workqueue.c 105.1 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45

46
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50
	/*
	 * worker_pool flags
51
	 *
52
	 * A bound pool is either associated or disassociated with its CPU.
53 54 55 56 57 58
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59
	 * be executing on any CPU.  The pool behaves as an unbound one.
60 61
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62 63
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
64
	 */
65
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77

78
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79
				  WORKER_CPU_INTENSIVE,
80

81
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82

T
Tejun Heo 已提交
83
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84

85 86 87
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

88 89 90
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
91 92 93 94 95 96 97 98
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
99
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
100
};
L
Linus Torvalds 已提交
101 102

/*
T
Tejun Heo 已提交
103 104
 * Structure fields follow one of the following exclusion rules.
 *
105 106
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
107
 *
108 109 110
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
111
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
112
 *
113 114 115 116
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
117
 *
118 119
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
120
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
121 122
 */

123
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
124

125
struct worker_pool {
126
	spinlock_t		lock;		/* the pool lock */
127
	unsigned int		cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
128
	int			id;		/* I: pool ID */
129
	unsigned int		flags;		/* X: flags */
130 131 132

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
133 134

	/* nr_idle includes the ones off idle_list for rebinding */
135 136 137 138 139 140
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

141 142 143 144
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

145
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
146
	struct ida		worker_ida;	/* L: for worker IDs */
147 148
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
149
/*
150
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
151 152
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
153 154
 */
struct cpu_workqueue_struct {
155
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
156
	struct workqueue_struct *wq;		/* I: the owning workqueue */
157 158 159 160
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
161
	int			nr_active;	/* L: nr of active works */
162
	int			max_active;	/* L: max active works */
163
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
164
};
L
Linus Torvalds 已提交
165

166 167 168 169 170 171 172 173 174
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

175 176 177 178 179 180 181 182 183 184
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
185
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
186 187 188 189 190 191 192 193 194
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
195 196 197 198 199 200

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
201
	unsigned int		flags;		/* W: WQ_* flags */
202 203 204 205 206
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
207
	struct list_head	list;		/* W: list of all workqueues */
208 209 210 211 212 213 214 215 216

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

217
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
218 219
	struct worker		*rescuer;	/* I: rescue worker */

220
	int			nr_drainers;	/* W: drain in progress */
221
	int			saved_max_active; /* W: saved cwq max_active */
222
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
223
	struct lockdep_map	lockdep_map;
224
#endif
225
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
226 227
};

228 229
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
230
struct workqueue_struct *system_highpri_wq __read_mostly;
231
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
232
struct workqueue_struct *system_long_wq __read_mostly;
233
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
234
struct workqueue_struct *system_unbound_wq __read_mostly;
235
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
236
struct workqueue_struct *system_freezable_wq __read_mostly;
237
EXPORT_SYMBOL_GPL(system_freezable_wq);
238

239 240 241
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

242
#define for_each_std_worker_pool(pool, cpu)				\
T
Tejun Heo 已提交
243 244
	for ((pool) = &std_worker_pools(cpu)[0];			\
	     (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
245

246 247
#define for_each_busy_worker(worker, i, pos, pool)			\
	hash_for_each(pool->busy_hash, i, pos, worker, hentry)
248

249 250
static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				unsigned int sw)
251 252 253 254 255 256 257 258 259 260
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
261
	return WORK_CPU_END;
262 263
}

264 265
static inline int __next_cwq_cpu(int cpu, const struct cpumask *mask,
				 struct workqueue_struct *wq)
266
{
267
	return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
268 269
}

270 271 272
/*
 * CPU iterators
 *
273
 * An extra cpu number is defined using an invalid cpu number
274
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
275 276
 * specific CPU.  The following iterators are similar to for_each_*_cpu()
 * iterators but also considers the unbound CPU.
277
 *
278 279
 * for_each_wq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_wq_cpu()	: online CPUs + WORK_CPU_UNBOUND
280 281 282
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
283 284
#define for_each_wq_cpu(cpu)						\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3);		\
285
	     (cpu) < WORK_CPU_END;					\
286
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
287

288 289
#define for_each_online_wq_cpu(cpu)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3);		\
290
	     (cpu) < WORK_CPU_END;					\
291
	     (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
292 293

#define for_each_cwq_cpu(cpu, wq)					\
294
	for ((cpu) = __next_cwq_cpu(-1, cpu_possible_mask, (wq));	\
295
	     (cpu) < WORK_CPU_END;					\
296
	     (cpu) = __next_cwq_cpu((cpu), cpu_possible_mask, (wq)))
297

298 299 300 301
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

302 303 304 305 306
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
342
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
378
	.debug_hint	= work_debug_hint,
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

414 415
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
416
static LIST_HEAD(workqueues);
417
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
418

419
/*
T
Tejun Heo 已提交
420 421 422
 * The CPU standard worker pools.  nr_running is the only field which is
 * expected to be used frequently by other cpus via try_to_wake_up().  Put
 * it in a separate cacheline.
423
 */
T
Tejun Heo 已提交
424 425
static DEFINE_PER_CPU(struct worker_pool [NR_STD_WORKER_POOLS],
		      cpu_std_worker_pools);
426 427
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t [NR_STD_WORKER_POOLS],
				     cpu_std_pool_nr_running);
428

429
/*
T
Tejun Heo 已提交
430 431
 * Standard worker pools and nr_running counter for unbound CPU.  The pools
 * have POOL_DISASSOCIATED set, and all workers have WORKER_UNBOUND set.
432
 */
T
Tejun Heo 已提交
433
static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
434
static atomic_t unbound_std_pool_nr_running[NR_STD_WORKER_POOLS] = {
435
	[0 ... NR_STD_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
436
};
437

T
Tejun Heo 已提交
438 439 440 441
/* idr of all pools */
static DEFINE_MUTEX(worker_pool_idr_mutex);
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
442
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
443

T
Tejun Heo 已提交
444
static struct worker_pool *std_worker_pools(int cpu)
445
{
446
	if (cpu != WORK_CPU_UNBOUND)
T
Tejun Heo 已提交
447
		return per_cpu(cpu_std_worker_pools, cpu);
448
	else
T
Tejun Heo 已提交
449
		return unbound_std_worker_pools;
450 451
}

T
Tejun Heo 已提交
452 453
static int std_worker_pool_pri(struct worker_pool *pool)
{
T
Tejun Heo 已提交
454
	return pool - std_worker_pools(pool->cpu);
T
Tejun Heo 已提交
455 456
}

T
Tejun Heo 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

	mutex_lock(&worker_pool_idr_mutex);
	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	mutex_unlock(&worker_pool_idr_mutex);

	return ret;
}

470 471 472 473 474 475 476 477 478
/*
 * Lookup worker_pool by id.  The idr currently is built during boot and
 * never modified.  Don't worry about locking for now.
 */
static struct worker_pool *worker_pool_by_id(int pool_id)
{
	return idr_find(&worker_pool_idr, pool_id);
}

479 480
static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
{
T
Tejun Heo 已提交
481
	struct worker_pool *pools = std_worker_pools(cpu);
482

T
Tejun Heo 已提交
483
	return &pools[highpri];
484 485
}

486
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
487
{
488
	int cpu = pool->cpu;
489
	int idx = std_worker_pool_pri(pool);
490

491
	if (cpu != WORK_CPU_UNBOUND)
492
		return &per_cpu(cpu_std_pool_nr_running, cpu)[idx];
493
	else
494
		return &unbound_std_pool_nr_running[idx];
495 496
}

T
Tejun Heo 已提交
497 498
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
499
{
500
	if (!(wq->flags & WQ_UNBOUND)) {
501
		if (likely(cpu < nr_cpu_ids))
502 503 504 505
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
506 507
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
523

