workqueue.c 140.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67 68
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
69
	 * create_worker() is in progress.
70
	 */
71
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
72
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
74

T
Tejun Heo 已提交
75 76 77 78
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
79
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83

84 85
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
86

87
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88

89
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
90
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91

92 93 94
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

95 96 97
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
98 99 100 101 102 103 104 105
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
106
	HIGHPRI_NICE_LEVEL	= -20,
107 108

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
109
};
L
Linus Torvalds 已提交
110 111

/*
T
Tejun Heo 已提交
112 113
 * Structure fields follow one of the following exclusion rules.
 *
114 115
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
116
 *
117 118 119
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
120
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
121
 *
122 123 124 125
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
126
 *
127 128 129
 * MG: pool->manager_mutex and pool->lock protected.  Writes require both
 *     locks.  Reads can happen under either lock.
 *
130
 * PL: wq_pool_mutex protected.
131
 *
132
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
133
 *
134 135
 * WQ: wq->mutex protected.
 *
136
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
137 138
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
139 140
 */

141
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
142

143
struct worker_pool {
144
	spinlock_t		lock;		/* the pool lock */
145
	int			cpu;		/* I: the associated cpu */
146
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
147
	int			id;		/* I: pool ID */
148
	unsigned int		flags;		/* X: flags */
149 150 151

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
152 153

	/* nr_idle includes the ones off idle_list for rebinding */
154 155 156 157 158 159
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

160
	/* a workers is either on busy_hash or idle_list, or the manager */
161 162 163
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

164
	/* see manage_workers() for details on the two manager mutexes */
165
	struct mutex		manager_arb;	/* manager arbitration */
166
	struct mutex		manager_mutex;	/* manager exclusion */
167
	struct idr		worker_idr;	/* MG: worker IDs and iteration */
168

T
Tejun Heo 已提交
169
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 171
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
172

173 174 175 176 177 178
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 180 181 182 183 184

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
185 186
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
187
/*
188 189 190 191
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
192
 */
193
struct pool_workqueue {
194
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
195
	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 197
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
198
	int			refcnt;		/* L: reference count */
199 200
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
201
	int			nr_active;	/* L: nr of active works */
202
	int			max_active;	/* L: max active works */
203
	struct list_head	delayed_works;	/* L: delayed works */
204
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
206 207 208 209 210

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
211
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
212 213 214
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
215
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
216

217 218 219 220
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
221 222
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
223 224 225
	struct completion	done;		/* flush completion */
};

226 227
struct wq_device;

L
Linus Torvalds 已提交
228
/*
229 230
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
231 232
 */
struct workqueue_struct {
233
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234
	struct list_head	list;		/* PL: list of all workqueues */
235

236 237 238
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
239
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 241 242
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243

244
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 246
	struct worker		*rescuer;	/* I: rescue worker */

247
	int			nr_drainers;	/* WQ: drain in progress */
248
	int			saved_max_active; /* WQ: saved pwq max_active */
249

250
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252

253 254 255
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
256
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
257
	struct lockdep_map	lockdep_map;
258
#endif
259
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260 261 262 263

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
265 266
};

267 268
static struct kmem_cache *pwq_cache;

269 270 271 272
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

273 274 275
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

276 277 278 279 280 281 282 283 284
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

285 286
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

287 288 289
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

290
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
291
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
292

293 294
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
295 296 297 298 299

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

300
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
301

302
/* PL: hash of all unbound pools keyed by pool->attrs */
303 304
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

305
/* I: attributes used when instantiating standard unbound pools on demand */
306 307
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

308 309 310
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

311
struct workqueue_struct *system_wq __read_mostly;
312
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
313
struct workqueue_struct *system_highpri_wq __read_mostly;
314
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
315
struct workqueue_struct *system_long_wq __read_mostly;
316
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
317
struct workqueue_struct *system_unbound_wq __read_mostly;
318
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
319
struct workqueue_struct *system_freezable_wq __read_mostly;
320
EXPORT_SYMBOL_GPL(system_freezable_wq);
321 322 323 324
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
325

326 327 328 329
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

330 331 332
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

333
#define assert_rcu_or_pool_mutex()					\
334
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
335 336
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
337

338
#define assert_rcu_or_wq_mutex(wq)					\
339
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
340
			   lockdep_is_held(&wq->mutex),			\
341
			   "sched RCU or wq->mutex should be held")
342

343 344
#ifdef CONFIG_LOCKDEP
#define assert_manager_or_pool_lock(pool)				\
345 346
	WARN_ONCE(debug_locks &&					\
		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
347 348 349 350 351 352
		  !lockdep_is_held(&(pool)->lock),			\
		  "pool->manager_mutex or ->lock should be held")
#else
#define assert_manager_or_pool_lock(pool)	do { } while (0)
#endif

353 354 355
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
356
	     (pool)++)
357

T
Tejun Heo 已提交
358 359 360
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
361
 * @pi: integer used for iteration
362
 *
363 364 365
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
366 367 368
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
369
 */
370 371
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
372
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
373
		else
T
Tejun Heo 已提交
374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
 * This must be called with either @pool->manager_mutex or ->lock held.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
		else

391 392 393 394
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
395
 *
396
 * This must be called either with wq->mutex held or sched RCU read locked.
397 398
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
399 400 401
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
402 403
 */
#define for_each_pwq(pwq, wq)						\
404
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
405
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
406
		else
407

408 409 410 411
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

412 413 414 415 416
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
452
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
488
	.debug_hint	= work_debug_hint,
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

524 525 526 527 528 529 530
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
531 532 533 534
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

535
	lockdep_assert_held(&wq_pool_mutex);
536

537 538
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
539
	if (ret >= 0) {
T
Tejun Heo 已提交
540
		pool->id = ret;
541 542
		return 0;
	}
543
	return ret;
544 545
}

546 547 548 549 550 551 552 553
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
554 555
 *
 * Return: The unbound pool_workqueue for @node.
556 557 558 559 560 561 562 563
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
579

580
/*
581 582
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
583
 * is cleared and the high bits contain OFFQ flags and pool ID.
584
 *
585 586
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
587 588
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
589
 *
590
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
591
 * corresponding to a work.  Pool is available once the work has been
592
 * queued anywhere after initialization until it is sync canceled.  pwq is
593
 * available only while the work item is queued.
594
 *
595 596 597 598
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
599
 */
600 601
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
602
{
603
	WARN_ON_ONCE(!work_pending(work));
604 605
	atomic_long_set(&work->data, data | flags | work_static(work));
}
606

607
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
608 609
			 unsigned long extra_flags)
{
610 611
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
612 613
}

614 615 616 617 618 619 620
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

621 622
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
623
{
624 625 626 627 628 629 630
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
631
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
632
}
633

634
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
635
{
636 637
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
638 639
}

640
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
641
{
642
	unsigned long data = atomic_long_read(&work->data);
643

644
	if (data & WORK_STRUCT_PWQ)
645 646 647
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
648 649
}

650 651 652 653
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
654 655 656
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
657 658 659 660 661
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
662 663
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
664 665
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
666
{
667
	unsigned long data = atomic_long_read(&work->data);
668
	int pool_id;
669

670
	assert_rcu_or_pool_mutex();
671

672 673
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
674
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
675

676 677
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
678 679
		return NULL;

680
	return idr_find(&worker_pool_idr, pool_id);
681 682 683 684 685 686
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
687
 * Return: The worker_pool ID @work was last associated with.
688 689 690 691
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
692 693
	unsigned long data = atomic_long_read(&work->data);

694 695
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
696
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
697

698
	return data >> WORK_OFFQ_POOL_SHIFT;
699 700
}

701 702
static void mark_work_canceling(struct work_struct *work)
{
703
	unsigned long pool_id = get_work_pool_id(work);
704

705 706
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
707 708 709 710 711 712
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

713
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
714 715
}

716
/*
717 718
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
719
 * they're being called with pool->lock held.
720 721
 */

722
static bool __need_more_worker(struct worker_pool *pool)
723
{
724
	return !atomic_read(&pool->nr_running);
725 726
}

727
/*
728 729
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
730 731
 *
 * Note that, because unbound workers never contribute to nr_running, this
732
 * function will always return %true for unbound pools as long as the
733
 * worklist isn't empty.
734
 */
735
static bool need_more_worker(struct worker_pool *pool)
736
{
737
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
738
}
739

740
/* Can I start working?  Called from busy but !running workers. */
741
static bool may_start_working(struct worker_pool *pool)
742
{
743
	return pool->nr_idle;
744 745 746
}

/* Do I need to keep working?  Called from currently running workers. */
747
static bool keep_working(struct worker_pool *pool)
748
{
749 750
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
751 752 753
}

/* Do we need a new worker?  Called from manager. */
754
static bool need_to_create_worker(struct worker_pool *pool)
755
{
756
	return need_more_worker(pool) && !may_start_working(pool);
757
}
758

