workqueue.c 105.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45

46
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50
	/*
	 * worker_pool flags
51
	 *
52
	 * A bound pool is either associated or disassociated with its CPU.
53 54 55 56 57 58
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59
	 * be executing on any CPU.  The pool behaves as an unbound one.
60 61
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62 63
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
64
	 */
65
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77

78
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79
				  WORKER_CPU_INTENSIVE,
80

81
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82

T
Tejun Heo 已提交
83
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84

85 86 87
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

88 89 90
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
91 92 93 94 95 96 97 98
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
99
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
100
};
L
Linus Torvalds 已提交
101 102

/*
T
Tejun Heo 已提交
103 104
 * Structure fields follow one of the following exclusion rules.
 *
105 106
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
107
 *
108 109 110
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
111
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
112
 *
113 114 115 116
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
117
 *
118 119
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
120
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
121 122
 */

123
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
124

125
struct worker_pool {
126
	spinlock_t		lock;		/* the pool lock */
127
	unsigned int		cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
128
	int			id;		/* I: pool ID */
129
	unsigned int		flags;		/* X: flags */
130 131 132

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
133 134

	/* nr_idle includes the ones off idle_list for rebinding */
135 136 137 138 139 140
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

141 142 143 144
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

145
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
146
	struct ida		worker_ida;	/* L: for worker IDs */
147 148
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
149
/*
150
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
151 152
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
153 154
 */
struct cpu_workqueue_struct {
155
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
156
	struct workqueue_struct *wq;		/* I: the owning workqueue */
157 158 159 160
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
161
	int			nr_active;	/* L: nr of active works */
162
	int			max_active;	/* L: max active works */
163
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
164
};
L
Linus Torvalds 已提交
165

166 167 168 169 170 171 172 173 174
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

175 176 177 178 179 180 181 182 183 184
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
185
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
186 187 188 189 190 191 192 193 194
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
195 196 197 198 199 200

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
201
	unsigned int		flags;		/* W: WQ_* flags */
202 203 204 205 206
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
207
	struct list_head	list;		/* W: list of all workqueues */
208 209 210 211 212 213 214 215 216

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

217
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
218 219
	struct worker		*rescuer;	/* I: rescue worker */

220
	int			nr_drainers;	/* W: drain in progress */
221
	int			saved_max_active; /* W: saved cwq max_active */
222
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
223
	struct lockdep_map	lockdep_map;
224
#endif
225
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
226 227
};

228 229
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
230
struct workqueue_struct *system_highpri_wq __read_mostly;
231
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
232
struct workqueue_struct *system_long_wq __read_mostly;
233
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
234
struct workqueue_struct *system_unbound_wq __read_mostly;
235
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
236
struct workqueue_struct *system_freezable_wq __read_mostly;
237
EXPORT_SYMBOL_GPL(system_freezable_wq);
238

239 240 241
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

242
#define for_each_std_worker_pool(pool, cpu)				\
T
Tejun Heo 已提交
243 244
	for ((pool) = &std_worker_pools(cpu)[0];			\
	     (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
245

246 247
#define for_each_busy_worker(worker, i, pos, pool)			\
	hash_for_each(pool->busy_hash, i, pos, worker, hentry)
248

249 250
static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				unsigned int sw)
251 252 253 254 255 256 257 258 259 260
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
261
	return WORK_CPU_END;
262 263
}

264 265
static inline int __next_cwq_cpu(int cpu, const struct cpumask *mask,
				 struct workqueue_struct *wq)
266
{
267
	return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
268 269
}

270 271 272
/*
 * CPU iterators
 *
273
 * An extra cpu number is defined using an invalid cpu number
274
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
275 276
 * specific CPU.  The following iterators are similar to for_each_*_cpu()
 * iterators but also considers the unbound CPU.
277
 *
278 279
 * for_each_wq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_wq_cpu()	: online CPUs + WORK_CPU_UNBOUND
280 281 282
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
283 284
#define for_each_wq_cpu(cpu)						\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3);		\
285
	     (cpu) < WORK_CPU_END;					\
286
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
287

288 289
#define for_each_online_wq_cpu(cpu)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3);		\
290
	     (cpu) < WORK_CPU_END;					\
291
	     (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
292 293

#define for_each_cwq_cpu(cpu, wq)					\
294
	for ((cpu) = __next_cwq_cpu(-1, cpu_possible_mask, (wq));	\
295
	     (cpu) < WORK_CPU_END;					\
296
	     (cpu) = __next_cwq_cpu((cpu), cpu_possible_mask, (wq)))
297

298 299 300 301
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

302 303 304 305 306
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
342
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
378
	.debug_hint	= work_debug_hint,
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

414 415
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
416
static LIST_HEAD(workqueues);
417
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
418

419
/*
T
Tejun Heo 已提交
420 421 422
 * The CPU standard worker pools.  nr_running is the only field which is
 * expected to be used frequently by other cpus via try_to_wake_up().  Put
 * it in a separate cacheline.
423
 */
T
Tejun Heo 已提交
424 425
static DEFINE_PER_CPU(struct worker_pool [NR_STD_WORKER_POOLS],
		      cpu_std_worker_pools);
426 427
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t [NR_STD_WORKER_POOLS],
				     cpu_std_pool_nr_running);
428

429
/*
T
Tejun Heo 已提交
430 431
 * Standard worker pools and nr_running counter for unbound CPU.  The pools
 * have POOL_DISASSOCIATED set, and all workers have WORKER_UNBOUND set.
432
 */
T
Tejun Heo 已提交
433
static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
434
static atomic_t unbound_std_pool_nr_running[NR_STD_WORKER_POOLS] = {
435
	[0 ... NR_STD_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
436
};
437

T
Tejun Heo 已提交
438 439 440 441
/* idr of all pools */
static DEFINE_MUTEX(worker_pool_idr_mutex);
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
442
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
443

T
Tejun Heo 已提交
444
static struct worker_pool *std_worker_pools(int cpu)
445
{
446
	if (cpu != WORK_CPU_UNBOUND)
T
Tejun Heo 已提交
447
		return per_cpu(cpu_std_worker_pools, cpu);
448
	else
T
Tejun Heo 已提交
449
		return unbound_std_worker_pools;
450 451
}

T
Tejun Heo 已提交
452 453
static int std_worker_pool_pri(struct worker_pool *pool)
{
T
Tejun Heo 已提交
454
	return pool - std_worker_pools(pool->cpu);
T
Tejun Heo 已提交
455 456
}

T
Tejun Heo 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

	mutex_lock(&worker_pool_idr_mutex);
	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	mutex_unlock(&worker_pool_idr_mutex);

	return ret;
}

470 471 472 473 474 475 476 477 478
/*
 * Lookup worker_pool by id.  The idr currently is built during boot and
 * never modified.  Don't worry about locking for now.
 */
static struct worker_pool *worker_pool_by_id(int pool_id)
{
	return idr_find(&worker_pool_idr, pool_id);
}

479 480
static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
{
T
Tejun Heo 已提交
481
	struct worker_pool *pools = std_worker_pools(cpu);
482

T
Tejun Heo 已提交
483
	return &pools[highpri];
484 485
}

486
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
487
{
488
	int cpu = pool->cpu;
489
	int idx = std_worker_pool_pri(pool);
490

