struct list_head *head;
	unsigned int linked = 0;

2439
	/*
2440
	 * debugobject calls are safe here even with pool->lock locked
2441 2442 2443 2444
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2445
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2446
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2447
	init_completion(&barr->done);
2448

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2464
	debug_work_activate(&barr->work);
2465
	insert_work(pwq, &barr->work, head,
2466
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2467 2468
}

2469
/**
2470
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2471 2472 2473 2474
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2475
 * Prepare pwqs for workqueue flushing.
2476
 *
2477 2478 2479 2480 2481
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2482 2483 2484 2485 2486 2487 2488
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2489
 * If @work_color is non-negative, all pwqs should have the same
2490 2491 2492 2493
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2494
 * mutex_lock(wq->mutex).
2495
 *
2496
 * Return:
2497 2498 2499
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2500
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2501
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2502
{
2503
	bool wait = false;
2504
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2505

2506
	if (flush_color >= 0) {
2507
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2508
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2509
	}
2510

2511
	for_each_pwq(pwq, wq) {
2512
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2513

2514
		spin_lock_irq(&pool->lock);
2515

2516
		if (flush_color >= 0) {
2517
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2518

2519 2520 2521
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2522 2523 2524
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2525

2526
		if (work_color >= 0) {
2527
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2528
			pwq->work_color = work_color;
2529
		}
L
Linus Torvalds 已提交
2530

2531
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2532
	}
2533

2534
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2535
		complete(&wq->first_flusher->done);
2536

2537
	return wait;
L
Linus Torvalds 已提交
2538 2539
}

2540
/**
L
Linus Torvalds 已提交
2541
 * flush_workqueue - ensure that any scheduled work has run to completion.
2542
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2543
 *
2544 2545
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2546
 */
2547
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2548
{
2549 2550 2551 2552 2553 2554
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2555

2556 2557
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2558

2559
	mutex_lock(&wq->mutex);
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2572
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2573 2574 2575 2576 2577
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2578
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2579 2580 2581

			wq->first_flusher = &this_flusher;

2582
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2583 2584 2585 2586 2587 2588 2589 2590
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2591
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2592
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2593
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2604
	mutex_unlock(&wq->mutex);
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2617
	mutex_lock(&wq->mutex);
2618

2619 2620 2621 2622
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2623 2624
	wq->first_flusher = NULL;

2625 2626
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2639 2640
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2660
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2661 2662 2663
		}

		if (list_empty(&wq->flusher_queue)) {
2664
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2665 2666 2667 2668 2669
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2670
		 * the new first flusher and arm pwqs.
2671
		 */
2672 2673
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2674 2675 2676 2677

		list_del_init(&next->list);
		wq->first_flusher = next;

2678
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2689
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2690
}
2691
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2692

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2707
	struct pool_workqueue *pwq;
2708 2709 2710 2711

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2712
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2713
	 */
2714
	mutex_lock(&wq->mutex);
2715
	if (!wq->nr_drainers++)
2716
		wq->flags |= __WQ_DRAINING;
2717
	mutex_unlock(&wq->mutex);
2718 2719 2720
reflush:
	flush_workqueue(wq);

2721
	mutex_lock(&wq->mutex);
2722

2723
	for_each_pwq(pwq, wq) {
2724
		bool drained;
2725

2726
		spin_lock_irq(&pwq->pool->lock);
2727
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2728
		spin_unlock_irq(&pwq->pool->lock);
2729 2730

		if (drained)
2731 2732 2733 2734
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2735
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2736
				wq->name, flush_cnt);
2737

2738
		mutex_unlock(&wq->mutex);
2739 2740 2741 2742
		goto reflush;
	}

	if (!--wq->nr_drainers)
2743
		wq->flags &= ~__WQ_DRAINING;
2744
	mutex_unlock(&wq->mutex);
2745 2746 2747
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2748
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2749
{
2750
	struct worker *worker = NULL;
2751
	struct worker_pool *pool;
2752
	struct pool_workqueue *pwq;
2753 2754

	might_sleep();
2755 2756

	local_irq_disable();
2757
	pool = get_work_pool(work);
2758 2759
	if (!pool) {
		local_irq_enable();
2760
		return false;
2761
	}
2762

