workqueue.c 94.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 * linux/kernel/workqueue.c
 *
 * Generic mechanism for defining kernel helper threads for running
 * arbitrary tasks in process context.
 *
 * Started by Ingo Molnar, Copyright (C) 2002
 *
 * Derived from the taskqueue/keventd code by:
 *
 *   David Woodhouse <dwmw2@infradead.org>
12
 *   Andrew Morton
L
Linus Torvalds 已提交
13 14
 *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *   Theodore Ts'o <tytso@mit.edu>
15
 *
C
Christoph Lameter 已提交
16
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
30
#include <linux/hardirq.h>
31
#include <linux/mempolicy.h>
32
#include <linux/freezer.h>
33 34
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
35
#include <linux/lockdep.h>
T
Tejun Heo 已提交
36
#include <linux/idr.h>
37 38

#include "workqueue_sched.h"
L
Linus Torvalds 已提交
39

T
Tejun Heo 已提交
40
enum {
41
	/* global_cwq flags */
42 43 44
	GCWQ_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
	GCWQ_MANAGING_WORKERS	= 1 << 1,	/* managing workers */
	GCWQ_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
45
	GCWQ_FREEZING		= 1 << 3,	/* freeze in progress */
46
	GCWQ_HIGHPRI_PENDING	= 1 << 4,	/* highpri works on queue */
47

T
Tejun Heo 已提交
48 49 50 51
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
52
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
53
	WORKER_ROGUE		= 1 << 4,	/* not bound to any cpu */
54
	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
55
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
56
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
57

58
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
59
				  WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
60 61 62 63 64 65 66

	/* gcwq->trustee_state */
	TRUSTEE_START		= 0,		/* start */
	TRUSTEE_IN_CHARGE	= 1,		/* trustee in charge of gcwq */
	TRUSTEE_BUTCHER		= 2,		/* butcher workers */
	TRUSTEE_RELEASE		= 3,		/* release workers */
	TRUSTEE_DONE		= 4,		/* trustee is done */
T
Tejun Heo 已提交
67 68 69 70

	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
71

72 73 74 75 76 77
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

	MAYDAY_INITIAL_TIMEOUT	= HZ / 100,	/* call for help after 10ms */
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
78
	TRUSTEE_COOLDOWN	= HZ / 10,	/* for trustee draining */
79 80 81 82 83 84

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
85 86
};

T
Tejun Heo 已提交
87 88 89 90 91
/*
 * Structure fields follow one of the following exclusion rules.
 *
 * I: Set during initialization and read-only afterwards.
 *
92 93 94
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
95
 * L: gcwq->lock protected.  Access with gcwq->lock held.
T
Tejun Heo 已提交
96
 *
97 98 99
 * X: During normal operation, modification requires gcwq->lock and
 *    should be done only from local cpu.  Either disabling preemption
 *    on local cpu or grabbing gcwq->lock is enough for read access.
100
 *    If GCWQ_DISASSOCIATED is set, it's identical to L.
101
 *
102 103
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
104 105 106
 * W: workqueue_lock protected.
 */

107
struct global_cwq;
T
Tejun Heo 已提交
108

109 110 111 112
/*
 * The poor guys doing the actual heavy lifting.  All on-duty workers
 * are either serving the manager role, on idle list or on busy hash.
 */
T
Tejun Heo 已提交
113
struct worker {
T
Tejun Heo 已提交
114 115 116 117 118 119
	/* on idle list while idle, on busy hash table while busy */
	union {
		struct list_head	entry;	/* L: while idle */
		struct hlist_node	hentry;	/* L: while busy */
	};

T
Tejun Heo 已提交
120
	struct work_struct	*current_work;	/* L: work being processed */
121
	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
122
	struct list_head	scheduled;	/* L: scheduled works */
T
Tejun Heo 已提交
123
	struct task_struct	*task;		/* I: worker task */
124
	struct global_cwq	*gcwq;		/* I: the associated gcwq */
125 126 127
	/* 64 bytes boundary on 64bit, 32 on 32bit */
	unsigned long		last_active;	/* L: last active timestamp */
	unsigned int		flags;		/* X: flags */
T
Tejun Heo 已提交
128
	int			id;		/* I: worker id */
129
	struct work_struct	rebind_work;	/* L: rebind worker to cpu */
T
Tejun Heo 已提交
130 131
};

132
/*
133 134 135
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
136 137 138
 */
struct global_cwq {
	spinlock_t		lock;		/* the gcwq lock */
139
	struct list_head	worklist;	/* L: list of pending works */
140
	unsigned int		cpu;		/* I: the associated cpu */
141
	unsigned int		flags;		/* L: GCWQ_* flags */
T
Tejun Heo 已提交
142 143 144 145 146

	int			nr_workers;	/* L: total number of workers */
	int			nr_idle;	/* L: currently idle ones */

	/* workers are chained either in the idle_list or busy_hash */
147
	struct list_head	idle_list;	/* X: list of idle workers */
T
Tejun Heo 已提交
148 149 150
	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
						/* L: hash of busy workers */

151 152 153
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for dworkers */

154
	struct ida		worker_ida;	/* L: for worker IDs */
155 156 157 158

	struct task_struct	*trustee;	/* L: for gcwq shutdown */
	unsigned int		trustee_state;	/* L: trustee state */
	wait_queue_head_t	trustee_wait;	/* trustee wait */
159
	struct worker		*first_idle;	/* L: first idle worker */
160 161
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
162
/*
163
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
164 165
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
166 167
 */
struct cpu_workqueue_struct {
168
	struct global_cwq	*gcwq;		/* I: the associated gcwq */
T
Tejun Heo 已提交
169
	struct workqueue_struct *wq;		/* I: the owning workqueue */
170 171 172 173
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
174
	int			nr_active;	/* L: nr of active works */
175
	int			max_active;	/* L: max active works */
176
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
177
};
L
Linus Torvalds 已提交
178

179 180 181 182 183 184 185 186 187
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

L
Linus Torvalds 已提交
188 189 190 191 192
/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
193
	unsigned int		flags;		/* I: WQ_* flags */
194 195 196 197 198
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
199
	struct list_head	list;		/* W: list of all workqueues */
200 201 202 203 204 205 206 207 208

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

209 210 211
	cpumask_var_t		mayday_mask;	/* cpus requesting rescue */
	struct worker		*rescuer;	/* I: rescue worker */

212
	int			saved_max_active; /* W: saved cwq max_active */
T
Tejun Heo 已提交
213
	const char		*name;		/* I: workqueue name */
214
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
215
	struct lockdep_map	lockdep_map;
216
#endif
L
Linus Torvalds 已提交
217 218
};

219 220 221
struct workqueue_struct *system_wq __read_mostly;
struct workqueue_struct *system_long_wq __read_mostly;
struct workqueue_struct *system_nrt_wq __read_mostly;
222
struct workqueue_struct *system_unbound_wq __read_mostly;
223 224 225
EXPORT_SYMBOL_GPL(system_wq);
EXPORT_SYMBOL_GPL(system_long_wq);
EXPORT_SYMBOL_GPL(system_nrt_wq);
226
EXPORT_SYMBOL_GPL(system_unbound_wq);
227

228 229 230 231
#define for_each_busy_worker(worker, i, pos, gcwq)			\
	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
307
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

378 379
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
380
static LIST_HEAD(workqueues);
381
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
382

383 384 385 386 387
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
388
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
389
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
390

391 392 393 394 395 396 397 398
/*
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The
 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
 * workers have WORKER_UNBOUND set.
 */
static struct global_cwq unbound_global_cwq;
static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0);	/* always 0 */

T
Tejun Heo 已提交
399
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
400

401 402
static struct global_cwq *get_gcwq(unsigned int cpu)
{
403 404 405 406
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
407 408
}

409 410
static atomic_t *get_gcwq_nr_running(unsigned int cpu)
{
411 412 413 414
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(gcwq_nr_running, cpu);
	else
		return &unbound_gcwq_nr_running;
415 416
}

T
Tejun Heo 已提交
417 418
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
419
{
420 421 422 423
	if (!(wq->flags & WQ_UNBOUND)) {
		if (likely(cpu < nr_cpu_ids)) {
#ifdef CONFIG_SMP
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
424
#else
425
			return wq->cpu_wq.single;
426
#endif
427 428 429 430
		}
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
431 432
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}

449
/*
450 451 452 453 454 455 456 457 458 459 460 461 462
 * Work data points to the cwq while a work is on queue.  Once
 * execution starts, it points to the cpu the work was last on.  This
 * can be distinguished by comparing the data value against
 * PAGE_OFFSET.
 *
 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
 * cwq, cpu or clear work->data.  These functions should only be
 * called while the work is owned - ie. while the PENDING bit is set.
 *
 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
 * corresponding to a work.  gcwq is available once the work has been
 * queued anywhere after initialization.  cwq is available only from
 * queueing until execution starts.
463
 */
464 465
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
466
{
467
	BUG_ON(!work_pending(work));
468 469
	atomic_long_set(&work->data, data | flags | work_static(work));
}
470

471 472 473 474 475 476
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
		      WORK_STRUCT_PENDING | extra_flags);
477 478
}

