workqueue.c 114.1 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/jhash.h>
45
#include <linux/hashtable.h>
46
#include <linux/rculist.h>
47

48
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
49

T
Tejun Heo 已提交
50
enum {
51 52
	/*
	 * worker_pool flags
53
	 *
54
	 * A bound pool is either associated or disassociated with its CPU.
55 56 57 58 59 60
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
61
	 * be executing on any CPU.  The pool behaves as an unbound one.
62 63
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
64 65
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
66
	 */
67
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
68
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
69
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78

79
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
80
				  WORKER_CPU_INTENSIVE,
81

82
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
83

84
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
85
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
86

87 88 89
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

90 91 92
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
93 94 95 96 97 98 99 100
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
101
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
102
};
L
Linus Torvalds 已提交
103 104

/*
T
Tejun Heo 已提交
105 106
 * Structure fields follow one of the following exclusion rules.
 *
107 108
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
109
 *
110 111 112
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
113
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
114
 *
115 116 117 118
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
119
 *
120 121
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
122
 * W: workqueue_lock protected.
123 124
 *
 * R: workqueue_lock protected for writes.  Sched-RCU protected for reads.
125 126 127
 *
 * FR: wq->flush_mutex and workqueue_lock protected for writes.  Sched-RCU
 *     protected for reads.
L
Linus Torvalds 已提交
128 129
 */

130
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
131

132
struct worker_pool {
133
	spinlock_t		lock;		/* the pool lock */
134
	int			cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
135
	int			id;		/* I: pool ID */
136
	unsigned int		flags;		/* X: flags */
137 138 139

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
140 141

	/* nr_idle includes the ones off idle_list for rebinding */
142 143 144 145 146 147
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

148 149 150 151
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

152
	struct mutex		manager_arb;	/* manager arbitration */
153
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
154
	struct ida		worker_ida;	/* L: for worker IDs */
155

T
Tejun Heo 已提交
156
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
157 158
	struct hlist_node	hash_node;	/* R: unbound_pool_hash node */
	int			refcnt;		/* refcnt for unbound pools */
T
Tejun Heo 已提交
159

160 161 162 163 164 165
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
166 167 168 169 170 171

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
172 173
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
174
/*
175 176 177 178
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
179
 */
180
struct pool_workqueue {
181
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
182
	struct workqueue_struct *wq;		/* I: the owning workqueue */
183 184
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
185
	int			refcnt;		/* L: reference count */
186 187
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
188
	int			nr_active;	/* L: nr of active works */
189
	int			max_active;	/* L: max active works */
190
	struct list_head	delayed_works;	/* L: delayed works */
191
	struct list_head	pwqs_node;	/* FR: node on wq->pwqs */
192
	struct list_head	mayday_node;	/* W: node on wq->maydays */
T
Tejun Heo 已提交
193 194 195 196 197 198 199 200 201

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
	 * determined without grabbing workqueue_lock.
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
202
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
203

204 205 206 207 208 209 210 211 212
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

L
Linus Torvalds 已提交
213 214 215 216 217
/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
218
	unsigned int		flags;		/* W: WQ_* flags */
219
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
220
	struct list_head	pwqs;		/* FR: all pwqs of this wq */
T
Tejun Heo 已提交
221
	struct list_head	list;		/* W: list of all workqueues */
222 223 224 225

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
226
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
227 228 229 230
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

231
	struct list_head	maydays;	/* W: pwqs requesting rescue */
232 233
	struct worker		*rescuer;	/* I: rescue worker */

234
	int			nr_drainers;	/* W: drain in progress */
235
	int			saved_max_active; /* W: saved pwq max_active */
236
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
237
	struct lockdep_map	lockdep_map;
238
#endif
239
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
240 241
};

242 243
static struct kmem_cache *pwq_cache;

244 245 246 247 248
/* hash of all unbound pools keyed by pool->attrs */
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

249 250
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
251
struct workqueue_struct *system_highpri_wq __read_mostly;
252
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
253
struct workqueue_struct *system_long_wq __read_mostly;
254
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
255
struct workqueue_struct *system_unbound_wq __read_mostly;
256
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
257
struct workqueue_struct *system_freezable_wq __read_mostly;
258
EXPORT_SYMBOL_GPL(system_freezable_wq);
259

260 261 262
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

263 264 265 266 267
#define assert_rcu_or_wq_lock()						\
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
			   lockdep_is_held(&workqueue_lock),		\
			   "sched RCU or workqueue lock should be held")

268 269 270
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
271
	     (pool)++)
272

273 274
#define for_each_busy_worker(worker, i, pool)				\
	hash_for_each(pool->busy_hash, i, worker, hentry)
275

T
Tejun Heo 已提交
276 277 278 279
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
 * @id: integer used for iteration
280 281 282 283 284 285 286
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
287 288
 */
#define for_each_pool(pool, id)						\
289 290 291
	idr_for_each_entry(&worker_pool_idr, pool, id)			\
		if (({ assert_rcu_or_wq_lock(); false; })) { }		\
		else
T
Tejun Heo 已提交
292

293 294 295 296
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
297 298 299 300 301 302 303
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
304 305
 */
#define for_each_pwq(pwq, wq)						\
306 307 308
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
		if (({ assert_rcu_or_wq_lock(); false; })) { }		\
		else
309

310 311 312 313
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

314 315 316 317 318
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
354
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
390
	.debug_hint	= work_debug_hint,
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

426 427
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
428
static LIST_HEAD(workqueues);
429
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
430

431
/*
432 433
 * The CPU and unbound standard worker pools.  The unbound ones have
 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
434
 */
435
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
436
				     cpu_worker_pools);
437

438 439 440 441
/*
 * idr of all pools.  Modifications are protected by workqueue_lock.  Read
 * accesses are protected by sched-RCU protected.
 */
T
Tejun Heo 已提交
442 443
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
444
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
445

T
Tejun Heo 已提交
446 447 448 449 450
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

451 452 453
	do {
		if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
			return -ENOMEM;
T
Tejun Heo 已提交
454

455 456 457 458
		spin_lock_irq(&workqueue_lock);
		ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
		spin_unlock_irq(&workqueue_lock);
	} while (ret == -EAGAIN);
T
Tejun Heo 已提交
459

460
	return ret;
461 462
}

463 464 465 466 467 468 469 470
/**
 * first_pwq - return the first pool_workqueue of the specified workqueue
 * @wq: the target workqueue
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 */
471
static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
472
{
473 474 475
	assert_rcu_or_wq_lock();
	return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
				      pwqs_node);
476 477
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
493

494
/*
495 496
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
497
 * is cleared and the high bits contain OFFQ flags and pool ID.
498
 *
499 500
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
501 502
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
503
 *
504
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
505
 * corresponding to a work.  Pool is available once the work has been
506
 * queued anywhere after initialization until it is sync canceled.  pwq is
507
 * available only while the work item is queued.
508
 *
509 510 511 512
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
513
 */
514 515
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
516
{
517
	WARN_ON_ONCE(!work_pending(work));
518 519
	atomic_long_set(&work->data, data | flags | work_static(work));
}
520

521
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
522 523
			 unsigned long extra_flags)
{
524 525
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
526 527
}

528 529 530 531 532 533 534
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

535 536
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
537
{
538 539 540 541 542 543 544
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
545
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
546
}
547

548
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
549
{
550 551
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
552 553
}

554
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
555
{
556
	unsigned long data = atomic_long_read(&work->data);
557

558
	if (data & WORK_STRUCT_PWQ)
559 560 561
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
562 563
}

564 565 566 567 568
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
569 570 571 572 573 574 575 576 577
 *
 * Pools are created and destroyed under workqueue_lock, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under workqueue_lock or with preemption disabled.
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
578 579
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
580
{
581
	unsigned long data = atomic_long_read(&work->data);
582
	int pool_id;
583

584 585
	assert_rcu_or_wq_lock();

586 587
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
588
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
589

590 591
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
592 593
		return NULL;

594
	return idr_find(&worker_pool_idr, pool_id);
595 596 597 598 599 600 601 602 603 604 605
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
606 607
	unsigned long data = atomic_long_read(&work->data);

608 609
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
610
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
611

612
	return data >> WORK_OFFQ_POOL_SHIFT;
613 614
}

615 616
static void mark_work_canceling(struct work_struct *work)
{
617
	unsigned long pool_id = get_work_pool_id(work);
618

619 620
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
621 622 623 624 625 626
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

627
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
628 629
}

630
/*
631 632
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
633
 * they're being called with pool->lock held.
634 635
 */

636
static bool __need_more_worker(struct worker_pool *pool)
637
{
638
	return !atomic_read(&pool->nr_running);
639 640
}

641
/*
642 643
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
644 645
 *
 * Note that, because unbound workers never contribute to nr_running, this
646
 * function will always return %true for unbound pools as long as the
647
 * worklist isn't empty.
648
 */
649
static bool need_more_worker(struct worker_pool *pool)
650
{
651
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
652
}
653