524
/*
525 526
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
527
 * is cleared and the high bits contain OFFQ flags and pool ID.
528
 *
529 530
 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, pool or clear
531 532
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
533
 *
534 535 536 537
 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
 * corresponding to a work.  Pool is available once the work has been
 * queued anywhere after initialization until it is sync canceled.  cwq is
 * available only while the work item is queued.
538
 *
539 540 541 542
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
543
 */
544 545
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
546
{
547
	BUG_ON(!work_pending(work));
548 549
	atomic_long_set(&work->data, data | flags | work_static(work));
}
550

551 552 553 554 555
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
556
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
557 558
}

559 560
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
561
{
562 563 564 565 566 567 568
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
569
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
570
}
571

572
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
573
{
574 575
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
576 577
}

578
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
579
{
580
	unsigned long data = atomic_long_read(&work->data);
581

582 583 584 585
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
586 587
}

588 589 590 591 592 593 594
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
595
{
596
	unsigned long data = atomic_long_read(&work->data);
597 598
	struct worker_pool *pool;
	int pool_id;
599

600 601
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
602
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
603

604 605
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
606 607
		return NULL;

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
	pool = worker_pool_by_id(pool_id);
	WARN_ON_ONCE(!pool);
	return pool;
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
	struct worker_pool *pool = get_work_pool(work);

	return pool ? pool->id : WORK_OFFQ_POOL_NONE;
}

627 628
static void mark_work_canceling(struct work_struct *work)
{
629
	unsigned long pool_id = get_work_pool_id(work);
630

631 632
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
633 634 635 636 637 638 639 640 641
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

642
/*
643 644
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
645
 * they're being called with pool->lock held.
646 647
 */

648
static bool __need_more_worker(struct worker_pool *pool)
649
{
650
	return !atomic_read(get_pool_nr_running(pool));
651 652
}

653
/*
654 655
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
656 657
 *
 * Note that, because unbound workers never contribute to nr_running, this
658
 * function will always return %true for unbound pools as long as the
659
 * worklist isn't empty.
660
 */
661
static bool need_more_worker(struct worker_pool *pool)
662
{
663
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
664
}
665

666
/* Can I start working?  Called from busy but !running workers. */
667
static bool may_start_working(struct worker_pool *pool)
668
{
669
	return pool->nr_idle;
670 671 672
}

/* Do I need to keep working?  Called from currently running workers. */
673
static bool keep_working(struct worker_pool *pool)
674
{
675
	atomic_t *nr_running = get_pool_nr_running(pool);
676

677
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
678 679 680
}

/* Do we need a new worker?  Called from manager. */
681
static bool need_to_create_worker(struct worker_pool *pool)
682
{
683
	return need_more_worker(pool) && !may_start_working(pool);
684
}
685

686
/* Do I need to be the manager? */
687
static bool need_to_manage_workers(struct worker_pool *pool)
688
{
689
	return need_to_create_worker(pool) ||
690
		(pool->flags & POOL_MANAGE_WORKERS);
691 692 693
}

/* Do we have too many workers and should some go away? */
694
static bool too_many_workers(struct worker_pool *pool)
695
{
696
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
697 698
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
699

700 701 702 703 704 705 706
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

707
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
708 709
}

710
/*
711 712 713
 * Wake up functions.
 */

714
/* Return the first worker.  Safe with preemption disabled */
715
static struct worker *first_worker(struct worker_pool *pool)
716
{
717
	if (unlikely(list_empty(&pool->idle_list)))
718 719
		return NULL;

720
	return list_first_entry(&pool->idle_list, struct worker, entry);
721 722 723 724
}

/**
 * wake_up_worker - wake up an idle worker
725
 * @pool: worker pool to wake worker from
726
 *
727
 * Wake up the first idle worker of @pool.
728 729
 *
 * CONTEXT:
730
 * spin_lock_irq(pool->lock).
731
 */
732
static void wake_up_worker(struct worker_pool *pool)
733
{
734
	struct worker *worker = first_worker(pool);
735 736 737 738 739

	if (likely(worker))
		wake_up_process(worker->task);
}

740
/**
741 742 743 744 745 746 747 748 749 750 751 752 753 754
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

755
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
756
		WARN_ON_ONCE(worker->pool->cpu != cpu);
757
		atomic_inc(get_pool_nr_running(worker->pool));
758
	}
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
780 781
	struct worker_pool *pool;
	atomic_t *nr_running;
782

783 784 785 786 787
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
788
	if (worker->flags & WORKER_NOT_RUNNING)
789 790
		return NULL;

791 792 793
	pool = worker->pool;
	nr_running = get_pool_nr_running(pool);

794 795 796 797 798 799 800 801
	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
802 803 804
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
805
	 * manipulating idle_list, so dereferencing idle_list without pool
806
	 * lock is safe.
807
	 */
808
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
809
		to_wakeup = first_worker(pool);
810 811 812 813 814
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
815
 * @worker: self
816 817 818
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
819 820 821
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
822
 *
823
 * CONTEXT:
824
 * spin_lock_irq(pool->lock)
825 826 827 828
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
829
	struct worker_pool *pool = worker->pool;
830

831 832
	WARN_ON_ONCE(worker->task != current);

833 834 835 836 837 838 839
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
840
		atomic_t *nr_running = get_pool_nr_running(pool);
841 842 843

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
844
			    !list_empty(&pool->worklist))
845
				wake_up_worker(pool);
846 847 848 849
		} else
			atomic_dec(nr_running);
	}

850 851 852 853
	worker->flags |= flags;
}

/**
854
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
855
 * @worker: self
856 857
 * @flags: flags to clear
 *
858
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
859
 *
860
 * CONTEXT:
861
 * spin_lock_irq(pool->lock)
862 863 864
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
865
	struct worker_pool *pool = worker->pool;
866 867
	unsigned int oflags = worker->flags;

868 869
	WARN_ON_ONCE(worker->task != current);

870
	worker->flags &= ~flags;
871

872 873 874 875 876
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
877 878
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
879
			atomic_inc(get_pool_nr_running(pool));
880 881
}

882 883
/**
 * find_worker_executing_work - find worker which is executing a work
884
 * @pool: pool of interest
885 886
 * @work: work to find worker for
 *
887 888
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
908 909
 *
 * CONTEXT:
910
 * spin_lock_irq(pool->lock).
911 912 913 914
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
915
 */
916
static struct worker *find_worker_executing_work(struct worker_pool *pool,
917
						 struct work_struct *work)
918
{
919 920 921
	struct worker *worker;
	struct hlist_node *tmp;

922
	hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
923 924 925
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
926 927 928
			return worker;

	return NULL;
929 930
}

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
946
 * spin_lock_irq(pool->lock).
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

972
static void cwq_activate_delayed_work(struct work_struct *work)
973
{
974
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
975 976 977 978 979 980 981

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

982 983 984 985 986 987 988 989
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	cwq_activate_delayed_work(work);
}

990 991 992 993 994 995 996 997 998
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
999
 * spin_lock_irq(pool->lock).
1000
 */
1001
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1002 1003 1004 1005 1006 1007 1008
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

1009 1010 1011 1012 1013
	cwq->nr_active--;
	if (!list_empty(&cwq->delayed_works)) {
		/* one down, submit a delayed one */
		if (cwq->nr_active < cwq->max_active)
			cwq_activate_first_delayed(cwq);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1035
/**
1036
 * try_to_grab_pending - steal work item from worklist and disable irq
1037 1038
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1039
 * @flags: place to store irq state
1040 1041 1042 1043 1044 1045 1046
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1047 1048
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1049
 *
1050
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1051 1052 1053
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1054 1055 1056 1057
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1058
 * This function is safe to call from any context including IRQ handler.
1059
 */
1060 1061
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1062
{
1063
	struct worker_pool *pool;
1064

1065 1066
	local_irq_save(*flags);

1067 1068 1069 1070
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1071 1072 1073 1074 1075
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1076 1077 1078 1079 1080
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1081 1082 1083 1084 1085 1086 1087
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1088 1089
	pool = get_work_pool(work);
	if (!pool)
1090
		goto fail;
1091

