workqueue.c 123.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/jhash.h>
45
#include <linux/hashtable.h>
46
#include <linux/rculist.h>
47

48
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
49

T
Tejun Heo 已提交
50
enum {
51 52
	/*
	 * worker_pool flags
53
	 *
54
	 * A bound pool is either associated or disassociated with its CPU.
55 56 57 58 59 60
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
61
	 * be executing on any CPU.  The pool behaves as an unbound one.
62 63
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
64 65
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
66
	 */
67
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
68
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
69
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78

79
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
80
				  WORKER_CPU_INTENSIVE,
81

82
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
83

84
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
85
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
86

87 88 89
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

90 91 92
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
93 94 95 96 97 98 99 100
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
101
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
102
};
L
Linus Torvalds 已提交
103 104

/*
T
Tejun Heo 已提交
105 106
 * Structure fields follow one of the following exclusion rules.
 *
107 108
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
109
 *
110 111 112
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
113
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
114
 *
115 116 117 118
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
119
 *
120 121
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
122
 * W: workqueue_lock protected.
123 124
 *
 * R: workqueue_lock protected for writes.  Sched-RCU protected for reads.
125 126 127
 *
 * FR: wq->flush_mutex and workqueue_lock protected for writes.  Sched-RCU
 *     protected for reads.
L
Linus Torvalds 已提交
128 129
 */

130
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
131

132
struct worker_pool {
133
	spinlock_t		lock;		/* the pool lock */
134
	int			cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
135
	int			id;		/* I: pool ID */
136
	unsigned int		flags;		/* X: flags */
137 138 139

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
140 141

	/* nr_idle includes the ones off idle_list for rebinding */
142 143 144 145 146 147
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

148 149 150 151
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

152
	struct mutex		manager_arb;	/* manager arbitration */
153
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
154
	struct ida		worker_ida;	/* L: for worker IDs */
155

T
Tejun Heo 已提交
156
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
157 158
	struct hlist_node	hash_node;	/* R: unbound_pool_hash node */
	int			refcnt;		/* refcnt for unbound pools */
T
Tejun Heo 已提交
159

160 161 162 163 164 165
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
166 167 168 169 170 171

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
172 173
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
174
/*
175 176 177 178
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
179
 */
180
struct pool_workqueue {
181
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
182
	struct workqueue_struct *wq;		/* I: the owning workqueue */
183 184
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
185
	int			refcnt;		/* L: reference count */
186 187
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
188
	int			nr_active;	/* L: nr of active works */
189
	int			max_active;	/* L: max active works */
190
	struct list_head	delayed_works;	/* L: delayed works */
191
	struct list_head	pwqs_node;	/* FR: node on wq->pwqs */
192
	struct list_head	mayday_node;	/* W: node on wq->maydays */
T
Tejun Heo 已提交
193 194 195 196 197 198 199 200 201

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
	 * determined without grabbing workqueue_lock.
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
202
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
203

204 205 206 207 208 209 210 211 212
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

213 214
struct wq_device;

L
Linus Torvalds 已提交
215 216 217 218 219
/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
220
	unsigned int		flags;		/* W: WQ_* flags */
221
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
222
	struct list_head	pwqs;		/* FR: all pwqs of this wq */
T
Tejun Heo 已提交
223
	struct list_head	list;		/* W: list of all workqueues */
224 225 226 227

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
228
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
229 230 231 232
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

233
	struct list_head	maydays;	/* W: pwqs requesting rescue */
234 235
	struct worker		*rescuer;	/* I: rescue worker */

236
	int			nr_drainers;	/* W: drain in progress */
237
	int			saved_max_active; /* W: saved pwq max_active */
238 239 240 241

#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
242
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
243
	struct lockdep_map	lockdep_map;
244
#endif
245
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
246 247
};

248 249
static struct kmem_cache *pwq_cache;

250 251 252 253 254
/* hash of all unbound pools keyed by pool->attrs */
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

255 256
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
257
struct workqueue_struct *system_highpri_wq __read_mostly;
258
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
259
struct workqueue_struct *system_long_wq __read_mostly;
260
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
261
struct workqueue_struct *system_unbound_wq __read_mostly;
262
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
263
struct workqueue_struct *system_freezable_wq __read_mostly;
264
EXPORT_SYMBOL_GPL(system_freezable_wq);
265

266 267 268
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

269 270 271 272 273
#define assert_rcu_or_wq_lock()						\
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
			   lockdep_is_held(&workqueue_lock),		\
			   "sched RCU or workqueue lock should be held")

274 275 276
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
277
	     (pool)++)
278

279 280
#define for_each_busy_worker(worker, i, pool)				\
	hash_for_each(pool->busy_hash, i, worker, hentry)
281

T
Tejun Heo 已提交
282 283 284 285
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
 * @id: integer used for iteration
286 287 288 289 290 291 292
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
293 294
 */
#define for_each_pool(pool, id)						\
295 296 297
	idr_for_each_entry(&worker_pool_idr, pool, id)			\
		if (({ assert_rcu_or_wq_lock(); false; })) { }		\
		else
T
Tejun Heo 已提交
298

299 300 301 302
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
303 304 305 306 307 308 309
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
310 311
 */
#define for_each_pwq(pwq, wq)						\
312 313 314
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
		if (({ assert_rcu_or_wq_lock(); false; })) { }		\
		else
315

316 317 318 319
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

320 321 322 323 324
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
360
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
396
	.debug_hint	= work_debug_hint,
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

432 433
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
434
static LIST_HEAD(workqueues);
435
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
436

437
/*
438 439
 * The CPU and unbound standard worker pools.  The unbound ones have
 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
440
 */
441
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
442
				     cpu_worker_pools);
443

444 445 446 447
/*
 * idr of all pools.  Modifications are protected by workqueue_lock.  Read
 * accesses are protected by sched-RCU protected.
 */
T
Tejun Heo 已提交
448 449
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
450
static int worker_thread(void *__worker);
451 452
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);
L
Linus Torvalds 已提交
453

T
Tejun Heo 已提交
454 455 456 457 458
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

459 460 461
	do {
		if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
			return -ENOMEM;
T
Tejun Heo 已提交
462

463 464 465 466
		spin_lock_irq(&workqueue_lock);
		ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
		spin_unlock_irq(&workqueue_lock);
	} while (ret == -EAGAIN);
T
Tejun Heo 已提交
467

468
	return ret;
469 470
}

471 472 473 474 475 476 477 478
/**
 * first_pwq - return the first pool_workqueue of the specified workqueue
 * @wq: the target workqueue
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 */
479
static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
480
{
481 482 483
	assert_rcu_or_wq_lock();
	return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
				      pwqs_node);
484 485
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
501

502
/*
503 504
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
505
 * is cleared and the high bits contain OFFQ flags and pool ID.
506
 *
507 508
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
509 510
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
511
 *
512
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
513
 * corresponding to a work.  Pool is available once the work has been
514
 * queued anywhere after initialization until it is sync canceled.  pwq is
515
 * available only while the work item is queued.
516
 *
517 518 519 520
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
521
 */
522 523
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
524
{
525
	WARN_ON_ONCE(!work_pending(work));
526 527
	atomic_long_set(&work->data, data | flags | work_static(work));
}
528

529
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
530 531
			 unsigned long extra_flags)
{
532 533
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
534 535
}

536 537 538 539 540 541 542
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

543 544
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
545
{
546 547 548 549 550 551 552
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
553
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
554
}
555

556
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
557
{
558 559
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
560 561
}

562
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
563
{
564
	unsigned long data = atomic_long_read(&work->data);
565

566
	if (data & WORK_STRUCT_PWQ)
567 568 569
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
570 571
}

572 573 574 575 576
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
577 578 579 580 581 582 583 584 585
 *
 * Pools are created and destroyed under workqueue_lock, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under workqueue_lock or with preemption disabled.
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
586 587
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
588
{
589
	unsigned long data = atomic_long_read(&work->data);
590
	int pool_id;
591

592 593
	assert_rcu_or_wq_lock();

594 595
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
596
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
597

598 599
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
600 601
		return NULL;

602
	return idr_find(&worker_pool_idr, pool_id);
603 604 605 606 607 608 609 610 611 612 613
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
614 615
	unsigned long data = atomic_long_read(&work->data);

616 617
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
618
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
619

620
	return data >> WORK_OFFQ_POOL_SHIFT;
621 622
}

623 624
static void mark_work_canceling(struct work_struct *work)
{
625
	unsigned long pool_id = get_work_pool_id(work);
626

627 628
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
629 630 631 632 633 634
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

635
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
636 637
}

638
/*
639 640
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
641
 * they're being called with pool->lock held.
642 643
 */

644
static bool __need_more_worker(struct worker_pool *pool)
645
{
646
	return !atomic_read(&pool->nr_running);
647 648
}

649
/*
650 651
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
652 653
 *
 * Note that, because unbound workers never contribute to nr_running, this
654
 * function will always return %true for unbound pools as long as the
655
 * worklist isn't empty.
656
 */
657
static bool need_more_worker(struct worker_pool *pool)
658
{
659
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
660
}
661