759
/* Do I need to be the manager? */
760
static bool need_to_manage_workers(struct worker_pool *pool)
761
{
762
	return need_to_create_worker(pool) ||
763
		(pool->flags & POOL_MANAGE_WORKERS);
764 765 766
}

/* Do we have too many workers and should some go away? */
767
static bool too_many_workers(struct worker_pool *pool)
768
{
769
	bool managing = mutex_is_locked(&pool->manager_arb);
770 771
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
772

773 774 775 776 777 778 779
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

780
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
781 782
}

783
/*
784 785 786
 * Wake up functions.
 */

787
/* Return the first worker.  Safe with preemption disabled */
788
static struct worker *first_worker(struct worker_pool *pool)
789
{
790
	if (unlikely(list_empty(&pool->idle_list)))
791 792
		return NULL;

793
	return list_first_entry(&pool->idle_list, struct worker, entry);
794 795 796 797
}

/**
 * wake_up_worker - wake up an idle worker
798
 * @pool: worker pool to wake worker from
799
 *
800
 * Wake up the first idle worker of @pool.
801 802
 *
 * CONTEXT:
803
 * spin_lock_irq(pool->lock).
804
 */
805
static void wake_up_worker(struct worker_pool *pool)
806
{
807
	struct worker *worker = first_worker(pool);
808 809 810 811 812

	if (likely(worker))
		wake_up_process(worker->task);
}

813
/**
814 815 816 817 818 819 820 821 822 823
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
824
void wq_worker_waking_up(struct task_struct *task, int cpu)
825 826 827
{
	struct worker *worker = kthread_data(task);

828
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
829
		WARN_ON_ONCE(worker->pool->cpu != cpu);
830
		atomic_inc(&worker->pool->nr_running);
831
	}
832 833 834 835 836 837 838 839 840 841 842 843 844 845
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
846
 * Return:
847 848
 * Worker task on @cpu to wake up, %NULL if none.
 */
849
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
850 851
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
852
	struct worker_pool *pool;
853

854 855 856 857 858
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
859
	if (worker->flags & WORKER_NOT_RUNNING)
860 861
		return NULL;

862 863
	pool = worker->pool;

864
	/* this can only happen on the local cpu */
865 866
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
867 868 869 870 871 872

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
873 874 875
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
876
	 * manipulating idle_list, so dereferencing idle_list without pool
877
	 * lock is safe.
878
	 */
879 880
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
881
		to_wakeup = first_worker(pool);
882 883 884 885 886
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
887
 * @worker: self
888 889 890
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
891 892 893
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
894
 *
895
 * CONTEXT:
896
 * spin_lock_irq(pool->lock)
897 898 899 900
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
901
	struct worker_pool *pool = worker->pool;
902

903 904
	WARN_ON_ONCE(worker->task != current);

905 906 907 908 909 910 911 912
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
913
			if (atomic_dec_and_test(&pool->nr_running) &&
914
			    !list_empty(&pool->worklist))
915
				wake_up_worker(pool);
916
		} else
917
			atomic_dec(&pool->nr_running);
918 919
	}

920 921 922 923
	worker->flags |= flags;
}

/**
924
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
925
 * @worker: self
926 927
 * @flags: flags to clear
 *
928
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
929
 *
930
 * CONTEXT:
931
 * spin_lock_irq(pool->lock)
932 933 934
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
935
	struct worker_pool *pool = worker->pool;
936 937
	unsigned int oflags = worker->flags;

938 939
	WARN_ON_ONCE(worker->task != current);

940
	worker->flags &= ~flags;
941

942 943 944 945 946
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
947 948
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
949
			atomic_inc(&pool->nr_running);
950 951
}

952 953
/**
 * find_worker_executing_work - find worker which is executing a work
954
 * @pool: pool of interest
955 956
 * @work: work to find worker for
 *
957 958
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
959 960 961 962 963 964 965 966 967 968 969 970
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
971 972 973 974 975 976
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
977 978
 *
 * CONTEXT:
979
 * spin_lock_irq(pool->lock).
980
 *
981 982
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
983
 * otherwise.
984
 */
985
static struct worker *find_worker_executing_work(struct worker_pool *pool,
986
						 struct work_struct *work)
987
{
988 989
	struct worker *worker;

990
	hash_for_each_possible(pool->busy_hash, worker, hentry,
991 992 993
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
994 995 996
			return worker;

	return NULL;
997 998
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1014
 * spin_lock_irq(pool->lock).
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1098
static void pwq_activate_delayed_work(struct work_struct *work)
1099
{
1100
	struct pool_workqueue *pwq = get_work_pwq(work);
1101 1102

	trace_workqueue_activate_work(work);
1103
	move_linked_works(work, &pwq->pool->worklist, NULL);
1104
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1105
	pwq->nr_active++;
1106 1107
}

1108
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1109
{
1110
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1111 1112
						    struct work_struct, entry);

1113
	pwq_activate_delayed_work(work);
1114 1115
}

1116
/**
1117 1118
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1119 1120 1121
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1122
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1123 1124
 *
 * CONTEXT:
1125
 * spin_lock_irq(pool->lock).
1126
 */
1127
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1128
{
T
Tejun Heo 已提交
1129
	/* uncolored work items don't participate in flushing or nr_active */
1130
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1131
		goto out_put;
1132

1133
	pwq->nr_in_flight[color]--;
1134

1135 1136
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1137
		/* one down, submit a delayed one */
1138 1139
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1140 1141 1142
	}

	/* is flush in progress and are we at the flushing tip? */
1143
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1144
		goto out_put;
1145 1146

	/* are there still in-flight works? */
1147
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1148
		goto out_put;
1149

1150 1151
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1152 1153

	/*
1154
	 * If this was the last pwq, wake up the first flusher.  It
1155 1156
	 * will handle the rest.
	 */
1157 1158
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1159 1160
out_put:
	put_pwq(pwq);
1161 1162
}

1163
/**
1164
 * try_to_grab_pending - steal work item from worklist and disable irq
1165 1166
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1167
 * @flags: place to store irq state
1168 1169
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1170
 * stable state - idle, on timer or on worklist.
1171
 *
1172
 * Return:
1173 1174 1175
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1176 1177
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1178
 *
1179
 * Note:
1180
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1181 1182 1183
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1184 1185 1186 1187
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1188
 * This function is safe to call from any context including IRQ handler.
1189
 */
1190 1191
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1192
{
1193
	struct worker_pool *pool;
1194
	struct pool_workqueue *pwq;
1195

1196 1197
	local_irq_save(*flags);

1198 1199 1200 1201
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1202 1203 1204 1205 1206
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1207 1208 1209 1210 1211
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1212 1213 1214 1215 1216 1217 1218
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1219 1220
	pool = get_work_pool(work);
	if (!pool)
1221
		goto fail;
1222

1223
	spin_lock(&pool->lock);
1224
	/*
1225 1226 1227 1228 1229
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1230 1231
	 * item is currently queued on that pool.
	 */
1232 1233
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1234 1235 1236 1237 1238
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1239
		 * on the delayed_list, will confuse pwq->nr_active
1240 1241 1242 1243
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1244
			pwq_activate_delayed_work(work);
1245 1246

		list_del_init(&work->entry);
1247
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1248

1249
		/* work->data points to pwq iff queued, point to pool */
1250 1251 1252 1253
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1254
	}
1255
	spin_unlock(&pool->lock);
1256 1257 1258 1259 1260
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1261
	return -EAGAIN;
1262 1263
}

T
Tejun Heo 已提交
1264
/**
1265
 * insert_work - insert a work into a pool
1266
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1267 1268 1269 1270
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1271
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1272
 * work_struct flags.
T
Tejun Heo 已提交
1273 1274
 *
 * CONTEXT:
1275
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1276
 */
1277 1278
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1279
{
1280
	struct worker_pool *pool = pwq->pool;
1281

T
Tejun Heo 已提交
1282
	/* we own @work, set data and link */
1283
	set_work_pwq(work, pwq, extra_flags);
1284
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1285
	get_pwq(pwq);
1286 1287

	/*
1288 1289 1290
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1291 1292 1293
	 */
	smp_mb();

1294 1295
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1296 1297
}

1298 1299
/*
 * Test whether @work is being queued from another work executing on the
1300
 * same workqueue.
1301 1302 1303
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1304 1305 1306 1307 1308 1309 1310
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1311
	return worker && worker->current_pwq->wq == wq;
1312 1313
}

1314
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1315 1316
			 struct work_struct *work)
{
1317
	struct pool_workqueue *pwq;
1318
	struct worker_pool *last_pool;
1319
	struct list_head *worklist;
1320
	unsigned int work_flags;
1321
	unsigned int req_cpu = cpu;
1322 1323 1324 1325 1326 1327 1328 1329