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
static void set_work_cpu(struct work_struct *work, unsigned int cpu)
{
	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
}

static void clear_work_data(struct work_struct *work)
{
	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
}

static inline unsigned long get_work_data(struct work_struct *work)
{
	return atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK;
}

static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
495
{
496 497 498
	unsigned long data = get_work_data(work);

	return data >= PAGE_OFFSET ? (void *)data : NULL;
499 500
}

501
static struct global_cwq *get_work_gcwq(struct work_struct *work)
502
{
503 504 505 506 507 508 509
	unsigned long data = get_work_data(work);
	unsigned int cpu;

	if (data >= PAGE_OFFSET)
		return ((struct cpu_workqueue_struct *)data)->gcwq;

	cpu = data >> WORK_STRUCT_FLAG_BITS;
510
	if (cpu == WORK_CPU_NONE)
511 512
		return NULL;

513
	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
514
	return get_gcwq(cpu);
515 516
}

517 518 519 520 521 522
/*
 * Policy functions.  These define the policies on how the global
 * worker pool is managed.  Unless noted otherwise, these functions
 * assume that they're being called with gcwq->lock held.
 */

523 524 525 526 527 528
static bool __need_more_worker(struct global_cwq *gcwq)
{
	return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
		gcwq->flags & GCWQ_HIGHPRI_PENDING;
}

529 530 531 532 533 534
/*
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
 */
static bool need_more_worker(struct global_cwq *gcwq)
{
535
	return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
}

/* Can I start working?  Called from busy but !running workers. */
static bool may_start_working(struct global_cwq *gcwq)
{
	return gcwq->nr_idle;
}

/* Do I need to keep working?  Called from currently running workers. */
static bool keep_working(struct global_cwq *gcwq)
{
	atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);

	return !list_empty(&gcwq->worklist) && atomic_read(nr_running) <= 1;
}

/* Do we need a new worker?  Called from manager. */
static bool need_to_create_worker(struct global_cwq *gcwq)
{
	return need_more_worker(gcwq) && !may_start_working(gcwq);
}

/* Do I need to be the manager? */
static bool need_to_manage_workers(struct global_cwq *gcwq)
{
	return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
}

/* Do we have too many workers and should some go away? */
static bool too_many_workers(struct global_cwq *gcwq)
{
	bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
	int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
	int nr_busy = gcwq->nr_workers - nr_idle;

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
}

/*
 * Wake up functions.
 */

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/* Return the first worker.  Safe with preemption disabled */
static struct worker *first_worker(struct global_cwq *gcwq)
{
	if (unlikely(list_empty(&gcwq->idle_list)))
		return NULL;

	return list_first_entry(&gcwq->idle_list, struct worker, entry);
}

/**
 * wake_up_worker - wake up an idle worker
 * @gcwq: gcwq to wake worker for
 *
 * Wake up the first idle worker of @gcwq.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void wake_up_worker(struct global_cwq *gcwq)
{
	struct worker *worker = first_worker(gcwq);

	if (likely(worker))
		wake_up_process(worker->task);
}

604
/**
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

	if (likely(!(worker->flags & WORKER_NOT_RUNNING)))
		atomic_inc(get_gcwq_nr_running(cpu));
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
	struct global_cwq *gcwq = get_gcwq(cpu);
	atomic_t *nr_running = get_gcwq_nr_running(cpu);

	if (unlikely(worker->flags & WORKER_NOT_RUNNING))
		return NULL;

	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
	 * NOT_RUNNING is clear.  This means that trustee is not in
	 * charge and we're running on the local cpu w/ rq lock held
	 * and preemption disabled, which in turn means that none else
	 * could be manipulating idle_list, so dereferencing idle_list
	 * without gcwq lock is safe.
	 */
	if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
		to_wakeup = first_worker(gcwq);
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
669
 * @worker: self
670 671 672
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
673 674 675
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
676
 *
677 678
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
679 680 681 682
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
683 684
	struct global_cwq *gcwq = worker->gcwq;

685 686
	WARN_ON_ONCE(worker->task != current);

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
			    !list_empty(&gcwq->worklist))
				wake_up_worker(gcwq);
		} else
			atomic_dec(nr_running);
	}

704 705 706 707
	worker->flags |= flags;
}

/**
708
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
709
 * @worker: self
710 711
 * @flags: flags to clear
 *
712
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
713
 *
714 715
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
716 717 718
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
719 720 721
	struct global_cwq *gcwq = worker->gcwq;
	unsigned int oflags = worker->flags;

722 723
	WARN_ON_ONCE(worker->task != current);

724
	worker->flags &= ~flags;
725 726 727 728 729

	/* if transitioning out of NOT_RUNNING, increment nr_running */
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
			atomic_inc(get_gcwq_nr_running(gcwq->cpu));
730 731
}

T
Tejun Heo 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
/**
 * busy_worker_head - return the busy hash head for a work
 * @gcwq: gcwq of interest
 * @work: work to be hashed
 *
 * Return hash head of @gcwq for @work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to the hash head.
 */
static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
					   struct work_struct *work)
{
	const int base_shift = ilog2(sizeof(struct work_struct));
	unsigned long v = (unsigned long)work;

	/* simple shift and fold hash, do we need something better? */
	v >>= base_shift;
	v += v >> BUSY_WORKER_HASH_ORDER;
	v &= BUSY_WORKER_HASH_MASK;

	return &gcwq->busy_hash[v];
}

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
/**
 * __find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @bwh: hash head as returned by busy_worker_head()
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  @bwh should be
 * the hash head obtained by calling busy_worker_head() with the same
 * work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
 */
static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
						   struct hlist_head *bwh,
						   struct work_struct *work)
{
	struct worker *worker;
	struct hlist_node *tmp;

	hlist_for_each_entry(worker, tmp, bwh, hentry)
		if (worker->current_work == work)
			return worker;
	return NULL;
}

/**
 * find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  This function is
 * identical to __find_worker_executing_work() except that this
 * function calculates @bwh itself.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
 */
static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
						 struct work_struct *work)
{
	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
					    work);
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
/**
 * gcwq_determine_ins_pos - find insertion position
 * @gcwq: gcwq of interest
 * @cwq: cwq a work is being queued for
 *
 * A work for @cwq is about to be queued on @gcwq, determine insertion
 * position for the work.  If @cwq is for HIGHPRI wq, the work is
 * queued at the head of the queue but in FIFO order with respect to
 * other HIGHPRI works; otherwise, at the end of the queue.  This
 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
 * there are HIGHPRI works pending.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to inserstion position.
 */
static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
					       struct cpu_workqueue_struct *cwq)
{
	struct work_struct *twork;

	if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
		return &gcwq->worklist;

	list_for_each_entry(twork, &gcwq->worklist, entry) {
		struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);

		if (!(tcwq->wq->flags & WQ_HIGHPRI))
			break;
	}

	gcwq->flags |= GCWQ_HIGHPRI_PENDING;
	return &twork->entry;
}

T
Tejun Heo 已提交
849
/**
850
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
851 852 853 854 855
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
856 857
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
858 859
 *
 * CONTEXT:
860
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
861
 */
O
Oleg Nesterov 已提交
862
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
863 864
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
865
{
866 867
	struct global_cwq *gcwq = cwq->gcwq;

T
Tejun Heo 已提交
868
	/* we own @work, set data and link */
869
	set_work_cwq(work, cwq, extra_flags);
T
Tejun Heo 已提交
870

871 872 873 874 875
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
876

877
	list_add_tail(&work->entry, head);
878 879 880 881 882 883 884 885

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

886
	if (__need_more_worker(gcwq))
887
		wake_up_worker(gcwq);
O
Oleg Nesterov 已提交
888 889
}

T
Tejun Heo 已提交
890
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
891 892
			 struct work_struct *work)
{
893 894
	struct global_cwq *gcwq;
	struct cpu_workqueue_struct *cwq;
895
	struct list_head *worklist;
L
Linus Torvalds 已提交
896 897
	unsigned long flags;

898
	debug_work_activate(work);
899

900 901
	/* determine gcwq to use */
	if (!(wq->flags & WQ_UNBOUND)) {
902 903
		struct global_cwq *last_gcwq;

904 905 906
		if (unlikely(cpu == WORK_CPU_UNBOUND))
			cpu = raw_smp_processor_id();

907 908 909 910 911 912
		/*
		 * It's multi cpu.  If @wq is non-reentrant and @work
		 * was previously on a different cpu, it might still
		 * be running there, in which case the work needs to
		 * be queued on that cpu to guarantee non-reentrance.
		 */
913
		gcwq = get_gcwq(cpu);
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
		if (wq->flags & WQ_NON_REENTRANT &&
		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
			struct worker *worker;

			spin_lock_irqsave(&last_gcwq->lock, flags);

			worker = find_worker_executing_work(last_gcwq, work);

			if (worker && worker->current_cwq->wq == wq)
				gcwq = last_gcwq;
			else {
				/* meh... not running there, queue here */
				spin_unlock_irqrestore(&last_gcwq->lock, flags);
				spin_lock_irqsave(&gcwq->lock, flags);
			}
		} else
			spin_lock_irqsave(&gcwq->lock, flags);
931 932 933
	} else {
		gcwq = get_gcwq(WORK_CPU_UNBOUND);
		spin_lock_irqsave(&gcwq->lock, flags);
934 935 936 937 938
	}

	/* gcwq determined, get cwq and queue */
	cwq = get_cwq(gcwq->cpu, wq);