654
/* Can I start working?  Called from busy but !running workers. */
655
static bool may_start_working(struct worker_pool *pool)
656
{
657
	return pool->nr_idle;
658 659 660
}

/* Do I need to keep working?  Called from currently running workers. */
661
static bool keep_working(struct worker_pool *pool)
662
{
663 664
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
665 666 667
}

/* Do we need a new worker?  Called from manager. */
668
static bool need_to_create_worker(struct worker_pool *pool)
669
{
670
	return need_more_worker(pool) && !may_start_working(pool);
671
}
672

673
/* Do I need to be the manager? */
674
static bool need_to_manage_workers(struct worker_pool *pool)
675
{
676
	return need_to_create_worker(pool) ||
677
		(pool->flags & POOL_MANAGE_WORKERS);
678 679 680
}

/* Do we have too many workers and should some go away? */
681
static bool too_many_workers(struct worker_pool *pool)
682
{
683
	bool managing = mutex_is_locked(&pool->manager_arb);
684 685
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
686

687 688 689 690 691 692 693
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

694
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
695 696
}

697
/*
698 699 700
 * Wake up functions.
 */

701
/* Return the first worker.  Safe with preemption disabled */
702
static struct worker *first_worker(struct worker_pool *pool)
703
{
704
	if (unlikely(list_empty(&pool->idle_list)))
705 706
		return NULL;

707
	return list_first_entry(&pool->idle_list, struct worker, entry);
708 709 710 711
}

/**
 * wake_up_worker - wake up an idle worker
712
 * @pool: worker pool to wake worker from
713
 *
714
 * Wake up the first idle worker of @pool.
715 716
 *
 * CONTEXT:
717
 * spin_lock_irq(pool->lock).
718
 */
719
static void wake_up_worker(struct worker_pool *pool)
720
{
721
	struct worker *worker = first_worker(pool);
722 723 724 725 726

	if (likely(worker))
		wake_up_process(worker->task);
}

727
/**
728 729 730 731 732 733 734 735 736 737
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
738
void wq_worker_waking_up(struct task_struct *task, int cpu)
739 740 741
{
	struct worker *worker = kthread_data(task);

742
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
743
		WARN_ON_ONCE(worker->pool->cpu != cpu);
744
		atomic_inc(&worker->pool->nr_running);
745
	}
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
763
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
764 765
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
766
	struct worker_pool *pool;
767

768 769 770 771 772
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
773
	if (worker->flags & WORKER_NOT_RUNNING)
774 775
		return NULL;

776 777
	pool = worker->pool;

778
	/* this can only happen on the local cpu */
779 780
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
781 782 783 784 785 786

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
787 788 789
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
790
	 * manipulating idle_list, so dereferencing idle_list without pool
791
	 * lock is safe.
792
	 */
793 794
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
795
		to_wakeup = first_worker(pool);
796 797 798 799 800
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
801
 * @worker: self
802 803 804
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
805 806 807
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
808
 *
809
 * CONTEXT:
810
 * spin_lock_irq(pool->lock)
811 812 813 814
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
815
	struct worker_pool *pool = worker->pool;
816

817 818
	WARN_ON_ONCE(worker->task != current);

819 820 821 822 823 824 825 826
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
827
			if (atomic_dec_and_test(&pool->nr_running) &&
828
			    !list_empty(&pool->worklist))
829
				wake_up_worker(pool);
830
		} else
831
			atomic_dec(&pool->nr_running);
832 833
	}

834 835 836 837
	worker->flags |= flags;
}

/**
838
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
839
 * @worker: self
840 841
 * @flags: flags to clear
 *
842
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
843
 *
844
 * CONTEXT:
845
 * spin_lock_irq(pool->lock)
846 847 848
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
849
	struct worker_pool *pool = worker->pool;
850 851
	unsigned int oflags = worker->flags;

852 853
	WARN_ON_ONCE(worker->task != current);

854
	worker->flags &= ~flags;
855

856 857 858 859 860
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
861 862
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
863
			atomic_inc(&pool->nr_running);
864 865
}

866 867
/**
 * find_worker_executing_work - find worker which is executing a work
868
 * @pool: pool of interest
869 870
 * @work: work to find worker for
 *
871 872
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
892 893
 *
 * CONTEXT:
894
 * spin_lock_irq(pool->lock).
895 896 897 898
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
899
 */
900
static struct worker *find_worker_executing_work(struct worker_pool *pool,
901
						 struct work_struct *work)
902
{
903 904
	struct worker *worker;

905
	hash_for_each_possible(pool->busy_hash, worker, hentry,
906 907 908
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
909 910 911
			return worker;

	return NULL;
912 913
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
929
 * spin_lock_irq(pool->lock).
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

994
static void pwq_activate_delayed_work(struct work_struct *work)
995
{
996
	struct pool_workqueue *pwq = get_work_pwq(work);
997 998

	trace_workqueue_activate_work(work);
999
	move_linked_works(work, &pwq->pool->worklist, NULL);
1000
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1001
	pwq->nr_active++;
1002 1003
}

1004
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1005
{
1006
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1007 1008
						    struct work_struct, entry);

1009
	pwq_activate_delayed_work(work);
1010 1011
}

1012
/**
1013 1014
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1015 1016 1017
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1018
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1019 1020
 *
 * CONTEXT:
1021
 * spin_lock_irq(pool->lock).
1022
 */
1023
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1024
{
T
Tejun Heo 已提交
1025
	/* uncolored work items don't participate in flushing or nr_active */
1026
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1027
		goto out_put;
1028

1029
	pwq->nr_in_flight[color]--;
1030

1031 1032
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1033
		/* one down, submit a delayed one */
1034 1035
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1036 1037 1038
	}

	/* is flush in progress and are we at the flushing tip? */
1039
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1040
		goto out_put;
1041 1042

	/* are there still in-flight works? */
1043
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1044
		goto out_put;
1045

1046 1047
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1048 1049

	/*
1050
	 * If this was the last pwq, wake up the first flusher.  It
1051 1052
	 * will handle the rest.
	 */
1053 1054
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1055 1056
out_put:
	put_pwq(pwq);
1057 1058
}

1059
/**
1060
 * try_to_grab_pending - steal work item from worklist and disable irq
1061 1062
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1063
 * @flags: place to store irq state
1064 1065 1066 1067 1068 1069 1070
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1071 1072
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1073
 *
1074
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1075 1076 1077
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1078 1079 1080 1081
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1082
 * This function is safe to call from any context including IRQ handler.
1083
 */
1084 1085
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1086
{
1087
	struct worker_pool *pool;
1088
	struct pool_workqueue *pwq;
1089

1090 1091
	local_irq_save(*flags);

1092 1093 1094 1095
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1096 1097 1098 1099 1100
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1101 1102 1103 1104 1105
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1106 1107 1108 1109 1110 1111 1112
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1113 1114
	pool = get_work_pool(work);
	if (!pool)
1115
		goto fail;
1116

1117
	spin_lock(&pool->lock);
1118
	/*
1119 1120 1121 1122 1123
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1124 1125
	 * item is currently queued on that pool.
	 */
1126 1127
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1128 1129 1130 1131 1132
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1133
		 * on the delayed_list, will confuse pwq->nr_active
1134 1135 1136 1137
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1138
			pwq_activate_delayed_work(work);
1139 1140

		list_del_init(&work->entry);
1141
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1142

1143
		/* work->data points to pwq iff queued, point to pool */
1144 1145 1146 1147
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1148
	}
1149
	spin_unlock(&pool->lock);
1150 1151 1152 1153 1154
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1155
	return -EAGAIN;
1156 1157
}

T
Tejun Heo 已提交
1158
/**
1159
 * insert_work - insert a work into a pool
1160
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1161 1162 1163 1164
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1165
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1166
 * work_struct flags.
T
Tejun Heo 已提交
1167 1168
 *
 * CONTEXT:
1169
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1170
 */
1171 1172
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1173
{
1174
	struct worker_pool *pool = pwq->pool;
1175

T
Tejun Heo 已提交
1176
	/* we own @work, set data and link */
1177
	set_work_pwq(work, pwq, extra_flags);
1178
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1179
	get_pwq(pwq);
1180 1181 1182 1183 1184 1185 1186 1187

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1188 1189
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1190 1191
}

1192 1193
/*
 * Test whether @work is being queued from another work executing on the
1194
 * same workqueue.
1195 1196 1197
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1198 1199 1200 1201 1202 1203 1204
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1205
	return worker && worker->current_pwq->wq == wq;
1206 1207
}

1208
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1209 1210
			 struct work_struct *work)
{
1211
	struct pool_workqueue *pwq;
1212
	struct list_head *worklist;
1213
	unsigned int work_flags;
1214
	unsigned int req_cpu = cpu;
1215 1216 1217 1218 1219 1220 1221 1222