491
	if (cpu != WORK_CPU_UNBOUND)
492
		return &per_cpu(cpu_std_pool_nr_running, cpu)[idx];
493
	else
494
		return &unbound_std_pool_nr_running[idx];
495 496
}

T
Tejun Heo 已提交
497 498
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
499
{
500
	if (!(wq->flags & WQ_UNBOUND)) {
501
		if (likely(cpu < nr_cpu_ids))
502 503 504 505
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
506 507
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
523

524
/*
525 526
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
527
 * is cleared and the high bits contain OFFQ flags and pool ID.
528
 *
529 530
 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, pool or clear
531 532
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
533
 *
534 535 536 537
 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
 * corresponding to a work.  Pool is available once the work has been
 * queued anywhere after initialization until it is sync canceled.  cwq is
 * available only while the work item is queued.
538
 *
539 540 541 542
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
543
 */
544 545
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
546
{
547
	BUG_ON(!work_pending(work));
548 549
	atomic_long_set(&work->data, data | flags | work_static(work));
}
550

551 552 553 554 555
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
556
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
557 558
}

559 560 561 562 563 564 565
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

566 567
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
568
{
569 570 571 572 573 574 575
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
576
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
577
}
578

579
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
580
{
581 582
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
583 584
}

585
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
586
{
587
	unsigned long data = atomic_long_read(&work->data);
588

589 590 591 592
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
593 594
}

595 596 597 598 599 600 601
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
602
{
603
	unsigned long data = atomic_long_read(&work->data);
604 605
	struct worker_pool *pool;
	int pool_id;
606

607 608
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
609
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
610

611 612
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
613 614
		return NULL;

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
	pool = worker_pool_by_id(pool_id);
	WARN_ON_ONCE(!pool);
	return pool;
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
	struct worker_pool *pool = get_work_pool(work);

	return pool ? pool->id : WORK_OFFQ_POOL_NONE;
}

634 635
static void mark_work_canceling(struct work_struct *work)
{
636
	unsigned long pool_id = get_work_pool_id(work);
637

638 639
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
640 641 642 643 644 645 646 647 648
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

649
/*
650 651
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
652
 * they're being called with pool->lock held.
653 654
 */

655
static bool __need_more_worker(struct worker_pool *pool)
656
{
657
	return !atomic_read(get_pool_nr_running(pool));
658 659
}

660
/*
661 662
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
663 664
 *
 * Note that, because unbound workers never contribute to nr_running, this
665
 * function will always return %true for unbound pools as long as the
666
 * worklist isn't empty.
667
 */
668
static bool need_more_worker(struct worker_pool *pool)
669
{
670
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
671
}
672

673
/* Can I start working?  Called from busy but !running workers. */
674
static bool may_start_working(struct worker_pool *pool)
675
{
676
	return pool->nr_idle;
677 678 679
}

/* Do I need to keep working?  Called from currently running workers. */
680
static bool keep_working(struct worker_pool *pool)
681
{
682
	atomic_t *nr_running = get_pool_nr_running(pool);
683

684
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
685 686 687
}

/* Do we need a new worker?  Called from manager. */
688
static bool need_to_create_worker(struct worker_pool *pool)
689
{
690
	return need_more_worker(pool) && !may_start_working(pool);
691
}
692

693
/* Do I need to be the manager? */
694
static bool need_to_manage_workers(struct worker_pool *pool)
695
{
696
	return need_to_create_worker(pool) ||
697
		(pool->flags & POOL_MANAGE_WORKERS);
698 699 700
}

/* Do we have too many workers and should some go away? */
701
static bool too_many_workers(struct worker_pool *pool)
702
{
703
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
704 705
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
706

707 708 709 710 711 712 713
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

714
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
715 716
}

717
/*
718 719 720
 * Wake up functions.
 */

721
/* Return the first worker.  Safe with preemption disabled */
722
static struct worker *first_worker(struct worker_pool *pool)
723
{
724
	if (unlikely(list_empty(&pool->idle_list)))
725 726
		return NULL;

727
	return list_first_entry(&pool->idle_list, struct worker, entry);
728 729 730 731
}

/**
 * wake_up_worker - wake up an idle worker
732
 * @pool: worker pool to wake worker from
733
 *
734
 * Wake up the first idle worker of @pool.
735 736
 *
 * CONTEXT:
737
 * spin_lock_irq(pool->lock).
738
 */
739
static void wake_up_worker(struct worker_pool *pool)
740
{
741
	struct worker *worker = first_worker(pool);
742 743 744 745 746

	if (likely(worker))
		wake_up_process(worker->task);
}

747
/**
748 749 750 751 752 753 754 755 756 757 758 759 760 761
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

762
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
763
		WARN_ON_ONCE(worker->pool->cpu != cpu);
764
		atomic_inc(get_pool_nr_running(worker->pool));
765
	}
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
787 788
	struct worker_pool *pool;
	atomic_t *nr_running;
789

790 791 792 793 794
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
795
	if (worker->flags & WORKER_NOT_RUNNING)
796 797
		return NULL;

798 799 800
	pool = worker->pool;
	nr_running = get_pool_nr_running(pool);

801 802 803 804 805 806 807 808
	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
809 810 811
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
812
	 * manipulating idle_list, so dereferencing idle_list without pool
813
	 * lock is safe.
814
	 */
815
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
816
		to_wakeup = first_worker(pool);
817 818 819 820 821
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
822
 * @worker: self
823 824 825
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
826 827 828
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
829
 *
830
 * CONTEXT:
831
 * spin_lock_irq(pool->lock)
832 833 834 835
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
836
	struct worker_pool *pool = worker->pool;
837

838 839
	WARN_ON_ONCE(worker->task != current);

840 841 842 843 844 845 846
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
847
		atomic_t *nr_running = get_pool_nr_running(pool);
848 849 850

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
851
			    !list_empty(&pool->worklist))
852
				wake_up_worker(pool);
853 854 855 856
		} else
			atomic_dec(nr_running);
	}

857 858 859 860
	worker->flags |= flags;
}

/**
861
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
862
 * @worker: self
863 864
 * @flags: flags to clear
 *
865
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
866
 *
867
 * CONTEXT:
868
 * spin_lock_irq(pool->lock)
869 870 871
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
872
	struct worker_pool *pool = worker->pool;
873 874
	unsigned int oflags = worker->flags;

875 876
	WARN_ON_ONCE(worker->task != current);

877
	worker->flags &= ~flags;
878

879 880 881 882 883
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
884 885
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
886
			atomic_inc(get_pool_nr_running(pool));
887 888
}

889 890
/**
 * find_worker_executing_work - find worker which is executing a work
891
 * @pool: pool of interest
892 893
 * @work: work to find worker for
 *
894 895
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
915 916
 *
 * CONTEXT:
917
 * spin_lock_irq(pool->lock).
918 919 920 921
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
922
 */
923
static struct worker *find_worker_executing_work(struct worker_pool *pool,
924
						 struct work_struct *work)
925
{
926 927 928
	struct worker *worker;
	struct hlist_node *tmp;

929
	hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
930 931 932
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
933 934 935
			return worker;

	return NULL;
936 937
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
953
 * spin_lock_irq(pool->lock).
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

979
static void cwq_activate_delayed_work(struct work_struct *work)
980
{
981
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
982 983 984 985 986 987 988