T
Tejun Heo 已提交
939
	BUG_ON(!list_empty(&work->entry));
940

941
	cwq->nr_in_flight[cwq->work_color]++;
942 943 944

	if (likely(cwq->nr_active < cwq->max_active)) {
		cwq->nr_active++;
945
		worklist = gcwq_determine_ins_pos(gcwq, cwq);
946 947 948 949 950
	} else
		worklist = &cwq->delayed_works;

	insert_work(cwq, work, worklist, work_color_to_flags(cwq->work_color));

951
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
952 953
}

954 955 956 957 958
/**
 * queue_work - queue work on a workqueue
 * @wq: workqueue to use
 * @work: work to queue
 *
A
Alan Stern 已提交
959
 * Returns 0 if @work was already on a queue, non-zero otherwise.
L
Linus Torvalds 已提交
960
 *
961 962
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
L
Linus Torvalds 已提交
963
 */
964
int queue_work(struct workqueue_struct *wq, struct work_struct *work)
L
Linus Torvalds 已提交
965
{
966 967 968 969 970
	int ret;

	ret = queue_work_on(get_cpu(), wq, work);
	put_cpu();

L
Linus Torvalds 已提交
971 972
	return ret;
}
973
EXPORT_SYMBOL_GPL(queue_work);
L
Linus Torvalds 已提交
974

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
/**
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @work: work to queue
 *
 * Returns 0 if @work was already on a queue, non-zero otherwise.
 *
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
 */
int
queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
{
	int ret = 0;

991
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
992
		__queue_work(cpu, wq, work);
993 994 995 996 997 998
		ret = 1;
	}
	return ret;
}
EXPORT_SYMBOL_GPL(queue_work_on);

999
static void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1000
{
1001
	struct delayed_work *dwork = (struct delayed_work *)__data;
1002
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
L
Linus Torvalds 已提交
1003

T
Tejun Heo 已提交
1004
	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
L
Linus Torvalds 已提交
1005 1006
}

1007 1008 1009
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
1010
 * @dwork: delayable work to queue
1011 1012
 * @delay: number of jiffies to wait before queueing
 *
A
Alan Stern 已提交
1013
 * Returns 0 if @work was already on a queue, non-zero otherwise.
1014
 */
1015
int queue_delayed_work(struct workqueue_struct *wq,
1016
			struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1017
{
1018
	if (delay == 0)
1019
		return queue_work(wq, &dwork->work);
L
Linus Torvalds 已提交
1020

1021
	return queue_delayed_work_on(-1, wq, dwork, delay);
L
Linus Torvalds 已提交
1022
}
1023
EXPORT_SYMBOL_GPL(queue_delayed_work);
L
Linus Torvalds 已提交
1024

1025 1026 1027 1028
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1029
 * @dwork: work to queue
1030 1031
 * @delay: number of jiffies to wait before queueing
 *
A
Alan Stern 已提交
1032
 * Returns 0 if @work was already on a queue, non-zero otherwise.
1033
 */
1034
int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1035
			struct delayed_work *dwork, unsigned long delay)
1036 1037
{
	int ret = 0;
1038 1039
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
1040

1041
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1042
		unsigned int lcpu;
1043

1044 1045 1046
		BUG_ON(timer_pending(timer));
		BUG_ON(!list_empty(&work->entry));

1047
		timer_stats_timer_set_start_info(&dwork->timer);
1048

1049 1050 1051 1052 1053
		/*
		 * This stores cwq for the moment, for the timer_fn.
		 * Note that the work's gcwq is preserved to allow
		 * reentrance detection for delayed works.
		 */
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
		if (!(wq->flags & WQ_UNBOUND)) {
			struct global_cwq *gcwq = get_work_gcwq(work);

			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
				lcpu = gcwq->cpu;
			else
				lcpu = raw_smp_processor_id();
		} else
			lcpu = WORK_CPU_UNBOUND;

1064
		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1065

1066
		timer->expires = jiffies + delay;
1067
		timer->data = (unsigned long)dwork;
1068
		timer->function = delayed_work_timer_fn;
1069 1070 1071 1072 1073

		if (unlikely(cpu >= 0))
			add_timer_on(timer, cpu);
		else
			add_timer(timer);
1074 1075 1076 1077
		ret = 1;
	}
	return ret;
}
1078
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
L
Linus Torvalds 已提交
1079

T
Tejun Heo 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_enter_idle(struct worker *worker)
{
	struct global_cwq *gcwq = worker->gcwq;

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1098 1099
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
T
Tejun Heo 已提交
1100
	gcwq->nr_idle++;
1101
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1102 1103 1104

	/* idle_list is LIFO */
	list_add(&worker->entry, &gcwq->idle_list);
1105

1106 1107 1108 1109 1110
	if (likely(!(worker->flags & WORKER_ROGUE))) {
		if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
			mod_timer(&gcwq->idle_timer,
				  jiffies + IDLE_WORKER_TIMEOUT);
	} else
1111
		wake_up_all(&gcwq->trustee_wait);
1112 1113 1114 1115

	/* sanity check nr_running */
	WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
		     atomic_read(get_gcwq_nr_running(gcwq->cpu)));
T
Tejun Heo 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_leave_idle(struct worker *worker)
{
	struct global_cwq *gcwq = worker->gcwq;

	BUG_ON(!(worker->flags & WORKER_IDLE));
1132
	worker_clr_flags(worker, WORKER_IDLE);
T
Tejun Heo 已提交
1133 1134 1135 1136
	gcwq->nr_idle--;
	list_del_init(&worker->entry);
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
 * This function tries set_cpus_allowed() and locks gcwq and verifies
 * the binding against GCWQ_DISASSOCIATED which is set during
 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
 * idle state or fetches works without dropping lock, it can guarantee
 * the scheduling requirement described in the first paragraph.
 *
 * CONTEXT:
 * Might sleep.  Called without any lock but returns with gcwq->lock
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
{
	struct global_cwq *gcwq = worker->gcwq;
	struct task_struct *task = worker->task;

	while (true) {
		/*
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
		 * against GCWQ_DISASSOCIATED.
		 */
1179 1180
		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

		spin_lock_irq(&gcwq->lock);
		if (gcwq->flags & GCWQ_DISASSOCIATED)
			return false;
		if (task_cpu(task) == gcwq->cpu &&
		    cpumask_equal(&current->cpus_allowed,
				  get_cpu_mask(gcwq->cpu)))
			return true;
		spin_unlock_irq(&gcwq->lock);

		/* CPU has come up inbetween, retry migration */
		cpu_relax();
	}
}

/*
 * Function for worker->rebind_work used to rebind rogue busy workers
 * to the associated cpu which is coming back online.  This is
 * scheduled by cpu up but can race with other cpu hotplug operations
 * and may be executed twice without intervening cpu down.
 */
static void worker_rebind_fn(struct work_struct *work)
{
	struct worker *worker = container_of(work, struct worker, rebind_work);
	struct global_cwq *gcwq = worker->gcwq;

	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_REBIND);

	spin_unlock_irq(&gcwq->lock);
}

T
Tejun Heo 已提交
1213 1214 1215 1216 1217
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1218 1219
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1220
		INIT_LIST_HEAD(&worker->scheduled);
1221 1222 1223
		INIT_WORK(&worker->rebind_work, worker_rebind_fn);
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1224
	}
T
Tejun Heo 已提交
1225 1226 1227 1228 1229
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1230
 * @gcwq: gcwq the new worker will belong to
T
Tejun Heo 已提交
1231 1232
 * @bind: whether to set affinity to @cpu or not
 *
1233
 * Create a new worker which is bound to @gcwq.  The returned worker
T
Tejun Heo 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1243
static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
T
Tejun Heo 已提交
1244
{
1245
	bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
T
Tejun Heo 已提交
1246
	struct worker *worker = NULL;
1247
	int id = -1;
T
Tejun Heo 已提交
1248

1249 1250 1251 1252
	spin_lock_irq(&gcwq->lock);
	while (ida_get_new(&gcwq->worker_ida, &id)) {
		spin_unlock_irq(&gcwq->lock);
		if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1253
			goto fail;
1254
		spin_lock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1255
	}
1256
	spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1257 1258 1259 1260 1261

	worker = alloc_worker();
	if (!worker)
		goto fail;

1262
	worker->gcwq = gcwq;
T
Tejun Heo 已提交
1263 1264
	worker->id = id;

1265 1266 1267 1268 1269 1270
	if (!on_unbound_cpu)
		worker->task = kthread_create(worker_thread, worker,
					      "kworker/%u:%d", gcwq->cpu, id);
	else
		worker->task = kthread_create(worker_thread, worker,
					      "kworker/u:%d", id);
T
Tejun Heo 已提交
1271 1272 1273
	if (IS_ERR(worker->task))
		goto fail;