2763
	spin_lock(&pool->lock);
2764
	/* see the comment in try_to_grab_pending() with the same code */
2765 2766 2767
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2768
			goto already_gone;
2769
	} else {
2770
		worker = find_worker_executing_work(pool, work);
2771
		if (!worker)
T
Tejun Heo 已提交
2772
			goto already_gone;
2773
		pwq = worker->current_pwq;
2774
	}
2775

2776
	insert_wq_barrier(pwq, barr, work, worker);
2777
	spin_unlock_irq(&pool->lock);
2778

2779 2780 2781 2782 2783 2784
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2785
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2786
		lock_map_acquire(&pwq->wq->lockdep_map);
2787
	else
2788 2789
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2790

2791
	return true;
T
Tejun Heo 已提交
2792
already_gone:
2793
	spin_unlock_irq(&pool->lock);
2794
	return false;
2795
}
2796 2797 2798 2799 2800

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2801 2802
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2803
 *
2804
 * Return:
2805 2806 2807 2808 2809
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2810 2811
	struct wq_barrier barr;

2812 2813 2814
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2815 2816 2817 2818 2819 2820 2821
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2822
}
2823
EXPORT_SYMBOL_GPL(flush_work);
2824

2825
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2826
{
2827
	unsigned long flags;
2828 2829 2830
	int ret;

	do {
2831 2832 2833 2834 2835 2836
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2837
			flush_work(work);
2838 2839
	} while (unlikely(ret < 0));

2840 2841 2842 2843
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2844
	flush_work(work);
2845
	clear_work_data(work);
2846 2847 2848
	return ret;
}

2849
/**
2850 2851
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2852
 *
2853 2854 2855 2856
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2857
 *
2858 2859
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2860
 *
2861
 * The caller must ensure that the workqueue on which @work was last
2862
 * queued can't be destroyed before this function returns.
2863
 *
2864
 * Return:
2865
 * %true if @work was pending, %false otherwise.
2866
 */
2867
bool cancel_work_sync(struct work_struct *work)
2868
{
2869
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2870
}
2871
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2872

2873
/**
2874 2875
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2876
 *
2877 2878 2879
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2880
 *
2881
 * Return:
2882 2883
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2884
 */
2885 2886
bool flush_delayed_work(struct delayed_work *dwork)
{
2887
	local_irq_disable();
2888
	if (del_timer_sync(&dwork->timer))
2889
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2890
	local_irq_enable();
2891 2892 2893 2894
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2895
/**
2896 2897
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2898
 *
2899 2900 2901 2902 2903 2904 2905 2906 2907
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2908
 *
2909
 * This function is safe to call from any context including IRQ handler.
2910
 */
2911
bool cancel_delayed_work(struct delayed_work *dwork)
2912
{
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2923 2924
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2925
	local_irq_restore(flags);
2926
	return ret;
2927
}
2928
EXPORT_SYMBOL(cancel_delayed_work);
2929

2930 2931 2932 2933 2934 2935
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2936
 * Return:
2937 2938 2939
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2940
{
2941
	return __cancel_work_timer(&dwork->work, true);
2942
}
2943
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2944

2945
/**
2946
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2947 2948
 * @func: the function to call
 *
2949 2950
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2951
 * schedule_on_each_cpu() is very slow.
2952
 *
2953
 * Return:
2954
 * 0 on success, -errno on failure.
2955
 */
2956
int schedule_on_each_cpu(work_func_t func)
2957 2958
{
	int cpu;
2959
	struct work_struct __percpu *works;
2960

2961 2962
	works = alloc_percpu(struct work_struct);
	if (!works)
2963
		return -ENOMEM;
2964

2965 2966
	get_online_cpus();

2967
	for_each_online_cpu(cpu) {
2968 2969 2970
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2971
		schedule_work_on(cpu, work);
2972
	}
2973 2974 2975 2976

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2977
	put_online_cpus();
2978
	free_percpu(works);
2979 2980 2981
	return 0;
}