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

989 990 991 992 993 994 995 996
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	cwq_activate_delayed_work(work);
}

997 998 999 1000 1001 1002 1003 1004 1005
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
1006
 * spin_lock_irq(pool->lock).
1007
 */
1008
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1009 1010 1011 1012 1013 1014 1015
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

1016 1017 1018 1019 1020
	cwq->nr_active--;
	if (!list_empty(&cwq->delayed_works)) {
		/* one down, submit a delayed one */
		if (cwq->nr_active < cwq->max_active)
			cwq_activate_first_delayed(cwq);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1042
/**
1043
 * try_to_grab_pending - steal work item from worklist and disable irq
1044 1045
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1046
 * @flags: place to store irq state
1047 1048 1049 1050 1051 1052 1053
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1054 1055
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1056
 *
1057
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1058 1059 1060
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1061 1062 1063 1064
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1065
 * This function is safe to call from any context including IRQ handler.
1066
 */
1067 1068
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1069
{
1070
	struct worker_pool *pool;
1071
	struct cpu_workqueue_struct *cwq;
1072

1073 1074
	local_irq_save(*flags);

1075 1076 1077 1078
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1079 1080 1081 1082 1083
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1084 1085 1086 1087 1088
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1089 1090 1091 1092 1093 1094 1095
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1096 1097
	pool = get_work_pool(work);
	if (!pool)
1098
		goto fail;
1099

1100
	spin_lock(&pool->lock);
1101 1102 1103 1104 1105 1106 1107 1108 1109
	/*
	 * work->data is guaranteed to point to cwq only while the work
	 * item is queued on cwq->wq, and both updating work->data to point
	 * to cwq on queueing and to pool on dequeueing are done under
	 * cwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to cwq which is associated with a locked pool, the work
	 * item is currently queued on that pool.
	 */
	cwq = get_work_cwq(work);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	if (cwq && cwq->pool == pool) {
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
		 * on the delayed_list, will confuse cwq->nr_active
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
			cwq_activate_delayed_work(work);

		list_del_init(&work->entry);
		cwq_dec_nr_in_flight(get_work_cwq(work), get_work_color(work));

		/* work->data points to cwq iff queued, point to pool */
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1131
	}
1132
	spin_unlock(&pool->lock);
1133 1134 1135 1136 1137
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1138
	return -EAGAIN;
1139 1140
}

T
Tejun Heo 已提交
1141
/**
1142
 * insert_work - insert a work into a pool
T
Tejun Heo 已提交
1143 1144 1145 1146 1147
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1148 1149
 * Insert @work which belongs to @cwq after @head.  @extra_flags is or'd to
 * work_struct flags.
T
Tejun Heo 已提交
1150 1151
 *
 * CONTEXT:
1152
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1153
 */
O
Oleg Nesterov 已提交
1154
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1155 1156
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1157
{
1158
	struct worker_pool *pool = cwq->pool;
1159

T
Tejun Heo 已提交
1160
	/* we own @work, set data and link */
1161
	set_work_cwq(work, cwq, extra_flags);
1162
	list_add_tail(&work->entry, head);
1163 1164 1165 1166 1167 1168 1169 1170

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1171 1172
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1173 1174
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

1185
	for_each_wq_cpu(cpu) {
1186 1187
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		struct worker_pool *pool = cwq->pool;
1188 1189 1190 1191
		struct worker *worker;
		struct hlist_node *pos;
		int i;

1192
		spin_lock_irqsave(&pool->lock, flags);
1193
		for_each_busy_worker(worker, i, pos, pool) {
1194 1195
			if (worker->task != current)
				continue;
1196
			spin_unlock_irqrestore(&pool->lock, flags);
1197 1198 1199 1200 1201 1202
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
1203
		spin_unlock_irqrestore(&pool->lock, flags);
1204 1205 1206 1207
	}
	return false;
}

T
Tejun Heo 已提交
1208
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1209 1210
			 struct work_struct *work)
{
1211 1212
	bool highpri = wq->flags & WQ_HIGHPRI;
	struct worker_pool *pool;
1213
	struct cpu_workqueue_struct *cwq;
1214
	struct list_head *worklist;
1215
	unsigned int work_flags;
1216
	unsigned int req_cpu = cpu;
1217 1218 1219 1220 1221 1222 1223 1224

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1225

1226
	debug_work_activate(work);
1227

1228
	/* if dying, only works from the same workqueue are allowed */
1229
	if (unlikely(wq->flags & WQ_DRAINING) &&
1230
	    WARN_ON_ONCE(!is_chained_work(wq)))
1231 1232
		return;

1233
	/* determine pool to use */
1234
	if (!(wq->flags & WQ_UNBOUND)) {
1235
		struct worker_pool *last_pool;
1236

1237
		if (cpu == WORK_CPU_UNBOUND)
1238 1239
			cpu = raw_smp_processor_id();

1240
		/*
1241 1242 1243 1244
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1245
		 */
1246
		pool = get_std_worker_pool(cpu, highpri);
1247
		last_pool = get_work_pool(work);
1248

1249
		if (last_pool && last_pool != pool) {
1250 1251
			struct worker *worker;

1252
			spin_lock(&last_pool->lock);
1253

1254
			worker = find_worker_executing_work(last_pool, work);
1255 1256

			if (worker && worker->current_cwq->wq == wq)
1257
				pool = last_pool;
1258 1259
			else {
				/* meh... not running there, queue here */
1260 1261
				spin_unlock(&last_pool->lock);
				spin_lock(&pool->lock);
1262
			}
1263
		} else {
1264
			spin_lock(&pool->lock);
1265
		}
1266
	} else {
1267 1268
		pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
		spin_lock(&pool->lock);
1269 1270
	}

1271 1272
	/* pool determined, get cwq and queue */
	cwq = get_cwq(pool->cpu, wq);
1273
	trace_workqueue_queue_work(req_cpu, cwq, work);
1274

1275
	if (WARN_ON(!list_empty(&work->entry))) {
1276
		spin_unlock(&pool->lock);
1277 1278
		return;
	}
1279

1280
	cwq->nr_in_flight[cwq->work_color]++;
1281
	work_flags = work_color_to_flags(cwq->work_color);
1282 1283

	if (likely(cwq->nr_active < cwq->max_active)) {
1284
		trace_workqueue_activate_work(work);
1285
		cwq->nr_active++;
1286
		worklist = &cwq->pool->worklist;
1287 1288
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1289
		worklist = &cwq->delayed_works;
1290
	}
1291

1292
	insert_work(cwq, work, worklist, work_flags);
1293

1294
	spin_unlock(&pool->lock);
L
Linus Torvalds 已提交
1295 1296
}

1297
/**
1298 1299
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1300 1301 1302
 * @wq: workqueue to use
 * @work: work to queue
 *
1303
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1304
 *
1305 1306
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1307
 */
1308 1309
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1310
{
1311
	bool ret = false;
1312
	unsigned long flags;
1313

1314
	local_irq_save(flags);
1315

1316
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1317
		__queue_work(cpu, wq, work);
1318
		ret = true;
1319
	}
1320

1321
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1322 1323
	return ret;
}
1324
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1325