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1223

1224
	debug_work_activate(work);
1225

1226
	/* if dying, only works from the same workqueue are allowed */
1227
	if (unlikely(wq->flags & WQ_DRAINING) &&
1228
	    WARN_ON_ONCE(!is_chained_work(wq)))
1229 1230
		return;

1231
	/* determine the pwq to use */
1232
	if (!(wq->flags & WQ_UNBOUND)) {
1233
		struct worker_pool *last_pool;
1234

1235
		if (cpu == WORK_CPU_UNBOUND)
1236 1237
			cpu = raw_smp_processor_id();

1238
		/*
1239 1240 1241 1242
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1243
		 */
1244
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1245
		last_pool = get_work_pool(work);
1246

1247
		if (last_pool && last_pool != pwq->pool) {
1248 1249
			struct worker *worker;

1250
			spin_lock(&last_pool->lock);
1251

1252
			worker = find_worker_executing_work(last_pool, work);
1253

1254
			if (worker && worker->current_pwq->wq == wq) {
1255
				pwq = per_cpu_ptr(wq->cpu_pwqs, last_pool->cpu);
1256
			} else {
1257
				/* meh... not running there, queue here */
1258
				spin_unlock(&last_pool->lock);
1259
				spin_lock(&pwq->pool->lock);
1260
			}
1261
		} else {
1262
			spin_lock(&pwq->pool->lock);
1263
		}
1264
	} else {
1265
		pwq = first_pwq(wq);
1266
		spin_lock(&pwq->pool->lock);
1267 1268
	}

1269 1270
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1271

1272
	if (WARN_ON(!list_empty(&work->entry))) {
1273
		spin_unlock(&pwq->pool->lock);
1274 1275
		return;
	}
1276

1277 1278
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1279

1280
	if (likely(pwq->nr_active < pwq->max_active)) {
1281
		trace_workqueue_activate_work(work);
1282 1283
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1284 1285
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1286
		worklist = &pwq->delayed_works;
1287
	}
1288

1289
	insert_work(pwq, work, worklist, work_flags);
1290

1291
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1292 1293
}

1294
/**
1295 1296
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1297 1298 1299
 * @wq: workqueue to use
 * @work: work to queue
 *
1300
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1301
 *
1302 1303
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1304
 */
1305 1306
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1307
{
1308
	bool ret = false;
1309
	unsigned long flags;
1310

1311
	local_irq_save(flags);
1312

1313
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1314
		__queue_work(cpu, wq, work);
1315
		ret = true;
1316
	}
1317

1318
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1319 1320
	return ret;
}
1321
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1322

1323
/**
1324
 * queue_work - queue work on a workqueue
1325 1326 1327
 * @wq: workqueue to use
 * @work: work to queue
 *
1328
 * Returns %false if @work was already on a queue, %true otherwise.
1329
 *
1330 1331
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1332
 */
1333
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1334
{
1335
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1336
}
1337
EXPORT_SYMBOL_GPL(queue_work);
1338

1339
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1340
{
1341
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1342

1343
	/* should have been called from irqsafe timer with irq already off */
1344
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1345
}
1346
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1347

1348 1349
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1350
{
1351 1352 1353 1354 1355
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1356 1357
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1358

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1370
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1371

1372
	dwork->wq = wq;
1373
	dwork->cpu = cpu;
1374 1375 1376 1377 1378 1379
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1380 1381
}

1382 1383 1384 1385
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1386
 * @dwork: work to queue
1387 1388
 * @delay: number of jiffies to wait before queueing
 *
1389 1390 1391
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1392
 */
1393 1394
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1395
{
1396
	struct work_struct *work = &dwork->work;
1397
	bool ret = false;
1398
	unsigned long flags;
1399

1400 1401
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1402

1403
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1404
		__queue_delayed_work(cpu, wq, dwork, delay);
1405
		ret = true;
1406
	}
1407

1408
	local_irq_restore(flags);
1409 1410
	return ret;
}
1411
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1412

1413 1414 1415 1416 1417 1418
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1419
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1420
 */
1421
bool queue_delayed_work(struct workqueue_struct *wq,
1422 1423
			struct delayed_work *dwork, unsigned long delay)
{
1424
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1425 1426
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1427

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1443
 * This function is safe to call from any context including IRQ handler.
1444 1445 1446 1447 1448 1449 1450
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1451

1452 1453 1454
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1455

1456 1457 1458
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1459
	}
1460 1461

	/* -ENOENT from try_to_grab_pending() becomes %true */
1462 1463
	return ret;
}
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1480

T
Tejun Heo 已提交
1481 1482 1483 1484 1485 1486 1487 1488
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1489
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1490 1491
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1492
{
1493
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1494

1495 1496 1497 1498
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1499

1500 1501
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1502
	pool->nr_idle++;
1503
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1504 1505

	/* idle_list is LIFO */
1506
	list_add(&worker->entry, &pool->idle_list);
1507

1508 1509
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1510

1511
	/*
1512
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1513
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1514 1515
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1516
	 */
1517
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1518
		     pool->nr_workers == pool->nr_idle &&
1519
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1529
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1530 1531 1532
 */
static void worker_leave_idle(struct worker *worker)
{
1533
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1534

1535 1536
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1537
	worker_clr_flags(worker, WORKER_IDLE);
1538
	pool->nr_idle--;
T
Tejun Heo 已提交
1539 1540 1541
	list_del_init(&worker->entry);
}

1542
/**
1543 1544 1545 1546
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1547 1548 1549 1550 1551 1552
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1553
 * This function is to be used by unbound workers and rescuers to bind
1554 1555 1556
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1557
 * verbatim as it's best effort and blocking and pool may be
1558 1559
 * [dis]associated in the meantime.
 *
1560
 * This function tries set_cpus_allowed() and locks pool and verifies the
1561
 * binding against %POOL_DISASSOCIATED which is set during
1562 1563 1564
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1565 1566
 *
 * CONTEXT:
1567
 * Might sleep.  Called without any lock but returns with pool->lock
1568 1569 1570
 * held.
 *
 * RETURNS:
1571
 * %true if the associated pool is online (@worker is successfully
1572 1573
 * bound), %false if offline.
 */
1574
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1575
__acquires(&pool->lock)
1576 1577
{
	while (true) {
1578
		/*
1579 1580 1581
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1582
		 * against POOL_DISASSOCIATED.
1583
		 */
1584
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1585
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1586

1587
		spin_lock_irq(&pool->lock);
1588
		if (pool->flags & POOL_DISASSOCIATED)
1589
			return false;
1590
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1591
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1592
			return true;
1593
		spin_unlock_irq(&pool->lock);
1594

1595 1596 1597 1598 1599 1600
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1601
		cpu_relax();
1602
		cond_resched();
1603 1604 1605
	}
}

1606
/*
1607
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1608
 * list_empty(@worker->entry) before leaving idle and call this function.
1609 1610 1611
 */
static void idle_worker_rebind(struct worker *worker)
{
1612
	/* CPU may go down again inbetween, clear UNBOUND only on success */
1613
	if (worker_maybe_bind_and_lock(worker->pool))
1614
		worker_clr_flags(worker, WORKER_UNBOUND);
1615

1616 1617
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1618
	spin_unlock_irq(&worker->pool->lock);
1619 1620
}

1621
/*
1622
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1623 1624 1625
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1626
 */
1627
static void busy_worker_rebind_fn(struct work_struct *work)
1628 1629 1630
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1631
	if (worker_maybe_bind_and_lock(worker->pool))
1632
		worker_clr_flags(worker, WORKER_UNBOUND);
1633

1634
	spin_unlock_irq(&worker->pool->lock);
1635 1636
}

1637
/**
1638 1639
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1640
 *
1641
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1642 1643
 * is different for idle and busy ones.
 *
1644 1645 1646 1647
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1648
 *
1649 1650 1651 1652
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1653
 *
1654 1655 1656 1657
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1658
 */
1659
static void rebind_workers(struct worker_pool *pool)
1660
{
1661
	struct worker *worker, *n;
1662 1663
	int i;

1664 1665
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1666

1667
	/* dequeue and kick idle ones */
1668 1669 1670 1671 1672 1673
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1674

1675 1676 1677 1678 1679 1680
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1681

1682
	/* rebind busy workers */
1683
	for_each_busy_worker(worker, i, pool) {
1684 1685
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1686

1687 1688 1689
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1690

1691
		debug_work_activate(rebind_work);
1692

1693 1694
		/*
		 * wq doesn't really matter but let's keep @worker->pool
1695
		 * and @pwq->pool consistent for sanity.
1696
		 */
T
Tejun Heo 已提交
1697
		if (worker->pool->attrs->nice < 0)
1698 1699 1700 1701
			wq = system_highpri_wq;
		else
			wq = system_wq;

1702
		insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
1703 1704
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1705
	}
1706 1707
}