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3006 3007
void flush_scheduled_work(void)
{
3008
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3009
}
3010
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3011

3012 3013 3014 3015 3016 3017 3018 3019 3020
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3021
 * Return:	0 - function was executed
3022 3023
 *		1 - function was scheduled for execution
 */
3024
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3025 3026
{
	if (!in_interrupt()) {
3027
		fn(&ew->work);
3028 3029 3030
		return 0;
	}

3031
	INIT_WORK(&ew->work, fn);
3032 3033 3034 3035 3036 3037
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3065 3066
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3067 3068 3069 3070 3071
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3072
static DEVICE_ATTR_RO(per_cpu);
3073

3074 3075
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3076 3077 3078 3079 3080 3081
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3082 3083 3084
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3095
static DEVICE_ATTR_RW(max_active);
3096

3097 3098 3099 3100
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3101
};
3102
ATTRIBUTE_GROUPS(wq_sysfs);
3103

3104 3105
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3106 3107
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3108 3109
	const char *delim = "";
	int node, written = 0;
3110 3111

	rcu_read_lock_sched();
3112 3113 3114 3115 3116 3117 3118
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3130 3131 3132
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3146 3147 3148
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3164
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3179 3180 3181
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3242
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3243
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3244 3245
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3246
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3247 3248 3249 3250 3251
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3252
	.dev_groups			= wq_sysfs_groups,
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3281
 * Return: 0 on success, -errno on failure.
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3374 3375 3376
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3388
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3389 3390 3391 3392 3393 3394
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3395 3396 3397 3398 3399
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3400 3401 3402 3403 3404 3405
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3406 3407 3408 3409 3410 3411 3412 3413
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3414 3415
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3430 3431 3432 3433 3434
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3435 3436
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3437 3438
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3439 3440
 */
static int init_worker_pool(struct worker_pool *pool)
3441 3442
{
	spin_lock_init(&pool->lock);
3443 3444
	pool->id = -1;
	pool->cpu = -1;
3445
	pool->node = NUMA_NO_NODE;
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3459
	mutex_init(&pool->attach_mutex);
3460
	INIT_LIST_HEAD(&pool->workers);
T
Tejun Heo 已提交
3461

3462
	ida_init(&pool->worker_ida);
3463 3464 3465 3466
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3467 3468 3469 3470
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3471 3472
}

3473 3474 3475 3476
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3477
	ida_destroy(&pool->worker_ida);
3478 3479 3480 3481 3482 3483 3484 3485 3486
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3487 3488 3489
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3490 3491
 *
 * Should be called with wq_pool_mutex held.
3492 3493 3494
 */
static void put_unbound_pool(struct worker_pool *pool)
{
3495
	DECLARE_COMPLETION_ONSTACK(detach_completion);
3496 3497
	struct worker *worker;

3498 3499 3500
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3501 3502 3503 3504
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3505
	    WARN_ON(!list_empty(&pool->worklist)))
3506 3507 3508 3509 3510 3511 3512
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3513 3514 3515
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
3516
	 * attach_mutex.
3517
	 */
3518 3519
	mutex_lock(&pool->manager_arb);

3520
	spin_lock_irq(&pool->lock);
3521 3522 3523 3524
	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3525

3526
	mutex_lock(&pool->attach_mutex);
3527
	if (!list_empty(&pool->workers))
3528
		pool->detach_completion = &detach_completion;
3529
	mutex_unlock(&pool->attach_mutex);
3530 3531 3532 3533

	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3551
 * create a new one.
3552 3553
 *
 * Should be called with wq_pool_mutex held.
3554 3555 3556
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3557 3558 3559 3560 3561
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3562
	int node;
3563

3564
	lockdep_assert_held(&wq_pool_mutex);
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3579 3580 3581
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3582
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3583 3584
	copy_workqueue_attrs(pool->attrs, attrs);

3585 3586 3587 3588 3589 3590
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3602 3603 3604 3605
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3606
	if (create_and_start_worker(pool) < 0)
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3635
	bool is_last;
T
Tejun Heo 已提交
3636 3637 3638 3639