662
/* Can I start working?  Called from busy but !running workers. */
663
static bool may_start_working(struct worker_pool *pool)
664
{
665
	return pool->nr_idle;
666 667 668
}

/* Do I need to keep working?  Called from currently running workers. */
669
static bool keep_working(struct worker_pool *pool)
670
{
671 672
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
673 674 675
}

/* Do we need a new worker?  Called from manager. */
676
static bool need_to_create_worker(struct worker_pool *pool)
677
{
678
	return need_more_worker(pool) && !may_start_working(pool);
679
}
680

681
/* Do I need to be the manager? */
682
static bool need_to_manage_workers(struct worker_pool *pool)
683
{
684
	return need_to_create_worker(pool) ||
685
		(pool->flags & POOL_MANAGE_WORKERS);
686 687 688
}

/* Do we have too many workers and should some go away? */
689
static bool too_many_workers(struct worker_pool *pool)
690
{
691
	bool managing = mutex_is_locked(&pool->manager_arb);
692 693
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
694

695 696 697 698 699 700 701
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

702
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
703 704
}

705
/*
706 707 708
 * Wake up functions.
 */

709
/* Return the first worker.  Safe with preemption disabled */
710
static struct worker *first_worker(struct worker_pool *pool)
711
{
712
	if (unlikely(list_empty(&pool->idle_list)))
713 714
		return NULL;

715
	return list_first_entry(&pool->idle_list, struct worker, entry);
716 717 718 719
}

/**
 * wake_up_worker - wake up an idle worker
720
 * @pool: worker pool to wake worker from
721
 *
722
 * Wake up the first idle worker of @pool.
723 724
 *
 * CONTEXT:
725
 * spin_lock_irq(pool->lock).
726
 */
727
static void wake_up_worker(struct worker_pool *pool)
728
{
729
	struct worker *worker = first_worker(pool);
730 731 732 733 734

	if (likely(worker))
		wake_up_process(worker->task);
}

735
/**
736 737 738 739 740 741 742 743 744 745
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
746
void wq_worker_waking_up(struct task_struct *task, int cpu)
747 748 749
{
	struct worker *worker = kthread_data(task);

750
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
751
		WARN_ON_ONCE(worker->pool->cpu != cpu);
752
		atomic_inc(&worker->pool->nr_running);
753
	}
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
771
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
772 773
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
774
	struct worker_pool *pool;
775

776 777 778 779 780
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
781
	if (worker->flags & WORKER_NOT_RUNNING)
782 783
		return NULL;

784 785
	pool = worker->pool;

786
	/* this can only happen on the local cpu */
787 788
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
789 790 791 792 793 794

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
795 796 797
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
798
	 * manipulating idle_list, so dereferencing idle_list without pool
799
	 * lock is safe.
800
	 */
801 802
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
803
		to_wakeup = first_worker(pool);
804 805 806 807 808
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
809
 * @worker: self
810 811 812
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
813 814 815
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
816
 *
817
 * CONTEXT:
818
 * spin_lock_irq(pool->lock)
819 820 821 822
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
823
	struct worker_pool *pool = worker->pool;
824

825 826
	WARN_ON_ONCE(worker->task != current);

827 828 829 830 831 832 833 834
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
835
			if (atomic_dec_and_test(&pool->nr_running) &&
836
			    !list_empty(&pool->worklist))
837
				wake_up_worker(pool);
838
		} else
839
			atomic_dec(&pool->nr_running);
840 841
	}

842 843 844 845
	worker->flags |= flags;
}

/**
846
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
847
 * @worker: self
848 849
 * @flags: flags to clear
 *
850
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
851
 *
852
 * CONTEXT:
853
 * spin_lock_irq(pool->lock)
854 855 856
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
857
	struct worker_pool *pool = worker->pool;
858 859
	unsigned int oflags = worker->flags;

860 861
	WARN_ON_ONCE(worker->task != current);

862
	worker->flags &= ~flags;
863

864 865 866 867 868
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
869 870
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
871
			atomic_inc(&pool->nr_running);
872 873
}

874 875
/**
 * find_worker_executing_work - find worker which is executing a work
876
 * @pool: pool of interest
877 878
 * @work: work to find worker for
 *
879 880
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
900 901
 *
 * CONTEXT:
902
 * spin_lock_irq(pool->lock).
903 904 905 906
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
907
 */
908
static struct worker *find_worker_executing_work(struct worker_pool *pool,
909
						 struct work_struct *work)
910
{
911 912
	struct worker *worker;

913
	hash_for_each_possible(pool->busy_hash, worker, hentry,
914 915 916
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
917 918 919
			return worker;

	return NULL;
920 921
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
937
 * spin_lock_irq(pool->lock).
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1002
static void pwq_activate_delayed_work(struct work_struct *work)
1003
{
1004
	struct pool_workqueue *pwq = get_work_pwq(work);
1005 1006

	trace_workqueue_activate_work(work);
1007
	move_linked_works(work, &pwq->pool->worklist, NULL);
1008
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1009
	pwq->nr_active++;
1010 1011
}

1012
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1013
{
1014
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1015 1016
						    struct work_struct, entry);

1017
	pwq_activate_delayed_work(work);
1018 1019
}

1020
/**
1021 1022
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1023 1024 1025
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1026
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1027 1028
 *
 * CONTEXT:
1029
 * spin_lock_irq(pool->lock).
1030
 */
1031
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1032
{
T
Tejun Heo 已提交
1033
	/* uncolored work items don't participate in flushing or nr_active */
1034
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1035
		goto out_put;
1036

1037
	pwq->nr_in_flight[color]--;
1038

1039 1040
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1041
		/* one down, submit a delayed one */
1042 1043
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1044 1045 1046
	}

	/* is flush in progress and are we at the flushing tip? */
1047
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1048
		goto out_put;
1049 1050

	/* are there still in-flight works? */
1051
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1052
		goto out_put;
1053

1054 1055
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1056 1057

	/*
1058
	 * If this was the last pwq, wake up the first flusher.  It
1059 1060
	 * will handle the rest.
	 */
1061 1062
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1063 1064
out_put:
	put_pwq(pwq);
1065 1066
}

1067
/**
1068
 * try_to_grab_pending - steal work item from worklist and disable irq
1069 1070
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1071
 * @flags: place to store irq state
1072 1073 1074 1075 1076 1077 1078
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1079 1080
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1081
 *
1082
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1083 1084 1085
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1086 1087 1088 1089
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1090
 * This function is safe to call from any context including IRQ handler.
1091
 */
1092 1093
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1094
{
1095
	struct worker_pool *pool;
1096
	struct pool_workqueue *pwq;
1097

1098 1099
	local_irq_save(*flags);

1100 1101 1102 1103
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1104 1105 1106 1107 1108
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1109 1110 1111 1112 1113
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1114 1115 1116 1117 1118 1119 1120
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1121 1122
	pool = get_work_pool(work);
	if (!pool)
1123
		goto fail;
1124

1125
	spin_lock(&pool->lock);
1126
	/*
1127 1128 1129 1130 1131
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1132 1133
	 * item is currently queued on that pool.
	 */
1134 1135
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1136 1137 1138 1139 1140
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1141
		 * on the delayed_list, will confuse pwq->nr_active
1142 1143 1144 1145
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1146
			pwq_activate_delayed_work(work);
1147 1148

		list_del_init(&work->entry);
1149
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1150

1151
		/* work->data points to pwq iff queued, point to pool */
1152 1153 1154 1155
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1156
	}
1157
	spin_unlock(&pool->lock);
1158 1159 1160 1161 1162
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1163
	return -EAGAIN;
1164 1165
}

T
Tejun Heo 已提交
1166
/**
1167
 * insert_work - insert a work into a pool
1168
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1169 1170 1171 1172
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1173
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1174
 * work_struct flags.
T
Tejun Heo 已提交
1175 1176
 *
 * CONTEXT:
1177
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1178
 */
1179 1180
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1181
{
1182
	struct worker_pool *pool = pwq->pool;
1183

T
Tejun Heo 已提交
1184
	/* we own @work, set data and link */
1185
	set_work_pwq(work, pwq, extra_flags);
1186
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1187
	get_pwq(pwq);
1188 1189 1190 1191 1192 1193 1194 1195

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1196 1197
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1198 1199
}

1200 1201
/*
 * Test whether @work is being queued from another work executing on the
1202
 * same workqueue.
1203 1204 1205
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1206 1207 1208 1209 1210 1211 1212
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1213
	return worker && worker->current_pwq->wq == wq;
1214 1215
}

1216
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1217 1218
			 struct work_struct *work)
{
1219
	struct pool_workqueue *pwq;
1220
	struct worker_pool *last_pool;
1221
	struct list_head *worklist;
1222
	unsigned int work_flags;
1223
	unsigned int req_cpu = cpu;
1224 1225 1226 1227 1228 1229 1230 1231