T
Tejun Heo 已提交
1708 1709 1710 1711 1712
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1713 1714
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1715
		INIT_LIST_HEAD(&worker->scheduled);
1716
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1717 1718
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1719
	}
T
Tejun Heo 已提交
1720 1721 1722 1723 1724
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1725
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1726
 *
1727
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1737
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1738
{
T
Tejun Heo 已提交
1739
	const char *pri = pool->attrs->nice < 0  ? "H" : "";
T
Tejun Heo 已提交
1740
	struct worker *worker = NULL;
1741
	int id = -1;
T
Tejun Heo 已提交
1742

1743
	spin_lock_irq(&pool->lock);
1744
	while (ida_get_new(&pool->worker_ida, &id)) {
1745
		spin_unlock_irq(&pool->lock);
1746
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1747
			goto fail;
1748
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1749
	}
1750
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1751 1752 1753 1754 1755

	worker = alloc_worker();
	if (!worker)
		goto fail;

1756
	worker->pool = pool;
T
Tejun Heo 已提交
1757 1758
	worker->id = id;

1759
	if (pool->cpu >= 0)
1760
		worker->task = kthread_create_on_node(worker_thread,
1761
					worker, cpu_to_node(pool->cpu),
1762
					"kworker/%d:%d%s", pool->cpu, id, pri);
1763 1764
	else
		worker->task = kthread_create(worker_thread, worker,
1765 1766
					      "kworker/u%d:%d%s",
					      pool->id, id, pri);
T
Tejun Heo 已提交
1767 1768 1769
	if (IS_ERR(worker->task))
		goto fail;

T
Tejun Heo 已提交
1770 1771
	set_user_nice(worker->task, pool->attrs->nice);
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1772

1773
	/*
T
Tejun Heo 已提交
1774 1775 1776
	 * %PF_THREAD_BOUND is used to prevent userland from meddling with
	 * cpumask of workqueue workers.  This is an abuse.  We need
	 * %PF_NO_SETAFFINITY.
1777
	 */
T
Tejun Heo 已提交
1778 1779 1780 1781 1782 1783 1784 1785
	worker->task->flags |= PF_THREAD_BOUND;

	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1786
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1787 1788 1789 1790

	return worker;
fail:
	if (id >= 0) {
1791
		spin_lock_irq(&pool->lock);
1792
		ida_remove(&pool->worker_ida, id);
1793
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1803
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1804 1805
 *
 * CONTEXT:
1806
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1807 1808 1809
 */
static void start_worker(struct worker *worker)
{
1810
	worker->flags |= WORKER_STARTED;
1811
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1812
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1813 1814 1815 1816 1817 1818 1819
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1820
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1821 1822
 *
 * CONTEXT:
1823
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1824 1825 1826
 */
static void destroy_worker(struct worker *worker)
{
1827
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1828 1829 1830
	int id = worker->id;

	/* sanity check frenzy */
1831 1832 1833
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1834

T
Tejun Heo 已提交
1835
	if (worker->flags & WORKER_STARTED)
1836
		pool->nr_workers--;
T
Tejun Heo 已提交
1837
	if (worker->flags & WORKER_IDLE)
1838
		pool->nr_idle--;
T
Tejun Heo 已提交
1839 1840

	list_del_init(&worker->entry);
1841
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1842

1843
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1844

T
Tejun Heo 已提交
1845 1846 1847
	kthread_stop(worker->task);
	kfree(worker);

1848
	spin_lock_irq(&pool->lock);
1849
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1850 1851
}

1852
static void idle_worker_timeout(unsigned long __pool)
1853
{
1854
	struct worker_pool *pool = (void *)__pool;
1855

1856
	spin_lock_irq(&pool->lock);
1857

1858
	if (too_many_workers(pool)) {
1859 1860 1861 1862
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1863
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1864 1865 1866
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1867
			mod_timer(&pool->idle_timer, expires);
1868 1869
		else {
			/* it's been idle for too long, wake up manager */
1870
			pool->flags |= POOL_MANAGE_WORKERS;
1871
			wake_up_worker(pool);
1872
		}
1873 1874
	}

1875
	spin_unlock_irq(&pool->lock);
1876
}
1877

1878
static void send_mayday(struct work_struct *work)
1879
{
1880 1881
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1882 1883

	lockdep_assert_held(&workqueue_lock);
1884

1885
	if (!wq->rescuer)
1886
		return;
1887 1888

	/* mayday mayday mayday */
1889 1890
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1891
		wake_up_process(wq->rescuer->task);
1892
	}
1893 1894
}

1895
static void pool_mayday_timeout(unsigned long __pool)
1896
{
1897
	struct worker_pool *pool = (void *)__pool;
1898 1899
	struct work_struct *work;

1900 1901
	spin_lock_irq(&workqueue_lock);		/* for wq->maydays */
	spin_lock(&pool->lock);
1902

1903
	if (need_to_create_worker(pool)) {
1904 1905 1906 1907 1908 1909
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1910
		list_for_each_entry(work, &pool->worklist, entry)
1911
			send_mayday(work);
L
Linus Torvalds 已提交
1912
	}
1913

1914 1915
	spin_unlock(&pool->lock);
	spin_unlock_irq(&workqueue_lock);
1916

1917
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1918 1919
}

1920 1921
/**
 * maybe_create_worker - create a new worker if necessary
1922
 * @pool: pool to create a new worker for
1923
 *
1924
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1925 1926
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1927
 * sent to all rescuers with works scheduled on @pool to resolve
1928 1929 1930 1931 1932 1933
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1934
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1935 1936 1937 1938
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1939
 * false if no action was taken and pool->lock stayed locked, true
1940 1941
 * otherwise.
 */
1942
static bool maybe_create_worker(struct worker_pool *pool)
1943 1944
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1945
{
1946
	if (!need_to_create_worker(pool))
1947 1948
		return false;
restart:
1949
	spin_unlock_irq(&pool->lock);
1950

1951
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1952
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1953 1954 1955 1956

	while (true) {
		struct worker *worker;

1957
		worker = create_worker(pool);
1958
		if (worker) {
1959
			del_timer_sync(&pool->mayday_timer);
1960
			spin_lock_irq(&pool->lock);
1961
			start_worker(worker);
1962 1963
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1964 1965 1966
			return true;
		}

1967
		if (!need_to_create_worker(pool))
1968
			break;
L
Linus Torvalds 已提交
1969

1970 1971
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1972

1973
		if (!need_to_create_worker(pool))
1974 1975 1976
			break;
	}

1977
	del_timer_sync(&pool->mayday_timer);
1978
	spin_lock_irq(&pool->lock);
1979
	if (need_to_create_worker(pool))
1980 1981 1982 1983 1984 1985
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1986
 * @pool: pool to destroy workers for
1987
 *
1988
 * Destroy @pool workers which have been idle for longer than
1989 1990 1991
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1992
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1993 1994 1995
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1996
 * false if no action was taken and pool->lock stayed locked, true
1997 1998
 * otherwise.
 */
1999
static bool maybe_destroy_workers(struct worker_pool *pool)
2000 2001
{
	bool ret = false;
L
Linus Torvalds 已提交
2002

2003
	while (too_many_workers(pool)) {
2004 2005
		struct worker *worker;
		unsigned long expires;
2006

2007
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2008
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2009

2010
		if (time_before(jiffies, expires)) {
2011
			mod_timer(&pool->idle_timer, expires);
2012
			break;
2013
		}
L
Linus Torvalds 已提交
2014

2015 2016
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2017
	}
2018

2019
	return ret;
2020 2021
}

2022
/**
2023 2024
 * manage_workers - manage worker pool
 * @worker: self
2025
 *
2026
 * Assume the manager role and manage the worker pool @worker belongs
2027
 * to.  At any given time, there can be only zero or one manager per
2028
 * pool.  The exclusion is handled automatically by this function.
2029 2030 2031 2032
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2033 2034
 *
 * CONTEXT:
2035
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2036 2037 2038
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2039 2040
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2041
 */
2042
static bool manage_workers(struct worker *worker)
2043
{
2044
	struct worker_pool *pool = worker->pool;
2045
	bool ret = false;
2046

2047
	if (!mutex_trylock(&pool->manager_arb))
2048
		return ret;
2049

2050 2051 2052
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
2053 2054 2055 2056 2057
	 * grab @pool->manager_arb to achieve this because that can lead to
	 * idle worker depletion (all become busy thinking someone else is
	 * managing) which in turn can result in deadlock under extreme
	 * circumstances.  Use @pool->assoc_mutex to synchronize manager
	 * against CPU hotplug.
2058
	 *
2059
	 * assoc_mutex would always be free unless CPU hotplug is in
2060
	 * progress.  trylock first without dropping @pool->lock.
2061
	 */
2062
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2063
		spin_unlock_irq(&pool->lock);
2064
		mutex_lock(&pool->assoc_mutex);
2065 2066
		/*
		 * CPU hotplug could have happened while we were waiting
2067
		 * for assoc_mutex.  Hotplug itself can't handle us
2068
		 * because manager isn't either on idle or busy list, and
2069
		 * @pool's state and ours could have deviated.
2070
		 *
2071
		 * As hotplug is now excluded via assoc_mutex, we can
2072
		 * simply try to bind.  It will succeed or fail depending
2073
		 * on @pool's current state.  Try it and adjust
2074 2075
		 * %WORKER_UNBOUND accordingly.
		 */
2076
		if (worker_maybe_bind_and_lock(pool))
2077 2078 2079
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2080