1274 1275 1276 1277 1278
	/*
	 * A rogue worker will become a regular one if CPU comes
	 * online later on.  Make sure every worker has
	 * PF_THREAD_BOUND set.
	 */
1279
	if (bind && !on_unbound_cpu)
1280
		kthread_bind(worker->task, gcwq->cpu);
1281
	else {
1282
		worker->task->flags |= PF_THREAD_BOUND;
1283 1284 1285
		if (on_unbound_cpu)
			worker->flags |= WORKER_UNBOUND;
	}
T
Tejun Heo 已提交
1286 1287 1288 1289

	return worker;
fail:
	if (id >= 0) {
1290 1291 1292
		spin_lock_irq(&gcwq->lock);
		ida_remove(&gcwq->worker_ida, id);
		spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1302
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1303 1304
 *
 * CONTEXT:
1305
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1306 1307 1308
 */
static void start_worker(struct worker *worker)
{
1309
	worker->flags |= WORKER_STARTED;
T
Tejun Heo 已提交
1310 1311
	worker->gcwq->nr_workers++;
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1312 1313 1314 1315 1316 1317 1318
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1319 1320 1321 1322
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1323 1324 1325
 */
static void destroy_worker(struct worker *worker)
{
1326
	struct global_cwq *gcwq = worker->gcwq;
T
Tejun Heo 已提交
1327 1328 1329 1330
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1331
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1332

T
Tejun Heo 已提交
1333 1334 1335 1336 1337 1338
	if (worker->flags & WORKER_STARTED)
		gcwq->nr_workers--;
	if (worker->flags & WORKER_IDLE)
		gcwq->nr_idle--;

	list_del_init(&worker->entry);
1339
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1340 1341 1342

	spin_unlock_irq(&gcwq->lock);

T
Tejun Heo 已提交
1343 1344 1345
	kthread_stop(worker->task);
	kfree(worker);

1346 1347
	spin_lock_irq(&gcwq->lock);
	ida_remove(&gcwq->worker_ida, id);
T
Tejun Heo 已提交
1348 1349
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static void idle_worker_timeout(unsigned long __gcwq)
{
	struct global_cwq *gcwq = (void *)__gcwq;

	spin_lock_irq(&gcwq->lock);

	if (too_many_workers(gcwq)) {
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
			mod_timer(&gcwq->idle_timer, expires);
		else {
			/* it's been idle for too long, wake up manager */
			gcwq->flags |= GCWQ_MANAGE_WORKERS;
			wake_up_worker(gcwq);
		}
	}

	spin_unlock_irq(&gcwq->lock);
}

static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1380
	unsigned int cpu;
1381 1382 1383 1384 1385

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1386 1387 1388 1389 1390
	cpu = cwq->gcwq->cpu;
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
	if (!cpumask_test_and_set_cpu(cpu, wq->mayday_mask))
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
		wake_up_process(wq->rescuer->task);
	return true;
}

static void gcwq_mayday_timeout(unsigned long __gcwq)
{
	struct global_cwq *gcwq = (void *)__gcwq;
	struct work_struct *work;

	spin_lock_irq(&gcwq->lock);

	if (need_to_create_worker(gcwq)) {
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
		list_for_each_entry(work, &gcwq->worklist, entry)
			send_mayday(work);
	}

	spin_unlock_irq(&gcwq->lock);

	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
}

/**
 * maybe_create_worker - create a new worker if necessary
 * @gcwq: gcwq to create a new worker for
 *
 * Create a new worker for @gcwq if necessary.  @gcwq is guaranteed to
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
 * sent to all rescuers with works scheduled on @gcwq to resolve
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
static bool maybe_create_worker(struct global_cwq *gcwq)
{
	if (!need_to_create_worker(gcwq))
		return false;
restart:
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);

	while (true) {
		struct worker *worker;

		spin_unlock_irq(&gcwq->lock);

		worker = create_worker(gcwq, true);
		if (worker) {
			del_timer_sync(&gcwq->mayday_timer);
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			BUG_ON(need_to_create_worker(gcwq));
			return true;
		}

		if (!need_to_create_worker(gcwq))
			break;

		spin_unlock_irq(&gcwq->lock);
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
		spin_lock_irq(&gcwq->lock);
		if (!need_to_create_worker(gcwq))
			break;
	}

	spin_unlock_irq(&gcwq->lock);
	del_timer_sync(&gcwq->mayday_timer);
	spin_lock_irq(&gcwq->lock);
	if (need_to_create_worker(gcwq))
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
 * @gcwq: gcwq to destroy workers for
 *
 * Destroy @gcwq workers which have been idle for longer than
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Called only from manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
static bool maybe_destroy_workers(struct global_cwq *gcwq)
{
	bool ret = false;

	while (too_many_workers(gcwq)) {
		struct worker *worker;
		unsigned long expires;

		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires)) {
			mod_timer(&gcwq->idle_timer, expires);
			break;
		}

		destroy_worker(worker);
		ret = true;
	}

	return ret;
}

/**
 * manage_workers - manage worker pool
 * @worker: self
 *
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true if
 * some action was taken.
 */
static bool manage_workers(struct worker *worker)
{
	struct global_cwq *gcwq = worker->gcwq;
	bool ret = false;

	if (gcwq->flags & GCWQ_MANAGING_WORKERS)
		return ret;

	gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
	gcwq->flags |= GCWQ_MANAGING_WORKERS;

	/*
	 * Destroy and then create so that may_start_working() is true
	 * on return.
	 */
	ret |= maybe_destroy_workers(gcwq);
	ret |= maybe_create_worker(gcwq);

	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;

	/*
	 * The trustee might be waiting to take over the manager
	 * position, tell it we're done.
	 */
	if (unlikely(gcwq->trustee))
		wake_up_all(&gcwq->trustee_wait);

	return ret;
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1584
 * spin_lock_irq(gcwq->lock).
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

1610 1611 1612 1613
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);
1614
	struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1615

1616
	move_linked_works(work, pos, NULL);
1617 1618 1619
	cwq->nr_active++;
}

1620 1621 1622 1623 1624 1625 1626 1627 1628
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
1629
 * spin_lock_irq(gcwq->lock).
1630 1631 1632 1633 1634 1635 1636 1637
 */
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;
1638 1639
	cwq->nr_active--;

1640 1641 1642 1643 1644
	if (!list_empty(&cwq->delayed_works)) {
		/* one down, submit a delayed one */
		if (cwq->nr_active < cwq->max_active)
			cwq_activate_first_delayed(cwq);
	}
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1665 1666
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1667
 * @worker: self
1668 1669 1670 1671 1672 1673 1674 1675 1676
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1677
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1678
 */
T
Tejun Heo 已提交
1679
static void process_one_work(struct worker *worker, struct work_struct *work)
1680
{
1681
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1682
	struct global_cwq *gcwq = cwq->gcwq;
T
Tejun Heo 已提交
1683
	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1684
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1685
	work_func_t f = work->func;
1686
	int work_color;
1687
	struct worker *collision;
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
	struct lockdep_map lockdep_map = work->lockdep_map;
#endif
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
	collision = __find_worker_executing_work(gcwq, bwh, work);
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

1710 1711
	/* claim and process */
	debug_work_deactivate(work);
T
Tejun Heo 已提交
1712
	hlist_add_head(&worker->hentry, bwh);
T
Tejun Heo 已提交
1713
	worker->current_work = work;
1714
	worker->current_cwq = cwq;
1715
	work_color = get_work_color(work);
1716 1717 1718

	/* record the current cpu number in the work data and dequeue */
	set_work_cpu(work, gcwq->cpu);
1719 1720
	list_del_init(&work->entry);

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	/*
	 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
	 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
	 */
	if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
		struct work_struct *nwork = list_first_entry(&gcwq->worklist,
						struct work_struct, entry);

		if (!list_empty(&gcwq->worklist) &&
		    get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
			wake_up_worker(gcwq);
		else
			gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
	}

1736 1737 1738 1739 1740 1741 1742
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

1743
	spin_unlock_irq(&gcwq->lock);
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761

	work_clear_pending(work);
	lock_map_acquire(&cwq->wq->lockdep_map);
	lock_map_acquire(&lockdep_map);
	f(work);
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
		       "%s/0x%08x/%d\n",
		       current->comm, preempt_count(), task_pid_nr(current));
		printk(KERN_ERR "    last function: ");
		print_symbol("%s\n", (unsigned long)f);
		debug_show_held_locks(current);
		dump_stack();
	}

1762
	spin_lock_irq(&gcwq->lock);
1763

1764 1765 1766 1767
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

1768
	/* we're done with it, release */
T
Tejun Heo 已提交
1769
	hlist_del_init(&worker->hentry);
T
Tejun Heo 已提交
1770
	worker->current_work = NULL;
1771
	worker->current_cwq = NULL;
1772
	cwq_dec_nr_in_flight(cwq, work_color);
1773 1774
}

1775 1776 1777 1778 1779 1780 1781 1782 1783
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
1784
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1785 1786 1787
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
1788
{
1789 1790
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
1791
						struct work_struct, entry);
T
Tejun Heo 已提交
1792
		process_one_work(worker, work);
L
Linus Torvalds 已提交
1793 1794 1795
	}
}

T
Tejun Heo 已提交
1796 1797
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
1798
 * @__worker: self
T
Tejun Heo 已提交
1799
 *
1800 1801 1802 1803 1804
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
1805
 */
T
Tejun Heo 已提交
1806
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
1807
{
T
Tejun Heo 已提交
1808
	struct worker *worker = __worker;
1809
	struct global_cwq *gcwq = worker->gcwq;
L
Linus Torvalds 已提交
1810

1811 1812
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
1813 1814
woke_up:
	spin_lock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
1815

T
Tejun Heo 已提交
1816 1817 1818
	/* DIE can be set only while we're idle, checking here is enough */
	if (worker->flags & WORKER_DIE) {
		spin_unlock_irq(&gcwq->lock);
1819
		worker->task->flags &= ~PF_WQ_WORKER;
T
Tejun Heo 已提交
1820 1821
		return 0;
	}
1822