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3640
	/*
3641
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3642 3643 3644
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3645
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3646
	list_del_rcu(&pwq->pwqs_node);
3647
	is_last = list_empty(&wq->pwqs);
3648
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3649

3650
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3651
	put_unbound_pool(pool);
3652 3653
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3654 3655 3656 3657 3658 3659
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3660 3661
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3662
		kfree(wq);
3663
	}
T
Tejun Heo 已提交
3664 3665
}

3666
/**
3667
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3668 3669
 * @pwq: target pool_workqueue
 *
3670 3671 3672
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3673
 */
3674
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3675
{
3676 3677 3678 3679
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3680
	lockdep_assert_held(&wq->mutex);
3681 3682 3683 3684 3685

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3686
	spin_lock_irq(&pwq->pool->lock);
3687 3688 3689

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3690

3691 3692 3693
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3694 3695 3696 3697 3698 3699

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3700 3701 3702 3703
	} else {
		pwq->max_active = 0;
	}

3704
	spin_unlock_irq(&pwq->pool->lock);
3705 3706
}

3707
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3708 3709
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3710 3711 3712
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3713 3714
	memset(pwq, 0, sizeof(*pwq));

3715 3716 3717
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3718
	pwq->refcnt = 1;
3719
	INIT_LIST_HEAD(&pwq->delayed_works);
3720
	INIT_LIST_HEAD(&pwq->pwqs_node);
3721
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3722
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3723
}
3724

3725
/* sync @pwq with the current state of its associated wq and link it */
3726
static void link_pwq(struct pool_workqueue *pwq)
3727 3728 3729 3730
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3731

3732 3733 3734 3735
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3736 3737
	/*
	 * Set the matching work_color.  This is synchronized with
3738
	 * wq->mutex to avoid confusing flush_workqueue().
3739
	 */
3740
	pwq->work_color = wq->work_color;
3741 3742 3743 3744 3745

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3746
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3747
}
3748

3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3762
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3763 3764 3765
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3766
	}
3767

3768 3769
	init_pwq(pwq, wq, pool);
	return pwq;
3770 3771
}

3772 3773 3774 3775 3776 3777 3778
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3779
		kmem_cache_free(pwq_cache, pwq);
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3792
 * calculation.  The result is stored in @cpumask.
3793 3794 3795 3796 3797 3798 3799 3800
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3801 3802 3803
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3804 3805 3806 3807
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3808
	if (!wq_numa_enabled || attrs->no_numa)
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3845 3846 3847 3848 3849
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3850 3851 3852 3853 3854 3855
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3856
 *
3857 3858 3859
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3860 3861 3862 3863
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3864 3865
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3866
	int node, ret;
3867

3868
	/* only unbound workqueues can change attributes */
3869 3870 3871
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3872 3873 3874 3875
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3876
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3877
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3878 3879
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3880 3881
		goto enomem;

3882
	/* make a copy of @attrs and sanitize it */
3883 3884 3885
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3900
	mutex_lock(&wq_pool_mutex);
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3922
	mutex_unlock(&wq_pool_mutex);
3923

3924
	/* all pwqs have been created successfully, let's install'em */
3925
	mutex_lock(&wq->mutex);
3926

3927
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3928 3929

	/* save the previous pwq and install the new one */
3930
	for_each_node(node)
3931 3932 3933 3934 3935
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3936 3937

	mutex_unlock(&wq->mutex);
3938

3939 3940 3941 3942 3943 3944
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3945 3946 3947
	ret = 0;
	/* fall through */
out_free:
3948
	free_workqueue_attrs(tmp_attrs);
3949
	free_workqueue_attrs(new_attrs);
3950
	kfree(pwq_tbl);
3951
	return ret;
3952

3953 3954 3955 3956 3957 3958 3959
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3960
enomem:
3961 3962
	ret = -ENOMEM;
	goto out_free;
3963 3964
}

3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
4010 4011
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
4012 4013 4014 4015 4016 4017 4018 4019