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1330

1331
	debug_work_activate(work);
1332

1333
	/* if draining, only works from the same workqueue are allowed */
1334
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1335
	    WARN_ON_ONCE(!is_chained_work(wq)))
1336
		return;
1337
retry:
1338 1339 1340
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1341
	/* pwq which will be used unless @work is executing elsewhere */
1342
	if (!(wq->flags & WQ_UNBOUND))
1343
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1344 1345
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1346

1347 1348 1349 1350 1351 1352 1353 1354
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1355

1356
		spin_lock(&last_pool->lock);
1357

1358
		worker = find_worker_executing_work(last_pool, work);
1359

1360 1361
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1362
		} else {
1363 1364
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1365
			spin_lock(&pwq->pool->lock);
1366
		}
1367
	} else {
1368
		spin_lock(&pwq->pool->lock);
1369 1370
	}

1371 1372 1373 1374
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1375 1376
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1390 1391
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1392

1393
	if (WARN_ON(!list_empty(&work->entry))) {
1394
		spin_unlock(&pwq->pool->lock);
1395 1396
		return;
	}
1397

1398 1399
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1400

1401
	if (likely(pwq->nr_active < pwq->max_active)) {
1402
		trace_workqueue_activate_work(work);
1403 1404
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1405 1406
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1407
		worklist = &pwq->delayed_works;
1408
	}
1409

1410
	insert_work(pwq, work, worklist, work_flags);
1411

1412
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1413 1414
}

1415
/**
1416 1417
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1418 1419 1420
 * @wq: workqueue to use
 * @work: work to queue
 *
1421 1422
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1423 1424
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1425
 */
1426 1427
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1428
{
1429
	bool ret = false;
1430
	unsigned long flags;
1431

1432
	local_irq_save(flags);
1433

1434
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1435
		__queue_work(cpu, wq, work);
1436
		ret = true;
1437
	}
1438

1439
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1440 1441
	return ret;
}
1442
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1443

1444
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1445
{
1446
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1447

1448
	/* should have been called from irqsafe timer with irq already off */
1449
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1450
}
1451
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1452

1453 1454
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1455
{
1456 1457 1458 1459 1460
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1461 1462
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1463

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1475
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1476

1477
	dwork->wq = wq;
1478
	dwork->cpu = cpu;
1479 1480 1481 1482 1483 1484
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1485 1486
}

1487 1488 1489 1490
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1491
 * @dwork: work to queue
1492 1493
 * @delay: number of jiffies to wait before queueing
 *
1494
 * Return: %false if @work was already on a queue, %true otherwise.  If
1495 1496
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1497
 */
1498 1499
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1500
{
1501
	struct work_struct *work = &dwork->work;
1502
	bool ret = false;
1503
	unsigned long flags;
1504

1505 1506
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1507

1508
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1509
		__queue_delayed_work(cpu, wq, dwork, delay);
1510
		ret = true;
1511
	}
1512

1513
	local_irq_restore(flags);
1514 1515
	return ret;
}
1516
EXPORT_SYMBOL(queue_delayed_work_on);
1517

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1530
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1531 1532
 * pending and its timer was modified.
 *
1533
 * This function is safe to call from any context including IRQ handler.
1534 1535 1536 1537 1538 1539 1540
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1541

1542 1543 1544
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1545

1546 1547 1548
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1549
	}
1550 1551

	/* -ENOENT from try_to_grab_pending() becomes %true */
1552 1553
	return ret;
}
1554 1555
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1556 1557 1558 1559 1560 1561 1562 1563
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1564
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1565 1566
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1567
{
1568
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1569

1570 1571 1572 1573
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1574

1575 1576
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1577
	pool->nr_idle++;
1578
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1579 1580

	/* idle_list is LIFO */
1581
	list_add(&worker->entry, &pool->idle_list);
1582

1583 1584
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1585

1586
	/*
1587
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1588
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1589 1590
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1591
	 */
1592
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1593
		     pool->nr_workers == pool->nr_idle &&
1594
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1604
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1605 1606 1607
 */
static void worker_leave_idle(struct worker *worker)
{
1608
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1609

1610 1611
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1612
	worker_clr_flags(worker, WORKER_IDLE);
1613
	pool->nr_idle--;
T
Tejun Heo 已提交
1614 1615 1616
	list_del_init(&worker->entry);
}

1617
/**
1618 1619 1620 1621
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1622 1623 1624 1625 1626 1627
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1628
 * This function is to be used by unbound workers and rescuers to bind
1629 1630 1631
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1632
 * verbatim as it's best effort and blocking and pool may be
1633 1634
 * [dis]associated in the meantime.
 *
1635
 * This function tries set_cpus_allowed() and locks pool and verifies the
1636
 * binding against %POOL_DISASSOCIATED which is set during
1637 1638 1639
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1640 1641
 *
 * CONTEXT:
1642
 * Might sleep.  Called without any lock but returns with pool->lock
1643 1644
 * held.
 *
1645
 * Return:
1646
 * %true if the associated pool is online (@worker is successfully
1647 1648
 * bound), %false if offline.
 */
1649
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1650
__acquires(&pool->lock)
1651 1652
{
	while (true) {
1653
		/*
1654 1655 1656
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1657
		 * against POOL_DISASSOCIATED.
1658
		 */
1659
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1660
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1661

1662
		spin_lock_irq(&pool->lock);
1663
		if (pool->flags & POOL_DISASSOCIATED)
1664
			return false;
1665
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1666
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1667
			return true;
1668
		spin_unlock_irq(&pool->lock);
1669

1670 1671 1672 1673 1674 1675
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1676
		cpu_relax();
1677
		cond_resched();
1678 1679 1680
	}
}

T
Tejun Heo 已提交
1681 1682 1683 1684 1685
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1686 1687
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1688
		INIT_LIST_HEAD(&worker->scheduled);
1689 1690
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1691
	}
T
Tejun Heo 已提交
1692 1693 1694 1695 1696
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1697
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1698
 *
1699
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1700 1701 1702 1703 1704 1705
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1706
 * Return:
T
Tejun Heo 已提交
1707 1708
 * Pointer to the newly created worker.
 */
1709
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1710 1711
{
	struct worker *worker = NULL;
1712
	int id = -1;
1713
	char id_buf[16];
T
Tejun Heo 已提交
1714

1715 1716
	lockdep_assert_held(&pool->manager_mutex);

1717 1718 1719 1720 1721
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
	idr_preload(GFP_KERNEL);
1722
	spin_lock_irq(&pool->lock);
1723 1724 1725

	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);

1726
	spin_unlock_irq(&pool->lock);
1727 1728 1729
	idr_preload_end();
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1730 1731 1732 1733 1734

	worker = alloc_worker();
	if (!worker)
		goto fail;

1735
	worker->pool = pool;
T
Tejun Heo 已提交
1736 1737
	worker->id = id;

1738
	if (pool->cpu >= 0)
1739 1740
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1741
	else
1742 1743
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1744
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1745
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1746 1747 1748
	if (IS_ERR(worker->task))
		goto fail;

1749 1750 1751 1752 1753
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1754 1755 1756 1757
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1758
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1759

T
Tejun Heo 已提交
1760 1761 1762 1763 1764 1765
	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1766
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1767

1768 1769 1770 1771 1772
	/* successful, commit the pointer to idr */
	spin_lock_irq(&pool->lock);
	idr_replace(&pool->worker_idr, worker, worker->id);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1773
	return worker;
1774

T
Tejun Heo 已提交
1775 1776
fail:
	if (id >= 0) {
1777
		spin_lock_irq(&pool->lock);
1778
		idr_remove(&pool->worker_idr, id);
1779
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1780 1781 1782 1783 1784 1785 1786 1787 1788
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1789
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1790 1791
 *
 * CONTEXT:
1792
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1793 1794 1795
 */
static void start_worker(struct worker *worker)
{
1796
	worker->flags |= WORKER_STARTED;
1797
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1798
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1799 1800 1801
	wake_up_process(worker->task);
}

1802 1803 1804 1805
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1806
 * Grab the managership of @pool and create and start a new worker for it.
1807 1808
 *
 * Return: 0 on success. A negative error code otherwise.
1809 1810 1811 1812 1813
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1814 1815
	mutex_lock(&pool->manager_mutex);

1816 1817 1818 1819 1820 1821 1822
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1823 1824
	mutex_unlock(&pool->manager_mutex);

1825 1826 1827
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1828 1829 1830 1831
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1832
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1833 1834
 *
 * CONTEXT:
1835
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1836 1837 1838
 */
static void destroy_worker(struct worker *worker)
{
1839
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1840

1841 1842 1843
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1844
	/* sanity check frenzy */
1845 1846 1847
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1848