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1232

1233
	debug_work_activate(work);
1234

1235
	/* if dying, only works from the same workqueue are allowed */
1236
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1237
	    WARN_ON_ONCE(!is_chained_work(wq)))
1238
		return;
1239
retry:
1240
	/* pwq which will be used unless @work is executing elsewhere */
1241
	if (!(wq->flags & WQ_UNBOUND)) {
1242
		if (cpu == WORK_CPU_UNBOUND)
1243
			cpu = raw_smp_processor_id();
1244
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1245 1246 1247
	} else {
		pwq = first_pwq(wq);
	}
1248

1249 1250 1251 1252 1253 1254 1255 1256
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1257

1258
		spin_lock(&last_pool->lock);
1259

1260
		worker = find_worker_executing_work(last_pool, work);
1261

1262 1263
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1264
		} else {
1265 1266
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1267
			spin_lock(&pwq->pool->lock);
1268
		}
1269
	} else {
1270
		spin_lock(&pwq->pool->lock);
1271 1272
	}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
	 * without another pwq replacing it as the first pwq or while a
	 * work item is executing on it, so the retying is guaranteed to
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1292 1293
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1294

1295
	if (WARN_ON(!list_empty(&work->entry))) {
1296
		spin_unlock(&pwq->pool->lock);
1297 1298
		return;
	}
1299

1300 1301
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1302

1303
	if (likely(pwq->nr_active < pwq->max_active)) {
1304
		trace_workqueue_activate_work(work);
1305 1306
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1307 1308
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1309
		worklist = &pwq->delayed_works;
1310
	}
1311

1312
	insert_work(pwq, work, worklist, work_flags);
1313

1314
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1315 1316
}

1317
/**
1318 1319
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1320 1321 1322
 * @wq: workqueue to use
 * @work: work to queue
 *
1323
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1324
 *
1325 1326
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1327
 */
1328 1329
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1330
{
1331
	bool ret = false;
1332
	unsigned long flags;
1333

1334
	local_irq_save(flags);
1335

1336
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1337
		__queue_work(cpu, wq, work);
1338
		ret = true;
1339
	}
1340

1341
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1342 1343
	return ret;
}
1344
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1345

1346
/**
1347
 * queue_work - queue work on a workqueue
1348 1349 1350
 * @wq: workqueue to use
 * @work: work to queue
 *
1351
 * Returns %false if @work was already on a queue, %true otherwise.
1352
 *
1353 1354
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1355
 */
1356
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1357
{
1358
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1359
}
1360
EXPORT_SYMBOL_GPL(queue_work);
1361

1362
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1363
{
1364
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1365

1366
	/* should have been called from irqsafe timer with irq already off */
1367
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1368
}
1369
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1370

1371 1372
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1373
{
1374 1375 1376 1377 1378
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1379 1380
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1381

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1393
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1394

1395
	dwork->wq = wq;
1396
	dwork->cpu = cpu;
1397 1398 1399 1400 1401 1402
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1403 1404
}

1405 1406 1407 1408
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1409
 * @dwork: work to queue
1410 1411
 * @delay: number of jiffies to wait before queueing
 *
1412 1413 1414
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1415
 */
1416 1417
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1418
{
1419
	struct work_struct *work = &dwork->work;
1420
	bool ret = false;
1421
	unsigned long flags;
1422

1423 1424
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1425

1426
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1427
		__queue_delayed_work(cpu, wq, dwork, delay);
1428
		ret = true;
1429
	}
1430

1431
	local_irq_restore(flags);
1432 1433
	return ret;
}
1434
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1435

1436 1437 1438 1439 1440 1441
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1442
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1443
 */
1444
bool queue_delayed_work(struct workqueue_struct *wq,
1445 1446
			struct delayed_work *dwork, unsigned long delay)
{
1447
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1448 1449
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1466
 * This function is safe to call from any context including IRQ handler.
1467 1468 1469 1470 1471 1472 1473
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1474

1475 1476 1477
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1478

1479 1480 1481
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1482
	}
1483 1484

	/* -ENOENT from try_to_grab_pending() becomes %true */
1485 1486
	return ret;
}
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1503

T
Tejun Heo 已提交
1504 1505 1506 1507 1508 1509 1510 1511
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1512
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1513 1514
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1515
{
1516
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1517

1518 1519 1520 1521
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1522

1523 1524
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1525
	pool->nr_idle++;
1526
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1527 1528

	/* idle_list is LIFO */
1529
	list_add(&worker->entry, &pool->idle_list);
1530

1531 1532
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1533

1534
	/*
1535
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1536
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1537 1538
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1539
	 */
1540
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1541
		     pool->nr_workers == pool->nr_idle &&
1542
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1552
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1553 1554 1555
 */
static void worker_leave_idle(struct worker *worker)
{
1556
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1557

1558 1559
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1560
	worker_clr_flags(worker, WORKER_IDLE);
1561
	pool->nr_idle--;
T
Tejun Heo 已提交
1562 1563 1564
	list_del_init(&worker->entry);
}

1565
/**
1566 1567 1568 1569
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1570 1571 1572 1573 1574 1575
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1576
 * This function is to be used by unbound workers and rescuers to bind
1577 1578 1579
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1580
 * verbatim as it's best effort and blocking and pool may be
1581 1582
 * [dis]associated in the meantime.
 *
1583
 * This function tries set_cpus_allowed() and locks pool and verifies the
1584
 * binding against %POOL_DISASSOCIATED which is set during
1585 1586 1587
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1588 1589
 *
 * CONTEXT:
1590
 * Might sleep.  Called without any lock but returns with pool->lock
1591 1592 1593
 * held.
 *
 * RETURNS:
1594
 * %true if the associated pool is online (@worker is successfully
1595 1596
 * bound), %false if offline.
 */
1597
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1598
__acquires(&pool->lock)
1599 1600
{
	while (true) {
1601
		/*
1602 1603 1604
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1605
		 * against POOL_DISASSOCIATED.
1606
		 */
1607
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1608
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1609

1610
		spin_lock_irq(&pool->lock);
1611
		if (pool->flags & POOL_DISASSOCIATED)
1612
			return false;
1613
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1614
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1615
			return true;
1616
		spin_unlock_irq(&pool->lock);
1617

1618 1619 1620 1621 1622 1623
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1624
		cpu_relax();
1625
		cond_resched();
1626 1627 1628
	}
}

1629
/*
1630
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1631
 * list_empty(@worker->entry) before leaving idle and call this function.
1632 1633 1634
 */
static void idle_worker_rebind(struct worker *worker)
{
1635
	/* CPU may go down again inbetween, clear UNBOUND only on success */
1636
	if (worker_maybe_bind_and_lock(worker->pool))
1637
		worker_clr_flags(worker, WORKER_UNBOUND);
1638

1639 1640
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1641
	spin_unlock_irq(&worker->pool->lock);
1642 1643
}

1644
/*
1645
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1646 1647 1648
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1649
 */
1650
static void busy_worker_rebind_fn(struct work_struct *work)
1651 1652 1653
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1654
	if (worker_maybe_bind_and_lock(worker->pool))
1655
		worker_clr_flags(worker, WORKER_UNBOUND);
1656

1657
	spin_unlock_irq(&worker->pool->lock);
1658 1659
}

1660
/**
1661 1662
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1663
 *
1664
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1665 1666
 * is different for idle and busy ones.
 *
1667 1668 1669 1670
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1671
 *
1672 1673 1674 1675
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1676
 *
1677 1678 1679 1680
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1681
 */
1682
static void rebind_workers(struct worker_pool *pool)
1683
{
1684
	struct worker *worker, *n;
1685 1686
	int i;

1687 1688
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1689

1690
	/* dequeue and kick idle ones */
1691 1692 1693 1694 1695 1696
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1697

1698 1699 1700 1701 1702 1703
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1704

1705
	/* rebind busy workers */
1706
	for_each_busy_worker(worker, i, pool) {
1707 1708
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1709

1710 1711 1712
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1713

1714
		debug_work_activate(rebind_work);
1715

1716 1717
		/*
		 * wq doesn't really matter but let's keep @worker->pool
1718
		 * and @pwq->pool consistent for sanity.
1719
		 */
T
Tejun Heo 已提交
1720
		if (worker->pool->attrs->nice < 0)
1721 1722 1723 1724
			wq = system_highpri_wq;
		else
			wq = system_wq;

1725
		insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
1726 1727
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1728
	}
1729 1730
}

T
Tejun Heo 已提交
1731 1732 1733 1734 1735
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1736 1737
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1738
		INIT_LIST_HEAD(&worker->scheduled);
1739
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1740 1741
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1742
	}
T
Tejun Heo 已提交
1743 1744 1745 1746 1747
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1748
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1749
 *
1750
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1760
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1761
{
T
Tejun Heo 已提交
1762
	const char *pri = pool->attrs->nice < 0  ? "H" : "";
T
Tejun Heo 已提交
1763
	struct worker *worker = NULL;
1764
	int id = -1;
T
Tejun Heo 已提交
1765