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
4020
	 * wq's, the default pwq should be used.
4021 4022 4023 4024 4025
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
4026
		goto use_dfl_pwq;
4027 4028 4029 4030 4031 4032 4033
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
4034 4035
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
4036 4037
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4060
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4061
{
4062
	bool highpri = wq->flags & WQ_HIGHPRI;
4063
	int cpu, ret;
4064 4065

	if (!(wq->flags & WQ_UNBOUND)) {
4066 4067
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4068 4069 4070
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4071 4072
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4073
			struct worker_pool *cpu_pools =
4074
				per_cpu(cpu_worker_pools, cpu);
4075

4076 4077 4078
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4079
			link_pwq(pwq);
4080
			mutex_unlock(&wq->mutex);
4081
		}
4082
		return 0;
4083 4084 4085 4086 4087 4088 4089
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4090
	} else {
4091
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4092
	}
T
Tejun Heo 已提交
4093 4094
}

4095 4096
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4097
{
4098 4099 4100
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4101 4102
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4103

4104
	return clamp_val(max_active, 1, lim);
4105 4106
}

4107
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4108 4109 4110
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4111
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4112
{
4113
	size_t tbl_size = 0;
4114
	va_list args;
L
Linus Torvalds 已提交
4115
	struct workqueue_struct *wq;
4116
	struct pool_workqueue *pwq;
4117

4118 4119 4120 4121
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4122
	/* allocate wq and format name */
4123 4124 4125 4126
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4127
	if (!wq)
4128
		return NULL;
4129

4130 4131 4132 4133 4134 4135
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4136 4137
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4138
	va_end(args);
L
Linus Torvalds 已提交
4139

4140
	max_active = max_active ?: WQ_DFL_ACTIVE;
4141
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4142

4143
	/* init wq */
4144
	wq->flags = flags;
4145
	wq->saved_max_active = max_active;
4146
	mutex_init(&wq->mutex);
4147
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4148
	INIT_LIST_HEAD(&wq->pwqs);
4149 4150
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4151
	INIT_LIST_HEAD(&wq->maydays);
4152

4153
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4154
	INIT_LIST_HEAD(&wq->list);
4155

4156
	if (alloc_and_link_pwqs(wq) < 0)
4157
		goto err_free_wq;
T
Tejun Heo 已提交
4158

4159 4160 4161 4162 4163
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4164 4165
		struct worker *rescuer;

4166
		rescuer = alloc_worker();
4167
		if (!rescuer)
4168
			goto err_destroy;
4169

4170 4171
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4172
					       wq->name);
4173 4174 4175 4176
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4177

4178
		wq->rescuer = rescuer;
4179
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4180
		wake_up_process(rescuer->task);
4181 4182
	}

4183 4184 4185
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4186
	/*
4187 4188 4189
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4190
	 */
4191
	mutex_lock(&wq_pool_mutex);
4192

4193
	mutex_lock(&wq->mutex);
4194 4195
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4196
	mutex_unlock(&wq->mutex);
4197

T
Tejun Heo 已提交
4198
	list_add(&wq->list, &workqueues);
4199

4200
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4201

4202
	return wq;
4203 4204

err_free_wq:
4205
	free_workqueue_attrs(wq->unbound_attrs);
4206 4207 4208 4209
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4210
	return NULL;
4211
}
4212
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4213

4214 4215 4216 4217 4218 4219 4220 4221
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4222
	struct pool_workqueue *pwq;
4223
	int node;
4224

4225 4226
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4227

4228
	/* sanity checks */
4229
	mutex_lock(&wq->mutex);
4230
	for_each_pwq(pwq, wq) {
4231 4232
		int i;

4233 4234
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4235
				mutex_unlock(&wq->mutex);
4236
				return;
4237 4238 4239
			}
		}

4240
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4241
		    WARN_ON(pwq->nr_active) ||
4242
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4243
			mutex_unlock(&wq->mutex);
4244
			return;
4245
		}
4246
	}
4247
	mutex_unlock(&wq->mutex);
4248

4249 4250 4251 4252
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4253
	mutex_lock(&wq_pool_mutex);
4254
	list_del_init(&wq->list);
4255
	mutex_unlock(&wq_pool_mutex);
4256