2081 2082
		ret = true;
	}
2083

2084
	pool->flags &= ~POOL_MANAGE_WORKERS;
2085 2086

	/*
2087 2088
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2089
	 */
2090 2091
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2092

2093
	mutex_unlock(&pool->assoc_mutex);
2094
	mutex_unlock(&pool->manager_arb);
2095
	return ret;
2096 2097
}

2098 2099
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2100
 * @worker: self
2101 2102 2103 2104 2105 2106 2107 2108 2109
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2110
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2111
 */
T
Tejun Heo 已提交
2112
static void process_one_work(struct worker *worker, struct work_struct *work)
2113 2114
__releases(&pool->lock)
__acquires(&pool->lock)
2115
{
2116
	struct pool_workqueue *pwq = get_work_pwq(work);
2117
	struct worker_pool *pool = worker->pool;
2118
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2119
	int work_color;
2120
	struct worker *collision;
2121 2122 2123 2124 2125 2126 2127 2128
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2129 2130 2131
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2132
#endif
2133 2134 2135
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2136
	 * unbound or a disassociated pool.
2137
	 */
2138
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2139
		     !(pool->flags & POOL_DISASSOCIATED) &&
2140
		     raw_smp_processor_id() != pool->cpu);
2141

2142 2143 2144 2145 2146 2147
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2148
	collision = find_worker_executing_work(pool, work);
2149 2150 2151 2152 2153
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2154
	/* claim and dequeue */
2155
	debug_work_deactivate(work);
2156
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2157
	worker->current_work = work;
2158
	worker->current_func = work->func;
2159
	worker->current_pwq = pwq;
2160
	work_color = get_work_color(work);
2161

2162 2163
	list_del_init(&work->entry);

2164 2165 2166 2167 2168 2169 2170
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2171
	/*
2172
	 * Unbound pool isn't concurrency managed and work items should be
2173 2174
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2175 2176
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2177

2178
	/*
2179
	 * Record the last pool and clear PENDING which should be the last
2180
	 * update to @work.  Also, do this inside @pool->lock so that
2181 2182
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2183
	 */
2184
	set_work_pool_and_clear_pending(work, pool->id);
2185

2186
	spin_unlock_irq(&pool->lock);
2187

2188
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2189
	lock_map_acquire(&lockdep_map);
2190
	trace_workqueue_execute_start(work);
2191
	worker->current_func(work);
2192 2193 2194 2195 2196
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2197
	lock_map_release(&lockdep_map);
2198
	lock_map_release(&pwq->wq->lockdep_map);
2199 2200

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2201 2202
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2203 2204
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2205 2206 2207 2208
		debug_show_held_locks(current);
		dump_stack();
	}

2209
	spin_lock_irq(&pool->lock);
2210

2211 2212 2213 2214
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2215
	/* we're done with it, release */
2216
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2217
	worker->current_work = NULL;
2218
	worker->current_func = NULL;
2219 2220
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2221 2222
}

2223 2224 2225 2226 2227 2228 2229 2230 2231
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2232
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2233 2234 2235
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2236
{
2237 2238
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2239
						struct work_struct, entry);
T
Tejun Heo 已提交
2240
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2241 2242 2243
	}
}

T
Tejun Heo 已提交
2244 2245
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2246
 * @__worker: self
T
Tejun Heo 已提交
2247
 *
2248 2249
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2250 2251 2252
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2253
 */
T
Tejun Heo 已提交
2254
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2255
{
T
Tejun Heo 已提交
2256
	struct worker *worker = __worker;
2257
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2258

2259 2260
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2261
woke_up:
2262
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2263

2264 2265
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2266
		spin_unlock_irq(&pool->lock);
2267

2268
		/* if DIE is set, destruction is requested */
2269 2270 2271 2272 2273
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2274
		/* otherwise, rebind */
2275 2276
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2277
	}
2278

T
Tejun Heo 已提交
2279
	worker_leave_idle(worker);
2280
recheck:
2281
	/* no more worker necessary? */
2282
	if (!need_more_worker(pool))
2283 2284 2285
		goto sleep;

	/* do we need to manage? */
2286
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2287 2288
		goto recheck;

T
Tejun Heo 已提交
2289 2290 2291 2292 2293
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2294
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2295

2296 2297 2298 2299 2300 2301 2302 2303
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2304
		struct work_struct *work =
2305
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2306 2307 2308 2309 2310 2311
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2312
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2313 2314 2315
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2316
		}
2317
	} while (keep_working(pool));
2318 2319

	worker_set_flags(worker, WORKER_PREP, false);
2320
sleep:
2321
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2322
		goto recheck;
2323

T
Tejun Heo 已提交
2324
	/*
2325 2326 2327 2328 2329
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2330 2331 2332
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2333
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2334 2335
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2336 2337
}

2338 2339
/**
 * rescuer_thread - the rescuer thread function
2340
 * @__rescuer: self
2341 2342
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2343
 * workqueue which has WQ_MEM_RECLAIM set.
2344
 *
2345
 * Regular work processing on a pool may block trying to create a new
2346 2347 2348 2349 2350
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2351 2352
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2353 2354 2355 2356
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2357
static int rescuer_thread(void *__rescuer)
2358
{
2359 2360
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2361 2362 2363
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2364 2365 2366 2367 2368 2369

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2370 2371 2372
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2373 2374
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2375
		rescuer->task->flags &= ~PF_WQ_WORKER;
2376
		return 0;
2377
	}
2378

2379 2380 2381 2382 2383 2384
	/* see whether any pwq is asking for help */
	spin_lock_irq(&workqueue_lock);

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2385
		struct worker_pool *pool = pwq->pool;
2386 2387 2388
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2389 2390 2391
		list_del_init(&pwq->mayday_node);

		spin_unlock_irq(&workqueue_lock);
2392 2393

		/* migrate to the target cpu if possible */
2394
		worker_maybe_bind_and_lock(pool);
2395
		rescuer->pool = pool;
2396 2397 2398 2399 2400

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2401
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2402
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2403
			if (get_work_pwq(work) == pwq)
2404 2405 2406
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2407 2408

		/*
2409
		 * Leave this pool.  If keep_working() is %true, notify a
2410 2411 2412
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2413 2414
		if (keep_working(pool))
			wake_up_worker(pool);
2415

2416
		rescuer->pool = NULL;
2417 2418
		spin_unlock(&pool->lock);
		spin_lock(&workqueue_lock);
2419 2420
	}

2421 2422
	spin_unlock_irq(&workqueue_lock);

2423 2424
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2425 2426
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2427 2428
}

O
Oleg Nesterov 已提交
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2440 2441
/**
 * insert_wq_barrier - insert a barrier work
2442
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2443
 * @barr: wq_barrier to insert
2444 2445
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2446
 *
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2459
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2460 2461
 *
 * CONTEXT:
2462
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2463
 */
2464
static void insert_wq_barrier(struct pool_workqueue *pwq,
2465 2466
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2467
{
2468 2469 2470
	struct list_head *head;
	unsigned int linked = 0;

2471
	/*
2472
	 * debugobject calls are safe here even with pool->lock locked
2473 2474 2475 2476
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2477
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2478
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2479
	init_completion(&barr->done);
2480

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2496
	debug_work_activate(&barr->work);
2497
	insert_work(pwq, &barr->work, head,
2498
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2499 2500
}

2501
/**
2502
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2503 2504 2505 2506
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2507
 * Prepare pwqs for workqueue flushing.
2508
 *
2509 2510 2511 2512 2513
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2514 2515 2516 2517 2518 2519 2520
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2521
 * If @work_color is non-negative, all pwqs should have the same
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2532
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2533
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2534
{
2535
	bool wait = false;
2536
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2537

2538
	if (flush_color >= 0) {
2539
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2540
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2541
	}
2542

2543 2544
	local_irq_disable();

2545
	for_each_pwq(pwq, wq) {
2546
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2547

2548
		spin_lock(&pool->lock);
2549

2550
		if (flush_color >= 0) {
2551
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2552

2553 2554 2555
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2556 2557 2558
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2559

2560
		if (work_color >= 0) {
2561
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2562
			pwq->work_color = work_color;
2563
		}
L
Linus Torvalds 已提交
2564

2565
		spin_unlock(&pool->lock);
L
Linus Torvalds 已提交
2566
	}
2567

2568 2569
	local_irq_enable();

2570
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2571
		complete(&wq->first_flusher->done);
2572