1766
	spin_lock_irq(&pool->lock);
1767
	while (ida_get_new(&pool->worker_ida, &id)) {
1768
		spin_unlock_irq(&pool->lock);
1769
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1770
			goto fail;
1771
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1772
	}
1773
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1774 1775 1776 1777 1778

	worker = alloc_worker();
	if (!worker)
		goto fail;

1779
	worker->pool = pool;
T
Tejun Heo 已提交
1780 1781
	worker->id = id;

1782
	if (pool->cpu >= 0)
1783
		worker->task = kthread_create_on_node(worker_thread,
1784
					worker, cpu_to_node(pool->cpu),
1785
					"kworker/%d:%d%s", pool->cpu, id, pri);
1786 1787
	else
		worker->task = kthread_create(worker_thread, worker,
1788 1789
					      "kworker/u%d:%d%s",
					      pool->id, id, pri);
T
Tejun Heo 已提交
1790 1791 1792
	if (IS_ERR(worker->task))
		goto fail;

T
Tejun Heo 已提交
1793 1794
	set_user_nice(worker->task, pool->attrs->nice);
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1795

1796
	/*
T
Tejun Heo 已提交
1797 1798 1799
	 * %PF_THREAD_BOUND is used to prevent userland from meddling with
	 * cpumask of workqueue workers.  This is an abuse.  We need
	 * %PF_NO_SETAFFINITY.
1800
	 */
T
Tejun Heo 已提交
1801 1802 1803 1804 1805 1806 1807 1808
	worker->task->flags |= PF_THREAD_BOUND;

	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1809
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1810 1811 1812 1813

	return worker;
fail:
	if (id >= 0) {
1814
		spin_lock_irq(&pool->lock);
1815
		ida_remove(&pool->worker_ida, id);
1816
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1817 1818 1819 1820 1821 1822 1823 1824 1825
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1826
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1827 1828
 *
 * CONTEXT:
1829
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1830 1831 1832
 */
static void start_worker(struct worker *worker)
{
1833
	worker->flags |= WORKER_STARTED;
1834
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1835
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1836 1837 1838 1839 1840 1841 1842
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1843
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1844 1845
 *
 * CONTEXT:
1846
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1847 1848 1849
 */
static void destroy_worker(struct worker *worker)
{
1850
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1851 1852 1853
	int id = worker->id;

	/* sanity check frenzy */
1854 1855 1856
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1857

T
Tejun Heo 已提交
1858
	if (worker->flags & WORKER_STARTED)
1859
		pool->nr_workers--;
T
Tejun Heo 已提交
1860
	if (worker->flags & WORKER_IDLE)
1861
		pool->nr_idle--;
T
Tejun Heo 已提交
1862 1863

	list_del_init(&worker->entry);
1864
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1865

1866
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1867

T
Tejun Heo 已提交
1868 1869 1870
	kthread_stop(worker->task);
	kfree(worker);

1871
	spin_lock_irq(&pool->lock);
1872
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1873 1874
}

1875
static void idle_worker_timeout(unsigned long __pool)
1876
{
1877
	struct worker_pool *pool = (void *)__pool;
1878

1879
	spin_lock_irq(&pool->lock);
1880

1881
	if (too_many_workers(pool)) {
1882 1883 1884 1885
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1886
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1887 1888 1889
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1890
			mod_timer(&pool->idle_timer, expires);
1891 1892
		else {
			/* it's been idle for too long, wake up manager */
1893
			pool->flags |= POOL_MANAGE_WORKERS;
1894
			wake_up_worker(pool);
1895
		}
1896 1897
	}

1898
	spin_unlock_irq(&pool->lock);
1899
}
1900

1901
static void send_mayday(struct work_struct *work)
1902
{
1903 1904
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1905 1906

	lockdep_assert_held(&workqueue_lock);
1907

1908
	if (!wq->rescuer)
1909
		return;
1910 1911

	/* mayday mayday mayday */
1912 1913
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1914
		wake_up_process(wq->rescuer->task);
1915
	}
1916 1917
}

1918
static void pool_mayday_timeout(unsigned long __pool)
1919
{
1920
	struct worker_pool *pool = (void *)__pool;
1921 1922
	struct work_struct *work;

1923 1924
	spin_lock_irq(&workqueue_lock);		/* for wq->maydays */
	spin_lock(&pool->lock);
1925

1926
	if (need_to_create_worker(pool)) {
1927 1928 1929 1930 1931 1932
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1933
		list_for_each_entry(work, &pool->worklist, entry)
1934
			send_mayday(work);
L
Linus Torvalds 已提交
1935
	}
1936

1937 1938
	spin_unlock(&pool->lock);
	spin_unlock_irq(&workqueue_lock);
1939

1940
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1941 1942
}

1943 1944
/**
 * maybe_create_worker - create a new worker if necessary
1945
 * @pool: pool to create a new worker for
1946
 *
1947
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1948 1949
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1950
 * sent to all rescuers with works scheduled on @pool to resolve
1951 1952 1953 1954 1955 1956
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1957
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1958 1959 1960 1961
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1962
 * false if no action was taken and pool->lock stayed locked, true
1963 1964
 * otherwise.
 */
1965
static bool maybe_create_worker(struct worker_pool *pool)
1966 1967
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1968
{
1969
	if (!need_to_create_worker(pool))
1970 1971
		return false;
restart:
1972
	spin_unlock_irq(&pool->lock);
1973

1974
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1975
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1976 1977 1978 1979

	while (true) {
		struct worker *worker;

1980
		worker = create_worker(pool);
1981
		if (worker) {
1982
			del_timer_sync(&pool->mayday_timer);
1983
			spin_lock_irq(&pool->lock);
1984
			start_worker(worker);
1985 1986
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1987 1988 1989
			return true;
		}

1990
		if (!need_to_create_worker(pool))
1991
			break;
L
Linus Torvalds 已提交
1992

1993 1994
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1995

1996
		if (!need_to_create_worker(pool))
1997 1998 1999
			break;
	}

2000
	del_timer_sync(&pool->mayday_timer);
2001
	spin_lock_irq(&pool->lock);
2002
	if (need_to_create_worker(pool))
2003 2004 2005 2006 2007 2008
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2009
 * @pool: pool to destroy workers for
2010
 *
2011
 * Destroy @pool workers which have been idle for longer than
2012 2013 2014
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
2015
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2016 2017 2018
 * multiple times.  Called only from manager.
 *
 * RETURNS:
2019
 * false if no action was taken and pool->lock stayed locked, true
2020 2021
 * otherwise.
 */
2022
static bool maybe_destroy_workers(struct worker_pool *pool)
2023 2024
{
	bool ret = false;
L
Linus Torvalds 已提交
2025

2026
	while (too_many_workers(pool)) {
2027 2028
		struct worker *worker;
		unsigned long expires;
2029

2030
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2031
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2032

2033
		if (time_before(jiffies, expires)) {
2034
			mod_timer(&pool->idle_timer, expires);
2035
			break;
2036
		}
L
Linus Torvalds 已提交
2037

2038 2039
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2040
	}
2041

2042
	return ret;
2043 2044
}

2045
/**
2046 2047
 * manage_workers - manage worker pool
 * @worker: self
2048
 *
2049
 * Assume the manager role and manage the worker pool @worker belongs
2050
 * to.  At any given time, there can be only zero or one manager per
2051
 * pool.  The exclusion is handled automatically by this function.
2052 2053 2054 2055
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2056 2057
 *
 * CONTEXT:
2058
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2059 2060 2061
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2062 2063
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2064
 */
2065
static bool manage_workers(struct worker *worker)
2066
{
2067
	struct worker_pool *pool = worker->pool;
2068
	bool ret = false;
2069

2070
	if (!mutex_trylock(&pool->manager_arb))
2071
		return ret;
2072

2073 2074 2075
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
2076 2077 2078 2079 2080
	 * grab @pool->manager_arb to achieve this because that can lead to
	 * idle worker depletion (all become busy thinking someone else is
	 * managing) which in turn can result in deadlock under extreme
	 * circumstances.  Use @pool->assoc_mutex to synchronize manager
	 * against CPU hotplug.
2081
	 *
2082
	 * assoc_mutex would always be free unless CPU hotplug is in
2083
	 * progress.  trylock first without dropping @pool->lock.
2084
	 */
2085
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2086
		spin_unlock_irq(&pool->lock);
2087
		mutex_lock(&pool->assoc_mutex);
2088 2089
		/*
		 * CPU hotplug could have happened while we were waiting
2090
		 * for assoc_mutex.  Hotplug itself can't handle us
2091
		 * because manager isn't either on idle or busy list, and
2092
		 * @pool's state and ours could have deviated.
2093
		 *
2094
		 * As hotplug is now excluded via assoc_mutex, we can
2095
		 * simply try to bind.  It will succeed or fail depending
2096
		 * on @pool's current state.  Try it and adjust
2097 2098
		 * %WORKER_UNBOUND accordingly.
		 */
2099
		if (worker_maybe_bind_and_lock(pool))
2100 2101 2102
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2103