4257 4258
	workqueue_sysfs_unregister(wq);

4259
	if (wq->rescuer) {
4260
		kthread_stop(wq->rescuer->task);
4261
		kfree(wq->rescuer);
4262
		wq->rescuer = NULL;
4263 4264
	}

T
Tejun Heo 已提交
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4275 4276
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4277
		 */
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4290
		put_pwq_unlocked(pwq);
4291
	}
4292 4293 4294
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4307
	struct pool_workqueue *pwq;
4308

4309 4310 4311 4312
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4313
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4314

4315
	mutex_lock(&wq->mutex);
4316 4317 4318

	wq->saved_max_active = max_active;

4319 4320
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4321

4322
	mutex_unlock(&wq->mutex);
4323
}
4324
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4325

4326 4327 4328 4329 4330
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4331 4332
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4333 4334 4335 4336 4337
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4338
	return worker && worker->rescue_wq;
4339 4340
}

4341
/**
4342 4343 4344
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4345
 *
4346 4347 4348
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4349
 *
4350 4351 4352 4353 4354 4355
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4356
 * Return:
4357
 * %true if congested, %false otherwise.
4358
 */
4359
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4360
{
4361
	struct pool_workqueue *pwq;
4362 4363
	bool ret;

4364
	rcu_read_lock_sched();
4365

4366 4367 4368
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4369 4370 4371
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4372
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4373

4374
	ret = !list_empty(&pwq->delayed_works);
4375
	rcu_read_unlock_sched();
4376 4377

	return ret;
L
Linus Torvalds 已提交
4378
}
4379
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4380

4381 4382 4383 4384 4385 4386 4387 4388
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4389
 * Return:
4390 4391 4392
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4393
{
4394
	struct worker_pool *pool;
4395 4396
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4397

4398 4399
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4400

4401 4402
	local_irq_save(flags);
	pool = get_work_pool(work);
4403
	if (pool) {
4404
		spin_lock(&pool->lock);
4405 4406
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4407
		spin_unlock(&pool->lock);
4408
	}
4409
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4410

4411
	return ret;
L
Linus Torvalds 已提交
4412
}
4413
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4414

4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
4485
		pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
4486 4487 4488 4489 4490 4491
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4492 4493 4494
/*
 * CPU hotplug.
 *
4495
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4496
 * are a lot of assumptions on strong associations among work, pwq and
4497
 * pool which make migrating pending and scheduled works very
4498
 * difficult to implement without impacting hot paths.  Secondly,
4499
 * worker pools serve mix of short, long and very long running works making
4500 4501
 * blocked draining impractical.
 *
4502
 * This is solved by allowing the pools to be disassociated from the CPU
4503 4504
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4505
 */
L
Linus Torvalds 已提交
4506

4507
static void wq_unbind_fn(struct work_struct *work)
4508
{
4509
	int cpu = smp_processor_id();
4510
	struct worker_pool *pool;
4511
	struct worker *worker;
4512

4513
	for_each_cpu_worker_pool(pool, cpu) {
4514
		WARN_ON_ONCE(cpu != smp_processor_id());
4515

4516
		mutex_lock(&pool->attach_mutex);
4517
		spin_lock_irq(&pool->lock);
4518

4519
		/*
4520
		 * We've blocked all attach/detach operations. Make all workers
4521 4522 4523 4524 4525
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4526
		for_each_pool_worker(worker, pool)
4527
			worker->flags |= WORKER_UNBOUND;
4528

4529
		pool->flags |= POOL_DISASSOCIATED;
4530

4531
		spin_unlock_irq(&pool->lock);
4532
		mutex_unlock(&pool->attach_mutex);
4533

4534 4535 4536 4537 4538 4539 4540
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4541

4542 4543 4544 4545 4546 4547 4548 4549
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4550
		atomic_set(&pool->nr_running, 0);
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4561 4562
}