1092
	spin_lock(&pool->lock);
1093 1094
	if (!list_empty(&work->entry)) {
		/*
1095 1096 1097
		 * This work is queued, but perhaps we locked the wrong
		 * pool.  In that case we must see the new value after
		 * rmb(), see insert_work()->wmb().
1098 1099
		 */
		smp_rmb();
1100
		if (pool == get_work_pool(work)) {
1101
			debug_work_deactivate(work);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

			/*
			 * A delayed work item cannot be grabbed directly
			 * because it might have linked NO_COLOR work items
			 * which, if left on the delayed_list, will confuse
			 * cwq->nr_active management later on and cause
			 * stall.  Make sure the work item is activated
			 * before grabbing.
			 */
			if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
				cwq_activate_delayed_work(work);

1114 1115
			list_del_init(&work->entry);
			cwq_dec_nr_in_flight(get_work_cwq(work),
1116
				get_work_color(work));
1117

1118
			spin_unlock(&pool->lock);
1119
			return 1;
1120 1121
		}
	}
1122
	spin_unlock(&pool->lock);
1123 1124 1125 1126 1127
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1128
	return -EAGAIN;
1129 1130
}

T
Tejun Heo 已提交
1131
/**
1132
 * insert_work - insert a work into a pool
T
Tejun Heo 已提交
1133 1134 1135 1136 1137
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1138 1139
 * Insert @work which belongs to @cwq after @head.  @extra_flags is or'd to
 * work_struct flags.
T
Tejun Heo 已提交
1140 1141
 *
 * CONTEXT:
1142
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1143
 */
O
Oleg Nesterov 已提交
1144
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1145 1146
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1147
{
1148
	struct worker_pool *pool = cwq->pool;
1149

T
Tejun Heo 已提交
1150
	/* we own @work, set data and link */
1151
	set_work_cwq(work, cwq, extra_flags);
1152

1153 1154 1155 1156 1157
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
1158

1159
	list_add_tail(&work->entry, head);
1160 1161 1162 1163 1164 1165 1166 1167

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1168 1169
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1170 1171
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

1182
	for_each_wq_cpu(cpu) {
1183 1184
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		struct worker_pool *pool = cwq->pool;
1185 1186 1187 1188
		struct worker *worker;
		struct hlist_node *pos;
		int i;

1189
		spin_lock_irqsave(&pool->lock, flags);
1190
		for_each_busy_worker(worker, i, pos, pool) {
1191 1192
			if (worker->task != current)
				continue;
1193
			spin_unlock_irqrestore(&pool->lock, flags);
1194 1195 1196 1197 1198 1199
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
1200
		spin_unlock_irqrestore(&pool->lock, flags);
1201 1202 1203 1204
	}
	return false;
}

T
Tejun Heo 已提交
1205
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1206 1207
			 struct work_struct *work)
{
1208 1209
	bool highpri = wq->flags & WQ_HIGHPRI;
	struct worker_pool *pool;
1210
	struct cpu_workqueue_struct *cwq;
1211
	struct list_head *worklist;
1212
	unsigned int work_flags;
1213
	unsigned int req_cpu = cpu;
1214 1215 1216 1217 1218 1219 1220 1221

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1222

1223
	debug_work_activate(work);
1224

1225
	/* if dying, only works from the same workqueue are allowed */
1226
	if (unlikely(wq->flags & WQ_DRAINING) &&
1227
	    WARN_ON_ONCE(!is_chained_work(wq)))
1228 1229
		return;

1230
	/* determine pool to use */
1231
	if (!(wq->flags & WQ_UNBOUND)) {
1232
		struct worker_pool *last_pool;
1233

1234
		if (cpu == WORK_CPU_UNBOUND)
1235 1236
			cpu = raw_smp_processor_id();

1237
		/*
1238 1239 1240 1241
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1242
		 */
1243
		pool = get_std_worker_pool(cpu, highpri);
1244
		last_pool = get_work_pool(work);
1245

1246
		if (last_pool && last_pool != pool) {
1247 1248
			struct worker *worker;

1249
			spin_lock(&last_pool->lock);
1250

1251
			worker = find_worker_executing_work(last_pool, work);
1252 1253

			if (worker && worker->current_cwq->wq == wq)
1254
				pool = last_pool;
1255 1256
			else {
				/* meh... not running there, queue here */
1257 1258
				spin_unlock(&last_pool->lock);
				spin_lock(&pool->lock);
1259
			}
1260
		} else {
1261
			spin_lock(&pool->lock);
1262
		}
1263
	} else {
1264 1265
		pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
		spin_lock(&pool->lock);
1266 1267
	}

1268 1269
	/* pool determined, get cwq and queue */
	cwq = get_cwq(pool->cpu, wq);
1270
	trace_workqueue_queue_work(req_cpu, cwq, work);
1271

1272
	if (WARN_ON(!list_empty(&work->entry))) {
1273
		spin_unlock(&pool->lock);
1274 1275
		return;
	}
1276

1277
	cwq->nr_in_flight[cwq->work_color]++;
1278
	work_flags = work_color_to_flags(cwq->work_color);
1279 1280

	if (likely(cwq->nr_active < cwq->max_active)) {
1281
		trace_workqueue_activate_work(work);
1282
		cwq->nr_active++;
1283
		worklist = &cwq->pool->worklist;
1284 1285
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1286
		worklist = &cwq->delayed_works;
1287
	}
1288

1289
	insert_work(cwq, work, worklist, work_flags);
1290

1291
	spin_unlock(&pool->lock);
L
Linus Torvalds 已提交
1292 1293
}

1294
/**
1295 1296
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1297 1298 1299
 * @wq: workqueue to use
 * @work: work to queue
 *
1300
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1301
 *
1302 1303
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1304
 */
1305 1306
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1307
{
1308
	bool ret = false;
1309
	unsigned long flags;
1310

1311
	local_irq_save(flags);
1312

1313
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1314
		__queue_work(cpu, wq, work);
1315
		ret = true;
1316
	}
1317

1318
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1319 1320
	return ret;
}
1321
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1322

1323
/**
1324
 * queue_work - queue work on a workqueue
1325 1326 1327
 * @wq: workqueue to use
 * @work: work to queue
 *
1328
 * Returns %false if @work was already on a queue, %true otherwise.
1329
 *
1330 1331
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1332
 */
1333
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1334
{
1335
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1336
}
1337
EXPORT_SYMBOL_GPL(queue_work);
1338

1339
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1340
{
1341
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1342

1343
	/* should have been called from irqsafe timer with irq already off */
1344
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1345
}
1346
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1347

1348 1349
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1350
{
1351 1352 1353 1354 1355
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1356 1357
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1358

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1370
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1371

1372
	dwork->wq = wq;
1373
	dwork->cpu = cpu;
1374 1375 1376 1377 1378 1379
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1380 1381
}

1382 1383 1384 1385
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1386
 * @dwork: work to queue
1387 1388
 * @delay: number of jiffies to wait before queueing
 *
1389 1390 1391
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1392
 */
1393 1394
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1395
{
1396
	struct work_struct *work = &dwork->work;
1397
	bool ret = false;
1398
	unsigned long flags;
1399

1400 1401
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1402

1403
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1404
		__queue_delayed_work(cpu, wq, dwork, delay);
1405
		ret = true;
1406
	}
1407

1408
	local_irq_restore(flags);
1409 1410
	return ret;
}
1411
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1412

1413 1414 1415 1416 1417 1418
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1419
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1420
 */
1421
bool queue_delayed_work(struct workqueue_struct *wq,
1422 1423
			struct delayed_work *dwork, unsigned long delay)
{
1424
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1425 1426
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1427

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1443
 * This function is safe to call from any context including IRQ handler.
1444 1445 1446 1447 1448 1449 1450
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1451