T
Tejun Heo 已提交
1849
	if (worker->flags & WORKER_STARTED)
1850
		pool->nr_workers--;
T
Tejun Heo 已提交
1851
	if (worker->flags & WORKER_IDLE)
1852
		pool->nr_idle--;
T
Tejun Heo 已提交
1853 1854

	list_del_init(&worker->entry);
1855
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1856

1857 1858
	idr_remove(&pool->worker_idr, worker->id);

1859
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1860

T
Tejun Heo 已提交
1861 1862 1863
	kthread_stop(worker->task);
	kfree(worker);

1864
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1865 1866
}

1867
static void idle_worker_timeout(unsigned long __pool)
1868
{
1869
	struct worker_pool *pool = (void *)__pool;
1870

1871
	spin_lock_irq(&pool->lock);
1872

1873
	if (too_many_workers(pool)) {
1874 1875 1876 1877
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1878
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1879 1880 1881
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1882
			mod_timer(&pool->idle_timer, expires);
1883 1884
		else {
			/* it's been idle for too long, wake up manager */
1885
			pool->flags |= POOL_MANAGE_WORKERS;
1886
			wake_up_worker(pool);
1887
		}
1888 1889
	}

1890
	spin_unlock_irq(&pool->lock);
1891
}
1892

1893
static void send_mayday(struct work_struct *work)
1894
{
1895 1896
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1897

1898
	lockdep_assert_held(&wq_mayday_lock);
1899

1900
	if (!wq->rescuer)
1901
		return;
1902 1903

	/* mayday mayday mayday */
1904 1905
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1906
		wake_up_process(wq->rescuer->task);
1907
	}
1908 1909
}

1910
static void pool_mayday_timeout(unsigned long __pool)
1911
{
1912
	struct worker_pool *pool = (void *)__pool;
1913 1914
	struct work_struct *work;

1915
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1916
	spin_lock(&pool->lock);
1917

1918
	if (need_to_create_worker(pool)) {
1919 1920 1921 1922 1923 1924
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1925
		list_for_each_entry(work, &pool->worklist, entry)
1926
			send_mayday(work);
L
Linus Torvalds 已提交
1927
	}
1928

1929
	spin_unlock(&pool->lock);
1930
	spin_unlock_irq(&wq_mayday_lock);
1931

1932
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1933 1934
}

1935 1936
/**
 * maybe_create_worker - create a new worker if necessary
1937
 * @pool: pool to create a new worker for
1938
 *
1939
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1940 1941
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1942
 * sent to all rescuers with works scheduled on @pool to resolve
1943 1944
 * possible allocation deadlock.
 *
1945 1946
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1947 1948
 *
 * LOCKING:
1949
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1950 1951 1952
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1953
 * Return:
1954
 * %false if no action was taken and pool->lock stayed locked, %true
1955 1956
 * otherwise.
 */
1957
static bool maybe_create_worker(struct worker_pool *pool)
1958 1959
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1960
{
1961
	if (!need_to_create_worker(pool))
1962 1963
		return false;
restart:
1964
	spin_unlock_irq(&pool->lock);
1965

1966
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1967
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1968 1969 1970 1971

	while (true) {
		struct worker *worker;

1972
		worker = create_worker(pool);
1973
		if (worker) {
1974
			del_timer_sync(&pool->mayday_timer);
1975
			spin_lock_irq(&pool->lock);
1976
			start_worker(worker);
1977 1978
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1979 1980 1981
			return true;
		}

1982
		if (!need_to_create_worker(pool))
1983
			break;
L
Linus Torvalds 已提交
1984

1985 1986
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1987

1988
		if (!need_to_create_worker(pool))
1989 1990 1991
			break;
	}

1992
	del_timer_sync(&pool->mayday_timer);
1993
	spin_lock_irq(&pool->lock);
1994
	if (need_to_create_worker(pool))
1995 1996 1997 1998 1999 2000
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2001
 * @pool: pool to destroy workers for
2002
 *
2003
 * Destroy @pool workers which have been idle for longer than
2004 2005 2006
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
2007
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2008 2009
 * multiple times.  Called only from manager.
 *
2010
 * Return:
2011
 * %false if no action was taken and pool->lock stayed locked, %true
2012 2013
 * otherwise.
 */
2014
static bool maybe_destroy_workers(struct worker_pool *pool)
2015 2016
{
	bool ret = false;
L
Linus Torvalds 已提交
2017

2018
	while (too_many_workers(pool)) {
2019 2020
		struct worker *worker;
		unsigned long expires;
2021

2022
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2023
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2024

2025
		if (time_before(jiffies, expires)) {
2026
			mod_timer(&pool->idle_timer, expires);
2027
			break;
2028
		}
L
Linus Torvalds 已提交
2029

2030 2031
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2032
	}
2033

2034
	return ret;
2035 2036
}

2037
/**
2038 2039
 * manage_workers - manage worker pool
 * @worker: self
2040
 *
2041
 * Assume the manager role and manage the worker pool @worker belongs
2042
 * to.  At any given time, there can be only zero or one manager per
2043
 * pool.  The exclusion is handled automatically by this function.
2044 2045 2046 2047
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2048 2049
 *
 * CONTEXT:
2050
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2051 2052
 * multiple times.  Does GFP_KERNEL allocations.
 *
2053
 * Return:
2054 2055 2056 2057 2058
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
2059
 */
2060
static bool manage_workers(struct worker *worker)
2061
{
2062
	struct worker_pool *pool = worker->pool;
2063
	bool ret = false;
2064

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2086
	if (!mutex_trylock(&pool->manager_arb))
2087
		return ret;
2088

2089
	/*
2090 2091
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2092
	 */
2093
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2094
		spin_unlock_irq(&pool->lock);
2095
		mutex_lock(&pool->manager_mutex);
2096
		spin_lock_irq(&pool->lock);
2097 2098
		ret = true;
	}
2099

2100
	pool->flags &= ~POOL_MANAGE_WORKERS;
2101 2102

	/*
2103 2104
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2105
	 */
2106 2107
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2108

2109
	mutex_unlock(&pool->manager_mutex);
2110
	mutex_unlock(&pool->manager_arb);
2111
	return ret;
2112 2113
}

2114 2115
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2116
 * @worker: self
2117 2118 2119 2120 2121 2122 2123 2124 2125
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2126
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2127
 */
T
Tejun Heo 已提交
2128
static void process_one_work(struct worker *worker, struct work_struct *work)
2129 2130
__releases(&pool->lock)
__acquires(&pool->lock)
2131
{
2132
	struct pool_workqueue *pwq = get_work_pwq(work);
2133
	struct worker_pool *pool = worker->pool;
2134
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2135
	int work_color;
2136
	struct worker *collision;
2137 2138 2139 2140 2141 2142 2143 2144
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2145 2146 2147
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2148
#endif
2149 2150 2151
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2152
	 * unbound or a disassociated pool.
2153
	 */
2154
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2155
		     !(pool->flags & POOL_DISASSOCIATED) &&
2156
		     raw_smp_processor_id() != pool->cpu);
2157

2158 2159 2160 2161 2162 2163
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2164
	collision = find_worker_executing_work(pool, work);
2165 2166 2167 2168 2169
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2170
	/* claim and dequeue */
2171
	debug_work_deactivate(work);
2172
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2173
	worker->current_work = work;
2174
	worker->current_func = work->func;
2175
	worker->current_pwq = pwq;
2176
	work_color = get_work_color(work);
2177

2178 2179
	list_del_init(&work->entry);

2180 2181 2182 2183 2184 2185 2186
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2187
	/*
2188
	 * Unbound pool isn't concurrency managed and work items should be
2189 2190
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2191 2192
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2193

2194
	/*
2195
	 * Record the last pool and clear PENDING which should be the last
2196
	 * update to @work.  Also, do this inside @pool->lock so that
2197 2198
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2199
	 */
2200
	set_work_pool_and_clear_pending(work, pool->id);
2201

2202
	spin_unlock_irq(&pool->lock);
2203

2204
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2205
	lock_map_acquire(&lockdep_map);
2206
	trace_workqueue_execute_start(work);
2207
	worker->current_func(work);
2208 2209 2210 2211 2212
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2213
	lock_map_release(&lockdep_map);
2214
	lock_map_release(&pwq->wq->lockdep_map);
2215 2216

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2217 2218
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2219 2220
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2221 2222 2223 2224
		debug_show_held_locks(current);
		dump_stack();
	}

2225 2226 2227 2228 2229 2230 2231 2232 2233
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2234
	spin_lock_irq(&pool->lock);
2235

2236 2237 2238 2239
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2240
	/* we're done with it, release */
2241
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2242
	worker->current_work = NULL;
2243
	worker->current_func = NULL;
2244
	worker->current_pwq = NULL;
2245
	worker->desc_valid = false;
2246
	pwq_dec_nr_in_flight(pwq, work_color);
2247 2248
}