T
Tejun Heo 已提交
4563 4564 4565 4566
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4567
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4568 4569 4570
 */
static void rebind_workers(struct worker_pool *pool)
{
4571
	struct worker *worker;
T
Tejun Heo 已提交
4572

4573
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4574

4575 4576 4577 4578 4579 4580 4581
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4582
	for_each_pool_worker(worker, pool)
4583 4584
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4585

4586
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4587

4588
	for_each_pool_worker(worker, pool) {
4589
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4590 4591

		/*
4592 4593 4594 4595 4596 4597
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4598
		 */
4599 4600
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4601

4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4621
	}
4622 4623

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4624 4625
}

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4641
	lockdep_assert_held(&pool->attach_mutex);
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4653
	for_each_pool_worker(worker, pool)
4654 4655 4656 4657
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4658 4659 4660 4661
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4662
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4663 4664
					       unsigned long action,
					       void *hcpu)
4665
{
4666
	int cpu = (unsigned long)hcpu;
4667
	struct worker_pool *pool;
4668
	struct workqueue_struct *wq;
4669
	int pi;
4670

T
Tejun Heo 已提交
4671
	switch (action & ~CPU_TASKS_FROZEN) {
4672
	case CPU_UP_PREPARE:
4673
		for_each_cpu_worker_pool(pool, cpu) {
4674 4675
			if (pool->nr_workers)
				continue;
4676
			if (create_and_start_worker(pool) < 0)
4677
				return NOTIFY_BAD;
4678
		}
T
Tejun Heo 已提交
4679
		break;
4680

4681 4682
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4683
		mutex_lock(&wq_pool_mutex);
4684 4685

		for_each_pool(pool, pi) {
4686
			mutex_lock(&pool->attach_mutex);
4687

4688 4689 4690 4691
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4692

4693 4694 4695 4696
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4697

4698
			mutex_unlock(&pool->attach_mutex);
4699
		}
4700

4701 4702 4703 4704
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4705
		mutex_unlock(&wq_pool_mutex);
4706
		break;
4707
	}
4708 4709 4710 4711 4712 4713 4714
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4715
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4716 4717 4718
						 unsigned long action,
						 void *hcpu)
{
4719
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4720
	struct work_struct unbind_work;
4721
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4722

4723 4724
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4725
		/* unbinding per-cpu workers should happen on the local CPU */
4726
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4727
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4728 4729 4730 4731 4732 4733 4734 4735

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4736
		flush_work(&unbind_work);
4737
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4738
		break;
4739 4740 4741 4742
	}
	return NOTIFY_OK;
}

4743
#ifdef CONFIG_SMP
4744

4745
struct work_for_cpu {
4746
	struct work_struct work;
4747 4748 4749 4750 4751
	long (*fn)(void *);
	void *arg;
	long ret;
};

4752
static void work_for_cpu_fn(struct work_struct *work)
4753
{
4754 4755
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4756 4757 4758 4759 4760 4761 4762 4763 4764
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4765
 * It is up to the caller to ensure that the cpu doesn't go offline.
4766
 * The caller must not hold any locks which would prevent @fn from completing.
4767 4768
 *
 * Return: The value @fn returns.
4769
 */
4770
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4771
{
4772
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4773

4774 4775
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4776
	flush_work(&wfc.work);
4777
	destroy_work_on_stack(&wfc.work);
4778 4779 4780 4781 4782
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4783 4784 4785 4786 4787
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4788
 * Start freezing workqueues.  After this function returns, all freezable
4789
 * workqueues will queue new works to their delayed_works list instead of
4790
 * pool->worklist.
4791 4792
 *
 * CONTEXT:
4793
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4794 4795 4796
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4797
	struct worker_pool *pool;
4798 4799
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4800
	int pi;
4801

4802
	mutex_lock(&wq_pool_mutex);
4803

4804
	WARN_ON_ONCE(workqueue_freezing);
4805 4806
	workqueue_freezing = true;

4807
	/* set FREEZING */
4808
	for_each_pool(pool, pi) {
4809
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4810 4811
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4812
		spin_unlock_irq(&pool->lock);
4813
	}
4814