1452 1453 1454
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1455

1456 1457 1458
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1459
	}
1460 1461

	/* -ENOENT from try_to_grab_pending() becomes %true */
1462 1463
	return ret;
}
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1480

T
Tejun Heo 已提交
1481 1482 1483 1484 1485 1486 1487 1488
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1489
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1490 1491
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1492
{
1493
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1494 1495 1496 1497 1498

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1499 1500
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1501
	pool->nr_idle++;
1502
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1503 1504

	/* idle_list is LIFO */
1505
	list_add(&worker->entry, &pool->idle_list);
1506

1507 1508
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1509

1510
	/*
1511
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1512
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1513 1514
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1515
	 */
1516
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1517
		     pool->nr_workers == pool->nr_idle &&
1518
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1528
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1529 1530 1531
 */
static void worker_leave_idle(struct worker *worker)
{
1532
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1533 1534

	BUG_ON(!(worker->flags & WORKER_IDLE));
1535
	worker_clr_flags(worker, WORKER_IDLE);
1536
	pool->nr_idle--;
T
Tejun Heo 已提交
1537 1538 1539
	list_del_init(&worker->entry);
}

1540
/**
1541
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1553
 * verbatim as it's best effort and blocking and pool may be
1554 1555
 * [dis]associated in the meantime.
 *
1556
 * This function tries set_cpus_allowed() and locks pool and verifies the
1557
 * binding against %POOL_DISASSOCIATED which is set during
1558 1559 1560
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1561 1562
 *
 * CONTEXT:
1563
 * Might sleep.  Called without any lock but returns with pool->lock
1564 1565 1566
 * held.
 *
 * RETURNS:
1567
 * %true if the associated pool is online (@worker is successfully
1568 1569 1570
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1571
__acquires(&pool->lock)
1572
{
1573
	struct worker_pool *pool = worker->pool;
1574 1575 1576
	struct task_struct *task = worker->task;

	while (true) {
1577
		/*
1578 1579 1580
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1581
		 * against POOL_DISASSOCIATED.
1582
		 */
1583
		if (!(pool->flags & POOL_DISASSOCIATED))
1584
			set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
1585

1586
		spin_lock_irq(&pool->lock);
1587
		if (pool->flags & POOL_DISASSOCIATED)
1588
			return false;
1589
		if (task_cpu(task) == pool->cpu &&
1590
		    cpumask_equal(&current->cpus_allowed,
1591
				  get_cpu_mask(pool->cpu)))
1592
			return true;
1593
		spin_unlock_irq(&pool->lock);
1594

1595 1596 1597 1598 1599 1600
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1601
		cpu_relax();
1602
		cond_resched();
1603 1604 1605
	}
}

1606
/*
1607
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1608
 * list_empty(@worker->entry) before leaving idle and call this function.
1609 1610 1611
 */
static void idle_worker_rebind(struct worker *worker)
{
1612 1613 1614
	/* CPU may go down again inbetween, clear UNBOUND only on success */
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1615

1616 1617
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1618
	spin_unlock_irq(&worker->pool->lock);
1619 1620
}

1621
/*
1622
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1623 1624 1625
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1626
 */
1627
static void busy_worker_rebind_fn(struct work_struct *work)
1628 1629 1630
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1631 1632
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1633

1634
	spin_unlock_irq(&worker->pool->lock);
1635 1636
}

1637
/**
1638 1639
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1640
 *
1641
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1642 1643
 * is different for idle and busy ones.
 *
1644 1645 1646 1647
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1648
 *
1649 1650 1651 1652
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1653
 *
1654 1655 1656 1657
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1658
 */
1659
static void rebind_workers(struct worker_pool *pool)
1660
{
1661
	struct worker *worker, *n;
1662 1663 1664
	struct hlist_node *pos;
	int i;

1665 1666
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1667

1668
	/* dequeue and kick idle ones */
1669 1670 1671 1672 1673 1674
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1675

1676 1677 1678 1679 1680 1681
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1682

1683 1684 1685 1686
	/* rebind busy workers */
	for_each_busy_worker(worker, i, pos, pool) {
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1687

1688 1689 1690
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1691

1692
		debug_work_activate(rebind_work);
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
		/*
		 * wq doesn't really matter but let's keep @worker->pool
		 * and @cwq->pool consistent for sanity.
		 */
		if (std_worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

		insert_work(get_cwq(pool->cpu, wq), rebind_work,
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1706
	}
1707 1708
}

T
Tejun Heo 已提交
1709 1710 1711 1712 1713
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1714 1715
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1716
		INIT_LIST_HEAD(&worker->scheduled);
1717
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1718 1719
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1720
	}
T
Tejun Heo 已提交
1721 1722 1723 1724 1725
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1726
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1727
 *
1728
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1738
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1739
{
1740
	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1741
	struct worker *worker = NULL;
1742
	int id = -1;
T
Tejun Heo 已提交
1743

1744
	spin_lock_irq(&pool->lock);
1745
	while (ida_get_new(&pool->worker_ida, &id)) {
1746
		spin_unlock_irq(&pool->lock);
1747
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1748
			goto fail;
1749
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1750
	}
1751
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1752 1753 1754 1755 1756

	worker = alloc_worker();
	if (!worker)
		goto fail;

1757
	worker->pool = pool;
T
Tejun Heo 已提交
1758 1759
	worker->id = id;

1760
	if (pool->cpu != WORK_CPU_UNBOUND)
1761
		worker->task = kthread_create_on_node(worker_thread,
1762 1763
					worker, cpu_to_node(pool->cpu),
					"kworker/%u:%d%s", pool->cpu, id, pri);
1764 1765
	else
		worker->task = kthread_create(worker_thread, worker,
1766
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1767 1768 1769
	if (IS_ERR(worker->task))
		goto fail;

1770
	if (std_worker_pool_pri(pool))
1771 1772
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1773
	/*
1774
	 * Determine CPU binding of the new worker depending on
1775
	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1776 1777 1778 1779 1780
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1781
	 */
1782
	if (!(pool->flags & POOL_DISASSOCIATED)) {
1783
		kthread_bind(worker->task, pool->cpu);
1784
	} else {
1785
		worker->task->flags |= PF_THREAD_BOUND;
1786
		worker->flags |= WORKER_UNBOUND;
1787
	}
T
Tejun Heo 已提交
1788 1789 1790 1791

	return worker;
fail:
	if (id >= 0) {
1792
		spin_lock_irq(&pool->lock);
1793
		ida_remove(&pool->worker_ida, id);
1794
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1804
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1805 1806
 *
 * CONTEXT:
1807
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1808 1809 1810
 */
static void start_worker(struct worker *worker)
{
1811
	worker->flags |= WORKER_STARTED;
1812
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1813
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1814 1815 1816 1817 1818 1819 1820
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1821
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1822 1823
 *
 * CONTEXT:
1824
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1825 1826 1827
 */
static void destroy_worker(struct worker *worker)
{
1828
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1829 1830 1831 1832
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1833
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1834

T
Tejun Heo 已提交
1835
	if (worker->flags & WORKER_STARTED)
1836
		pool->nr_workers--;
T
Tejun Heo 已提交
1837
	if (worker->flags & WORKER_IDLE)
1838
		pool->nr_idle--;
T
Tejun Heo 已提交
1839 1840

	list_del_init(&worker->entry);
1841
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1842

1843
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1844

T
Tejun Heo 已提交
1845 1846 1847
	kthread_stop(worker->task);
	kfree(worker);

1848
	spin_lock_irq(&pool->lock);
1849
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1850 1851
}

1852
static void idle_worker_timeout(unsigned long __pool)
1853
{
1854
	struct worker_pool *pool = (void *)__pool;
1855