2249 2250 2251 2252 2253 2254 2255 2256 2257
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2258
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2259 2260 2261
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2262
{
2263 2264
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2265
						struct work_struct, entry);
T
Tejun Heo 已提交
2266
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2267 2268 2269
	}
}

T
Tejun Heo 已提交
2270 2271
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2272
 * @__worker: self
T
Tejun Heo 已提交
2273
 *
2274 2275 2276 2277 2278
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2279 2280
 *
 * Return: 0
T
Tejun Heo 已提交
2281
 */
T
Tejun Heo 已提交
2282
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2283
{
T
Tejun Heo 已提交
2284
	struct worker *worker = __worker;
2285
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2286

2287 2288
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2289
woke_up:
2290
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2291

2292 2293
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2294
		spin_unlock_irq(&pool->lock);
2295 2296 2297
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
		return 0;
T
Tejun Heo 已提交
2298
	}
2299

T
Tejun Heo 已提交
2300
	worker_leave_idle(worker);
2301
recheck:
2302
	/* no more worker necessary? */
2303
	if (!need_more_worker(pool))
2304 2305 2306
		goto sleep;

	/* do we need to manage? */
2307
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2308 2309
		goto recheck;

T
Tejun Heo 已提交
2310 2311 2312 2313 2314
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2315
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2316

2317
	/*
2318 2319 2320 2321 2322
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2323
	 */
2324
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2325 2326

	do {
T
Tejun Heo 已提交
2327
		struct work_struct *work =
2328
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2329 2330 2331 2332 2333 2334
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2335
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2336 2337 2338
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2339
		}
2340
	} while (keep_working(pool));
2341 2342

	worker_set_flags(worker, WORKER_PREP, false);
2343
sleep:
2344
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2345
		goto recheck;
2346

T
Tejun Heo 已提交
2347
	/*
2348 2349 2350 2351 2352
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2353 2354 2355
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2356
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2357 2358
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2359 2360
}

2361 2362
/**
 * rescuer_thread - the rescuer thread function
2363
 * @__rescuer: self
2364 2365
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2366
 * workqueue which has WQ_MEM_RECLAIM set.
2367
 *
2368
 * Regular work processing on a pool may block trying to create a new
2369 2370 2371 2372 2373
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2374 2375
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2376 2377 2378
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2379 2380
 *
 * Return: 0
2381
 */
2382
static int rescuer_thread(void *__rescuer)
2383
{
2384 2385
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2386 2387 2388
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2389 2390 2391 2392 2393 2394

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2395 2396 2397
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2398 2399
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2400
		rescuer->task->flags &= ~PF_WQ_WORKER;
2401
		return 0;
2402
	}
2403

2404
	/* see whether any pwq is asking for help */
2405
	spin_lock_irq(&wq_mayday_lock);
2406 2407 2408 2409

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2410
		struct worker_pool *pool = pwq->pool;
2411 2412 2413
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2414 2415
		list_del_init(&pwq->mayday_node);

2416
		spin_unlock_irq(&wq_mayday_lock);
2417 2418

		/* migrate to the target cpu if possible */
2419
		worker_maybe_bind_and_lock(pool);
2420
		rescuer->pool = pool;
2421 2422 2423 2424 2425

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2426
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2427
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2428
			if (get_work_pwq(work) == pwq)
2429 2430 2431
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2432 2433

		/*
2434
		 * Leave this pool.  If keep_working() is %true, notify a
2435 2436 2437
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2438 2439
		if (keep_working(pool))
			wake_up_worker(pool);
2440

2441
		rescuer->pool = NULL;
2442
		spin_unlock(&pool->lock);
2443
		spin_lock(&wq_mayday_lock);
2444 2445
	}

2446
	spin_unlock_irq(&wq_mayday_lock);
2447

2448 2449
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2450 2451
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2452 2453
}

O
Oleg Nesterov 已提交
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2465 2466
/**
 * insert_wq_barrier - insert a barrier work
2467
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2468
 * @barr: wq_barrier to insert
2469 2470
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2471
 *
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2484
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2485 2486
 *
 * CONTEXT:
2487
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2488
 */
2489
static void insert_wq_barrier(struct pool_workqueue *pwq,
2490 2491
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2492
{
2493 2494 2495
	struct list_head *head;
	unsigned int linked = 0;

2496
	/*
2497
	 * debugobject calls are safe here even with pool->lock locked
2498 2499 2500 2501
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2502
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2503
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2504
	init_completion(&barr->done);
2505

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2521
	debug_work_activate(&barr->work);
2522
	insert_work(pwq, &barr->work, head,
2523
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2524 2525
}

2526
/**
2527
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2528 2529 2530 2531
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2532
 * Prepare pwqs for workqueue flushing.
2533
 *
2534 2535 2536 2537 2538
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2539 2540 2541 2542 2543 2544 2545
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2546
 * If @work_color is non-negative, all pwqs should have the same
2547 2548 2549 2550
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2551
 * mutex_lock(wq->mutex).
2552
 *
2553
 * Return:
2554 2555 2556
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2557
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2558
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2559
{
2560
	bool wait = false;
2561
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2562

2563
	if (flush_color >= 0) {
2564
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2565
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2566
	}
2567

2568
	for_each_pwq(pwq, wq) {
2569
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2570

2571
		spin_lock_irq(&pool->lock);
2572

2573
		if (flush_color >= 0) {
2574
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2575

2576 2577 2578
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2579 2580 2581
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2582

2583
		if (work_color >= 0) {
2584
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2585
			pwq->work_color = work_color;
2586
		}
L
Linus Torvalds 已提交
2587

2588
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2589
	}
2590

2591
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2592
		complete(&wq->first_flusher->done);
2593

2594
	return wait;
L
Linus Torvalds 已提交
2595 2596
}

2597
/**
L
Linus Torvalds 已提交
2598
 * flush_workqueue - ensure that any scheduled work has run to completion.
2599
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2600
 *
2601 2602
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2603
 */
2604
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2605
{
2606 2607 2608 2609 2610 2611
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2612

2613 2614
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2615

2616
	mutex_lock(&wq->mutex);
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2629
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2630 2631 2632 2633 2634
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2635
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2636 2637 2638

			wq->first_flusher = &this_flusher;

2639
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2640 2641 2642 2643 2644 2645 2646 2647
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2648
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2649
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2650
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2661
	mutex_unlock(&wq->mutex);
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2674
	mutex_lock(&wq->mutex);
2675

2676 2677 2678 2679
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2680 2681
	wq->first_flusher = NULL;

2682 2683
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2696 2697
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2717
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2718 2719 2720
		}

		if (list_empty(&wq->flusher_queue)) {
2721
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2722 2723 2724 2725 2726
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2727
		 * the new first flusher and arm pwqs.
2728
		 */
2729 2730
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2731 2732 2733 2734

		list_del_init(&next->list);
		wq->first_flusher = next;

2735
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2746
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2747
}
2748
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2749

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2764
	struct pool_workqueue *pwq;
2765 2766 2767 2768

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2769
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2770
	 */
2771
	mutex_lock(&wq->mutex);
2772
	if (!wq->nr_drainers++)
2773
		wq->flags |= __WQ_DRAINING;
2774
	mutex_unlock(&wq->mutex);
2775 2776 2777
reflush:
	flush_workqueue(wq);

2778
	mutex_lock(&wq->mutex);
2779

2780
	for_each_pwq(pwq, wq) {
2781
		bool drained;
2782

2783
		spin_lock_irq(&pwq->pool->lock);
2784
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2785
		spin_unlock_irq(&pwq->pool->lock);
2786 2787

		if (drained)
2788 2789 2790 2791
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2792
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2793
				wq->name, flush_cnt);
2794

2795
		mutex_unlock(&wq->mutex);
2796 2797 2798 2799
		goto reflush;
	}

	if (!--wq->nr_drainers)
2800
		wq->flags &= ~__WQ_DRAINING;
2801
	mutex_unlock(&wq->mutex);
2802 2803 2804
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2805
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2806
{
2807
	struct worker *worker = NULL;
2808
	struct worker_pool *pool;
2809
	struct pool_workqueue *pwq;
2810 2811

	might_sleep();
2812 2813

	local_irq_disable();
2814
	pool = get_work_pool(work);
2815 2816
	if (!pool) {
		local_irq_enable();
2817
		return false;
2818
	}
2819

2820
	spin_lock(&pool->lock);
2821
	/* see the comment in try_to_grab_pending() with the same code */
2822 2823 2824
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2825
			goto already_gone;
2826
	} else {
2827
		worker = find_worker_executing_work(pool, work);
2828
		if (!worker)
T
Tejun Heo 已提交
2829
			goto already_gone;
2830
		pwq = worker->current_pwq;
2831
	}
2832

2833
	insert_wq_barrier(pwq, barr, work, worker);
2834
	spin_unlock_irq(&pool->lock);
2835