2573
	return wait;
L
Linus Torvalds 已提交
2574 2575
}

2576
/**
L
Linus Torvalds 已提交
2577
 * flush_workqueue - ensure that any scheduled work has run to completion.
2578
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2579 2580 2581 2582
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2583 2584
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2585
 */
2586
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2587
{
2588 2589 2590 2591 2592 2593
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2594

2595 2596
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2611
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2612 2613 2614 2615 2616
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2617
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2618 2619 2620

			wq->first_flusher = &this_flusher;

2621
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2622 2623 2624 2625 2626 2627 2628 2629
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2630
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2631
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2632
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2658 2659 2660 2661
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2662 2663
	wq->first_flusher = NULL;

2664 2665
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2678 2679
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2699
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2700 2701 2702
		}

		if (list_empty(&wq->flusher_queue)) {
2703
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2704 2705 2706 2707 2708
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2709
		 * the new first flusher and arm pwqs.
2710
		 */
2711 2712
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2713 2714 2715 2716

		list_del_init(&next->list);
		wq->first_flusher = next;

2717
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2729
}
2730
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2731

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2746
	struct pool_workqueue *pwq;
2747 2748 2749 2750 2751 2752

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
2753
	spin_lock_irq(&workqueue_lock);
2754 2755
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
2756
	spin_unlock_irq(&workqueue_lock);
2757 2758 2759
reflush:
	flush_workqueue(wq);

2760 2761
	local_irq_disable();

2762
	for_each_pwq(pwq, wq) {
2763
		bool drained;
2764

2765
		spin_lock(&pwq->pool->lock);
2766
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2767
		spin_unlock(&pwq->pool->lock);
2768 2769

		if (drained)
2770 2771 2772 2773
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2774 2775
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2776 2777

		local_irq_enable();
2778 2779 2780
		goto reflush;
	}

2781
	spin_lock(&workqueue_lock);
2782 2783
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
2784 2785 2786
	spin_unlock(&workqueue_lock);

	local_irq_enable();
2787 2788 2789
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2790
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2791
{
2792
	struct worker *worker = NULL;
2793
	struct worker_pool *pool;
2794
	struct pool_workqueue *pwq;
2795 2796

	might_sleep();
2797 2798

	local_irq_disable();
2799
	pool = get_work_pool(work);
2800 2801
	if (!pool) {
		local_irq_enable();
2802
		return false;
2803
	}
2804

2805
	spin_lock(&pool->lock);
2806
	/* see the comment in try_to_grab_pending() with the same code */
2807 2808 2809
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2810
			goto already_gone;
2811
	} else {
2812
		worker = find_worker_executing_work(pool, work);
2813
		if (!worker)
T
Tejun Heo 已提交
2814
			goto already_gone;
2815
		pwq = worker->current_pwq;
2816
	}
2817

2818
	insert_wq_barrier(pwq, barr, work, worker);
2819
	spin_unlock_irq(&pool->lock);
2820

2821 2822 2823 2824 2825 2826
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2827
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2828
		lock_map_acquire(&pwq->wq->lockdep_map);
2829
	else
2830 2831
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2832

2833
	return true;
T
Tejun Heo 已提交
2834
already_gone:
2835
	spin_unlock_irq(&pool->lock);
2836
	return false;
2837
}
2838 2839 2840 2841 2842

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2843 2844
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2845 2846 2847 2848 2849 2850 2851 2852 2853
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2854 2855 2856
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2857
	if (start_flush_work(work, &barr)) {
2858 2859 2860
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2861
	} else {
2862
		return false;
2863 2864
	}
}
2865
EXPORT_SYMBOL_GPL(flush_work);
2866

2867
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2868
{
2869
	unsigned long flags;
2870 2871 2872
	int ret;

	do {
2873 2874 2875 2876 2877 2878
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2879
			flush_work(work);
2880 2881
	} while (unlikely(ret < 0));

2882 2883 2884 2885
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2886
	flush_work(work);
2887
	clear_work_data(work);
2888 2889 2890
	return ret;
}

2891
/**
2892 2893
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2894
 *
2895 2896 2897 2898
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2899
 *
2900 2901
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2902
 *
2903
 * The caller must ensure that the workqueue on which @work was last
2904
 * queued can't be destroyed before this function returns.
2905 2906 2907
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2908
 */
2909
bool cancel_work_sync(struct work_struct *work)
2910
{
2911
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2912
}
2913
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2914

2915
/**
2916 2917
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2918
 *
2919 2920 2921
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2922
 *
2923 2924 2925
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2926
 */
2927 2928
bool flush_delayed_work(struct delayed_work *dwork)
{
2929
	local_irq_disable();
2930
	if (del_timer_sync(&dwork->timer))
2931
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2932
	local_irq_enable();
2933 2934 2935 2936
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2937
/**
2938 2939
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2940
 *
2941 2942 2943 2944 2945
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2946
 *
2947
 * This function is safe to call from any context including IRQ handler.
2948
 */
2949
bool cancel_delayed_work(struct delayed_work *dwork)
2950
{
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2961 2962
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2963
	local_irq_restore(flags);
2964
	return ret;
2965
}
2966
EXPORT_SYMBOL(cancel_delayed_work);
2967

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2978
{
2979
	return __cancel_work_timer(&dwork->work, true);
2980
}
2981
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2982

2983
/**
2984 2985 2986 2987 2988 2989
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2990
bool schedule_work_on(int cpu, struct work_struct *work)
2991
{
2992
	return queue_work_on(cpu, system_wq, work);
2993 2994 2995
}
EXPORT_SYMBOL(schedule_work_on);

2996 2997 2998 2999
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
3000 3001
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
3002 3003 3004 3005
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
3006
 */
3007
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3008
{
3009
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3010
}
3011
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3012

3013 3014 3015
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
3016
 * @dwork: job to be done
3017 3018 3019 3020 3021
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
3022 3023
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
3024
{
3025
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
3026
}
3027
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
3028

3029 3030
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3031 3032
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3033 3034 3035 3036
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3037
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3038
{
3039
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3040
}
3041
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3042

3043
/**
3044
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3045 3046
 * @func: the function to call
 *
3047 3048
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3049
 * schedule_on_each_cpu() is very slow.
3050 3051 3052
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3053
 */
3054
int schedule_on_each_cpu(work_func_t func)
3055 3056
{
	int cpu;
3057
	struct work_struct __percpu *works;
3058

3059 3060
	works = alloc_percpu(struct work_struct);
	if (!works)
3061
		return -ENOMEM;
3062

3063 3064
	get_online_cpus();

3065
	for_each_online_cpu(cpu) {
3066 3067 3068
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3069
		schedule_work_on(cpu, work);
3070
	}
3071 3072 3073 3074

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3075
	put_online_cpus();
3076
	free_percpu(works);
3077 3078 3079
	return 0;
}

3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3104 3105
void flush_scheduled_work(void)
{
3106
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3107
}
3108
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3109

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3122
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3123 3124
{
	if (!in_interrupt()) {
3125
		fn(&ew->work);
3126 3127 3128
		return 0;
	}

3129
	INIT_WORK(&ew->work, fn);
3130 3131 3132 3133 3134 3135
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3136 3137
int keventd_up(void)
{
3138
	return system_wq != NULL;
L
Linus Torvalds 已提交
3139 3140
}

T
Tejun Heo 已提交
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.  Returns NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_setall(attrs->cpumask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
}

/*
 * Hacky implementation of jhash of bitmaps which only considers the
 * specified number of bits.  We probably want a proper implementation in
 * include/linux/jhash.h.
 */
static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
{
	int nr_longs = bits / BITS_PER_LONG;
	int nr_leftover = bits % BITS_PER_LONG;
	unsigned long leftover = 0;

	if (nr_longs)
		hash = jhash(bitmap, nr_longs * sizeof(long), hash);
	if (nr_leftover) {
		bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
		hash = jhash(&leftover, sizeof(long), hash);
	}
	return hash;
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
	hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3227 3228 3229 3230 3231
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3232 3233 3234
 * Returns 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3235 3236
 */
static int init_worker_pool(struct worker_pool *pool)
3237 3238
{
	spin_lock_init(&pool->lock);
3239 3240
	pool->id = -1;
	pool->cpu = -1;
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
	mutex_init(&pool->assoc_mutex);
	ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3256

3257 3258 3259 3260
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3261 3262 3263 3264
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3265 3266
}

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
 * safe manner.
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

	spin_lock_irq(&workqueue_lock);
	if (--pool->refcnt) {
		spin_unlock_irq(&workqueue_lock);
		return;
	}

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
	    WARN_ON(!list_empty(&pool->worklist))) {
		spin_unlock_irq(&workqueue_lock);
		return;
	}

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

	spin_unlock_irq(&workqueue_lock);

	/* lock out manager and destroy all workers */
	mutex_lock(&pool->manager_arb);
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.  On failure, returns NULL.
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	static DEFINE_MUTEX(create_mutex);
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	struct worker *worker;

	mutex_lock(&create_mutex);