1856
	spin_lock_irq(&pool->lock);
1857

1858
	if (too_many_workers(pool)) {
1859 1860 1861 1862
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1863
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1864 1865 1866
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1867
			mod_timer(&pool->idle_timer, expires);
1868 1869
		else {
			/* it's been idle for too long, wake up manager */
1870
			pool->flags |= POOL_MANAGE_WORKERS;
1871
			wake_up_worker(pool);
1872
		}
1873 1874
	}

1875
	spin_unlock_irq(&pool->lock);
1876
}
1877

1878 1879 1880 1881
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1882
	unsigned int cpu;
1883 1884 1885 1886 1887

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1888
	cpu = cwq->pool->cpu;
1889 1890 1891
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1892
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1893 1894 1895 1896
		wake_up_process(wq->rescuer->task);
	return true;
}

1897
static void pool_mayday_timeout(unsigned long __pool)
1898
{
1899
	struct worker_pool *pool = (void *)__pool;
1900 1901
	struct work_struct *work;

1902
	spin_lock_irq(&pool->lock);
1903

1904
	if (need_to_create_worker(pool)) {
1905 1906 1907 1908 1909 1910
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1911
		list_for_each_entry(work, &pool->worklist, entry)
1912
			send_mayday(work);
L
Linus Torvalds 已提交
1913
	}
1914

1915
	spin_unlock_irq(&pool->lock);
1916

1917
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1918 1919
}

1920 1921
/**
 * maybe_create_worker - create a new worker if necessary
1922
 * @pool: pool to create a new worker for
1923
 *
1924
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1925 1926
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1927
 * sent to all rescuers with works scheduled on @pool to resolve
1928 1929 1930 1931 1932 1933
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1934
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1935 1936 1937 1938
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1939
 * false if no action was taken and pool->lock stayed locked, true
1940 1941
 * otherwise.
 */
1942
static bool maybe_create_worker(struct worker_pool *pool)
1943 1944
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1945
{
1946
	if (!need_to_create_worker(pool))
1947 1948
		return false;
restart:
1949
	spin_unlock_irq(&pool->lock);
1950

1951
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1952
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1953 1954 1955 1956

	while (true) {
		struct worker *worker;

1957
		worker = create_worker(pool);
1958
		if (worker) {
1959
			del_timer_sync(&pool->mayday_timer);
1960
			spin_lock_irq(&pool->lock);
1961
			start_worker(worker);
1962
			BUG_ON(need_to_create_worker(pool));
1963 1964 1965
			return true;
		}

1966
		if (!need_to_create_worker(pool))
1967
			break;
L
Linus Torvalds 已提交
1968

1969 1970
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1971

1972
		if (!need_to_create_worker(pool))
1973 1974 1975
			break;
	}

1976
	del_timer_sync(&pool->mayday_timer);
1977
	spin_lock_irq(&pool->lock);
1978
	if (need_to_create_worker(pool))
1979 1980 1981 1982 1983 1984
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1985
 * @pool: pool to destroy workers for
1986
 *
1987
 * Destroy @pool workers which have been idle for longer than
1988 1989 1990
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1991
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1992 1993 1994
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1995
 * false if no action was taken and pool->lock stayed locked, true
1996 1997
 * otherwise.
 */
1998
static bool maybe_destroy_workers(struct worker_pool *pool)
1999 2000
{
	bool ret = false;
L
Linus Torvalds 已提交
2001

2002
	while (too_many_workers(pool)) {
2003 2004
		struct worker *worker;
		unsigned long expires;
2005

2006
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2007
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2008

2009
		if (time_before(jiffies, expires)) {
2010
			mod_timer(&pool->idle_timer, expires);
2011
			break;
2012
		}
L
Linus Torvalds 已提交
2013

2014 2015
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2016
	}
2017

2018
	return ret;
2019 2020
}

2021
/**
2022 2023
 * manage_workers - manage worker pool
 * @worker: self
2024
 *
2025
 * Assume the manager role and manage the worker pool @worker belongs
2026
 * to.  At any given time, there can be only zero or one manager per
2027
 * pool.  The exclusion is handled automatically by this function.
2028 2029 2030 2031
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2032 2033
 *
 * CONTEXT:
2034
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2035 2036 2037
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2038 2039
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2040
 */
2041
static bool manage_workers(struct worker *worker)
2042
{
2043
	struct worker_pool *pool = worker->pool;
2044
	bool ret = false;
2045

2046
	if (pool->flags & POOL_MANAGING_WORKERS)
2047
		return ret;
2048

2049
	pool->flags |= POOL_MANAGING_WORKERS;
2050

2051 2052 2053 2054 2055 2056
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2057
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2058 2059
	 * manager against CPU hotplug.
	 *
2060
	 * assoc_mutex would always be free unless CPU hotplug is in
2061
	 * progress.  trylock first without dropping @pool->lock.
2062
	 */
2063
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2064
		spin_unlock_irq(&pool->lock);
2065
		mutex_lock(&pool->assoc_mutex);
2066 2067
		/*
		 * CPU hotplug could have happened while we were waiting
2068
		 * for assoc_mutex.  Hotplug itself can't handle us
2069
		 * because manager isn't either on idle or busy list, and
2070
		 * @pool's state and ours could have deviated.
2071
		 *
2072
		 * As hotplug is now excluded via assoc_mutex, we can
2073
		 * simply try to bind.  It will succeed or fail depending
2074
		 * on @pool's current state.  Try it and adjust
2075 2076 2077 2078 2079 2080
		 * %WORKER_UNBOUND accordingly.
		 */
		if (worker_maybe_bind_and_lock(worker))
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2081

2082 2083
		ret = true;
	}
2084

2085
	pool->flags &= ~POOL_MANAGE_WORKERS;
2086 2087

	/*
2088 2089
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2090
	 */
2091 2092
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2093

2094
	pool->flags &= ~POOL_MANAGING_WORKERS;
2095
	mutex_unlock(&pool->assoc_mutex);
2096
	return ret;
2097 2098
}

2099 2100
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2101
 * @worker: self
2102 2103 2104 2105 2106 2107 2108 2109 2110
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2111
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2112
 */
T
Tejun Heo 已提交
2113
static void process_one_work(struct worker *worker, struct work_struct *work)
2114 2115
__releases(&pool->lock)
__acquires(&pool->lock)
2116
{
2117
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2118
	struct worker_pool *pool = worker->pool;
2119
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2120
	int work_color;
2121
	struct worker *collision;
2122 2123 2124 2125 2126 2127 2128 2129
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2130 2131 2132
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2133
#endif
2134 2135 2136
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2137
	 * unbound or a disassociated pool.
2138
	 */
2139
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2140
		     !(pool->flags & POOL_DISASSOCIATED) &&
2141
		     raw_smp_processor_id() != pool->cpu);
2142

2143 2144 2145 2146 2147 2148
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2149
	collision = find_worker_executing_work(pool, work);
2150 2151 2152 2153 2154
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2155
	/* claim and dequeue */
2156
	debug_work_deactivate(work);
2157
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2158
	worker->current_work = work;
2159
	worker->current_func = work->func;
2160
	worker->current_cwq = cwq;
2161
	work_color = get_work_color(work);
2162

2163 2164
	list_del_init(&work->entry);

2165 2166 2167 2168 2169 2170 2171
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2172
	/*
2173
	 * Unbound pool isn't concurrency managed and work items should be
2174 2175
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2176 2177
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2178

2179
	/*
2180
	 * Record the last pool and clear PENDING which should be the last
2181
	 * update to @work.  Also, do this inside @pool->lock so that
2182 2183
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2184
	 */
2185
	set_work_pool_and_clear_pending(work, pool->id);
2186

2187
	spin_unlock_irq(&pool->lock);
2188

2189
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2190
	lock_map_acquire(&lockdep_map);
2191
	trace_workqueue_execute_start(work);
2192
	worker->current_func(work);
2193 2194 2195 2196 2197
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2198 2199 2200 2201
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2202 2203
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2204 2205
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2206 2207 2208 2209
		debug_show_held_locks(current);
		dump_stack();
	}