1326
/**
1327
 * queue_work - queue work on a workqueue
1328 1329 1330
 * @wq: workqueue to use
 * @work: work to queue
 *
1331
 * Returns %false if @work was already on a queue, %true otherwise.
1332
 *
1333 1334
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1335
 */
1336
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1337
{
1338
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1339
}
1340
EXPORT_SYMBOL_GPL(queue_work);
1341

1342
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1343
{
1344
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1345

1346
	/* should have been called from irqsafe timer with irq already off */
1347
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1348
}
1349
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1350

1351 1352
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1353
{
1354 1355 1356 1357 1358
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1359 1360
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1373
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1374

1375
	dwork->wq = wq;
1376
	dwork->cpu = cpu;
1377 1378 1379 1380 1381 1382
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1383 1384
}

1385 1386 1387 1388
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1389
 * @dwork: work to queue
1390 1391
 * @delay: number of jiffies to wait before queueing
 *
1392 1393 1394
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1395
 */
1396 1397
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1398
{
1399
	struct work_struct *work = &dwork->work;
1400
	bool ret = false;
1401
	unsigned long flags;
1402

1403 1404
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1405

1406
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1407
		__queue_delayed_work(cpu, wq, dwork, delay);
1408
		ret = true;
1409
	}
1410

1411
	local_irq_restore(flags);
1412 1413
	return ret;
}
1414
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1415

1416 1417 1418 1419 1420 1421
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1422
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1423
 */
1424
bool queue_delayed_work(struct workqueue_struct *wq,
1425 1426
			struct delayed_work *dwork, unsigned long delay)
{
1427
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1428 1429
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1430

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1446
 * This function is safe to call from any context including IRQ handler.
1447 1448 1449 1450 1451 1452 1453
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1454

1455 1456 1457
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1458

1459 1460 1461
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1462
	}
1463 1464

	/* -ENOENT from try_to_grab_pending() becomes %true */
1465 1466
	return ret;
}
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1483

T
Tejun Heo 已提交
1484 1485 1486 1487 1488 1489 1490 1491
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1492
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1493 1494
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1495
{
1496
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1497 1498 1499 1500 1501

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1502 1503
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1504
	pool->nr_idle++;
1505
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1506 1507

	/* idle_list is LIFO */
1508
	list_add(&worker->entry, &pool->idle_list);
1509

1510 1511
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1512

1513
	/*
1514
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1515
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1516 1517
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1518
	 */
1519
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1520
		     pool->nr_workers == pool->nr_idle &&
1521
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1531
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1532 1533 1534
 */
static void worker_leave_idle(struct worker *worker)
{
1535
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1536 1537

	BUG_ON(!(worker->flags & WORKER_IDLE));
1538
	worker_clr_flags(worker, WORKER_IDLE);
1539
	pool->nr_idle--;
T
Tejun Heo 已提交
1540 1541 1542
	list_del_init(&worker->entry);
}

1543
/**
1544
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1556
 * verbatim as it's best effort and blocking and pool may be
1557 1558
 * [dis]associated in the meantime.
 *
1559
 * This function tries set_cpus_allowed() and locks pool and verifies the
1560
 * binding against %POOL_DISASSOCIATED which is set during
1561 1562 1563
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1564 1565
 *
 * CONTEXT:
1566
 * Might sleep.  Called without any lock but returns with pool->lock
1567 1568 1569
 * held.
 *
 * RETURNS:
1570
 * %true if the associated pool is online (@worker is successfully
1571 1572 1573
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1574
__acquires(&pool->lock)
1575
{
1576
	struct worker_pool *pool = worker->pool;
1577 1578 1579
	struct task_struct *task = worker->task;

	while (true) {
1580
		/*
1581 1582 1583
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1584
		 * against POOL_DISASSOCIATED.
1585
		 */
1586
		if (!(pool->flags & POOL_DISASSOCIATED))
1587
			set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
1588

1589
		spin_lock_irq(&pool->lock);
1590
		if (pool->flags & POOL_DISASSOCIATED)
1591
			return false;
1592
		if (task_cpu(task) == pool->cpu &&
1593
		    cpumask_equal(&current->cpus_allowed,
1594
				  get_cpu_mask(pool->cpu)))
1595
			return true;
1596
		spin_unlock_irq(&pool->lock);
1597

1598 1599 1600 1601 1602 1603
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1604
		cpu_relax();
1605
		cond_resched();
1606 1607 1608
	}
}

1609
/*
1610
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1611
 * list_empty(@worker->entry) before leaving idle and call this function.
1612 1613 1614
 */
static void idle_worker_rebind(struct worker *worker)
{
1615 1616 1617
	/* CPU may go down again inbetween, clear UNBOUND only on success */
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1618

1619 1620
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1621
	spin_unlock_irq(&worker->pool->lock);
1622 1623
}

1624
/*
1625
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1626 1627 1628
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1629
 */
1630
static void busy_worker_rebind_fn(struct work_struct *work)
1631 1632 1633
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1634 1635
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1636

1637
	spin_unlock_irq(&worker->pool->lock);
1638 1639
}

1640
/**
1641 1642
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1643
 *
1644
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1645 1646
 * is different for idle and busy ones.
 *
1647 1648 1649 1650
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1651
 *
1652 1653 1654 1655
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1656
 *
1657 1658 1659 1660
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1661
 */
1662
static void rebind_workers(struct worker_pool *pool)
1663
{
1664
	struct worker *worker, *n;
1665 1666 1667
	struct hlist_node *pos;
	int i;

1668 1669
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1670

1671
	/* dequeue and kick idle ones */
1672 1673 1674 1675 1676 1677
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1678

1679 1680 1681 1682 1683 1684
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1685

1686 1687 1688 1689
	/* rebind busy workers */
	for_each_busy_worker(worker, i, pos, pool) {
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1690

1691 1692 1693
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1694

1695
		debug_work_activate(rebind_work);
1696

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
		/*
		 * wq doesn't really matter but let's keep @worker->pool
		 * and @cwq->pool consistent for sanity.
		 */
		if (std_worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

		insert_work(get_cwq(pool->cpu, wq), rebind_work,
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1709
	}
1710 1711
}

T
Tejun Heo 已提交
1712 1713 1714 1715 1716
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1717 1718
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1719
		INIT_LIST_HEAD(&worker->scheduled);
1720
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1721 1722
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1723
	}
T
Tejun Heo 已提交
1724 1725 1726 1727 1728
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1729
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1730
 *
1731
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1741
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1742
{
1743
	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1744
	struct worker *worker = NULL;
1745
	int id = -1;
T
Tejun Heo 已提交
1746

1747
	spin_lock_irq(&pool->lock);
1748
	while (ida_get_new(&pool->worker_ida, &id)) {
1749
		spin_unlock_irq(&pool->lock);
1750
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1751
			goto fail;
1752
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1753
	}
1754
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1755 1756 1757 1758 1759

	worker = alloc_worker();
	if (!worker)
		goto fail;

1760
	worker->pool = pool;
T
Tejun Heo 已提交
1761 1762
	worker->id = id;

1763
	if (pool->cpu != WORK_CPU_UNBOUND)
1764
		worker->task = kthread_create_on_node(worker_thread,
1765 1766
					worker, cpu_to_node(pool->cpu),
					"kworker/%u:%d%s", pool->cpu, id, pri);
1767 1768
	else
		worker->task = kthread_create(worker_thread, worker,
1769
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1770 1771 1772
	if (IS_ERR(worker->task))
		goto fail;