2836 2837 2838 2839 2840 2841
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2842
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2843
		lock_map_acquire(&pwq->wq->lockdep_map);
2844
	else
2845 2846
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2847

2848
	return true;
T
Tejun Heo 已提交
2849
already_gone:
2850
	spin_unlock_irq(&pool->lock);
2851
	return false;
2852
}
2853 2854 2855 2856 2857

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2858 2859
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2860
 *
2861
 * Return:
2862 2863 2864 2865 2866
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2867 2868
	struct wq_barrier barr;

2869 2870 2871
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2872 2873 2874 2875 2876 2877 2878
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2879
}
2880
EXPORT_SYMBOL_GPL(flush_work);
2881

2882
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2883
{
2884
	unsigned long flags;
2885 2886 2887
	int ret;

	do {
2888 2889 2890 2891 2892 2893
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2894
			flush_work(work);
2895 2896
	} while (unlikely(ret < 0));

2897 2898 2899 2900
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2901
	flush_work(work);
2902
	clear_work_data(work);
2903 2904 2905
	return ret;
}

2906
/**
2907 2908
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2909
 *
2910 2911 2912 2913
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2914
 *
2915 2916
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2917
 *
2918
 * The caller must ensure that the workqueue on which @work was last
2919
 * queued can't be destroyed before this function returns.
2920
 *
2921
 * Return:
2922
 * %true if @work was pending, %false otherwise.
2923
 */
2924
bool cancel_work_sync(struct work_struct *work)
2925
{
2926
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2927
}
2928
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2929

2930
/**
2931 2932
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2933
 *
2934 2935 2936
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2937
 *
2938
 * Return:
2939 2940
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2941
 */
2942 2943
bool flush_delayed_work(struct delayed_work *dwork)
{
2944
	local_irq_disable();
2945
	if (del_timer_sync(&dwork->timer))
2946
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2947
	local_irq_enable();
2948 2949 2950 2951
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2952
/**
2953 2954
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2955
 *
2956 2957 2958 2959 2960 2961 2962 2963 2964
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2965
 *
2966
 * This function is safe to call from any context including IRQ handler.
2967
 */
2968
bool cancel_delayed_work(struct delayed_work *dwork)
2969
{
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2980 2981
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2982
	local_irq_restore(flags);
2983
	return ret;
2984
}
2985
EXPORT_SYMBOL(cancel_delayed_work);
2986

2987 2988 2989 2990 2991 2992
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2993
 * Return:
2994 2995 2996
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2997
{
2998
	return __cancel_work_timer(&dwork->work, true);
2999
}
3000
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3001

3002
/**
3003
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3004 3005
 * @func: the function to call
 *
3006 3007
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3008
 * schedule_on_each_cpu() is very slow.
3009
 *
3010
 * Return:
3011
 * 0 on success, -errno on failure.
3012
 */
3013
int schedule_on_each_cpu(work_func_t func)
3014 3015
{
	int cpu;
3016
	struct work_struct __percpu *works;
3017

3018 3019
	works = alloc_percpu(struct work_struct);
	if (!works)
3020
		return -ENOMEM;
3021

3022 3023
	get_online_cpus();

3024
	for_each_online_cpu(cpu) {
3025 3026 3027
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3028
		schedule_work_on(cpu, work);
3029
	}
3030 3031 3032 3033

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3034
	put_online_cpus();
3035
	free_percpu(works);
3036 3037 3038
	return 0;
}

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3063 3064
void flush_scheduled_work(void)
{
3065
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3066
}
3067
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3068

3069 3070 3071 3072 3073 3074 3075 3076 3077
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3078
 * Return:	0 - function was executed
3079 3080
 *		1 - function was scheduled for execution
 */
3081
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3082 3083
{
	if (!in_interrupt()) {
3084
		fn(&ew->work);
3085 3086 3087
		return 0;
	}

3088
	INIT_WORK(&ew->work, fn);
3089 3090 3091 3092 3093 3094
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3122 3123
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3124 3125 3126 3127 3128
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3129
static DEVICE_ATTR_RO(per_cpu);
3130

3131 3132
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3133 3134 3135 3136 3137 3138
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3139 3140 3141
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3152
static DEVICE_ATTR_RW(max_active);
3153

3154 3155 3156 3157
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3158
};
3159
ATTRIBUTE_GROUPS(wq_sysfs);
3160

3161 3162
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3163 3164
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3165 3166
	const char *delim = "";
	int node, written = 0;
3167 3168

	rcu_read_lock_sched();
3169 3170 3171 3172 3173 3174 3175
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3187 3188 3189
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3203 3204 3205
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= -20 && attrs->nice <= 19)
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3236 3237 3238
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3299
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3300
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3301 3302
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3303
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3304 3305 3306 3307 3308
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3309
	.dev_groups			= wq_sysfs_groups,
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3338
 * Return: 0 on success, -errno on failure.
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3431 3432 3433
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3445
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3446 3447 3448 3449 3450 3451
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3452 3453 3454 3455 3456
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3457 3458 3459 3460 3461 3462
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3463 3464 3465 3466 3467 3468 3469 3470
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3471 3472
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3487 3488 3489 3490 3491
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3492 3493
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3494 3495
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3496 3497
 */
static int init_worker_pool(struct worker_pool *pool)
3498 3499
{
	spin_lock_init(&pool->lock);
3500 3501
	pool->id = -1;
	pool->cpu = -1;
3502
	pool->node = NUMA_NO_NODE;
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3516
	mutex_init(&pool->manager_mutex);
3517
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3518

3519 3520 3521 3522
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3523 3524 3525 3526
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3527 3528
}

3529 3530 3531 3532
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3533
	idr_destroy(&pool->worker_idr);
3534 3535 3536 3537 3538 3539 3540 3541 3542
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3543 3544 3545
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3546 3547
 *
 * Should be called with wq_pool_mutex held.
3548 3549 3550 3551 3552
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3553 3554 3555
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3556 3557 3558 3559
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3560
	    WARN_ON(!list_empty(&pool->worklist)))
3561 3562 3563 3564 3565 3566 3567
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3568 3569 3570 3571 3572
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3573
	mutex_lock(&pool->manager_arb);
3574
	mutex_lock(&pool->manager_mutex);
3575 3576 3577 3578 3579 3580 3581
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3582
	mutex_unlock(&pool->manager_mutex);
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3600
 * create a new one.
3601 3602
 *
 * Should be called with wq_pool_mutex held.
3603 3604 3605
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3606 3607 3608 3609 3610
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3611
	int node;
3612

3613
	lockdep_assert_held(&wq_pool_mutex);
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3628 3629 3630
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3631
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3632 3633
	copy_workqueue_attrs(pool->attrs, attrs);

3634 3635 3636 3637 3638 3639
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3651 3652 3653 3654
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3655
	if (create_and_start_worker(pool) < 0)
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3684
	bool is_last;
T
Tejun Heo 已提交
3685 3686 3687 3688

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3689
	/*
3690
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3691 3692 3693
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3694
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3695
	list_del_rcu(&pwq->pwqs_node);
3696
	is_last = list_empty(&wq->pwqs);
3697
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3698

3699
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3700
	put_unbound_pool(pool);
3701 3702
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3703 3704 3705 3706 3707 3708
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3709 3710
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3711
		kfree(wq);
3712
	}
T
Tejun Heo 已提交
3713 3714
}

3715
/**
3716
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3717 3718
 * @pwq: target pool_workqueue
 *
3719 3720 3721
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3722
 */
3723
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3724
{
3725 3726 3727 3728
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3729
	lockdep_assert_held(&wq->mutex);
3730 3731 3732 3733 3734

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3735
	spin_lock_irq(&pwq->pool->lock);
3736 3737 3738

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3739

3740 3741 3742
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3743 3744 3745 3746 3747 3748

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3749 3750 3751 3752
	} else {
		pwq->max_active = 0;
	}

3753
	spin_unlock_irq(&pwq->pool->lock);
3754 3755
}

3756
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3757 3758
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3759 3760 3761
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3762 3763
	memset(pwq, 0, sizeof(*pwq));

3764 3765 3766
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3767
	pwq->refcnt = 1;
3768
	INIT_LIST_HEAD(&pwq->delayed_works);
3769
	INIT_LIST_HEAD(&pwq->pwqs_node);
3770
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3771
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3772
}
3773

3774
/* sync @pwq with the current state of its associated wq and link it */
3775
static void link_pwq(struct pool_workqueue *pwq)
3776 3777 3778 3779
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3780

3781 3782 3783 3784
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3785 3786
	/*
	 * Set the matching work_color.  This is synchronized with
3787
	 * wq->mutex to avoid confusing flush_workqueue().
3788
	 */
3789
	pwq->work_color = wq->work_color;
3790 3791 3792 3793 3794

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3795
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3796
}
3797

3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3811
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3812 3813 3814
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3815
	}
3816