2104 2105
		ret = true;
	}
2106

2107
	pool->flags &= ~POOL_MANAGE_WORKERS;
2108 2109

	/*
2110 2111
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2112
	 */
2113 2114
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2115

2116
	mutex_unlock(&pool->assoc_mutex);
2117
	mutex_unlock(&pool->manager_arb);
2118
	return ret;
2119 2120
}

2121 2122
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2123
 * @worker: self
2124 2125 2126 2127 2128 2129 2130 2131 2132
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2133
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2134
 */
T
Tejun Heo 已提交
2135
static void process_one_work(struct worker *worker, struct work_struct *work)
2136 2137
__releases(&pool->lock)
__acquires(&pool->lock)
2138
{
2139
	struct pool_workqueue *pwq = get_work_pwq(work);
2140
	struct worker_pool *pool = worker->pool;
2141
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2142
	int work_color;
2143
	struct worker *collision;
2144 2145 2146 2147 2148 2149 2150 2151
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2152 2153 2154
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2155
#endif
2156 2157 2158
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2159
	 * unbound or a disassociated pool.
2160
	 */
2161
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2162
		     !(pool->flags & POOL_DISASSOCIATED) &&
2163
		     raw_smp_processor_id() != pool->cpu);
2164

2165 2166 2167 2168 2169 2170
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2171
	collision = find_worker_executing_work(pool, work);
2172 2173 2174 2175 2176
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2177
	/* claim and dequeue */
2178
	debug_work_deactivate(work);
2179
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2180
	worker->current_work = work;
2181
	worker->current_func = work->func;
2182
	worker->current_pwq = pwq;
2183
	work_color = get_work_color(work);
2184

2185 2186
	list_del_init(&work->entry);

2187 2188 2189 2190 2191 2192 2193
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2194
	/*
2195
	 * Unbound pool isn't concurrency managed and work items should be
2196 2197
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2198 2199
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2200

2201
	/*
2202
	 * Record the last pool and clear PENDING which should be the last
2203
	 * update to @work.  Also, do this inside @pool->lock so that
2204 2205
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2206
	 */
2207
	set_work_pool_and_clear_pending(work, pool->id);
2208

2209
	spin_unlock_irq(&pool->lock);
2210

2211
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2212
	lock_map_acquire(&lockdep_map);
2213
	trace_workqueue_execute_start(work);
2214
	worker->current_func(work);
2215 2216 2217 2218 2219
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2220
	lock_map_release(&lockdep_map);
2221
	lock_map_release(&pwq->wq->lockdep_map);
2222 2223

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2224 2225
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2226 2227
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2228 2229 2230 2231
		debug_show_held_locks(current);
		dump_stack();
	}

2232
	spin_lock_irq(&pool->lock);
2233

2234 2235 2236 2237
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2238
	/* we're done with it, release */
2239
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2240
	worker->current_work = NULL;
2241
	worker->current_func = NULL;
2242 2243
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2244 2245
}

2246 2247 2248 2249 2250 2251 2252 2253 2254
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2255
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2256 2257 2258
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2259
{
2260 2261
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2262
						struct work_struct, entry);
T
Tejun Heo 已提交
2263
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2264 2265 2266
	}
}

T
Tejun Heo 已提交
2267 2268
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2269
 * @__worker: self
T
Tejun Heo 已提交
2270
 *
2271 2272
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2273 2274 2275
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2276
 */
T
Tejun Heo 已提交
2277
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2278
{
T
Tejun Heo 已提交
2279
	struct worker *worker = __worker;
2280
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2281

2282 2283
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2284
woke_up:
2285
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2286

2287 2288
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2289
		spin_unlock_irq(&pool->lock);
2290

2291
		/* if DIE is set, destruction is requested */
2292 2293 2294 2295 2296
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2297
		/* otherwise, rebind */
2298 2299
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2300
	}
2301

T
Tejun Heo 已提交
2302
	worker_leave_idle(worker);
2303
recheck:
2304
	/* no more worker necessary? */
2305
	if (!need_more_worker(pool))
2306 2307 2308
		goto sleep;

	/* do we need to manage? */
2309
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2310 2311
		goto recheck;

T
Tejun Heo 已提交
2312 2313 2314 2315 2316
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2317
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2318

2319 2320 2321 2322 2323 2324 2325 2326
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2327
		struct work_struct *work =
2328
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2329 2330 2331 2332 2333 2334
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2335
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2336 2337 2338
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2339
		}
2340
	} while (keep_working(pool));
2341 2342

	worker_set_flags(worker, WORKER_PREP, false);
2343
sleep:
2344
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2345
		goto recheck;
2346

T
Tejun Heo 已提交
2347
	/*
2348 2349 2350 2351 2352
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2353 2354 2355
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2356
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2357 2358
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2359 2360
}

2361 2362
/**
 * rescuer_thread - the rescuer thread function
2363
 * @__rescuer: self
2364 2365
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2366
 * workqueue which has WQ_MEM_RECLAIM set.
2367
 *
2368
 * Regular work processing on a pool may block trying to create a new
2369 2370 2371 2372 2373
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2374 2375
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2376 2377 2378 2379
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2380
static int rescuer_thread(void *__rescuer)
2381
{
2382 2383
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2384 2385 2386
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2387 2388 2389 2390 2391 2392

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2393 2394 2395
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2396 2397
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2398
		rescuer->task->flags &= ~PF_WQ_WORKER;
2399
		return 0;
2400
	}
2401

2402 2403 2404 2405 2406 2407
	/* see whether any pwq is asking for help */
	spin_lock_irq(&workqueue_lock);

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2408
		struct worker_pool *pool = pwq->pool;
2409 2410 2411
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2412 2413 2414
		list_del_init(&pwq->mayday_node);

		spin_unlock_irq(&workqueue_lock);
2415 2416

		/* migrate to the target cpu if possible */
2417
		worker_maybe_bind_and_lock(pool);
2418
		rescuer->pool = pool;
2419 2420 2421 2422 2423

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2424
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2425
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2426
			if (get_work_pwq(work) == pwq)
2427 2428 2429
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2430 2431

		/*
2432
		 * Leave this pool.  If keep_working() is %true, notify a
2433 2434 2435
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2436 2437
		if (keep_working(pool))
			wake_up_worker(pool);
2438

2439
		rescuer->pool = NULL;
2440 2441
		spin_unlock(&pool->lock);
		spin_lock(&workqueue_lock);
2442 2443
	}

2444 2445
	spin_unlock_irq(&workqueue_lock);

2446 2447
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2448 2449
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2450 2451
}

O
Oleg Nesterov 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2463 2464
/**
 * insert_wq_barrier - insert a barrier work
2465
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2466
 * @barr: wq_barrier to insert
2467 2468
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2469
 *
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2482
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2483 2484
 *
 * CONTEXT:
2485
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2486
 */
2487
static void insert_wq_barrier(struct pool_workqueue *pwq,
2488 2489
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2490
{
2491 2492 2493
	struct list_head *head;
	unsigned int linked = 0;

2494
	/*
2495
	 * debugobject calls are safe here even with pool->lock locked
2496 2497 2498 2499
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2500
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2501
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2502
	init_completion(&barr->done);
2503

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2519
	debug_work_activate(&barr->work);
2520
	insert_work(pwq, &barr->work, head,
2521
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2522 2523
}

2524
/**
2525
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2526 2527 2528 2529
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2530
 * Prepare pwqs for workqueue flushing.
2531
 *
2532 2533 2534 2535 2536
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2537 2538 2539 2540 2541 2542 2543
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2544
 * If @work_color is non-negative, all pwqs should have the same
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2555
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2556
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2557
{
2558
	bool wait = false;
2559
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2560

2561
	if (flush_color >= 0) {
2562
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2563
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2564
	}
2565

2566 2567
	local_irq_disable();

2568
	for_each_pwq(pwq, wq) {
2569
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2570

2571
		spin_lock(&pool->lock);
2572

2573
		if (flush_color >= 0) {
2574
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2575

2576 2577 2578
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2579 2580 2581
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2582

2583
		if (work_color >= 0) {
2584
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2585
			pwq->work_color = work_color;
2586
		}
L
Linus Torvalds 已提交
2587

2588
		spin_unlock(&pool->lock);
L
Linus Torvalds 已提交
2589
	}
2590

2591 2592
	local_irq_enable();

2593
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2594
		complete(&wq->first_flusher->done);
2595

2596
	return wait;
L
Linus Torvalds 已提交
2597 2598
}

2599
/**
L
Linus Torvalds 已提交
2600
 * flush_workqueue - ensure that any scheduled work has run to completion.
2601
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2602 2603 2604 2605
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2606 2607
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2608
 */
2609
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2610
{
2611 2612 2613 2614 2615 2616
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2617

2618 2619
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2634
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2635 2636 2637 2638 2639
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2640
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2641 2642 2643

			wq->first_flusher = &this_flusher;