1773
	if (std_worker_pool_pri(pool))
1774 1775
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1776
	/*
1777
	 * Determine CPU binding of the new worker depending on
1778
	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1779 1780 1781 1782 1783
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1784
	 */
1785
	if (!(pool->flags & POOL_DISASSOCIATED)) {
1786
		kthread_bind(worker->task, pool->cpu);
1787
	} else {
1788
		worker->task->flags |= PF_THREAD_BOUND;
1789
		worker->flags |= WORKER_UNBOUND;
1790
	}
T
Tejun Heo 已提交
1791 1792 1793 1794

	return worker;
fail:
	if (id >= 0) {
1795
		spin_lock_irq(&pool->lock);
1796
		ida_remove(&pool->worker_ida, id);
1797
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1807
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1808 1809
 *
 * CONTEXT:
1810
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1811 1812 1813
 */
static void start_worker(struct worker *worker)
{
1814
	worker->flags |= WORKER_STARTED;
1815
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1816
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1817 1818 1819 1820 1821 1822 1823
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1824
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1825 1826
 *
 * CONTEXT:
1827
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1828 1829 1830
 */
static void destroy_worker(struct worker *worker)
{
1831
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1832 1833 1834 1835
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1836
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1837

T
Tejun Heo 已提交
1838
	if (worker->flags & WORKER_STARTED)
1839
		pool->nr_workers--;
T
Tejun Heo 已提交
1840
	if (worker->flags & WORKER_IDLE)
1841
		pool->nr_idle--;
T
Tejun Heo 已提交
1842 1843

	list_del_init(&worker->entry);
1844
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1845

1846
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1847

T
Tejun Heo 已提交
1848 1849 1850
	kthread_stop(worker->task);
	kfree(worker);

1851
	spin_lock_irq(&pool->lock);
1852
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1853 1854
}

1855
static void idle_worker_timeout(unsigned long __pool)
1856
{
1857
	struct worker_pool *pool = (void *)__pool;
1858

1859
	spin_lock_irq(&pool->lock);
1860

1861
	if (too_many_workers(pool)) {
1862 1863 1864 1865
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1866
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1867 1868 1869
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1870
			mod_timer(&pool->idle_timer, expires);
1871 1872
		else {
			/* it's been idle for too long, wake up manager */
1873
			pool->flags |= POOL_MANAGE_WORKERS;
1874
			wake_up_worker(pool);
1875
		}
1876 1877
	}

1878
	spin_unlock_irq(&pool->lock);
1879
}
1880

1881 1882 1883 1884
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1885
	unsigned int cpu;
1886 1887 1888 1889 1890

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1891
	cpu = cwq->pool->cpu;
1892 1893 1894
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1895
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1896 1897 1898 1899
		wake_up_process(wq->rescuer->task);
	return true;
}

1900
static void pool_mayday_timeout(unsigned long __pool)
1901
{
1902
	struct worker_pool *pool = (void *)__pool;
1903 1904
	struct work_struct *work;

1905
	spin_lock_irq(&pool->lock);
1906

1907
	if (need_to_create_worker(pool)) {
1908 1909 1910 1911 1912 1913
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1914
		list_for_each_entry(work, &pool->worklist, entry)
1915
			send_mayday(work);
L
Linus Torvalds 已提交
1916
	}
1917

1918
	spin_unlock_irq(&pool->lock);
1919

1920
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1921 1922
}

1923 1924
/**
 * maybe_create_worker - create a new worker if necessary
1925
 * @pool: pool to create a new worker for
1926
 *
1927
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1928 1929
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1930
 * sent to all rescuers with works scheduled on @pool to resolve
1931 1932 1933 1934 1935 1936
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1937
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1938 1939 1940 1941
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1942
 * false if no action was taken and pool->lock stayed locked, true
1943 1944
 * otherwise.
 */
1945
static bool maybe_create_worker(struct worker_pool *pool)
1946 1947
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1948
{
1949
	if (!need_to_create_worker(pool))
1950 1951
		return false;
restart:
1952
	spin_unlock_irq(&pool->lock);
1953

1954
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1955
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1956 1957 1958 1959

	while (true) {
		struct worker *worker;

1960
		worker = create_worker(pool);
1961
		if (worker) {
1962
			del_timer_sync(&pool->mayday_timer);
1963
			spin_lock_irq(&pool->lock);
1964
			start_worker(worker);
1965
			BUG_ON(need_to_create_worker(pool));
1966 1967 1968
			return true;
		}

1969
		if (!need_to_create_worker(pool))
1970
			break;
L
Linus Torvalds 已提交
1971

1972 1973
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1974

1975
		if (!need_to_create_worker(pool))
1976 1977 1978
			break;
	}

1979
	del_timer_sync(&pool->mayday_timer);
1980
	spin_lock_irq(&pool->lock);
1981
	if (need_to_create_worker(pool))
1982 1983 1984 1985 1986 1987
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1988
 * @pool: pool to destroy workers for
1989
 *
1990
 * Destroy @pool workers which have been idle for longer than
1991 1992 1993
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1994
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1995 1996 1997
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1998
 * false if no action was taken and pool->lock stayed locked, true
1999 2000
 * otherwise.
 */
2001
static bool maybe_destroy_workers(struct worker_pool *pool)
2002 2003
{
	bool ret = false;
L
Linus Torvalds 已提交
2004

2005
	while (too_many_workers(pool)) {
2006 2007
		struct worker *worker;
		unsigned long expires;
2008

2009
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2010
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2011

2012
		if (time_before(jiffies, expires)) {
2013
			mod_timer(&pool->idle_timer, expires);
2014
			break;
2015
		}
L
Linus Torvalds 已提交
2016

2017 2018
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2019
	}
2020

2021
	return ret;
2022 2023
}

2024
/**
2025 2026
 * manage_workers - manage worker pool
 * @worker: self
2027
 *
2028
 * Assume the manager role and manage the worker pool @worker belongs
2029
 * to.  At any given time, there can be only zero or one manager per
2030
 * pool.  The exclusion is handled automatically by this function.
2031 2032 2033 2034
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2035 2036
 *
 * CONTEXT:
2037
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2038 2039 2040
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2041 2042
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2043
 */
2044
static bool manage_workers(struct worker *worker)
2045
{
2046
	struct worker_pool *pool = worker->pool;
2047
	bool ret = false;
2048

2049
	if (pool->flags & POOL_MANAGING_WORKERS)
2050
		return ret;
2051

2052
	pool->flags |= POOL_MANAGING_WORKERS;
2053

2054 2055 2056 2057 2058 2059
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2060
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2061 2062
	 * manager against CPU hotplug.
	 *
2063
	 * assoc_mutex would always be free unless CPU hotplug is in
2064
	 * progress.  trylock first without dropping @pool->lock.
2065
	 */
2066
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2067
		spin_unlock_irq(&pool->lock);
2068
		mutex_lock(&pool->assoc_mutex);
2069 2070
		/*
		 * CPU hotplug could have happened while we were waiting
2071
		 * for assoc_mutex.  Hotplug itself can't handle us
2072
		 * because manager isn't either on idle or busy list, and
2073
		 * @pool's state and ours could have deviated.
2074
		 *
2075
		 * As hotplug is now excluded via assoc_mutex, we can
2076
		 * simply try to bind.  It will succeed or fail depending
2077
		 * on @pool's current state.  Try it and adjust
2078 2079 2080 2081 2082 2083
		 * %WORKER_UNBOUND accordingly.
		 */
		if (worker_maybe_bind_and_lock(worker))
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2084