T
Tejun Heo 已提交
1823
	worker_leave_idle(worker);
1824
recheck:
1825 1826 1827 1828 1829 1830 1831 1832
	/* no more worker necessary? */
	if (!need_more_worker(gcwq))
		goto sleep;

	/* do we need to manage? */
	if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
		goto recheck;

T
Tejun Heo 已提交
1833 1834 1835 1836 1837 1838 1839
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

1840 1841 1842 1843 1844 1845 1846 1847
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
1848
		struct work_struct *work =
1849
			list_first_entry(&gcwq->worklist,
T
Tejun Heo 已提交
1850 1851 1852 1853 1854 1855
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
1856
				process_scheduled_works(worker);
T
Tejun Heo 已提交
1857 1858 1859
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
1860
		}
1861 1862 1863
	} while (keep_working(gcwq));

	worker_set_flags(worker, WORKER_PREP, false);
1864
sleep:
1865 1866
	if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
		goto recheck;
1867

T
Tejun Heo 已提交
1868
	/*
1869 1870 1871 1872 1873
	 * gcwq->lock is held and there's no work to process and no
	 * need to manage, sleep.  Workers are woken up only while
	 * holding gcwq->lock or from local cpu, so setting the
	 * current state before releasing gcwq->lock is enough to
	 * prevent losing any event.
T
Tejun Heo 已提交
1874 1875 1876 1877 1878 1879
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
	spin_unlock_irq(&gcwq->lock);
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
1880 1881
}

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
/**
 * rescuer_thread - the rescuer thread function
 * @__wq: the associated workqueue
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
static int rescuer_thread(void *__wq)
{
	struct workqueue_struct *wq = __wq;
	struct worker *rescuer = wq->rescuer;
	struct list_head *scheduled = &rescuer->scheduled;
1906
	bool is_unbound = wq->flags & WQ_UNBOUND;
1907 1908 1909 1910 1911 1912 1913 1914 1915
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

	if (kthread_should_stop())
		return 0;

1916 1917 1918 1919
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
1920
	for_each_cpu(cpu, wq->mayday_mask) {
1921 1922
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		struct global_cwq *gcwq = cwq->gcwq;
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
		cpumask_clear_cpu(cpu, wq->mayday_mask);

		/* migrate to the target cpu if possible */
		rescuer->gcwq = gcwq;
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
		list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
		spin_unlock_irq(&gcwq->lock);
	}

	schedule();
	goto repeat;
}

O
Oleg Nesterov 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
1961 1962 1963 1964
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
1965 1966
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
1967
 *
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
1981 1982
 *
 * CONTEXT:
1983
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1984
 */
1985
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
1986 1987
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
1988
{
1989 1990 1991
	struct list_head *head;
	unsigned int linked = 0;

1992
	/*
1993
	 * debugobject calls are safe here even with gcwq->lock locked
1994 1995 1996 1997 1998
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
	INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
1999
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2000
	init_completion(&barr->done);
2001

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2017
	debug_work_activate(&barr->work);
2018 2019
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2020 2021
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2055
{
2056 2057
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2058

2059 2060 2061
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2062
	}
2063

2064
	for_each_cwq_cpu(cpu, wq) {
2065
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2066
		struct global_cwq *gcwq = cwq->gcwq;
2067

2068
		spin_lock_irq(&gcwq->lock);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084

		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);

			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}

		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}

2085
		spin_unlock_irq(&gcwq->lock);
2086
	}
2087

2088 2089 2090 2091
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);

	return wait;
L
Linus Torvalds 已提交
2092 2093
}

2094
/**
L
Linus Torvalds 已提交
2095
 * flush_workqueue - ensure that any scheduled work has run to completion.
2096
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2097 2098 2099 2100
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2101 2102
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2103
 */
2104
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2105
{
2106 2107 2108 2109 2110 2111
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2112

2113 2114
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2176 2177 2178 2179
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2247
}
2248
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2249

2250 2251 2252 2253
/**
 * flush_work - block until a work_struct's callback has terminated
 * @work: the work which is to be flushed
 *
2254 2255
 * Returns false if @work has already terminated.
 *
2256 2257 2258 2259 2260 2261
 * It is expected that, prior to calling flush_work(), the caller has
 * arranged for the work to not be requeued, otherwise it doesn't make
 * sense to use this function.
 */
int flush_work(struct work_struct *work)
{
2262
	struct worker *worker = NULL;
2263
	struct global_cwq *gcwq;
2264
	struct cpu_workqueue_struct *cwq;
2265 2266 2267
	struct wq_barrier barr;

	might_sleep();
2268 2269
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2270
		return 0;
2271

2272
	spin_lock_irq(&gcwq->lock);
2273 2274 2275
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2276 2277
		 * If it was re-queued to a different gcwq under us, we
		 * are not going to wait.
2278 2279
		 */
		smp_rmb();
2280 2281
		cwq = get_work_cwq(work);
		if (unlikely(!cwq || gcwq != cwq->gcwq))
T
Tejun Heo 已提交
2282
			goto already_gone;
2283
	} else {
2284
		worker = find_worker_executing_work(gcwq, work);
2285
		if (!worker)
T
Tejun Heo 已提交
2286
			goto already_gone;
2287
		cwq = worker->current_cwq;
2288 2289
	}

2290
	insert_wq_barrier(cwq, &barr, work, worker);
2291
	spin_unlock_irq(&gcwq->lock);
2292 2293 2294 2295

	lock_map_acquire(&cwq->wq->lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

2296
	wait_for_completion(&barr.done);
2297
	destroy_work_on_stack(&barr.work);
2298
	return 1;
T
Tejun Heo 已提交
2299
already_gone:
2300
	spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
2301
	return 0;
2302 2303 2304
}
EXPORT_SYMBOL_GPL(flush_work);

2305
/*
2306
 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2307 2308 2309 2310
 * so this work can't be re-armed in any way.
 */
static int try_to_grab_pending(struct work_struct *work)
{
2311
	struct global_cwq *gcwq;
2312
	int ret = -1;
2313

2314
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2315
		return 0;
2316 2317 2318 2319 2320

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
2321 2322
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2323 2324
		return ret;

2325
	spin_lock_irq(&gcwq->lock);
2326 2327
	if (!list_empty(&work->entry)) {
		/*
2328
		 * This work is queued, but perhaps we locked the wrong gcwq.
2329 2330 2331 2332
		 * In that case we must see the new value after rmb(), see
		 * insert_work()->wmb().
		 */
		smp_rmb();
2333
		if (gcwq == get_work_gcwq(work)) {
2334
			debug_work_deactivate(work);
2335
			list_del_init(&work->entry);
2336 2337
			cwq_dec_nr_in_flight(get_work_cwq(work),
					     get_work_color(work));
2338 2339 2340
			ret = 1;
		}
	}
2341
	spin_unlock_irq(&gcwq->lock);
2342 2343 2344 2345

	return ret;
}

2346
static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
O
Oleg Nesterov 已提交
2347 2348
{
	struct wq_barrier barr;
2349
	struct worker *worker;
O
Oleg Nesterov 已提交
2350

2351
	spin_lock_irq(&gcwq->lock);
2352

2353 2354 2355
	worker = find_worker_executing_work(gcwq, work);
	if (unlikely(worker))
		insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2356

2357
	spin_unlock_irq(&gcwq->lock);
O
Oleg Nesterov 已提交
2358

2359
	if (unlikely(worker)) {
O
Oleg Nesterov 已提交
2360
		wait_for_completion(&barr.done);
2361 2362
		destroy_work_on_stack(&barr.work);
	}
O
Oleg Nesterov 已提交
2363 2364
}

2365
static void wait_on_work(struct work_struct *work)
O
Oleg Nesterov 已提交
2366
{
2367
	int cpu;
O
Oleg Nesterov 已提交
2368

2369 2370
	might_sleep();

2371 2372
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);
2373

2374
	for_each_gcwq_cpu(cpu)
2375
		wait_on_cpu_work(get_gcwq(cpu), work);
2376 2377
}

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
static int __cancel_work_timer(struct work_struct *work,
				struct timer_list* timer)
{
	int ret;

	do {
		ret = (timer && likely(del_timer(timer)));
		if (!ret)
			ret = try_to_grab_pending(work);
		wait_on_work(work);
	} while (unlikely(ret < 0));

2390
	clear_work_data(work);
2391 2392 2393
	return ret;
}

2394 2395 2396 2397
/**
 * cancel_work_sync - block until a work_struct's callback has terminated
 * @work: the work which is to be flushed
 *
2398 2399
 * Returns true if @work was pending.
 *
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
 * cancel_work_sync() will cancel the work if it is queued. If the work's
 * callback appears to be running, cancel_work_sync() will block until it
 * has completed.
 *
 * It is possible to use this function if the work re-queues itself. It can
 * cancel the work even if it migrates to another workqueue, however in that
 * case it only guarantees that work->func() has completed on the last queued
 * workqueue.
 *
 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
 * pending, otherwise it goes into a busy-wait loop until the timer expires.
 *
 * The caller must ensure that workqueue_struct on which this work was last
 * queued can't be destroyed before this function returns.
 */
2415
int cancel_work_sync(struct work_struct *work)
2416
{
2417
	return __cancel_work_timer(work, NULL);
O
Oleg Nesterov 已提交
2418
}
2419
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2420