2644
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2645 2646 2647 2648 2649 2650 2651 2652
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2653
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2654
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2655
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2681 2682 2683 2684
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2685 2686
	wq->first_flusher = NULL;

2687 2688
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2701 2702
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2722
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2723 2724 2725
		}

		if (list_empty(&wq->flusher_queue)) {
2726
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2727 2728 2729 2730 2731
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2732
		 * the new first flusher and arm pwqs.
2733
		 */
2734 2735
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2736 2737 2738 2739

		list_del_init(&next->list);
		wq->first_flusher = next;

2740
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2752
}
2753
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2754

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2769
	struct pool_workqueue *pwq;
2770 2771 2772 2773

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2774
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2775
	 */
2776
	spin_lock_irq(&workqueue_lock);
2777
	if (!wq->nr_drainers++)
2778
		wq->flags |= __WQ_DRAINING;
2779
	spin_unlock_irq(&workqueue_lock);
2780 2781 2782
reflush:
	flush_workqueue(wq);

2783 2784
	local_irq_disable();

2785
	for_each_pwq(pwq, wq) {
2786
		bool drained;
2787

2788
		spin_lock(&pwq->pool->lock);
2789
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2790
		spin_unlock(&pwq->pool->lock);
2791 2792

		if (drained)
2793 2794 2795 2796
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2797 2798
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2799 2800

		local_irq_enable();
2801 2802 2803
		goto reflush;
	}

2804
	spin_lock(&workqueue_lock);
2805
	if (!--wq->nr_drainers)
2806
		wq->flags &= ~__WQ_DRAINING;
2807 2808 2809
	spin_unlock(&workqueue_lock);

	local_irq_enable();
2810 2811 2812
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2813
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2814
{
2815
	struct worker *worker = NULL;
2816
	struct worker_pool *pool;
2817
	struct pool_workqueue *pwq;
2818 2819

	might_sleep();
2820 2821

	local_irq_disable();
2822
	pool = get_work_pool(work);
2823 2824
	if (!pool) {
		local_irq_enable();
2825
		return false;
2826
	}
2827

2828
	spin_lock(&pool->lock);
2829
	/* see the comment in try_to_grab_pending() with the same code */
2830 2831 2832
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2833
			goto already_gone;
2834
	} else {
2835
		worker = find_worker_executing_work(pool, work);
2836
		if (!worker)
T
Tejun Heo 已提交
2837
			goto already_gone;
2838
		pwq = worker->current_pwq;
2839
	}
2840

2841
	insert_wq_barrier(pwq, barr, work, worker);
2842
	spin_unlock_irq(&pool->lock);
2843

2844 2845 2846 2847 2848 2849
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2850
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2851
		lock_map_acquire(&pwq->wq->lockdep_map);
2852
	else
2853 2854
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2855

2856
	return true;
T
Tejun Heo 已提交
2857
already_gone:
2858
	spin_unlock_irq(&pool->lock);
2859
	return false;
2860
}
2861 2862 2863 2864 2865

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2866 2867
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2868 2869 2870 2871 2872 2873 2874 2875 2876
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2877 2878 2879
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2880
	if (start_flush_work(work, &barr)) {
2881 2882 2883
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2884
	} else {
2885
		return false;
2886 2887
	}
}
2888
EXPORT_SYMBOL_GPL(flush_work);
2889

2890
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2891
{
2892
	unsigned long flags;
2893 2894 2895
	int ret;

	do {
2896 2897 2898 2899 2900 2901
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2902
			flush_work(work);
2903 2904
	} while (unlikely(ret < 0));

2905 2906 2907 2908
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2909
	flush_work(work);
2910
	clear_work_data(work);
2911 2912 2913
	return ret;
}

2914
/**
2915 2916
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2917
 *
2918 2919 2920 2921
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2922
 *
2923 2924
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2925
 *
2926
 * The caller must ensure that the workqueue on which @work was last
2927
 * queued can't be destroyed before this function returns.
2928 2929 2930
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2931
 */
2932
bool cancel_work_sync(struct work_struct *work)
2933
{
2934
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2935
}
2936
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2937

2938
/**
2939 2940
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2941
 *
2942 2943 2944
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2945
 *
2946 2947 2948
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2949
 */
2950 2951
bool flush_delayed_work(struct delayed_work *dwork)
{
2952
	local_irq_disable();
2953
	if (del_timer_sync(&dwork->timer))
2954
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2955
	local_irq_enable();
2956 2957 2958 2959
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2960
/**
2961 2962
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2963
 *
2964 2965 2966 2967 2968
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2969
 *
2970
 * This function is safe to call from any context including IRQ handler.
2971
 */
2972
bool cancel_delayed_work(struct delayed_work *dwork)
2973
{
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2984 2985
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2986
	local_irq_restore(flags);
2987
	return ret;
2988
}
2989
EXPORT_SYMBOL(cancel_delayed_work);
2990

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3001
{
3002
	return __cancel_work_timer(&dwork->work, true);
3003
}
3004
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3005

3006
/**
3007 3008 3009 3010 3011 3012
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
3013
bool schedule_work_on(int cpu, struct work_struct *work)
3014
{
3015
	return queue_work_on(cpu, system_wq, work);
3016 3017 3018
}
EXPORT_SYMBOL(schedule_work_on);

3019 3020 3021 3022
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
3023 3024
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
3025 3026 3027 3028
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
3029
 */
3030
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3031
{
3032
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3033
}
3034
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3035

3036 3037 3038
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
3039
 * @dwork: job to be done
3040 3041 3042 3043 3044
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
3045 3046
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
3047
{
3048
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
3049
}
3050
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
3051

3052 3053
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3054 3055
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3056 3057 3058 3059
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3060
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3061
{
3062
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3063
}
3064
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3065

3066
/**
3067
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3068 3069
 * @func: the function to call
 *
3070 3071
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3072
 * schedule_on_each_cpu() is very slow.
3073 3074 3075
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3076
 */
3077
int schedule_on_each_cpu(work_func_t func)
3078 3079
{
	int cpu;
3080
	struct work_struct __percpu *works;
3081

3082 3083
	works = alloc_percpu(struct work_struct);
	if (!works)
3084
		return -ENOMEM;
3085

3086 3087
	get_online_cpus();

3088
	for_each_online_cpu(cpu) {
3089 3090 3091
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3092
		schedule_work_on(cpu, work);
3093
	}
3094 3095 3096 3097

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3098
	put_online_cpus();
3099
	free_percpu(works);
3100 3101 3102
	return 0;
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3127 3128
void flush_scheduled_work(void)
{
3129
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3130
}
3131
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3132

3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3145
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3146 3147
{
	if (!in_interrupt()) {
3148
		fn(&ew->work);
3149 3150 3151
		return 0;
	}

3152
	INIT_WORK(&ew->work, fn);
3153 3154 3155 3156 3157 3158
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3159 3160
int keventd_up(void)
{
3161
	return system_wq != NULL;
L
Linus Torvalds 已提交
3162 3163
}

3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t wq_per_cpu_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}

static ssize_t wq_max_active_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t wq_max_active_store(struct device *dev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}

static struct device_attribute wq_sysfs_attrs[] = {
	__ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
	__ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
	__ATTR_NULL,
};

static ssize_t wq_pool_id_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct worker_pool *pool;
	int written;

	rcu_read_lock_sched();
	pool = first_pwq(wq)->pool;
	written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	rcu_read_lock_sched();
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    first_pwq(wq)->pool->attrs->nice);
	rcu_read_unlock_sched();

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	rcu_read_lock_sched();
	copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
	rcu_read_unlock_sched();
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= -20 && attrs->nice <= 19)
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	rcu_read_lock_sched();
	written = cpumask_scnprintf(buf, PAGE_SIZE,
				    first_pwq(wq)->pool->attrs->cpumask);
	rcu_read_unlock_sched();

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_id, 0444, wq_pool_id_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_attrs			= wq_sysfs_attrs,
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Returns 0 on success, -errno on failure.
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.  Returns NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_setall(attrs->cpumask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
}

/*
 * Hacky implementation of jhash of bitmaps which only considers the
 * specified number of bits.  We probably want a proper implementation in
 * include/linux/jhash.h.
 */
static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
{
	int nr_longs = bits / BITS_PER_LONG;
	int nr_leftover = bits % BITS_PER_LONG;
	unsigned long leftover = 0;

	if (nr_longs)
		hash = jhash(bitmap, nr_longs * sizeof(long), hash);
	if (nr_leftover) {
		bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
		hash = jhash(&leftover, sizeof(long), hash);
	}
	return hash;
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
	hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3525 3526 3527 3528 3529
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3530 3531 3532
 * Returns 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3533 3534
 */
static int init_worker_pool(struct worker_pool *pool)
3535 3536
{
	spin_lock_init(&pool->lock);
3537 3538
	pool->id = -1;
	pool->cpu = -1;
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
	mutex_init(&pool->assoc_mutex);
	ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3554

3555 3556 3557 3558
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3559 3560 3561 3562
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3563 3564
}