3817 3818
	init_pwq(pwq, wq, pool);
	return pwq;
3819 3820
}

3821 3822 3823 3824 3825 3826 3827
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3828
		kmem_cache_free(pwq_cache, pwq);
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3841
 * calculation.  The result is stored in @cpumask.
3842 3843 3844 3845 3846 3847 3848 3849
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3850 3851 3852
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3853 3854 3855 3856
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3857
	if (!wq_numa_enabled || attrs->no_numa)
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3894 3895 3896 3897 3898
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3899 3900 3901 3902 3903 3904
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3905
 *
3906 3907 3908
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3909 3910 3911 3912
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3913 3914
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3915
	int node, ret;
3916

3917
	/* only unbound workqueues can change attributes */
3918 3919 3920
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3921 3922 3923 3924
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3925
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3926
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3927 3928
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3929 3930
		goto enomem;

3931
	/* make a copy of @attrs and sanitize it */
3932 3933 3934
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3949
	mutex_lock(&wq_pool_mutex);
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3971
	mutex_unlock(&wq_pool_mutex);
3972

3973
	/* all pwqs have been created successfully, let's install'em */
3974
	mutex_lock(&wq->mutex);
3975

3976
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3977 3978

	/* save the previous pwq and install the new one */
3979
	for_each_node(node)
3980 3981 3982 3983 3984
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3985 3986

	mutex_unlock(&wq->mutex);
3987

3988 3989 3990 3991 3992 3993
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3994 3995 3996
	ret = 0;
	/* fall through */
out_free:
3997
	free_workqueue_attrs(tmp_attrs);
3998
	free_workqueue_attrs(new_attrs);
3999
	kfree(pwq_tbl);
4000
	return ret;
4001

4002 4003 4004 4005 4006 4007 4008
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
4009
enomem:
4010 4011
	ret = -ENOMEM;
	goto out_free;
4012 4013
}

4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
4059 4060
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
	 * wq's, the default pwq should be used.  If @pwq is already the
	 * default one, nothing to do; otherwise, install the default one.
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
		if (pwq == wq->dfl_pwq)
			goto out_unlock;
		else
			goto use_dfl_pwq;
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			   wq->name);
		goto out_unlock;
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4112
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4113
{
4114
	bool highpri = wq->flags & WQ_HIGHPRI;
4115
	int cpu, ret;
4116 4117

	if (!(wq->flags & WQ_UNBOUND)) {
4118 4119
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4120 4121 4122
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4123 4124
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4125
			struct worker_pool *cpu_pools =
4126
				per_cpu(cpu_worker_pools, cpu);
4127

4128 4129 4130
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4131
			link_pwq(pwq);
4132
			mutex_unlock(&wq->mutex);
4133
		}
4134
		return 0;
4135 4136 4137 4138 4139 4140 4141
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4142
	} else {
4143
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4144
	}
T
Tejun Heo 已提交
4145 4146
}

4147 4148
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4149
{
4150 4151 4152
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4153 4154
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4155

4156
	return clamp_val(max_active, 1, lim);
4157 4158
}

4159
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4160 4161 4162
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4163
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4164
{
4165
	size_t tbl_size = 0;
4166
	va_list args;
L
Linus Torvalds 已提交
4167
	struct workqueue_struct *wq;
4168
	struct pool_workqueue *pwq;
4169

4170 4171 4172 4173
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4174
	/* allocate wq and format name */
4175 4176 4177 4178
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4179
	if (!wq)
4180
		return NULL;
4181

4182 4183 4184 4185 4186 4187
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4188 4189
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4190
	va_end(args);
L
Linus Torvalds 已提交
4191

4192
	max_active = max_active ?: WQ_DFL_ACTIVE;
4193
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4194

4195
	/* init wq */
4196
	wq->flags = flags;
4197
	wq->saved_max_active = max_active;
4198
	mutex_init(&wq->mutex);
4199
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4200
	INIT_LIST_HEAD(&wq->pwqs);
4201 4202
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4203
	INIT_LIST_HEAD(&wq->maydays);
4204

4205
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4206
	INIT_LIST_HEAD(&wq->list);
4207

4208
	if (alloc_and_link_pwqs(wq) < 0)
4209
		goto err_free_wq;
T
Tejun Heo 已提交
4210

4211 4212 4213 4214 4215
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4216 4217
		struct worker *rescuer;

4218
		rescuer = alloc_worker();
4219
		if (!rescuer)
4220
			goto err_destroy;
4221

4222 4223
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4224
					       wq->name);
4225 4226 4227 4228
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4229

4230
		wq->rescuer = rescuer;
4231
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4232
		wake_up_process(rescuer->task);
4233 4234
	}

4235 4236 4237
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4238
	/*
4239 4240 4241
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4242
	 */
4243
	mutex_lock(&wq_pool_mutex);
4244

4245
	mutex_lock(&wq->mutex);
4246 4247
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4248
	mutex_unlock(&wq->mutex);
4249

T
Tejun Heo 已提交
4250
	list_add(&wq->list, &workqueues);
4251

4252
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4253

4254
	return wq;
4255 4256

err_free_wq:
4257
	free_workqueue_attrs(wq->unbound_attrs);
4258 4259 4260 4261
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4262
	return NULL;
4263
}
4264
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4265

4266 4267 4268 4269 4270 4271 4272 4273
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4274
	struct pool_workqueue *pwq;
4275
	int node;
4276

4277 4278
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4279

4280
	/* sanity checks */
4281
	mutex_lock(&wq->mutex);
4282
	for_each_pwq(pwq, wq) {
4283 4284
		int i;

4285 4286
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4287
				mutex_unlock(&wq->mutex);
4288
				return;
4289 4290 4291
			}
		}

4292
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4293
		    WARN_ON(pwq->nr_active) ||
4294
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4295
			mutex_unlock(&wq->mutex);
4296
			return;
4297
		}
4298
	}
4299
	mutex_unlock(&wq->mutex);
4300

4301 4302 4303 4304
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4305
	mutex_lock(&wq_pool_mutex);
4306
	list_del_init(&wq->list);
4307
	mutex_unlock(&wq_pool_mutex);
4308

4309 4310
	workqueue_sysfs_unregister(wq);

4311
	if (wq->rescuer) {
4312
		kthread_stop(wq->rescuer->task);
4313
		kfree(wq->rescuer);
4314
		wq->rescuer = NULL;
4315 4316
	}

T
Tejun Heo 已提交
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4327 4328
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4329
		 */
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4342
		put_pwq_unlocked(pwq);
4343
	}
4344 4345 4346
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4359
	struct pool_workqueue *pwq;
4360

4361 4362 4363 4364
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4365
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4366

4367
	mutex_lock(&wq->mutex);
4368 4369 4370

	wq->saved_max_active = max_active;

4371 4372
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4373

4374
	mutex_unlock(&wq->mutex);
4375
}
4376
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4377

4378 4379 4380 4381 4382
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4383 4384
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4385 4386 4387 4388 4389
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4390
	return worker && worker->rescue_wq;
4391 4392
}

4393
/**
4394 4395 4396
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4397
 *
4398 4399 4400
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4401
 *
4402 4403 4404 4405 4406 4407
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4408
 * Return:
4409
 * %true if congested, %false otherwise.
4410
 */
4411
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4412
{
4413
	struct pool_workqueue *pwq;
4414 4415
	bool ret;

4416
	rcu_read_lock_sched();
4417

4418 4419 4420
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4421 4422 4423
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4424
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4425

4426
	ret = !list_empty(&pwq->delayed_works);
4427
	rcu_read_unlock_sched();
4428 4429

	return ret;
L
Linus Torvalds 已提交
4430
}
4431
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4432

4433 4434 4435 4436 4437 4438 4439 4440
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4441
 * Return:
4442 4443 4444
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4445
{
4446
	struct worker_pool *pool;
4447 4448
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4449

4450 4451
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4452

4453 4454
	local_irq_save(flags);
	pool = get_work_pool(work);
4455
	if (pool) {
4456
		spin_lock(&pool->lock);
4457 4458
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4459
		spin_unlock(&pool->lock);
4460
	}
4461
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4462

4463
	return ret;
L
Linus Torvalds 已提交
4464
}
4465
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4466

4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4544 4545 4546
/*
 * CPU hotplug.
 *
4547
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4548
 * are a lot of assumptions on strong associations among work, pwq and
4549
 * pool which make migrating pending and scheduled works very
4550
 * difficult to implement without impacting hot paths.  Secondly,
4551
 * worker pools serve mix of short, long and very long running works making
4552 4553
 * blocked draining impractical.
 *
4554
 * This is solved by allowing the pools to be disassociated from the CPU
4555 4556
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4557
 */
L
Linus Torvalds 已提交
4558

4559
static void wq_unbind_fn(struct work_struct *work)
4560
{
4561
	int cpu = smp_processor_id();
4562
	struct worker_pool *pool;
4563
	struct worker *worker;
4564
	int wi;
4565