	/* do we already have a matching pool? */
	spin_lock_irq(&workqueue_lock);
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}
	spin_unlock_irq(&workqueue_lock);

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

T
Tejun Heo 已提交
3359
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	copy_workqueue_attrs(pool->attrs, attrs);

	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
	worker = create_worker(pool);
	if (!worker)
		goto fail;

	spin_lock_irq(&pool->lock);
	start_worker(worker);
	spin_unlock_irq(&pool->lock);

	/* install */
	spin_lock_irq(&workqueue_lock);
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	spin_unlock_irq(&workqueue_lock);
	mutex_unlock(&create_mutex);
	return pool;
fail:
	mutex_unlock(&create_mutex);
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3408 3409 3410 3411 3412 3413
	/*
	 * Unlink @pwq.  Synchronization against flush_mutex isn't strictly
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
	mutex_lock(&wq->flush_mutex);
T
Tejun Heo 已提交
3414 3415 3416
	spin_lock_irq(&workqueue_lock);
	list_del_rcu(&pwq->pwqs_node);
	spin_unlock_irq(&workqueue_lock);
3417
	mutex_unlock(&wq->flush_mutex);
T
Tejun Heo 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429

	put_unbound_pool(pool);
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
	if (list_empty(&wq->pwqs))
		kfree(wq);
}

3430 3431 3432 3433 3434 3435 3436 3437 3438
static void init_and_link_pwq(struct pool_workqueue *pwq,
			      struct workqueue_struct *wq,
			      struct worker_pool *pool)
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3439
	pwq->refcnt = 1;
3440 3441 3442
	pwq->max_active = wq->saved_max_active;
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3443
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3444

3445 3446 3447 3448 3449 3450 3451 3452
	/*
	 * Link @pwq and set the matching work_color.  This is synchronized
	 * with flush_mutex to avoid confusing flush_workqueue().
	 */
	mutex_lock(&wq->flush_mutex);
	spin_lock_irq(&workqueue_lock);

	pwq->work_color = wq->work_color;
3453
	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
3454 3455 3456

	spin_unlock_irq(&workqueue_lock);
	mutex_unlock(&wq->flush_mutex);
3457 3458
}

3459
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3460
{
3461
	bool highpri = wq->flags & WQ_HIGHPRI;
3462 3463 3464
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3465 3466
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3467 3468 3469
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3470 3471
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3472
			struct worker_pool *cpu_pools =
3473
				per_cpu(cpu_worker_pools, cpu);
3474

3475
			init_and_link_pwq(pwq, wq, &cpu_pools[highpri]);
3476 3477 3478
		}
	} else {
		struct pool_workqueue *pwq;
3479
		struct worker_pool *pool;
3480 3481 3482 3483 3484

		pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
		if (!pwq)
			return -ENOMEM;

3485 3486
		pool = get_unbound_pool(unbound_std_wq_attrs[highpri]);
		if (!pool) {
3487 3488 3489 3490
			kmem_cache_free(pwq_cache, pwq);
			return -ENOMEM;
		}

3491
		init_and_link_pwq(pwq, wq, pool);
3492 3493 3494
	}

	return 0;
T
Tejun Heo 已提交
3495 3496
}

3497 3498
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3499
{
3500 3501 3502
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3503 3504
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3505

3506
	return clamp_val(max_active, 1, lim);
3507 3508
}

3509
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3510 3511 3512
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3513
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3514
{
3515
	va_list args, args1;
L
Linus Torvalds 已提交
3516
	struct workqueue_struct *wq;
3517
	struct pool_workqueue *pwq;
3518 3519 3520 3521 3522 3523 3524 3525 3526
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
3527
		return NULL;
3528 3529 3530 3531

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3532

3533
	max_active = max_active ?: WQ_DFL_ACTIVE;
3534
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3535

3536
	/* init wq */
3537
	wq->flags = flags;
3538
	wq->saved_max_active = max_active;
3539
	mutex_init(&wq->flush_mutex);
3540
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3541
	INIT_LIST_HEAD(&wq->pwqs);
3542 3543
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3544
	INIT_LIST_HEAD(&wq->maydays);
3545

3546
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3547
	INIT_LIST_HEAD(&wq->list);
3548

3549
	if (alloc_and_link_pwqs(wq) < 0)
3550
		goto err_free_wq;
T
Tejun Heo 已提交
3551

3552 3553 3554 3555 3556
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3557 3558
		struct worker *rescuer;

3559
		rescuer = alloc_worker();
3560
		if (!rescuer)
3561
			goto err_destroy;
3562

3563 3564
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3565
					       wq->name);
3566 3567 3568 3569
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3570

3571
		wq->rescuer = rescuer;
3572 3573
		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3574 3575
	}

3576 3577 3578 3579 3580
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
3581
	spin_lock_irq(&workqueue_lock);
3582

3583
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3584 3585
		for_each_pwq(pwq, wq)
			pwq->max_active = 0;
3586

T
Tejun Heo 已提交
3587
	list_add(&wq->list, &workqueues);
3588

3589
	spin_unlock_irq(&workqueue_lock);
T
Tejun Heo 已提交
3590

3591
	return wq;
3592 3593 3594 3595 3596 3597

err_free_wq:
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3598
	return NULL;
3599
}
3600
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3601

3602 3603 3604 3605 3606 3607 3608 3609
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3610
	struct pool_workqueue *pwq;
3611

3612 3613
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3614

3615 3616
	spin_lock_irq(&workqueue_lock);

3617
	/* sanity checks */
3618
	for_each_pwq(pwq, wq) {
3619 3620
		int i;

3621 3622 3623
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
				spin_unlock_irq(&workqueue_lock);
3624
				return;
3625 3626 3627
			}
		}

T
Tejun Heo 已提交
3628 3629
		if (WARN_ON(pwq->refcnt > 1) ||
		    WARN_ON(pwq->nr_active) ||
3630 3631
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
			spin_unlock_irq(&workqueue_lock);
3632
			return;
3633
		}
3634 3635
	}

3636 3637 3638 3639
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3640
	list_del_init(&wq->list);
3641

3642
	spin_unlock_irq(&workqueue_lock);
3643

3644
	if (wq->rescuer) {
3645
		kthread_stop(wq->rescuer->task);
3646
		kfree(wq->rescuer);
3647
		wq->rescuer = NULL;
3648 3649
	}

T
Tejun Heo 已提交
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
		 * access the first pwq and put the base ref.  As both pwqs
		 * and pools are sched-RCU protected, the lock operations
		 * are safe.  @wq will be freed when the last pwq is
		 * released.
		 */
3665 3666
		pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
				       pwqs_node);
T
Tejun Heo 已提交
3667 3668 3669
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
3670
	}
3671 3672 3673
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3674
/**
3675 3676
 * pwq_set_max_active - adjust max_active of a pwq
 * @pwq: target pool_workqueue
3677 3678
 * @max_active: new max_active value.
 *
3679
 * Set @pwq->max_active to @max_active and activate delayed works if
3680 3681 3682
 * increased.
 *
 * CONTEXT:
3683
 * spin_lock_irq(pool->lock).
3684
 */
3685
static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3686
{
3687
	pwq->max_active = max_active;
3688

3689 3690 3691
	while (!list_empty(&pwq->delayed_works) &&
	       pwq->nr_active < pwq->max_active)
		pwq_activate_first_delayed(pwq);
3692 3693
}

3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3706
	struct pool_workqueue *pwq;
3707

3708
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3709

3710
	spin_lock_irq(&workqueue_lock);
3711 3712 3713

	wq->saved_max_active = max_active;

3714
	for_each_pwq(pwq, wq) {
3715
		struct worker_pool *pool = pwq->pool;
3716

3717
		spin_lock(&pool->lock);
3718

3719
		if (!(wq->flags & WQ_FREEZABLE) ||
3720
		    !(pool->flags & POOL_FREEZING))
3721
			pwq_set_max_active(pwq, max_active);
3722

3723
		spin_unlock(&pool->lock);
3724
	}
3725

3726
	spin_unlock_irq(&workqueue_lock);
3727
}
3728
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3729

3730
/**
3731 3732 3733
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3734
 *
3735 3736 3737
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3738
 *
3739 3740
 * RETURNS:
 * %true if congested, %false otherwise.
3741
 */
3742
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3743
{
3744
	struct pool_workqueue *pwq;
3745 3746 3747
	bool ret;

	preempt_disable();
3748 3749 3750 3751 3752

	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
		pwq = first_pwq(wq);
3753

3754 3755 3756 3757
	ret = !list_empty(&pwq->delayed_works);
	preempt_enable();

	return ret;
L
Linus Torvalds 已提交
3758
}
3759
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3760

3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3773
{
3774
	struct worker_pool *pool;
3775 3776
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3777