2085 2086
		ret = true;
	}
2087

2088
	pool->flags &= ~POOL_MANAGE_WORKERS;
2089 2090

	/*
2091 2092
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2093
	 */
2094 2095
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2096

2097
	pool->flags &= ~POOL_MANAGING_WORKERS;
2098
	mutex_unlock(&pool->assoc_mutex);
2099
	return ret;
2100 2101
}

2102 2103
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2104
 * @worker: self
2105 2106 2107 2108 2109 2110 2111 2112 2113
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2114
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2115
 */
T
Tejun Heo 已提交
2116
static void process_one_work(struct worker *worker, struct work_struct *work)
2117 2118
__releases(&pool->lock)
__acquires(&pool->lock)
2119
{
2120
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2121
	struct worker_pool *pool = worker->pool;
2122
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2123
	int work_color;
2124
	struct worker *collision;
2125 2126 2127 2128 2129 2130 2131 2132
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2133 2134 2135
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2136
#endif
2137 2138 2139
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2140
	 * unbound or a disassociated pool.
2141
	 */
2142
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2143
		     !(pool->flags & POOL_DISASSOCIATED) &&
2144
		     raw_smp_processor_id() != pool->cpu);
2145

2146 2147 2148 2149 2150 2151
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2152
	collision = find_worker_executing_work(pool, work);
2153 2154 2155 2156 2157
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2158
	/* claim and dequeue */
2159
	debug_work_deactivate(work);
2160
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2161
	worker->current_work = work;
2162
	worker->current_func = work->func;
2163
	worker->current_cwq = cwq;
2164
	work_color = get_work_color(work);
2165

2166 2167
	list_del_init(&work->entry);

2168 2169 2170 2171 2172 2173 2174
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2175
	/*
2176
	 * Unbound pool isn't concurrency managed and work items should be
2177 2178
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2179 2180
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2181

2182
	/*
2183
	 * Record the last pool and clear PENDING which should be the last
2184
	 * update to @work.  Also, do this inside @pool->lock so that
2185 2186
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2187
	 */
2188
	set_work_pool_and_clear_pending(work, pool->id);
2189

2190
	spin_unlock_irq(&pool->lock);
2191

2192
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2193
	lock_map_acquire(&lockdep_map);
2194
	trace_workqueue_execute_start(work);
2195
	worker->current_func(work);
2196 2197 2198 2199 2200
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2201 2202 2203 2204
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2205 2206
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2207 2208
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2209 2210 2211 2212
		debug_show_held_locks(current);
		dump_stack();
	}

2213
	spin_lock_irq(&pool->lock);
2214

2215 2216 2217 2218
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2219
	/* we're done with it, release */
2220
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2221
	worker->current_work = NULL;
2222
	worker->current_func = NULL;
2223
	worker->current_cwq = NULL;
2224
	cwq_dec_nr_in_flight(cwq, work_color);
2225 2226
}

2227 2228 2229 2230 2231 2232 2233 2234 2235
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2236
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2237 2238 2239
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2240
{
2241 2242
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2243
						struct work_struct, entry);
T
Tejun Heo 已提交
2244
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2245 2246 2247
	}
}

T
Tejun Heo 已提交
2248 2249
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2250
 * @__worker: self
T
Tejun Heo 已提交
2251
 *
2252 2253
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2254 2255 2256
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2257
 */
T
Tejun Heo 已提交
2258
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2259
{
T
Tejun Heo 已提交
2260
	struct worker *worker = __worker;
2261
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2262

2263 2264
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2265
woke_up:
2266
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2267

2268 2269
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2270
		spin_unlock_irq(&pool->lock);
2271

2272
		/* if DIE is set, destruction is requested */
2273 2274 2275 2276 2277
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2278
		/* otherwise, rebind */
2279 2280
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2281
	}
2282

T
Tejun Heo 已提交
2283
	worker_leave_idle(worker);
2284
recheck:
2285
	/* no more worker necessary? */
2286
	if (!need_more_worker(pool))
2287 2288 2289
		goto sleep;

	/* do we need to manage? */
2290
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2291 2292
		goto recheck;

T
Tejun Heo 已提交
2293 2294 2295 2296 2297 2298 2299
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2300 2301 2302 2303 2304 2305 2306 2307
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2308
		struct work_struct *work =
2309
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2310 2311 2312 2313 2314 2315
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2316
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2317 2318 2319
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2320
		}
2321
	} while (keep_working(pool));
2322 2323

	worker_set_flags(worker, WORKER_PREP, false);
2324
sleep:
2325
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2326
		goto recheck;
2327

T
Tejun Heo 已提交
2328
	/*
2329 2330 2331 2332 2333
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2334 2335 2336
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2337
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2338 2339
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2340 2341
}

2342 2343
/**
 * rescuer_thread - the rescuer thread function
2344
 * @__rescuer: self
2345 2346 2347 2348
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
2349
 * Regular work processing on a pool may block trying to create a new
2350 2351 2352 2353 2354
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2355 2356
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2357 2358 2359 2360
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2361
static int rescuer_thread(void *__rescuer)
2362
{
2363 2364
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2365
	struct list_head *scheduled = &rescuer->scheduled;
2366
	bool is_unbound = wq->flags & WQ_UNBOUND;
2367 2368 2369
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2370 2371 2372 2373 2374 2375

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2376 2377 2378
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2379 2380
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2381
		rescuer->task->flags &= ~PF_WQ_WORKER;
2382
		return 0;
2383
	}
2384

2385 2386 2387 2388
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2389
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2390 2391
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2392
		struct worker_pool *pool = cwq->pool;
2393 2394 2395
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2396
		mayday_clear_cpu(cpu, wq->mayday_mask);
2397 2398

		/* migrate to the target cpu if possible */
2399
		rescuer->pool = pool;
2400 2401 2402 2403 2404 2405 2406
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2407
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2408 2409 2410 2411
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2412 2413

		/*
2414
		 * Leave this pool.  If keep_working() is %true, notify a
2415 2416 2417
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2418 2419
		if (keep_working(pool))
			wake_up_worker(pool);
2420

2421
		spin_unlock_irq(&pool->lock);
2422 2423
	}

2424 2425
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2426 2427
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2428 2429
}

O
Oleg Nesterov 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2441 2442 2443 2444
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2445 2446
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2447
 *
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2461 2462
 *
 * CONTEXT:
2463
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2464
 */
2465
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2466 2467
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2468
{
2469 2470 2471
	struct list_head *head;
	unsigned int linked = 0;

2472
	/*
2473
	 * debugobject calls are safe here even with pool->lock locked
2474 2475 2476 2477
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2478
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2479
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2480
	init_completion(&barr->done);
2481

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2497
	debug_work_activate(&barr->work);
2498 2499
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2500 2501
}

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2535
{
2536 2537
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2538

2539 2540 2541
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2542
	}
2543

2544
	for_each_cwq_cpu(cpu, wq) {
2545
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2546
		struct worker_pool *pool = cwq->pool;
O
Oleg Nesterov 已提交
2547