4815
	list_for_each_entry(wq, &workqueues, list) {
4816
		mutex_lock(&wq->mutex);
4817 4818
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4819
		mutex_unlock(&wq->mutex);
4820
	}
4821

4822
	mutex_unlock(&wq_pool_mutex);
4823 4824 4825
}

/**
4826
 * freeze_workqueues_busy - are freezable workqueues still busy?
4827 4828 4829 4830 4831
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4832
 * Grabs and releases wq_pool_mutex.
4833
 *
4834
 * Return:
4835 4836
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4837 4838 4839 4840
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4841 4842
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4843

4844
	mutex_lock(&wq_pool_mutex);
4845

4846
	WARN_ON_ONCE(!workqueue_freezing);
4847

4848 4849 4850
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4851 4852 4853 4854
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4855
		rcu_read_lock_sched();
4856
		for_each_pwq(pwq, wq) {
4857
			WARN_ON_ONCE(pwq->nr_active < 0);
4858
			if (pwq->nr_active) {
4859
				busy = true;
4860
				rcu_read_unlock_sched();
4861 4862 4863
				goto out_unlock;
			}
		}
4864
		rcu_read_unlock_sched();
4865 4866
	}
out_unlock:
4867
	mutex_unlock(&wq_pool_mutex);
4868 4869 4870 4871 4872 4873 4874
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4875
 * frozen works are transferred to their respective pool worklists.
4876 4877
 *
 * CONTEXT:
4878
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4879 4880 4881
 */
void thaw_workqueues(void)
{
4882 4883 4884
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4885
	int pi;
4886

4887
	mutex_lock(&wq_pool_mutex);
4888 4889 4890 4891

	if (!workqueue_freezing)
		goto out_unlock;

4892
	/* clear FREEZING */
4893
	for_each_pool(pool, pi) {
4894
		spin_lock_irq(&pool->lock);
4895 4896
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4897
		spin_unlock_irq(&pool->lock);
4898
	}
4899

4900 4901
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4902
		mutex_lock(&wq->mutex);
4903 4904
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4905
		mutex_unlock(&wq->mutex);
4906 4907 4908 4909
	}

	workqueue_freezing = false;
out_unlock:
4910
	mutex_unlock(&wq_pool_mutex);
4911 4912 4913
}
#endif /* CONFIG_FREEZER */

4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4926 4927 4928 4929 4930
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4931 4932 4933
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4934 4935 4936 4937 4938 4939 4940 4941 4942
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
4943 4944
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4960
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4961
{
T
Tejun Heo 已提交
4962 4963
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4964

4965 4966 4967 4968
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4969
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4970
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4971

4972 4973
	wq_numa_init();

4974
	/* initialize CPU pools */
4975
	for_each_possible_cpu(cpu) {
4976
		struct worker_pool *pool;
4977

T
Tejun Heo 已提交
4978
		i = 0;
4979
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4980
			BUG_ON(init_worker_pool(pool));
4981
			pool->cpu = cpu;
4982
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4983
			pool->attrs->nice = std_nice[i++];
4984
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
4985

T
Tejun Heo 已提交
4986
			/* alloc pool ID */
4987
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4988
			BUG_ON(worker_pool_assign_id(pool));
4989
			mutex_unlock(&wq_pool_mutex);
4990
		}
4991 4992
	}

4993
	/* create the initial worker */
4994
	for_each_online_cpu(cpu) {
4995
		struct worker_pool *pool;
4996

4997
		for_each_cpu_worker_pool(pool, cpu) {
4998
			pool->flags &= ~POOL_DISASSOCIATED;
4999
			BUG_ON(create_and_start_worker(pool) < 0);
5000
		}
5001 5002
	}

5003
	/* create default unbound and ordered wq attrs */
5004 5005 5006 5007 5008 5009
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5020 5021
	}

5022
	system_wq = alloc_workqueue("events", 0, 0);
5023
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5024
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5025 5026
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5027 5028
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5029 5030 5031 5032 5033
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5034
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5035 5036 5037
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5038
	return 0;
L
Linus Torvalds 已提交
5039
}
5040
early_initcall(init_workqueues);