2421
/**
2422
 * cancel_delayed_work_sync - reliably kill off a delayed work.
2423 2424
 * @dwork: the delayed work struct
 *
2425 2426
 * Returns true if @dwork was pending.
 *
2427 2428 2429
 * It is possible to use this function if @dwork rearms itself via queue_work()
 * or queue_delayed_work(). See also the comment for cancel_work_sync().
 */
2430
int cancel_delayed_work_sync(struct delayed_work *dwork)
2431
{
2432
	return __cancel_work_timer(&dwork->work, &dwork->timer);
2433
}
2434
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2435

2436 2437 2438 2439
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2440 2441 2442 2443 2444 2445
 * Returns zero if @work was already on the kernel-global workqueue and
 * non-zero otherwise.
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2446
 */
2447
int schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2448
{
2449
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
2450
}
2451
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
2452

2453 2454 2455 2456 2457 2458 2459 2460 2461
/*
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
int schedule_work_on(int cpu, struct work_struct *work)
{
2462
	return queue_work_on(cpu, system_wq, work);
2463 2464 2465
}
EXPORT_SYMBOL(schedule_work_on);

2466 2467
/**
 * schedule_delayed_work - put work task in global workqueue after delay
2468 2469
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
2470 2471 2472 2473
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
2474
int schedule_delayed_work(struct delayed_work *dwork,
2475
					unsigned long delay)
L
Linus Torvalds 已提交
2476
{
2477
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
2478
}
2479
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
2480

2481 2482 2483 2484 2485 2486 2487 2488 2489
/**
 * flush_delayed_work - block until a dwork_struct's callback has terminated
 * @dwork: the delayed work which is to be flushed
 *
 * Any timeout is cancelled, and any pending work is run immediately.
 */
void flush_delayed_work(struct delayed_work *dwork)
{
	if (del_timer_sync(&dwork->timer)) {
2490
		__queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq,
T
Tejun Heo 已提交
2491
			     &dwork->work);
2492 2493 2494 2495 2496 2497
		put_cpu();
	}
	flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2498 2499 2500
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
2501
 * @dwork: job to be done
2502 2503 2504 2505 2506
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
L
Linus Torvalds 已提交
2507
int schedule_delayed_work_on(int cpu,
2508
			struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
2509
{
2510
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
2511
}
2512
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
2513

2514 2515 2516 2517 2518 2519 2520 2521 2522
/**
 * schedule_on_each_cpu - call a function on each online CPU from keventd
 * @func: the function to call
 *
 * Returns zero on success.
 * Returns -ve errno on failure.
 *
 * schedule_on_each_cpu() is very slow.
 */
2523
int schedule_on_each_cpu(work_func_t func)
2524 2525
{
	int cpu;
2526
	struct work_struct *works;
2527

2528 2529
	works = alloc_percpu(struct work_struct);
	if (!works)
2530
		return -ENOMEM;
2531

2532 2533
	get_online_cpus();

2534
	for_each_online_cpu(cpu) {
2535 2536 2537
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2538
		schedule_work_on(cpu, work);
2539
	}
2540 2541 2542 2543

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2544
	put_online_cpus();
2545
	free_percpu(works);
2546 2547 2548
	return 0;
}

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
2573 2574
void flush_scheduled_work(void)
{
2575
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
2576
}
2577
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
2578

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
2591
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2592 2593
{
	if (!in_interrupt()) {
2594
		fn(&ew->work);
2595 2596 2597
		return 0;
	}

2598
	INIT_WORK(&ew->work, fn);
2599 2600 2601 2602 2603 2604
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
2605 2606
int keventd_up(void)
{
2607
	return system_wq != NULL;
L
Linus Torvalds 已提交
2608 2609
}

2610
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
{
	/*
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
	 */
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	if (CONFIG_SMP && !(wq->flags & WQ_UNBOUND)) {
		/* on SMP, percpu allocator can align itself */
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
	} else {
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
2637
	}
2638

T
Tejun Heo 已提交
2639
	/* just in case, make sure it's actually aligned */
2640 2641
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
2642 2643
}

2644
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
2645
{
2646 2647 2648 2649
	if (CONFIG_SMP && !(wq->flags & WQ_UNBOUND))
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
2650
		kfree(*(void **)(wq->cpu_wq.single + 1));
2651
	}
T
Tejun Heo 已提交
2652 2653
}

2654 2655
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
2656
{
2657 2658 2659
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
2660 2661
		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
		       "is out of range, clamping between %d and %d\n",
2662
		       max_active, name, 1, lim);
2663

2664
	return clamp_val(max_active, 1, lim);
2665 2666
}

2667 2668 2669 2670 2671
struct workqueue_struct *__alloc_workqueue_key(const char *name,
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
					       const char *lock_name)
L
Linus Torvalds 已提交
2672 2673
{
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
2674
	unsigned int cpu;
L
Linus Torvalds 已提交
2675

2676 2677 2678 2679 2680 2681 2682
	/*
	 * Unbound workqueues aren't concurrency managed and should be
	 * dispatched to workers immediately.
	 */
	if (flags & WQ_UNBOUND)
		flags |= WQ_HIGHPRI;

2683
	max_active = max_active ?: WQ_DFL_ACTIVE;
2684
	max_active = wq_clamp_max_active(max_active, flags, name);
2685

2686 2687
	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
	if (!wq)
T
Tejun Heo 已提交
2688
		goto err;
2689

2690
	wq->flags = flags;
2691
	wq->saved_max_active = max_active;
2692 2693 2694 2695
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
2696

2697
	wq->name = name;
2698
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2699
	INIT_LIST_HEAD(&wq->list);
2700

2701 2702 2703
	if (alloc_cwqs(wq) < 0)
		goto err;

2704
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
2705
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2706
		struct global_cwq *gcwq = get_gcwq(cpu);
T
Tejun Heo 已提交
2707

T
Tejun Heo 已提交
2708
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2709
		cwq->gcwq = gcwq;
T
Tejun Heo 已提交
2710
		cwq->wq = wq;
2711
		cwq->flush_color = -1;
2712 2713
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
2714
	}
T
Tejun Heo 已提交
2715

2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

		if (!alloc_cpumask_var(&wq->mayday_mask, GFP_KERNEL))
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

		rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
		if (IS_ERR(rescuer->task))
			goto err;

		wq->rescuer = rescuer;
		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
2733 2734
	}

2735 2736 2737 2738 2739
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
2740
	spin_lock(&workqueue_lock);
2741 2742

	if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
2743
		for_each_cwq_cpu(cpu, wq)
2744 2745
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
2746
	list_add(&wq->list, &workqueues);
2747

T
Tejun Heo 已提交
2748 2749
	spin_unlock(&workqueue_lock);

2750
	return wq;
T
Tejun Heo 已提交
2751 2752
err:
	if (wq) {
2753
		free_cwqs(wq);
2754 2755
		free_cpumask_var(wq->mayday_mask);
		kfree(wq->rescuer);
T
Tejun Heo 已提交
2756 2757 2758
		kfree(wq);
	}
	return NULL;
2759
}
2760
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
2761

2762 2763 2764 2765 2766 2767 2768 2769
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
2770
	unsigned int cpu;
2771

2772 2773 2774 2775 2776 2777
	flush_workqueue(wq);

	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
2778
	spin_lock(&workqueue_lock);
2779
	list_del(&wq->list);
2780
	spin_unlock(&workqueue_lock);
2781

2782
	/* sanity check */
2783
	for_each_cwq_cpu(cpu, wq) {
2784 2785 2786 2787 2788
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
2789 2790
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
2791
	}
2792

2793 2794 2795 2796 2797
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
		free_cpumask_var(wq->mayday_mask);
	}

2798
	free_cwqs(wq);
2799 2800 2801 2802
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

2817
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
2818 2819 2820 2821 2822

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

2823
	for_each_cwq_cpu(cpu, wq) {
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
		struct global_cwq *gcwq = get_gcwq(cpu);

		spin_lock_irq(&gcwq->lock);

		if (!(wq->flags & WQ_FREEZEABLE) ||
		    !(gcwq->flags & GCWQ_FREEZING))
			get_cwq(gcwq->cpu, wq)->max_active = max_active;

		spin_unlock_irq(&gcwq->lock);
	}

	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(workqueue_set_max_active);

/**
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
 *
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * %true if congested, %false otherwise.
 */
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
{
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
}
EXPORT_SYMBOL_GPL(workqueue_congested);

/**
 * work_cpu - return the last known associated cpu for @work
 * @work: the work of interest
 *
 * RETURNS:
2864
 * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
2865 2866 2867 2868 2869
 */
unsigned int work_cpu(struct work_struct *work)
{
	struct global_cwq *gcwq = get_work_gcwq(work);

2870
	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
}
EXPORT_SYMBOL_GPL(work_cpu);

/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
{
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long flags;
	unsigned int ret = 0;

	if (!gcwq)
		return false;

	spin_lock_irqsave(&gcwq->lock, flags);

	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
	if (find_worker_executing_work(gcwq, work))
		ret |= WORK_BUSY_RUNNING;

	spin_unlock_irqrestore(&gcwq->lock, flags);

	return ret;
}
EXPORT_SYMBOL_GPL(work_busy);