2210
	spin_lock_irq(&pool->lock);
2211

2212 2213 2214 2215
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2216
	/* we're done with it, release */
2217
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2218
	worker->current_work = NULL;
2219
	worker->current_func = NULL;
2220
	worker->current_cwq = NULL;
2221
	cwq_dec_nr_in_flight(cwq, work_color);
2222 2223
}

2224 2225 2226 2227 2228 2229 2230 2231 2232
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2233
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2234 2235 2236
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2237
{
2238 2239
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2240
						struct work_struct, entry);
T
Tejun Heo 已提交
2241
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2242 2243 2244
	}
}

T
Tejun Heo 已提交
2245 2246
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2247
 * @__worker: self
T
Tejun Heo 已提交
2248
 *
2249 2250
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2251 2252 2253
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2254
 */
T
Tejun Heo 已提交
2255
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2256
{
T
Tejun Heo 已提交
2257
	struct worker *worker = __worker;
2258
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2259

2260 2261
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2262
woke_up:
2263
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2264

2265 2266
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2267
		spin_unlock_irq(&pool->lock);
2268

2269
		/* if DIE is set, destruction is requested */
2270 2271 2272 2273 2274
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2275
		/* otherwise, rebind */
2276 2277
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2278
	}
2279

T
Tejun Heo 已提交
2280
	worker_leave_idle(worker);
2281
recheck:
2282
	/* no more worker necessary? */
2283
	if (!need_more_worker(pool))
2284 2285 2286
		goto sleep;

	/* do we need to manage? */
2287
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2288 2289
		goto recheck;

T
Tejun Heo 已提交
2290 2291 2292 2293 2294 2295 2296
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2297 2298 2299 2300 2301 2302 2303 2304
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2305
		struct work_struct *work =
2306
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2307 2308 2309 2310 2311 2312
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2313
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2314 2315 2316
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2317
		}
2318
	} while (keep_working(pool));
2319 2320

	worker_set_flags(worker, WORKER_PREP, false);
2321
sleep:
2322
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2323
		goto recheck;
2324

T
Tejun Heo 已提交
2325
	/*
2326 2327 2328 2329 2330
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2331 2332 2333
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2334
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2335 2336
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2337 2338
}

2339 2340
/**
 * rescuer_thread - the rescuer thread function
2341
 * @__rescuer: self
2342 2343 2344 2345
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
2346
 * Regular work processing on a pool may block trying to create a new
2347 2348 2349 2350 2351
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2352 2353
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2354 2355 2356 2357
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2358
static int rescuer_thread(void *__rescuer)
2359
{
2360 2361
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2362
	struct list_head *scheduled = &rescuer->scheduled;
2363
	bool is_unbound = wq->flags & WQ_UNBOUND;
2364 2365 2366
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2367 2368 2369 2370 2371 2372

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2373 2374 2375
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2376 2377
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2378
		rescuer->task->flags &= ~PF_WQ_WORKER;
2379
		return 0;
2380
	}
2381

2382 2383 2384 2385
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2386
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2387 2388
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2389
		struct worker_pool *pool = cwq->pool;
2390 2391 2392
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2393
		mayday_clear_cpu(cpu, wq->mayday_mask);
2394 2395

		/* migrate to the target cpu if possible */
2396
		rescuer->pool = pool;
2397 2398 2399 2400 2401 2402 2403
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2404
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2405 2406 2407 2408
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2409 2410

		/*
2411
		 * Leave this pool.  If keep_working() is %true, notify a
2412 2413 2414
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2415 2416
		if (keep_working(pool))
			wake_up_worker(pool);
2417

2418
		spin_unlock_irq(&pool->lock);
2419 2420
	}

2421 2422
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2423 2424
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2425 2426
}

O
Oleg Nesterov 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2438 2439 2440 2441
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2442 2443
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2444
 *
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2458 2459
 *
 * CONTEXT:
2460
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2461
 */
2462
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2463 2464
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2465
{
2466 2467 2468
	struct list_head *head;
	unsigned int linked = 0;

2469
	/*
2470
	 * debugobject calls are safe here even with pool->lock locked
2471 2472 2473 2474
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2475
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2476
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2477
	init_completion(&barr->done);
2478

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2494
	debug_work_activate(&barr->work);
2495 2496
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2497 2498
}

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2532
{
2533 2534
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2535

2536 2537 2538
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2539
	}
2540

2541
	for_each_cwq_cpu(cpu, wq) {
2542
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2543
		struct worker_pool *pool = cwq->pool;
O
Oleg Nesterov 已提交
2544

2545
		spin_lock_irq(&pool->lock);
2546

2547 2548
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2549

2550 2551 2552 2553 2554 2555
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2556

2557 2558 2559 2560
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2561

2562
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2563
	}
2564

2565 2566
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2567

2568
	return wait;
L
Linus Torvalds 已提交
2569 2570
}

2571
/**
L
Linus Torvalds 已提交
2572
 * flush_workqueue - ensure that any scheduled work has run to completion.
2573
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2574 2575 2576 2577
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2578 2579
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2580
 */
2581
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2582
{
2583 2584 2585 2586 2587 2588
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2589

2590 2591
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2653 2654 2655 2656
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2724
}
2725
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2726

2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2757
		bool drained;
2758

2759
		spin_lock_irq(&cwq->pool->lock);
2760
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2761
		spin_unlock_irq(&cwq->pool->lock);
2762 2763

		if (drained)
2764 2765 2766 2767
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2768 2769
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2780
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2781
{
2782
	struct worker *worker = NULL;
2783
	struct worker_pool *pool;
2784 2785 2786
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2787 2788
	pool = get_work_pool(work);
	if (!pool)
2789
		return false;
2790

2791
	spin_lock_irq(&pool->lock);
2792 2793 2794
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2795
		 * If it was re-queued to a different pool under us, we
2796
		 * are not going to wait.
2797 2798
		 */
		smp_rmb();
2799
		cwq = get_work_cwq(work);
2800
		if (unlikely(!cwq || pool != cwq->pool))
T
Tejun Heo 已提交
2801
			goto already_gone;
2802
	} else {
2803
		worker = find_worker_executing_work(pool, work);
2804
		if (!worker)
T
Tejun Heo 已提交
2805
			goto already_gone;
2806
		cwq = worker->current_cwq;
2807
	}
2808

2809
	insert_wq_barrier(cwq, barr, work, worker);
2810
	spin_unlock_irq(&pool->lock);
2811

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2822
	lock_map_release(&cwq->wq->lockdep_map);
2823

2824
	return true;
T
Tejun Heo 已提交
2825
already_gone:
2826
	spin_unlock_irq(&pool->lock);
2827
	return false;
2828
}
2829 2830 2831 2832 2833

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2834 2835
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2836 2837 2838 2839 2840 2841 2842 2843 2844
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2845 2846 2847
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2848
	if (start_flush_work(work, &barr)) {
2849 2850 2851
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2852
	} else {
2853
		return false;
2854 2855
	}
}
2856
EXPORT_SYMBOL_GPL(flush_work);
2857

2858
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2859
{
2860
	unsigned long flags;
2861 2862 2863
	int ret;

	do {
2864 2865 2866 2867 2868 2869
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2870
			flush_work(work);
2871 2872
	} while (unlikely(ret < 0));

2873 2874 2875 2876
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2877
	flush_work(work);
2878
	clear_work_data(work);
2879 2880 2881
	return ret;
}

2882
/**
2883 2884
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2885
 *
2886 2887 2888 2889
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2890
 *
2891 2892
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2893
 *
2894
 * The caller must ensure that the workqueue on which @work was last
2895
 * queued can't be destroyed before this function returns.
2896 2897 2898
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2899
 */
2900
bool cancel_work_sync(struct work_struct *work)
2901
{
2902
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2903
}
2904
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2905