3778 3779
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3780

3781 3782
	local_irq_save(flags);
	pool = get_work_pool(work);
3783
	if (pool) {
3784
		spin_lock(&pool->lock);
3785 3786
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
3787
		spin_unlock(&pool->lock);
3788
	}
3789
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3790

3791
	return ret;
L
Linus Torvalds 已提交
3792
}
3793
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3794

3795 3796 3797
/*
 * CPU hotplug.
 *
3798
 * There are two challenges in supporting CPU hotplug.  Firstly, there
3799
 * are a lot of assumptions on strong associations among work, pwq and
3800
 * pool which make migrating pending and scheduled works very
3801
 * difficult to implement without impacting hot paths.  Secondly,
3802
 * worker pools serve mix of short, long and very long running works making
3803 3804
 * blocked draining impractical.
 *
3805
 * This is solved by allowing the pools to be disassociated from the CPU
3806 3807
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3808
 */
L
Linus Torvalds 已提交
3809

3810
static void wq_unbind_fn(struct work_struct *work)
3811
{
3812
	int cpu = smp_processor_id();
3813
	struct worker_pool *pool;
3814 3815
	struct worker *worker;
	int i;
3816

3817
	for_each_cpu_worker_pool(pool, cpu) {
3818
		WARN_ON_ONCE(cpu != smp_processor_id());
3819

3820 3821
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3822

3823 3824 3825 3826 3827 3828 3829
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3830
		list_for_each_entry(worker, &pool->idle_list, entry)
3831
			worker->flags |= WORKER_UNBOUND;
3832

3833
		for_each_busy_worker(worker, i, pool)
3834
			worker->flags |= WORKER_UNBOUND;
3835

3836
		pool->flags |= POOL_DISASSOCIATED;
3837

3838 3839 3840
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3841

3842
	/*
3843
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3844 3845
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3846 3847
	 */
	schedule();
3848

3849
	/*
3850 3851
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3852 3853 3854
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3855 3856 3857 3858
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3859
	 */
3860
	for_each_cpu_worker_pool(pool, cpu)
3861
		atomic_set(&pool->nr_running, 0);
3862 3863
}

T
Tejun Heo 已提交
3864 3865 3866 3867
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3868
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3869 3870
					       unsigned long action,
					       void *hcpu)
3871
{
3872
	int cpu = (unsigned long)hcpu;
3873
	struct worker_pool *pool;
3874

T
Tejun Heo 已提交
3875
	switch (action & ~CPU_TASKS_FROZEN) {
3876
	case CPU_UP_PREPARE:
3877
		for_each_cpu_worker_pool(pool, cpu) {
3878 3879 3880 3881 3882 3883 3884 3885 3886
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3887
			spin_lock_irq(&pool->lock);
3888
			start_worker(worker);
3889
			spin_unlock_irq(&pool->lock);
3890
		}
T
Tejun Heo 已提交
3891
		break;
3892

3893 3894
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3895
		for_each_cpu_worker_pool(pool, cpu) {
3896 3897 3898
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3899
			pool->flags &= ~POOL_DISASSOCIATED;
3900 3901 3902 3903 3904
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3905
		break;
3906
	}
3907 3908 3909 3910 3911 3912 3913
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3914
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3915 3916 3917
						 unsigned long action,
						 void *hcpu)
{
3918
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
3919 3920
	struct work_struct unbind_work;

3921 3922
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3923
		/* unbinding should happen on the local CPU */
3924
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3925
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3926 3927
		flush_work(&unbind_work);
		break;
3928 3929 3930 3931
	}
	return NOTIFY_OK;
}

3932
#ifdef CONFIG_SMP
3933

3934
struct work_for_cpu {
3935
	struct work_struct work;
3936 3937 3938 3939 3940
	long (*fn)(void *);
	void *arg;
	long ret;
};

3941
static void work_for_cpu_fn(struct work_struct *work)
3942
{
3943 3944
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3945 3946 3947 3948 3949 3950 3951 3952 3953
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3954 3955
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3956
 * The caller must not hold any locks which would prevent @fn from completing.
3957
 */
3958
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
3959
{
3960
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3961

3962 3963 3964
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3965 3966 3967 3968 3969
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3970 3971 3972 3973 3974
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3975 3976
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
3977
 * pool->worklist.
3978 3979
 *
 * CONTEXT:
3980
 * Grabs and releases workqueue_lock and pool->lock's.
3981 3982 3983
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
3984
	struct worker_pool *pool;
3985 3986
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
T
Tejun Heo 已提交
3987
	int id;
3988

3989
	spin_lock_irq(&workqueue_lock);
3990

3991
	WARN_ON_ONCE(workqueue_freezing);
3992 3993
	workqueue_freezing = true;

3994
	/* set FREEZING */
T
Tejun Heo 已提交
3995 3996 3997 3998
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
3999 4000
		spin_unlock(&pool->lock);
	}
4001

4002 4003 4004 4005
	/* suppress further executions by setting max_active to zero */
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4006

4007 4008 4009 4010
		for_each_pwq(pwq, wq) {
			spin_lock(&pwq->pool->lock);
			pwq->max_active = 0;
			spin_unlock(&pwq->pool->lock);
4011
		}
4012 4013
	}

4014
	spin_unlock_irq(&workqueue_lock);
4015 4016 4017
}

/**
4018
 * freeze_workqueues_busy - are freezable workqueues still busy?
4019 4020 4021 4022 4023 4024 4025 4026
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
4027 4028
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4029 4030 4031 4032
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4033 4034
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4035

4036
	spin_lock_irq(&workqueue_lock);
4037

4038
	WARN_ON_ONCE(!workqueue_freezing);
4039

4040 4041 4042
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4043 4044 4045 4046
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4047
		for_each_pwq(pwq, wq) {
4048
			WARN_ON_ONCE(pwq->nr_active < 0);
4049
			if (pwq->nr_active) {
4050 4051 4052 4053 4054 4055
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
4056
	spin_unlock_irq(&workqueue_lock);
4057 4058 4059 4060 4061 4062 4063
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4064
 * frozen works are transferred to their respective pool worklists.
4065 4066
 *
 * CONTEXT:
4067
 * Grabs and releases workqueue_lock and pool->lock's.
4068 4069 4070
 */
void thaw_workqueues(void)
{
4071 4072 4073 4074
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
	int id;
4075

4076
	spin_lock_irq(&workqueue_lock);
4077 4078 4079 4080

	if (!workqueue_freezing)
		goto out_unlock;

4081 4082 4083 4084 4085 4086 4087
	/* clear FREEZING */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
		spin_unlock(&pool->lock);
	}
4088

4089 4090 4091 4092
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4093

4094 4095 4096 4097
		for_each_pwq(pwq, wq) {
			spin_lock(&pwq->pool->lock);
			pwq_set_max_active(pwq, wq->saved_max_active);
			spin_unlock(&pwq->pool->lock);
4098
		}
4099 4100
	}

4101 4102 4103 4104 4105 4106 4107
	/* kick workers */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		wake_up_worker(pool);
		spin_unlock(&pool->lock);
	}

4108 4109
	workqueue_freezing = false;
out_unlock:
4110
	spin_unlock_irq(&workqueue_lock);
4111 4112 4113
}
#endif /* CONFIG_FREEZER */

4114
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4115
{
T
Tejun Heo 已提交
4116 4117
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4118

4119 4120
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4121
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4122

4123 4124 4125 4126
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4127
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4128
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4129

4130
	/* initialize CPU pools */
4131
	for_each_possible_cpu(cpu) {
4132
		struct worker_pool *pool;
4133

T
Tejun Heo 已提交
4134
		i = 0;
4135
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4136
			BUG_ON(init_worker_pool(pool));
4137
			pool->cpu = cpu;
4138
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4139 4140
			pool->attrs->nice = std_nice[i++];

T
Tejun Heo 已提交
4141 4142
			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
4143
		}
4144 4145
	}

4146
	/* create the initial worker */
4147
	for_each_online_cpu(cpu) {
4148
		struct worker_pool *pool;
4149

4150
		for_each_cpu_worker_pool(pool, cpu) {
4151 4152
			struct worker *worker;

4153
			pool->flags &= ~POOL_DISASSOCIATED;
4154

4155
			worker = create_worker(pool);
4156
			BUG_ON(!worker);
4157
			spin_lock_irq(&pool->lock);
4158
			start_worker(worker);
4159
			spin_unlock_irq(&pool->lock);
4160
		}
4161 4162
	}

4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));

		attrs->nice = std_nice[i];
		cpumask_setall(attrs->cpumask);

		unbound_std_wq_attrs[i] = attrs;
	}

4175
	system_wq = alloc_workqueue("events", 0, 0);
4176
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4177
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4178 4179
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4180 4181
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4182
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4183
	       !system_unbound_wq || !system_freezable_wq);
4184
	return 0;
L
Linus Torvalds 已提交
4185
}
4186
early_initcall(init_workqueues);