2909 2910 2911
/*
 * CPU hotplug.
 *
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
 * gcwqs serve mix of short, long and very long running works making
 * blocked draining impractical.
 *
 * This is solved by allowing a gcwq to be detached from CPU, running
 * it with unbound (rogue) workers and allowing it to be reattached
 * later if the cpu comes back online.  A separate thread is created
 * to govern a gcwq in such state and is called the trustee of the
 * gcwq.
2924 2925 2926 2927 2928 2929 2930
 *
 * Trustee states and their descriptions.
 *
 * START	Command state used on startup.  On CPU_DOWN_PREPARE, a
 *		new trustee is started with this state.
 *
 * IN_CHARGE	Once started, trustee will enter this state after
2931 2932 2933 2934 2935 2936
 *		assuming the manager role and making all existing
 *		workers rogue.  DOWN_PREPARE waits for trustee to
 *		enter this state.  After reaching IN_CHARGE, trustee
 *		tries to execute the pending worklist until it's empty
 *		and the state is set to BUTCHER, or the state is set
 *		to RELEASE.
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
 *
 * BUTCHER	Command state which is set by the cpu callback after
 *		the cpu has went down.  Once this state is set trustee
 *		knows that there will be no new works on the worklist
 *		and once the worklist is empty it can proceed to
 *		killing idle workers.
 *
 * RELEASE	Command state which is set by the cpu callback if the
 *		cpu down has been canceled or it has come online
 *		again.  After recognizing this state, trustee stops
2947 2948 2949
 *		trying to drain or butcher and clears ROGUE, rebinds
 *		all remaining workers back to the cpu and releases
 *		manager role.
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
 *
 * DONE		Trustee will enter this state after BUTCHER or RELEASE
 *		is complete.
 *
 *          trustee                 CPU                draining
 *         took over                down               complete
 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
 *                        |                     |                  ^
 *                        | CPU is back online  v   return workers |
 *                         ----------------> RELEASE --------------
 */

/**
 * trustee_wait_event_timeout - timed event wait for trustee
 * @cond: condition to wait for
 * @timeout: timeout in jiffies
 *
 * wait_event_timeout() for trustee to use.  Handles locking and
 * checks for RELEASE request.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  To be used by trustee.
 *
 * RETURNS:
 * Positive indicating left time if @cond is satisfied, 0 if timed
 * out, -1 if canceled.
 */
#define trustee_wait_event_timeout(cond, timeout) ({			\
	long __ret = (timeout);						\
	while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) &&	\
	       __ret) {							\
		spin_unlock_irq(&gcwq->lock);				\
		__wait_event_timeout(gcwq->trustee_wait, (cond) ||	\
			(gcwq->trustee_state == TRUSTEE_RELEASE),	\
			__ret);						\
		spin_lock_irq(&gcwq->lock);				\
	}								\
	gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret);		\
})

/**
 * trustee_wait_event - event wait for trustee
 * @cond: condition to wait for
 *
 * wait_event() for trustee to use.  Automatically handles locking and
 * checks for CANCEL request.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  To be used by trustee.
 *
 * RETURNS:
 * 0 if @cond is satisfied, -1 if canceled.
 */
#define trustee_wait_event(cond) ({					\
	long __ret1;							\
	__ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
	__ret1 < 0 ? -1 : 0;						\
})

static int __cpuinit trustee_thread(void *__gcwq)
{
	struct global_cwq *gcwq = __gcwq;
	struct worker *worker;
3015
	struct work_struct *work;
3016
	struct hlist_node *pos;
3017
	long rc;
3018 3019 3020 3021 3022 3023
	int i;

	BUG_ON(gcwq->cpu != smp_processor_id());

	spin_lock_irq(&gcwq->lock);
	/*
3024 3025 3026
	 * Claim the manager position and make all workers rogue.
	 * Trustee must be bound to the target cpu and can't be
	 * cancelled.
3027 3028
	 */
	BUG_ON(gcwq->cpu != smp_processor_id());
3029 3030 3031 3032
	rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
	BUG_ON(rc < 0);

	gcwq->flags |= GCWQ_MANAGING_WORKERS;
3033 3034

	list_for_each_entry(worker, &gcwq->idle_list, entry)
3035
		worker->flags |= WORKER_ROGUE;
3036 3037

	for_each_busy_worker(worker, i, pos, gcwq)
3038
		worker->flags |= WORKER_ROGUE;
3039

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
	/*
	 * Call schedule() so that we cross rq->lock and thus can
	 * guarantee sched callbacks see the rogue flag.  This is
	 * necessary as scheduler callbacks may be invoked from other
	 * cpus.
	 */
	spin_unlock_irq(&gcwq->lock);
	schedule();
	spin_lock_irq(&gcwq->lock);

	/*
3051 3052 3053 3054
	 * Sched callbacks are disabled now.  Zap nr_running.  After
	 * this, nr_running stays zero and need_more_worker() and
	 * keep_working() are always true as long as the worklist is
	 * not empty.
3055
	 */
3056
	atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3057 3058 3059 3060 3061

	spin_unlock_irq(&gcwq->lock);
	del_timer_sync(&gcwq->idle_timer);
	spin_lock_irq(&gcwq->lock);

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	/*
	 * We're now in charge.  Notify and proceed to drain.  We need
	 * to keep the gcwq running during the whole CPU down
	 * procedure as other cpu hotunplug callbacks may need to
	 * flush currently running tasks.
	 */
	gcwq->trustee_state = TRUSTEE_IN_CHARGE;
	wake_up_all(&gcwq->trustee_wait);

	/*
	 * The original cpu is in the process of dying and may go away
	 * anytime now.  When that happens, we and all workers would
3074 3075 3076 3077 3078 3079
	 * be migrated to other cpus.  Try draining any left work.  We
	 * want to get it over with ASAP - spam rescuers, wake up as
	 * many idlers as necessary and create new ones till the
	 * worklist is empty.  Note that if the gcwq is frozen, there
	 * may be frozen works in freezeable cwqs.  Don't declare
	 * completion while frozen.
3080 3081 3082 3083
	 */
	while (gcwq->nr_workers != gcwq->nr_idle ||
	       gcwq->flags & GCWQ_FREEZING ||
	       gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
		int nr_works = 0;

		list_for_each_entry(work, &gcwq->worklist, entry) {
			send_mayday(work);
			nr_works++;
		}

		list_for_each_entry(worker, &gcwq->idle_list, entry) {
			if (!nr_works--)
				break;
			wake_up_process(worker->task);
		}

		if (need_to_create_worker(gcwq)) {
			spin_unlock_irq(&gcwq->lock);
			worker = create_worker(gcwq, false);
			spin_lock_irq(&gcwq->lock);
			if (worker) {
3102
				worker->flags |= WORKER_ROGUE;
3103 3104 3105 3106
				start_worker(worker);
			}
		}

3107 3108 3109 3110 3111
		/* give a breather */
		if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
			break;
	}

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
	/*
	 * Either all works have been scheduled and cpu is down, or
	 * cpu down has already been canceled.  Wait for and butcher
	 * all workers till we're canceled.
	 */
	do {
		rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
		while (!list_empty(&gcwq->idle_list))
			destroy_worker(list_first_entry(&gcwq->idle_list,
							struct worker, entry));
	} while (gcwq->nr_workers && rc >= 0);

	/*
	 * At this point, either draining has completed and no worker
	 * is left, or cpu down has been canceled or the cpu is being
	 * brought back up.  There shouldn't be any idle one left.
	 * Tell the remaining busy ones to rebind once it finishes the
	 * currently scheduled works by scheduling the rebind_work.
	 */
	WARN_ON(!list_empty(&gcwq->idle_list));

	for_each_busy_worker(worker, i, pos, gcwq) {
		struct work_struct *rebind_work = &worker->rebind_work;

		/*
		 * Rebind_work may race with future cpu hotplug
		 * operations.  Use a separate flag to mark that
		 * rebinding is scheduled.
		 */
3141 3142
		worker->flags |= WORKER_REBIND;
		worker->flags &= ~WORKER_ROGUE;
3143 3144 3145 3146 3147 3148 3149

		/* queue rebind_work, wq doesn't matter, use the default one */
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;

		debug_work_activate(rebind_work);
3150
		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3151 3152 3153 3154 3155 3156 3157
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
	}

	/* relinquish manager role */
	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	/* notify completion */
	gcwq->trustee = NULL;
	gcwq->trustee_state = TRUSTEE_DONE;
	wake_up_all(&gcwq->trustee_wait);
	spin_unlock_irq(&gcwq->lock);
	return 0;
}

/**
 * wait_trustee_state - wait for trustee to enter the specified state
 * @gcwq: gcwq the trustee of interest belongs to
 * @state: target state to wait for
 *
 * Wait for the trustee to reach @state.  DONE is already matched.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  To be used by cpu_callback.
 */
static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
{
	if (!(gcwq->trustee_state == state ||
	      gcwq->trustee_state == TRUSTEE_DONE)) {
		spin_unlock_irq(&gcwq->lock);
		__wait_event(gcwq->trustee_wait,
			     gcwq->trustee_state == state ||
			     gcwq->trustee_state == TRUSTEE_DONE);
		spin_lock_irq(&gcwq->lock);
	}
}