2906
/**
2907 2908
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2909
 *
2910 2911 2912
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2913
 *
2914 2915 2916
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2917
 */
2918 2919
bool flush_delayed_work(struct delayed_work *dwork)
{
2920
	local_irq_disable();
2921
	if (del_timer_sync(&dwork->timer))
2922
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2923
	local_irq_enable();
2924 2925 2926 2927
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2928
/**
2929 2930
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2931
 *
2932 2933 2934 2935 2936
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2937
 *
2938
 * This function is safe to call from any context including IRQ handler.
2939
 */
2940
bool cancel_delayed_work(struct delayed_work *dwork)
2941
{
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2952 2953
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2954
	local_irq_restore(flags);
2955
	return ret;
2956
}
2957
EXPORT_SYMBOL(cancel_delayed_work);
2958

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2969
{
2970
	return __cancel_work_timer(&dwork->work, true);
2971
}
2972
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2973

2974
/**
2975 2976 2977 2978 2979 2980
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2981
bool schedule_work_on(int cpu, struct work_struct *work)
2982
{
2983
	return queue_work_on(cpu, system_wq, work);
2984 2985 2986
}
EXPORT_SYMBOL(schedule_work_on);

2987 2988 2989 2990
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2991 2992
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2993 2994 2995 2996
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2997
 */
2998
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2999
{
3000
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3001
}
3002
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3003

3004 3005 3006
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
3007
 * @dwork: job to be done
3008 3009 3010 3011 3012
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
3013 3014
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
3015
{
3016
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
3017
}
3018
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
3019

3020 3021
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3022 3023
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3024 3025 3026 3027
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3028
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3029
{
3030
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3031
}
3032
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3033

3034
/**
3035
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3036 3037
 * @func: the function to call
 *
3038 3039
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3040
 * schedule_on_each_cpu() is very slow.
3041 3042 3043
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3044
 */
3045
int schedule_on_each_cpu(work_func_t func)
3046 3047
{
	int cpu;
3048
	struct work_struct __percpu *works;
3049

3050 3051
	works = alloc_percpu(struct work_struct);
	if (!works)
3052
		return -ENOMEM;
3053

3054 3055
	get_online_cpus();

3056
	for_each_online_cpu(cpu) {
3057 3058 3059
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3060
		schedule_work_on(cpu, work);
3061
	}
3062 3063 3064 3065

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3066
	put_online_cpus();
3067
	free_percpu(works);
3068 3069 3070
	return 0;
}

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3095 3096
void flush_scheduled_work(void)
{
3097
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3098
}
3099
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3100

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3113
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3114 3115
{
	if (!in_interrupt()) {
3116
		fn(&ew->work);
3117 3118 3119
		return 0;
	}

3120
	INIT_WORK(&ew->work, fn);
3121 3122 3123 3124 3125 3126
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3127 3128
int keventd_up(void)
{
3129
	return system_wq != NULL;
L
Linus Torvalds 已提交
3130 3131
}

3132
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3133
{
3134
	/*
T
Tejun Heo 已提交
3135 3136 3137
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3138
	 */
T
Tejun Heo 已提交
3139 3140 3141
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3142

3143
	if (!(wq->flags & WQ_UNBOUND))
3144
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3145
	else {
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3158
	}
3159

3160
	/* just in case, make sure it's actually aligned */
3161 3162
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3163 3164
}

3165
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3166
{
3167
	if (!(wq->flags & WQ_UNBOUND))
3168 3169 3170
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3171
		kfree(*(void **)(wq->cpu_wq.single + 1));
3172
	}
T
Tejun Heo 已提交
3173 3174
}

3175 3176
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3177
{
3178 3179 3180
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3181 3182
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3183

3184
	return clamp_val(max_active, 1, lim);
3185 3186
}

3187
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3188 3189 3190
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3191
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3192
{
3193
	va_list args, args1;
L
Linus Torvalds 已提交
3194
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3195
	unsigned int cpu;
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3210

3211 3212 3213 3214 3215 3216 3217
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3218
	max_active = max_active ?: WQ_DFL_ACTIVE;
3219
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3220

3221
	/* init wq */
3222
	wq->flags = flags;
3223
	wq->saved_max_active = max_active;
3224 3225 3226 3227
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3228

3229
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3230
	INIT_LIST_HEAD(&wq->list);
3231

3232 3233 3234
	if (alloc_cwqs(wq) < 0)
		goto err;

3235
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3236 3237
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

T
Tejun Heo 已提交
3238
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
T
Tejun Heo 已提交
3239
		cwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3240
		cwq->wq = wq;
3241
		cwq->flush_color = -1;
3242 3243
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3244
	}
T
Tejun Heo 已提交
3245

3246 3247 3248
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3249
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3250 3251 3252 3253 3254 3255
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3256 3257
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3258
					       wq->name);
3259 3260 3261 3262 3263
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3264 3265
	}

3266 3267 3268 3269 3270
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3271
	spin_lock(&workqueue_lock);
3272

3273
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3274
		for_each_cwq_cpu(cpu, wq)
3275 3276
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3277
	list_add(&wq->list, &workqueues);
3278

T
Tejun Heo 已提交
3279 3280
	spin_unlock(&workqueue_lock);

3281
	return wq;
T
Tejun Heo 已提交
3282 3283
err:
	if (wq) {
3284
		free_cwqs(wq);
3285
		free_mayday_mask(wq->mayday_mask);
3286
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3287 3288 3289
		kfree(wq);
	}
	return NULL;
3290
}
3291
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3292

3293 3294 3295 3296 3297 3298 3299 3300
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3301
	unsigned int cpu;
3302

3303 3304
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3305

3306 3307 3308 3309
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3310
	spin_lock(&workqueue_lock);
3311
	list_del(&wq->list);
3312
	spin_unlock(&workqueue_lock);
3313

3314
	/* sanity check */
3315
	for_each_cwq_cpu(cpu, wq) {
3316 3317 3318 3319 3320
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3321 3322
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3323
	}
3324

3325 3326
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3327
		free_mayday_mask(wq->mayday_mask);
3328
		kfree(wq->rescuer);
3329 3330
	}

3331
	free_cwqs(wq);
3332 3333 3334 3335
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3336 3337 3338 3339 3340 3341 3342 3343 3344
/**
 * cwq_set_max_active - adjust max_active of a cwq
 * @cwq: target cpu_workqueue_struct
 * @max_active: new max_active value.
 *
 * Set @cwq->max_active to @max_active and activate delayed works if
 * increased.
 *
 * CONTEXT:
3345
 * spin_lock_irq(pool->lock).
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
 */
static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
{
	cwq->max_active = max_active;

	while (!list_empty(&cwq->delayed_works) &&
	       cwq->nr_active < cwq->max_active)
		cwq_activate_first_delayed(cwq);
}

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3370
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3371 3372 3373 3374 3375

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3376
	for_each_cwq_cpu(cpu, wq) {
3377 3378
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		struct worker_pool *pool = cwq->pool;
3379

3380
		spin_lock_irq(&pool->lock);
3381

3382
		if (!(wq->flags & WQ_FREEZABLE) ||
3383 3384
		    !(pool->flags & POOL_FREEZING))
			cwq_set_max_active(cwq, max_active);
3385

3386
		spin_unlock_irq(&pool->lock);
3387
	}
3388

3389
	spin_unlock(&workqueue_lock);
3390
}
3391
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3392

3393
/**
3394 3395 3396
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3397
 *
3398 3399 3400
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3401
 *
3402 3403
 * RETURNS:
 * %true if congested, %false otherwise.
3404
 */
3405
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3406
{
3407 3408 3409
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3410
}
3411
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3412

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3425
{
3426
	struct worker_pool *pool = get_work_pool(work);
3427 3428
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3429

3430 3431
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3432

3433 3434 3435 3436 3437 3438
	if (pool) {
		spin_lock_irqsave(&pool->lock, flags);
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
		spin_unlock_irqrestore(&pool->lock, flags);
	}
L
Linus Torvalds 已提交
3439