4566
	for_each_cpu_worker_pool(pool, cpu) {
4567
		WARN_ON_ONCE(cpu != smp_processor_id());
4568

4569
		mutex_lock(&pool->manager_mutex);
4570
		spin_lock_irq(&pool->lock);
4571

4572
		/*
4573
		 * We've blocked all manager operations.  Make all workers
4574 4575 4576 4577 4578
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4579
		for_each_pool_worker(worker, wi, pool)
4580
			worker->flags |= WORKER_UNBOUND;
4581

4582
		pool->flags |= POOL_DISASSOCIATED;
4583

4584
		spin_unlock_irq(&pool->lock);
4585
		mutex_unlock(&pool->manager_mutex);
4586

4587 4588 4589 4590 4591 4592 4593
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4594

4595 4596 4597 4598 4599 4600 4601 4602
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4603
		atomic_set(&pool->nr_running, 0);
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4614 4615
}

T
Tejun Heo 已提交
4616 4617 4618 4619
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4620
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4621 4622 4623
 */
static void rebind_workers(struct worker_pool *pool)
{
4624 4625
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4626 4627 4628

	lockdep_assert_held(&pool->manager_mutex);

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4639

4640
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4641

4642 4643
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4644 4645

		/*
4646 4647 4648 4649 4650 4651
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4652
		 */
4653 4654
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4655

4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4675
	}
4676 4677

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4678 4679
}

4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4713 4714 4715 4716
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4717
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4718 4719
					       unsigned long action,
					       void *hcpu)
4720
{
4721
	int cpu = (unsigned long)hcpu;
4722
	struct worker_pool *pool;
4723
	struct workqueue_struct *wq;
4724
	int pi;
4725

T
Tejun Heo 已提交
4726
	switch (action & ~CPU_TASKS_FROZEN) {
4727
	case CPU_UP_PREPARE:
4728
		for_each_cpu_worker_pool(pool, cpu) {
4729 4730
			if (pool->nr_workers)
				continue;
4731
			if (create_and_start_worker(pool) < 0)
4732
				return NOTIFY_BAD;
4733
		}
T
Tejun Heo 已提交
4734
		break;
4735

4736 4737
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4738
		mutex_lock(&wq_pool_mutex);
4739 4740

		for_each_pool(pool, pi) {
4741
			mutex_lock(&pool->manager_mutex);
4742

4743 4744 4745 4746
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4747

4748 4749 4750 4751
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4752

4753
			mutex_unlock(&pool->manager_mutex);
4754
		}
4755

4756 4757 4758 4759
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4760
		mutex_unlock(&wq_pool_mutex);
4761
		break;
4762
	}
4763 4764 4765 4766 4767 4768 4769
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4770
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4771 4772 4773
						 unsigned long action,
						 void *hcpu)
{
4774
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4775
	struct work_struct unbind_work;
4776
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4777

4778 4779
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4780
		/* unbinding per-cpu workers should happen on the local CPU */
4781
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4782
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4783 4784 4785 4786 4787 4788 4789 4790

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4791
		flush_work(&unbind_work);
4792
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4793
		break;
4794 4795 4796 4797
	}
	return NOTIFY_OK;
}

4798
#ifdef CONFIG_SMP
4799

4800
struct work_for_cpu {
4801
	struct work_struct work;
4802 4803 4804 4805 4806
	long (*fn)(void *);
	void *arg;
	long ret;
};

4807
static void work_for_cpu_fn(struct work_struct *work)
4808
{
4809 4810
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4811 4812 4813 4814 4815 4816 4817 4818 4819
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4820
 * It is up to the caller to ensure that the cpu doesn't go offline.
4821
 * The caller must not hold any locks which would prevent @fn from completing.
4822 4823
 *
 * Return: The value @fn returns.
4824
 */
4825
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4826
{
4827
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4828

4829 4830
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4831
	flush_work(&wfc.work);
4832
	destroy_work_on_stack(&wfc.work);
4833 4834 4835 4836 4837
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4838 4839 4840 4841 4842
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4843
 * Start freezing workqueues.  After this function returns, all freezable
4844
 * workqueues will queue new works to their delayed_works list instead of
4845
 * pool->worklist.
4846 4847
 *
 * CONTEXT:
4848
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4849 4850 4851
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4852
	struct worker_pool *pool;
4853 4854
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4855
	int pi;
4856

4857
	mutex_lock(&wq_pool_mutex);
4858

4859
	WARN_ON_ONCE(workqueue_freezing);
4860 4861
	workqueue_freezing = true;

4862
	/* set FREEZING */
4863
	for_each_pool(pool, pi) {
4864
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4865 4866
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4867
		spin_unlock_irq(&pool->lock);
4868
	}
4869

4870
	list_for_each_entry(wq, &workqueues, list) {
4871
		mutex_lock(&wq->mutex);
4872 4873
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4874
		mutex_unlock(&wq->mutex);
4875
	}
4876

4877
	mutex_unlock(&wq_pool_mutex);
4878 4879 4880
}

/**
4881
 * freeze_workqueues_busy - are freezable workqueues still busy?
4882 4883 4884 4885 4886
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4887
 * Grabs and releases wq_pool_mutex.
4888
 *
4889
 * Return:
4890 4891
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4892 4893 4894 4895
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4896 4897
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4898

4899
	mutex_lock(&wq_pool_mutex);
4900

4901
	WARN_ON_ONCE(!workqueue_freezing);
4902

4903 4904 4905
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4906 4907 4908 4909
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4910
		rcu_read_lock_sched();
4911
		for_each_pwq(pwq, wq) {
4912
			WARN_ON_ONCE(pwq->nr_active < 0);
4913
			if (pwq->nr_active) {
4914
				busy = true;
4915
				rcu_read_unlock_sched();
4916 4917 4918
				goto out_unlock;
			}
		}
4919
		rcu_read_unlock_sched();
4920 4921
	}
out_unlock:
4922
	mutex_unlock(&wq_pool_mutex);
4923 4924 4925 4926 4927 4928 4929
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4930
 * frozen works are transferred to their respective pool worklists.
4931 4932
 *
 * CONTEXT:
4933
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4934 4935 4936
 */
void thaw_workqueues(void)
{
4937 4938 4939
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4940
	int pi;
4941

4942
	mutex_lock(&wq_pool_mutex);
4943 4944 4945 4946

	if (!workqueue_freezing)
		goto out_unlock;

4947
	/* clear FREEZING */
4948
	for_each_pool(pool, pi) {
4949
		spin_lock_irq(&pool->lock);
4950 4951
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4952
		spin_unlock_irq(&pool->lock);
4953
	}
4954

4955 4956
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4957
		mutex_lock(&wq->mutex);
4958 4959
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4960
		mutex_unlock(&wq->mutex);
4961 4962 4963 4964
	}

	workqueue_freezing = false;
out_unlock:
4965
	mutex_unlock(&wq_pool_mutex);
4966 4967 4968
}
#endif /* CONFIG_FREEZER */

4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4981 4982 4983 4984 4985
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4986 4987 4988
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4989 4990 4991 4992 4993 4994 4995 4996 4997
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
4998 4999
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5015
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
5016
{
T
Tejun Heo 已提交
5017 5018
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5019

5020 5021 5022 5023
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5024
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5025
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5026

5027 5028
	wq_numa_init();

5029
	/* initialize CPU pools */
5030
	for_each_possible_cpu(cpu) {
5031
		struct worker_pool *pool;
5032

T
Tejun Heo 已提交
5033
		i = 0;
5034
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5035
			BUG_ON(init_worker_pool(pool));
5036
			pool->cpu = cpu;
5037
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5038
			pool->attrs->nice = std_nice[i++];
5039
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5040

T
Tejun Heo 已提交
5041
			/* alloc pool ID */
5042
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5043
			BUG_ON(worker_pool_assign_id(pool));
5044
			mutex_unlock(&wq_pool_mutex);
5045
		}
5046 5047
	}

5048
	/* create the initial worker */
5049
	for_each_online_cpu(cpu) {
5050
		struct worker_pool *pool;
5051

5052
		for_each_cpu_worker_pool(pool, cpu) {
5053
			pool->flags &= ~POOL_DISASSOCIATED;
5054
			BUG_ON(create_and_start_worker(pool) < 0);
5055
		}
5056 5057
	}

5058
	/* create default unbound and ordered wq attrs */
5059 5060 5061 5062 5063 5064
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5075 5076
	}

5077
	system_wq = alloc_workqueue("events", 0, 0);
5078
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5079
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5080 5081
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5082 5083
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5084 5085 5086 5087 5088
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5089
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5090 5091 5092
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5093
	return 0;
L
Linus Torvalds 已提交
5094
}
5095
early_initcall(init_workqueues);