3189 3190 3191 3192 3193
static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
						unsigned long action,
						void *hcpu)
{
	unsigned int cpu = (unsigned long)hcpu;
3194 3195
	struct global_cwq *gcwq = get_gcwq(cpu);
	struct task_struct *new_trustee = NULL;
3196
	struct worker *uninitialized_var(new_worker);
3197
	unsigned long flags;
3198

3199 3200
	action &= ~CPU_TASKS_FROZEN;

3201 3202 3203 3204 3205 3206 3207
	switch (action) {
	case CPU_DOWN_PREPARE:
		new_trustee = kthread_create(trustee_thread, gcwq,
					     "workqueue_trustee/%d\n", cpu);
		if (IS_ERR(new_trustee))
			return notifier_from_errno(PTR_ERR(new_trustee));
		kthread_bind(new_trustee, cpu);
3208 3209 3210 3211 3212 3213 3214 3215 3216
		/* fall through */
	case CPU_UP_PREPARE:
		BUG_ON(gcwq->first_idle);
		new_worker = create_worker(gcwq, false);
		if (!new_worker) {
			if (new_trustee)
				kthread_stop(new_trustee);
			return NOTIFY_BAD;
		}
3217
	}
3218

3219 3220
	/* some are called w/ irq disabled, don't disturb irq status */
	spin_lock_irqsave(&gcwq->lock, flags);
3221

3222 3223 3224 3225 3226 3227 3228 3229
	switch (action) {
	case CPU_DOWN_PREPARE:
		/* initialize trustee and tell it to acquire the gcwq */
		BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
		gcwq->trustee = new_trustee;
		gcwq->trustee_state = TRUSTEE_START;
		wake_up_process(gcwq->trustee);
		wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
		/* fall through */
	case CPU_UP_PREPARE:
		BUG_ON(gcwq->first_idle);
		gcwq->first_idle = new_worker;
		break;

	case CPU_DYING:
		/*
		 * Before this, the trustee and all workers except for
		 * the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they'll all be diasporas.
		 */
		gcwq->flags |= GCWQ_DISASSOCIATED;
3244 3245 3246 3247
		break;

	case CPU_POST_DEAD:
		gcwq->trustee_state = TRUSTEE_BUTCHER;
3248 3249 3250 3251
		/* fall through */
	case CPU_UP_CANCELED:
		destroy_worker(gcwq->first_idle);
		gcwq->first_idle = NULL;
3252 3253 3254 3255
		break;

	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3256
		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3257 3258 3259 3260
		if (gcwq->trustee_state != TRUSTEE_DONE) {
			gcwq->trustee_state = TRUSTEE_RELEASE;
			wake_up_process(gcwq->trustee);
			wait_trustee_state(gcwq, TRUSTEE_DONE);
3261
		}
3262

3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
		/*
		 * Trustee is done and there might be no worker left.
		 * Put the first_idle in and request a real manager to
		 * take a look.
		 */
		spin_unlock_irq(&gcwq->lock);
		kthread_bind(gcwq->first_idle->task, cpu);
		spin_lock_irq(&gcwq->lock);
		gcwq->flags |= GCWQ_MANAGE_WORKERS;
		start_worker(gcwq->first_idle);
		gcwq->first_idle = NULL;
3274
		break;
L
Linus Torvalds 已提交
3275 3276
	}

3277 3278
	spin_unlock_irqrestore(&gcwq->lock, flags);

T
Tejun Heo 已提交
3279
	return notifier_from_errno(0);
L
Linus Torvalds 已提交
3280 3281
}

3282
#ifdef CONFIG_SMP
3283

3284
struct work_for_cpu {
3285
	struct completion completion;
3286 3287 3288 3289 3290
	long (*fn)(void *);
	void *arg;
	long ret;
};

3291
static int do_work_for_cpu(void *_wfc)
3292
{
3293
	struct work_for_cpu *wfc = _wfc;
3294
	wfc->ret = wfc->fn(wfc->arg);
3295 3296
	complete(&wfc->completion);
	return 0;
3297 3298 3299 3300 3301 3302 3303 3304
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3305 3306
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3307
 * The caller must not hold any locks which would prevent @fn from completing.
3308 3309 3310
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	struct task_struct *sub_thread;
	struct work_for_cpu wfc = {
		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
		.fn = fn,
		.arg = arg,
	};

	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
	if (IS_ERR(sub_thread))
		return PTR_ERR(sub_thread);
	kthread_bind(sub_thread, cpu);
	wake_up_process(sub_thread);
	wait_for_completion(&wfc.completion);
3324 3325 3326 3327 3328
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3329 3330 3331 3332 3333 3334 3335
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
 * Start freezing workqueues.  After this function returns, all
 * freezeable workqueues will queue new works to their frozen_works
3336
 * list instead of gcwq->worklist.
3337 3338
 *
 * CONTEXT:
3339
 * Grabs and releases workqueue_lock and gcwq->lock's.
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3350
	for_each_gcwq_cpu(cpu) {
3351
		struct global_cwq *gcwq = get_gcwq(cpu);
3352
		struct workqueue_struct *wq;
3353 3354 3355

		spin_lock_irq(&gcwq->lock);

3356 3357 3358
		BUG_ON(gcwq->flags & GCWQ_FREEZING);
		gcwq->flags |= GCWQ_FREEZING;

3359 3360 3361
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3362
			if (cwq && wq->flags & WQ_FREEZEABLE)
3363 3364
				cwq->max_active = 0;
		}
3365 3366

		spin_unlock_irq(&gcwq->lock);
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
	}

	spin_unlock(&workqueue_lock);
}

/**
 * freeze_workqueues_busy - are freezeable workqueues still busy?
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
 * %true if some freezeable workqueues are still busy.  %false if
 * freezing is complete.
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3394
	for_each_gcwq_cpu(cpu) {
3395
		struct workqueue_struct *wq;
3396 3397 3398 3399 3400 3401 3402
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3403
			if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3422
 * frozen works are transferred to their respective gcwq worklists.
3423 3424
 *
 * CONTEXT:
3425
 * Grabs and releases workqueue_lock and gcwq->lock's.
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3436
	for_each_gcwq_cpu(cpu) {
3437
		struct global_cwq *gcwq = get_gcwq(cpu);
3438
		struct workqueue_struct *wq;
3439 3440 3441

		spin_lock_irq(&gcwq->lock);

3442 3443 3444
		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
		gcwq->flags &= ~GCWQ_FREEZING;

3445 3446 3447
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3448
			if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3449 3450 3451 3452 3453 3454 3455 3456 3457
				continue;

			/* restore max_active and repopulate worklist */
			cwq->max_active = wq->saved_max_active;

			while (!list_empty(&cwq->delayed_works) &&
			       cwq->nr_active < cwq->max_active)
				cwq_activate_first_delayed(cwq);
		}
3458

3459 3460
		wake_up_worker(gcwq);

3461
		spin_unlock_irq(&gcwq->lock);
3462 3463 3464 3465 3466 3467 3468 3469
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3470
void __init init_workqueues(void)
L
Linus Torvalds 已提交
3471
{
T
Tejun Heo 已提交
3472
	unsigned int cpu;
T
Tejun Heo 已提交
3473
	int i;
T
Tejun Heo 已提交
3474

3475 3476 3477 3478 3479 3480
	/*
	 * The pointer part of work->data is either pointing to the
	 * cwq or contains the cpu number the work ran last on.  Make
	 * sure cpu number won't overflow into kernel pointer area so
	 * that they can be distinguished.
	 */
3481
	BUILD_BUG_ON(WORK_CPU_LAST << WORK_STRUCT_FLAG_BITS >= PAGE_OFFSET);
3482

3483
	hotcpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3484 3485

	/* initialize gcwqs */
3486
	for_each_gcwq_cpu(cpu) {
3487 3488 3489
		struct global_cwq *gcwq = get_gcwq(cpu);

		spin_lock_init(&gcwq->lock);
3490
		INIT_LIST_HEAD(&gcwq->worklist);
3491
		gcwq->cpu = cpu;
3492 3493
		if (cpu == WORK_CPU_UNBOUND)
			gcwq->flags |= GCWQ_DISASSOCIATED;
3494

T
Tejun Heo 已提交
3495 3496 3497 3498
		INIT_LIST_HEAD(&gcwq->idle_list);
		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);

3499 3500 3501 3502 3503 3504 3505
		init_timer_deferrable(&gcwq->idle_timer);
		gcwq->idle_timer.function = idle_worker_timeout;
		gcwq->idle_timer.data = (unsigned long)gcwq;

		setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
			    (unsigned long)gcwq);

3506
		ida_init(&gcwq->worker_ida);
3507 3508 3509

		gcwq->trustee_state = TRUSTEE_DONE;
		init_waitqueue_head(&gcwq->trustee_wait);
3510 3511
	}

3512
	/* create the initial worker */
3513
	for_each_online_gcwq_cpu(cpu) {
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
		struct global_cwq *gcwq = get_gcwq(cpu);
		struct worker *worker;

		worker = create_worker(gcwq, true);
		BUG_ON(!worker);
		spin_lock_irq(&gcwq->lock);
		start_worker(worker);
		spin_unlock_irq(&gcwq->lock);
	}

3524 3525 3526
	system_wq = alloc_workqueue("events", 0, 0);
	system_long_wq = alloc_workqueue("events_long", 0, 0);
	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3527 3528
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3529
	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq);
L
Linus Torvalds 已提交
3530
}