2548
		spin_lock_irq(&pool->lock);
2549

2550 2551
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2552

2553 2554 2555 2556 2557 2558
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2559

2560 2561 2562 2563
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2564

2565
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2566
	}
2567

2568 2569
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2570

2571
	return wait;
L
Linus Torvalds 已提交
2572 2573
}

2574
/**
L
Linus Torvalds 已提交
2575
 * flush_workqueue - ensure that any scheduled work has run to completion.
2576
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2577 2578 2579 2580
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2581 2582
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2583
 */
2584
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2585
{
2586 2587 2588 2589 2590 2591
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2592

2593 2594
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2656 2657 2658 2659
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2727
}
2728
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2729

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2760
		bool drained;
2761

2762
		spin_lock_irq(&cwq->pool->lock);
2763
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2764
		spin_unlock_irq(&cwq->pool->lock);
2765 2766

		if (drained)
2767 2768 2769 2770
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2771 2772
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2783
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2784
{
2785
	struct worker *worker = NULL;
2786
	struct worker_pool *pool;
2787 2788 2789
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2790 2791
	pool = get_work_pool(work);
	if (!pool)
2792
		return false;
2793

2794
	spin_lock_irq(&pool->lock);
2795 2796 2797 2798
	/* see the comment in try_to_grab_pending() with the same code */
	cwq = get_work_cwq(work);
	if (cwq) {
		if (unlikely(cwq->pool != pool))
T
Tejun Heo 已提交
2799
			goto already_gone;
2800
	} else {
2801
		worker = find_worker_executing_work(pool, work);
2802
		if (!worker)
T
Tejun Heo 已提交
2803
			goto already_gone;
2804
		cwq = worker->current_cwq;
2805
	}
2806

2807
	insert_wq_barrier(cwq, barr, work, worker);
2808
	spin_unlock_irq(&pool->lock);
2809

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2820
	lock_map_release(&cwq->wq->lockdep_map);
2821

2822
	return true;
T
Tejun Heo 已提交
2823
already_gone:
2824
	spin_unlock_irq(&pool->lock);
2825
	return false;
2826
}
2827 2828 2829 2830 2831

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2832 2833
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2834 2835 2836 2837 2838 2839 2840 2841 2842
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2843 2844 2845
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2846
	if (start_flush_work(work, &barr)) {
2847 2848 2849
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2850
	} else {
2851
		return false;
2852 2853
	}
}
2854
EXPORT_SYMBOL_GPL(flush_work);
2855

2856
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2857
{
2858
	unsigned long flags;
2859 2860 2861
	int ret;

	do {
2862 2863 2864 2865 2866 2867
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2868
			flush_work(work);
2869 2870
	} while (unlikely(ret < 0));

2871 2872 2873 2874
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2875
	flush_work(work);
2876
	clear_work_data(work);
2877 2878 2879
	return ret;
}

2880
/**
2881 2882
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2883
 *
2884 2885 2886 2887
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2888
 *
2889 2890
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2891
 *
2892
 * The caller must ensure that the workqueue on which @work was last
2893
 * queued can't be destroyed before this function returns.
2894 2895 2896
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2897
 */
2898
bool cancel_work_sync(struct work_struct *work)
2899
{
2900
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2901
}
2902
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2903

2904
/**
2905 2906
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2907
 *
2908 2909 2910
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2911
 *
2912 2913 2914
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2915
 */
2916 2917
bool flush_delayed_work(struct delayed_work *dwork)
{
2918
	local_irq_disable();
2919
	if (del_timer_sync(&dwork->timer))
2920
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2921
	local_irq_enable();
2922 2923 2924 2925
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2926
/**
2927 2928
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2929
 *
2930 2931 2932 2933 2934
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2935
 *
2936
 * This function is safe to call from any context including IRQ handler.
2937
 */
2938
bool cancel_delayed_work(struct delayed_work *dwork)
2939
{
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2950 2951
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2952
	local_irq_restore(flags);
2953
	return ret;
2954
}
2955
EXPORT_SYMBOL(cancel_delayed_work);
2956

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2967
{
2968
	return __cancel_work_timer(&dwork->work, true);
2969
}
2970
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2971

2972
/**
2973 2974 2975 2976 2977 2978
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2979
bool schedule_work_on(int cpu, struct work_struct *work)
2980
{
2981
	return queue_work_on(cpu, system_wq, work);
2982 2983 2984
}
EXPORT_SYMBOL(schedule_work_on);

2985 2986 2987 2988
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2989 2990
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2991 2992 2993 2994
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2995
 */
2996
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2997
{
2998
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
2999
}
3000
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3001

3002 3003 3004
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
3005
 * @dwork: job to be done
3006 3007 3008 3009 3010
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
3011 3012
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
3013
{
3014
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
3015
}
3016
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
3017

3018 3019
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3020 3021
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3022 3023 3024 3025
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3026
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3027
{
3028
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3029
}
3030
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3031

3032
/**
3033
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3034 3035
 * @func: the function to call
 *
3036 3037
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3038
 * schedule_on_each_cpu() is very slow.
3039 3040 3041
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3042
 */
3043
int schedule_on_each_cpu(work_func_t func)
3044 3045
{
	int cpu;
3046
	struct work_struct __percpu *works;
3047

3048 3049
	works = alloc_percpu(struct work_struct);
	if (!works)
3050
		return -ENOMEM;
3051

3052 3053
	get_online_cpus();

3054
	for_each_online_cpu(cpu) {
3055 3056 3057
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3058
		schedule_work_on(cpu, work);
3059
	}
3060 3061 3062 3063

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3064
	put_online_cpus();
3065
	free_percpu(works);
3066 3067 3068
	return 0;
}

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3093 3094
void flush_scheduled_work(void)
{
3095
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3096
}
3097
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3098

3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3111
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3112 3113
{
	if (!in_interrupt()) {
3114
		fn(&ew->work);
3115 3116 3117
		return 0;
	}

3118
	INIT_WORK(&ew->work, fn);
3119 3120 3121 3122 3123 3124
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3125 3126
int keventd_up(void)
{
3127
	return system_wq != NULL;
L
Linus Torvalds 已提交
3128 3129
}

3130
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3131
{
3132
	/*
T
Tejun Heo 已提交
3133 3134 3135
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3136
	 */
T
Tejun Heo 已提交
3137 3138 3139
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3140

3141
	if (!(wq->flags & WQ_UNBOUND))
3142
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3143
	else {
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3156
	}
3157

3158
	/* just in case, make sure it's actually aligned */
3159 3160
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3161 3162
}

3163
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3164
{
3165
	if (!(wq->flags & WQ_UNBOUND))
3166 3167 3168
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3169
		kfree(*(void **)(wq->cpu_wq.single + 1));
3170
	}
T
Tejun Heo 已提交
3171 3172
}

3173 3174
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3175
{
3176 3177 3178
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3179 3180
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3181

3182
	return clamp_val(max_active, 1, lim);
3183 3184
}

3185
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3186 3187 3188
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3189
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3190
{
3191
	va_list args, args1;
L
Linus Torvalds 已提交
3192
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3193
	unsigned int cpu;
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3208

3209 3210 3211 3212 3213 3214 3215
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3216
	max_active = max_active ?: WQ_DFL_ACTIVE;
3217
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3218