3440
	return ret;
L
Linus Torvalds 已提交
3441
}
3442
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3443

3444 3445 3446
/*
 * CPU hotplug.
 *
3447 3448
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
3449
 * pool which make migrating pending and scheduled works very
3450
 * difficult to implement without impacting hot paths.  Secondly,
3451
 * worker pools serve mix of short, long and very long running works making
3452 3453
 * blocked draining impractical.
 *
3454
 * This is solved by allowing the pools to be disassociated from the CPU
3455 3456
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3457
 */
L
Linus Torvalds 已提交
3458

3459
static void wq_unbind_fn(struct work_struct *work)
3460
{
3461
	int cpu = smp_processor_id();
3462
	struct worker_pool *pool;
3463 3464 3465
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3466

3467 3468
	for_each_std_worker_pool(pool, cpu) {
		BUG_ON(cpu != smp_processor_id());
3469

3470 3471
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3472

3473 3474 3475 3476 3477 3478 3479
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3480
		list_for_each_entry(worker, &pool->idle_list, entry)
3481
			worker->flags |= WORKER_UNBOUND;
3482

3483 3484
		for_each_busy_worker(worker, i, pos, pool)
			worker->flags |= WORKER_UNBOUND;
3485

3486
		pool->flags |= POOL_DISASSOCIATED;
3487

3488 3489 3490
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3491

3492
	/*
3493
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3494 3495
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3496 3497
	 */
	schedule();
3498

3499
	/*
3500 3501
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3502 3503 3504
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3505 3506 3507 3508
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3509
	 */
3510
	for_each_std_worker_pool(pool, cpu)
3511
		atomic_set(get_pool_nr_running(pool), 0);
3512 3513
}

T
Tejun Heo 已提交
3514 3515 3516 3517
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3518
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3519 3520
					       unsigned long action,
					       void *hcpu)
3521 3522
{
	unsigned int cpu = (unsigned long)hcpu;
3523
	struct worker_pool *pool;
3524

T
Tejun Heo 已提交
3525
	switch (action & ~CPU_TASKS_FROZEN) {
3526
	case CPU_UP_PREPARE:
3527
		for_each_std_worker_pool(pool, cpu) {
3528 3529 3530 3531 3532 3533 3534 3535 3536
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3537
			spin_lock_irq(&pool->lock);
3538
			start_worker(worker);
3539
			spin_unlock_irq(&pool->lock);
3540
		}
T
Tejun Heo 已提交
3541
		break;
3542

3543 3544
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3545
		for_each_std_worker_pool(pool, cpu) {
3546 3547 3548
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3549
			pool->flags &= ~POOL_DISASSOCIATED;
3550 3551 3552 3553 3554
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3555
		break;
3556
	}
3557 3558 3559 3560 3561 3562 3563
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3564
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3565 3566 3567
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3568 3569 3570
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3571 3572
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3573
		/* unbinding should happen on the local CPU */
3574
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3575
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3576 3577
		flush_work(&unbind_work);
		break;
3578 3579 3580 3581
	}
	return NOTIFY_OK;
}

3582
#ifdef CONFIG_SMP
3583

3584
struct work_for_cpu {
3585
	struct work_struct work;
3586 3587 3588 3589 3590
	long (*fn)(void *);
	void *arg;
	long ret;
};

3591
static void work_for_cpu_fn(struct work_struct *work)
3592
{
3593 3594
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3595 3596 3597 3598 3599 3600 3601 3602 3603
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3604 3605
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3606
 * The caller must not hold any locks which would prevent @fn from completing.
3607 3608 3609
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3610
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3611

3612 3613 3614
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3615 3616 3617 3618 3619
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3620 3621 3622 3623 3624
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3625 3626
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
3627
 * pool->worklist.
3628 3629
 *
 * CONTEXT:
3630
 * Grabs and releases workqueue_lock and pool->lock's.
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3641
	for_each_wq_cpu(cpu) {
3642
		struct worker_pool *pool;
3643
		struct workqueue_struct *wq;
3644

3645
		for_each_std_worker_pool(pool, cpu) {
3646
			spin_lock_irq(&pool->lock);
3647

3648 3649
			WARN_ON_ONCE(pool->flags & POOL_FREEZING);
			pool->flags |= POOL_FREEZING;
3650

3651 3652
			list_for_each_entry(wq, &workqueues, list) {
				struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3653

3654 3655 3656 3657
				if (cwq && cwq->pool == pool &&
				    (wq->flags & WQ_FREEZABLE))
					cwq->max_active = 0;
			}
3658

3659 3660
			spin_unlock_irq(&pool->lock);
		}
3661 3662 3663 3664 3665 3666
	}

	spin_unlock(&workqueue_lock);
}

/**
3667
 * freeze_workqueues_busy - are freezable workqueues still busy?
3668 3669 3670 3671 3672 3673 3674 3675
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3676 3677
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3688
	for_each_wq_cpu(cpu) {
3689
		struct workqueue_struct *wq;
3690 3691 3692 3693 3694 3695 3696
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3697
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3716
 * frozen works are transferred to their respective pool worklists.
3717 3718
 *
 * CONTEXT:
3719
 * Grabs and releases workqueue_lock and pool->lock's.
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3730
	for_each_wq_cpu(cpu) {
3731
		struct worker_pool *pool;
3732
		struct workqueue_struct *wq;
3733

3734
		for_each_std_worker_pool(pool, cpu) {
3735
			spin_lock_irq(&pool->lock);
3736

3737 3738
			WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
			pool->flags &= ~POOL_FREEZING;
3739

3740 3741
			list_for_each_entry(wq, &workqueues, list) {
				struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3742

3743 3744 3745
				if (!cwq || cwq->pool != pool ||
				    !(wq->flags & WQ_FREEZABLE))
					continue;
3746

3747 3748 3749
				/* restore max_active and repopulate worklist */
				cwq_set_max_active(cwq, wq->saved_max_active);
			}
3750

3751
			wake_up_worker(pool);
3752 3753

			spin_unlock_irq(&pool->lock);
3754
		}
3755 3756 3757 3758 3759 3760 3761 3762
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3763
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3764
{
T
Tejun Heo 已提交
3765 3766
	unsigned int cpu;

3767 3768
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3769
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
3770

3771
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3772
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3773

3774 3775
	/* initialize CPU pools */
	for_each_wq_cpu(cpu) {
3776
		struct worker_pool *pool;
3777

3778
		for_each_std_worker_pool(pool, cpu) {
3779
			spin_lock_init(&pool->lock);
3780
			pool->cpu = cpu;
3781
			pool->flags |= POOL_DISASSOCIATED;
3782 3783
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3784
			hash_init(pool->busy_hash);
3785

3786 3787 3788
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3789

3790
			setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3791 3792
				    (unsigned long)pool);

3793
			mutex_init(&pool->assoc_mutex);
3794
			ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3795 3796 3797

			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
3798
		}
3799 3800
	}

3801
	/* create the initial worker */
3802
	for_each_online_wq_cpu(cpu) {
3803
		struct worker_pool *pool;
3804

3805
		for_each_std_worker_pool(pool, cpu) {
3806 3807
			struct worker *worker;

3808 3809 3810
			if (cpu != WORK_CPU_UNBOUND)
				pool->flags &= ~POOL_DISASSOCIATED;

3811
			worker = create_worker(pool);
3812
			BUG_ON(!worker);
3813
			spin_lock_irq(&pool->lock);
3814
			start_worker(worker);
3815
			spin_unlock_irq(&pool->lock);
3816
		}
3817 3818
	}

3819
	system_wq = alloc_workqueue("events", 0, 0);
3820
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3821
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3822 3823
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3824 3825
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3826
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3827
	       !system_unbound_wq || !system_freezable_wq);
3828
	return 0;
L
Linus Torvalds 已提交
3829
}
3830
early_initcall(init_workqueues);