3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
 * safe manner.
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

	spin_lock_irq(&workqueue_lock);
	if (--pool->refcnt) {
		spin_unlock_irq(&workqueue_lock);
		return;
	}

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
	    WARN_ON(!list_empty(&pool->worklist))) {
		spin_unlock_irq(&workqueue_lock);
		return;
	}

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

	spin_unlock_irq(&workqueue_lock);

	/* lock out manager and destroy all workers */
	mutex_lock(&pool->manager_arb);
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.  On failure, returns NULL.
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	static DEFINE_MUTEX(create_mutex);
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	struct worker *worker;

	mutex_lock(&create_mutex);

	/* do we already have a matching pool? */
	spin_lock_irq(&workqueue_lock);
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}
	spin_unlock_irq(&workqueue_lock);

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

T
Tejun Heo 已提交
3657
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
	copy_workqueue_attrs(pool->attrs, attrs);

	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
	worker = create_worker(pool);
	if (!worker)
		goto fail;

	spin_lock_irq(&pool->lock);
	start_worker(worker);
	spin_unlock_irq(&pool->lock);

	/* install */
	spin_lock_irq(&workqueue_lock);
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	spin_unlock_irq(&workqueue_lock);
	mutex_unlock(&create_mutex);
	return pool;
fail:
	mutex_unlock(&create_mutex);
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3706 3707 3708 3709 3710 3711
	/*
	 * Unlink @pwq.  Synchronization against flush_mutex isn't strictly
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
	mutex_lock(&wq->flush_mutex);
T
Tejun Heo 已提交
3712 3713 3714
	spin_lock_irq(&workqueue_lock);
	list_del_rcu(&pwq->pwqs_node);
	spin_unlock_irq(&workqueue_lock);
3715
	mutex_unlock(&wq->flush_mutex);
T
Tejun Heo 已提交
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727

	put_unbound_pool(pool);
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
	if (list_empty(&wq->pwqs))
		kfree(wq);
}

3728
/**
3729
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3730 3731
 * @pwq: target pool_workqueue
 *
3732 3733 3734
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3735
 */
3736
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3737
{
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
	lockdep_assert_held(&workqueue_lock);

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

	spin_lock(&pwq->pool->lock);

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3752

3753 3754 3755 3756 3757 3758 3759 3760
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
	} else {
		pwq->max_active = 0;
	}

	spin_unlock(&pwq->pool->lock);
3761 3762
}

3763 3764
static void init_and_link_pwq(struct pool_workqueue *pwq,
			      struct workqueue_struct *wq,
3765 3766
			      struct worker_pool *pool,
			      struct pool_workqueue **p_last_pwq)
3767 3768 3769 3770 3771 3772
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3773
	pwq->refcnt = 1;
3774 3775 3776
	pwq->max_active = wq->saved_max_active;
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3777
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3778

3779 3780 3781 3782 3783 3784 3785
	/*
	 * Link @pwq and set the matching work_color.  This is synchronized
	 * with flush_mutex to avoid confusing flush_workqueue().
	 */
	mutex_lock(&wq->flush_mutex);
	spin_lock_irq(&workqueue_lock);

3786 3787
	if (p_last_pwq)
		*p_last_pwq = first_pwq(wq);
3788
	pwq->work_color = wq->work_color;
3789
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3790 3791 3792

	spin_unlock_irq(&workqueue_lock);
	mutex_unlock(&wq->flush_mutex);
3793 3794
}

3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  If @attrs doesn't match the
 * current attributes, a new pwq is created and made the first pwq which
 * will serve all new work items.  Older pwqs are released as in-flight
 * work items finish.  Note that a work item which repeatedly requeues
 * itself back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.  Returns 0 on success and -errno on
 * failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	struct pool_workqueue *pwq, *last_pwq;
	struct worker_pool *pool;

3815
	/* only unbound workqueues can change attributes */
3816 3817 3818
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3819 3820 3821 3822
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
	pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
	if (!pwq)
		return -ENOMEM;

	pool = get_unbound_pool(attrs);
	if (!pool) {
		kmem_cache_free(pwq_cache, pwq);
		return -ENOMEM;
	}

	init_and_link_pwq(pwq, wq, pool, &last_pwq);
	if (last_pwq) {
		spin_lock_irq(&last_pwq->pool->lock);
		put_pwq(last_pwq);
		spin_unlock_irq(&last_pwq->pool->lock);
	}

	return 0;
}

3843
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3844
{
3845
	bool highpri = wq->flags & WQ_HIGHPRI;
3846 3847 3848
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3849 3850
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3851 3852 3853
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3854 3855
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3856
			struct worker_pool *cpu_pools =
3857
				per_cpu(cpu_worker_pools, cpu);
3858

3859
			init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
3860
		}
3861
		return 0;
3862
	} else {
3863
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3864
	}
T
Tejun Heo 已提交
3865 3866
}

3867 3868
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3869
{
3870 3871 3872
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3873 3874
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3875

3876
	return clamp_val(max_active, 1, lim);
3877 3878
}

3879
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3880 3881 3882
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3883
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3884
{
3885
	va_list args, args1;
L
Linus Torvalds 已提交
3886
	struct workqueue_struct *wq;
3887
	struct pool_workqueue *pwq;
3888 3889 3890 3891 3892 3893 3894 3895 3896
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
3897
		return NULL;
3898 3899 3900 3901

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3902

3903
	max_active = max_active ?: WQ_DFL_ACTIVE;
3904
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3905

3906
	/* init wq */
3907
	wq->flags = flags;
3908
	wq->saved_max_active = max_active;
3909
	mutex_init(&wq->flush_mutex);
3910
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3911
	INIT_LIST_HEAD(&wq->pwqs);
3912 3913
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3914
	INIT_LIST_HEAD(&wq->maydays);
3915

3916
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3917
	INIT_LIST_HEAD(&wq->list);
3918

3919
	if (alloc_and_link_pwqs(wq) < 0)
3920
		goto err_free_wq;
T
Tejun Heo 已提交
3921

3922 3923 3924 3925 3926
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3927 3928
		struct worker *rescuer;

3929
		rescuer = alloc_worker();
3930
		if (!rescuer)
3931
			goto err_destroy;
3932

3933 3934
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3935
					       wq->name);
3936 3937 3938 3939
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3940

3941
		wq->rescuer = rescuer;
3942 3943
		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3944 3945
	}

3946 3947 3948
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

3949
	/*
3950 3951 3952
	 * workqueue_lock protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new workqueue to
	 * workqueues list.
3953
	 */
3954
	spin_lock_irq(&workqueue_lock);
3955

3956 3957
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3958

T
Tejun Heo 已提交
3959
	list_add(&wq->list, &workqueues);
3960

3961
	spin_unlock_irq(&workqueue_lock);
T
Tejun Heo 已提交
3962

3963
	return wq;
3964 3965 3966 3967 3968 3969

err_free_wq:
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3970
	return NULL;
3971
}
3972
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3973

3974 3975 3976 3977 3978 3979 3980 3981
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3982
	struct pool_workqueue *pwq;
3983

3984 3985
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3986

3987 3988
	spin_lock_irq(&workqueue_lock);

3989
	/* sanity checks */
3990
	for_each_pwq(pwq, wq) {
3991 3992
		int i;

3993 3994 3995
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
				spin_unlock_irq(&workqueue_lock);
3996
				return;
3997 3998 3999
			}
		}

T
Tejun Heo 已提交
4000 4001
		if (WARN_ON(pwq->refcnt > 1) ||
		    WARN_ON(pwq->nr_active) ||
4002 4003
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
			spin_unlock_irq(&workqueue_lock);
4004
			return;
4005
		}
4006 4007
	}

4008 4009 4010 4011
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4012
	list_del_init(&wq->list);
4013

4014
	spin_unlock_irq(&workqueue_lock);
4015

4016 4017
	workqueue_sysfs_unregister(wq);

4018
	if (wq->rescuer) {
4019
		kthread_stop(wq->rescuer->task);
4020
		kfree(wq->rescuer);
4021
		wq->rescuer = NULL;
4022 4023
	}

T
Tejun Heo 已提交
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
		 * access the first pwq and put the base ref.  As both pwqs
		 * and pools are sched-RCU protected, the lock operations
		 * are safe.  @wq will be freed when the last pwq is
		 * released.
		 */
4039 4040
		pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
				       pwqs_node);
T
Tejun Heo 已提交
4041 4042 4043
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
4044
	}
4045 4046 4047
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4060
	struct pool_workqueue *pwq;
4061

4062 4063 4064 4065
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4066
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4067

4068
	spin_lock_irq(&workqueue_lock);
4069 4070 4071

	wq->saved_max_active = max_active;

4072 4073
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4074

4075
	spin_unlock_irq(&workqueue_lock);
4076
}
4077
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4078

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

	return worker && worker == worker->current_pwq->wq->rescuer;
}

4092
/**
4093 4094 4095
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4096
 *
4097 4098 4099
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4100
 *
4101 4102
 * RETURNS:
 * %true if congested, %false otherwise.
4103
 */
4104
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4105
{
4106
	struct pool_workqueue *pwq;
4107 4108 4109
	bool ret;

	preempt_disable();
4110 4111 4112 4113 4114

	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
		pwq = first_pwq(wq);
4115

4116 4117 4118 4119
	ret = !list_empty(&pwq->delayed_works);
	preempt_enable();

	return ret;
L
Linus Torvalds 已提交
4120
}
4121
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4122

4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4135
{
4136
	struct worker_pool *pool;
4137 4138
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4139

4140 4141
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4142

4143 4144
	local_irq_save(flags);
	pool = get_work_pool(work);
4145
	if (pool) {
4146
		spin_lock(&pool->lock);
4147 4148
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4149
		spin_unlock(&pool->lock);
4150
	}
4151
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4152

4153
	return ret;
L
Linus Torvalds 已提交
4154
}
4155
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4156

4157 4158 4159
/*
 * CPU hotplug.
 *
4160
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4161
 * are a lot of assumptions on strong associations among work, pwq and
4162
 * pool which make migrating pending and scheduled works very
4163
 * difficult to implement without impacting hot paths.  Secondly,
4164
 * worker pools serve mix of short, long and very long running works making
4165 4166
 * blocked draining impractical.
 *
4167
 * This is solved by allowing the pools to be disassociated from the CPU
4168 4169
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4170
 */
L
Linus Torvalds 已提交
4171

4172
static void wq_unbind_fn(struct work_struct *work)
4173
{
4174
	int cpu = smp_processor_id();
4175
	struct worker_pool *pool;
4176 4177
	struct worker *worker;
	int i;
4178

4179
	for_each_cpu_worker_pool(pool, cpu) {
4180
		WARN_ON_ONCE(cpu != smp_processor_id());
4181

4182 4183
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
4184

4185 4186 4187 4188 4189 4190 4191
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4192
		list_for_each_entry(worker, &pool->idle_list, entry)
4193
			worker->flags |= WORKER_UNBOUND;
4194

4195
		for_each_busy_worker(worker, i, pool)
4196
			worker->flags |= WORKER_UNBOUND;
4197

4198
		pool->flags |= POOL_DISASSOCIATED;
4199

4200 4201 4202
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
4203

4204
	/*
4205
	 * Call schedule() so that we cross rq->lock and thus can guarantee
4206 4207
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
4208 4209
	 */
	schedule();
4210

4211
	/*
4212 4213
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
4214 4215 4216
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
4217 4218 4219 4220
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
4221
	 */
4222
	for_each_cpu_worker_pool(pool, cpu)
4223
		atomic_set(&pool->nr_running, 0);
4224 4225
}

T
Tejun Heo 已提交
4226 4227 4228 4229
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4230
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4231 4232
					       unsigned long action,
					       void *hcpu)
4233
{
4234
	int cpu = (unsigned long)hcpu;
4235
	struct worker_pool *pool;
4236

T
Tejun Heo 已提交
4237
	switch (action & ~CPU_TASKS_FROZEN) {
4238
	case CPU_UP_PREPARE:
4239
		for_each_cpu_worker_pool(pool, cpu) {
4240 4241 4242 4243 4244 4245 4246 4247 4248
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

4249
			spin_lock_irq(&pool->lock);
4250
			start_worker(worker);
4251
			spin_unlock_irq(&pool->lock);
4252
		}
T
Tejun Heo 已提交
4253
		break;
4254

4255 4256
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4257
		for_each_cpu_worker_pool(pool, cpu) {
4258 4259 4260
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

4261
			pool->flags &= ~POOL_DISASSOCIATED;
4262 4263 4264 4265 4266
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
4267
		break;
4268
	}
4269 4270 4271 4272 4273 4274 4275
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4276
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4277 4278 4279
						 unsigned long action,
						 void *hcpu)
{
4280
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4281 4282
	struct work_struct unbind_work;

4283 4284
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
4285
		/* unbinding should happen on the local CPU */
4286
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4287
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
4288 4289
		flush_work(&unbind_work);
		break;
4290 4291 4292 4293
	}
	return NOTIFY_OK;
}

4294
#ifdef CONFIG_SMP
4295

4296
struct work_for_cpu {
4297
	struct work_struct work;
4298 4299 4300 4301 4302
	long (*fn)(void *);
	void *arg;
	long ret;
};

4303
static void work_for_cpu_fn(struct work_struct *work)
4304
{
4305 4306
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4307 4308 4309 4310 4311 4312 4313 4314 4315
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4316 4317
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
4318
 * The caller must not hold any locks which would prevent @fn from completing.
4319
 */
4320
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4321
{
4322
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4323

4324 4325 4326
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
4327 4328 4329 4330 4331
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4332 4333 4334 4335 4336
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4337 4338
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
4339
 * pool->worklist.
4340 4341
 *
 * CONTEXT:
4342
 * Grabs and releases workqueue_lock and pool->lock's.
4343 4344 4345
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4346
	struct worker_pool *pool;
4347 4348
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
T
Tejun Heo 已提交
4349
	int id;
4350

4351
	spin_lock_irq(&workqueue_lock);
4352

4353
	WARN_ON_ONCE(workqueue_freezing);
4354 4355
	workqueue_freezing = true;

4356
	/* set FREEZING */
T
Tejun Heo 已提交
4357 4358 4359 4360
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4361 4362
		spin_unlock(&pool->lock);
	}
4363

4364 4365
	/* suppress further executions by setting max_active to zero */
	list_for_each_entry(wq, &workqueues, list) {
4366 4367
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4368 4369
	}

4370
	spin_unlock_irq(&workqueue_lock);
4371 4372 4373
}

/**
4374
 * freeze_workqueues_busy - are freezable workqueues still busy?
4375 4376 4377 4378 4379 4380 4381 4382
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
4383 4384
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4385 4386 4387 4388
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4389 4390
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4391

4392
	spin_lock_irq(&workqueue_lock);
4393

4394
	WARN_ON_ONCE(!workqueue_freezing);
4395

4396 4397 4398
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4399 4400 4401 4402
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4403
		for_each_pwq(pwq, wq) {
4404
			WARN_ON_ONCE(pwq->nr_active < 0);
4405
			if (pwq->nr_active) {
4406 4407 4408 4409 4410 4411
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
4412
	spin_unlock_irq(&workqueue_lock);
4413 4414 4415 4416 4417 4418 4419
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4420
 * frozen works are transferred to their respective pool worklists.
4421 4422
 *
 * CONTEXT:
4423
 * Grabs and releases workqueue_lock and pool->lock's.
4424 4425 4426
 */
void thaw_workqueues(void)
{
4427 4428 4429 4430
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
	int id;
4431

4432
	spin_lock_irq(&workqueue_lock);
4433 4434 4435 4436

	if (!workqueue_freezing)
		goto out_unlock;

4437 4438 4439 4440 4441 4442 4443
	/* clear FREEZING */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
		spin_unlock(&pool->lock);
	}
4444

4445 4446
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4447 4448
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4449 4450
	}

4451 4452 4453 4454 4455 4456 4457
	/* kick workers */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		wake_up_worker(pool);
		spin_unlock(&pool->lock);
	}

4458 4459
	workqueue_freezing = false;
out_unlock:
4460
	spin_unlock_irq(&workqueue_lock);
4461 4462 4463
}
#endif /* CONFIG_FREEZER */

4464
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4465
{
T
Tejun Heo 已提交
4466 4467
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4468

4469 4470
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4471
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4472

4473 4474 4475 4476
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4477
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4478
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4479

4480
	/* initialize CPU pools */
4481
	for_each_possible_cpu(cpu) {
4482
		struct worker_pool *pool;
4483

T
Tejun Heo 已提交
4484
		i = 0;
4485
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4486
			BUG_ON(init_worker_pool(pool));
4487
			pool->cpu = cpu;
4488
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4489 4490
			pool->attrs->nice = std_nice[i++];

T
Tejun Heo 已提交
4491 4492
			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
4493
		}
4494 4495
	}

4496
	/* create the initial worker */
4497
	for_each_online_cpu(cpu) {
4498
		struct worker_pool *pool;
4499

4500
		for_each_cpu_worker_pool(pool, cpu) {
4501 4502
			struct worker *worker;

4503
			pool->flags &= ~POOL_DISASSOCIATED;
4504

4505
			worker = create_worker(pool);
4506
			BUG_ON(!worker);
4507
			spin_lock_irq(&pool->lock);
4508
			start_worker(worker);
4509
			spin_unlock_irq(&pool->lock);
4510
		}
4511 4512
	}

4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));

		attrs->nice = std_nice[i];
		cpumask_setall(attrs->cpumask);

		unbound_std_wq_attrs[i] = attrs;
	}

4525
	system_wq = alloc_workqueue("events", 0, 0);
4526
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4527
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4528 4529
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4530 4531
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4532
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4533
	       !system_unbound_wq || !system_freezable_wq);
4534
	return 0;
L
Linus Torvalds 已提交
4535
}
4536
early_initcall(init_workqueues);