3219
	/* init wq */
3220
	wq->flags = flags;
3221
	wq->saved_max_active = max_active;
3222 3223 3224 3225
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3226

3227
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3228
	INIT_LIST_HEAD(&wq->list);
3229

3230 3231 3232
	if (alloc_cwqs(wq) < 0)
		goto err;

3233
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3234 3235
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

T
Tejun Heo 已提交
3236
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
T
Tejun Heo 已提交
3237
		cwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3238
		cwq->wq = wq;
3239
		cwq->flush_color = -1;
3240 3241
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3242
	}
T
Tejun Heo 已提交
3243

3244 3245 3246
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3247
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3248 3249 3250 3251 3252 3253
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3254 3255
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3256
					       wq->name);
3257 3258 3259 3260 3261
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3262 3263
	}

3264 3265 3266 3267 3268
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3269
	spin_lock(&workqueue_lock);
3270

3271
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3272
		for_each_cwq_cpu(cpu, wq)
3273 3274
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3275
	list_add(&wq->list, &workqueues);
3276

T
Tejun Heo 已提交
3277 3278
	spin_unlock(&workqueue_lock);

3279
	return wq;
T
Tejun Heo 已提交
3280 3281
err:
	if (wq) {
3282
		free_cwqs(wq);
3283
		free_mayday_mask(wq->mayday_mask);
3284
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3285 3286 3287
		kfree(wq);
	}
	return NULL;
3288
}
3289
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3290

3291 3292 3293 3294 3295 3296 3297 3298
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3299
	unsigned int cpu;
3300

3301 3302
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3303

3304 3305 3306 3307
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3308
	spin_lock(&workqueue_lock);
3309
	list_del(&wq->list);
3310
	spin_unlock(&workqueue_lock);
3311

3312
	/* sanity check */
3313
	for_each_cwq_cpu(cpu, wq) {
3314 3315 3316 3317 3318
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3319 3320
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3321
	}
3322

3323 3324
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3325
		free_mayday_mask(wq->mayday_mask);
3326
		kfree(wq->rescuer);
3327 3328
	}

3329
	free_cwqs(wq);
3330 3331 3332 3333
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3334 3335 3336 3337 3338 3339 3340 3341 3342
/**
 * cwq_set_max_active - adjust max_active of a cwq
 * @cwq: target cpu_workqueue_struct
 * @max_active: new max_active value.
 *
 * Set @cwq->max_active to @max_active and activate delayed works if
 * increased.
 *
 * CONTEXT:
3343
 * spin_lock_irq(pool->lock).
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
 */
static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
{
	cwq->max_active = max_active;

	while (!list_empty(&cwq->delayed_works) &&
	       cwq->nr_active < cwq->max_active)
		cwq_activate_first_delayed(cwq);
}

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3368
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3369 3370 3371 3372 3373

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3374
	for_each_cwq_cpu(cpu, wq) {
3375 3376
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		struct worker_pool *pool = cwq->pool;
3377

3378
		spin_lock_irq(&pool->lock);
3379

3380
		if (!(wq->flags & WQ_FREEZABLE) ||
3381 3382
		    !(pool->flags & POOL_FREEZING))
			cwq_set_max_active(cwq, max_active);
3383

3384
		spin_unlock_irq(&pool->lock);
3385
	}
3386

3387
	spin_unlock(&workqueue_lock);
3388
}
3389
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3390

3391
/**
3392 3393 3394
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3395
 *
3396 3397 3398
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3399
 *
3400 3401
 * RETURNS:
 * %true if congested, %false otherwise.
3402
 */
3403
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3404
{
3405 3406 3407
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3408
}
3409
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3410

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3423
{
3424
	struct worker_pool *pool = get_work_pool(work);
3425 3426
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3427

3428 3429
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3430

3431 3432 3433 3434 3435 3436
	if (pool) {
		spin_lock_irqsave(&pool->lock, flags);
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
		spin_unlock_irqrestore(&pool->lock, flags);
	}
L
Linus Torvalds 已提交
3437

3438
	return ret;
L
Linus Torvalds 已提交
3439
}
3440
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3441

3442 3443 3444
/*
 * CPU hotplug.
 *
3445 3446
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
3447
 * pool which make migrating pending and scheduled works very
3448
 * difficult to implement without impacting hot paths.  Secondly,
3449
 * worker pools serve mix of short, long and very long running works making
3450 3451
 * blocked draining impractical.
 *
3452
 * This is solved by allowing the pools to be disassociated from the CPU
3453 3454
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3455
 */
L
Linus Torvalds 已提交
3456

3457
static void wq_unbind_fn(struct work_struct *work)
3458
{
3459
	int cpu = smp_processor_id();
3460
	struct worker_pool *pool;
3461 3462 3463
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3464

3465 3466
	for_each_std_worker_pool(pool, cpu) {
		BUG_ON(cpu != smp_processor_id());
3467

3468 3469
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3470

3471 3472 3473 3474 3475 3476 3477
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3478
		list_for_each_entry(worker, &pool->idle_list, entry)
3479
			worker->flags |= WORKER_UNBOUND;
3480

3481 3482
		for_each_busy_worker(worker, i, pos, pool)
			worker->flags |= WORKER_UNBOUND;
3483

3484
		pool->flags |= POOL_DISASSOCIATED;
3485

3486 3487 3488
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3489

3490
	/*
3491
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3492 3493
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3494 3495
	 */
	schedule();
3496

3497
	/*
3498 3499
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3500 3501 3502
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3503 3504 3505 3506
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3507
	 */
3508
	for_each_std_worker_pool(pool, cpu)
3509
		atomic_set(get_pool_nr_running(pool), 0);
3510 3511
}

T
Tejun Heo 已提交
3512 3513 3514 3515
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3516
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3517 3518
					       unsigned long action,
					       void *hcpu)
3519 3520
{
	unsigned int cpu = (unsigned long)hcpu;
3521
	struct worker_pool *pool;
3522

T
Tejun Heo 已提交
3523
	switch (action & ~CPU_TASKS_FROZEN) {
3524
	case CPU_UP_PREPARE:
3525
		for_each_std_worker_pool(pool, cpu) {
3526 3527 3528 3529 3530 3531 3532 3533 3534
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3535
			spin_lock_irq(&pool->lock);
3536
			start_worker(worker);
3537
			spin_unlock_irq(&pool->lock);
3538
		}
T
Tejun Heo 已提交
3539
		break;
3540

3541 3542
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3543
		for_each_std_worker_pool(pool, cpu) {
3544 3545 3546
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3547
			pool->flags &= ~POOL_DISASSOCIATED;
3548 3549 3550 3551 3552
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3553
		break;
3554
	}
3555 3556 3557 3558 3559 3560 3561
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3562
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3563 3564 3565
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3566 3567 3568
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3569 3570
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3571
		/* unbinding should happen on the local CPU */
3572
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3573
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3574 3575
		flush_work(&unbind_work);
		break;
3576 3577 3578 3579
	}
	return NOTIFY_OK;
}

3580
#ifdef CONFIG_SMP
3581

3582
struct work_for_cpu {
3583
	struct work_struct work;
3584 3585 3586 3587 3588
	long (*fn)(void *);
	void *arg;
	long ret;
};

3589
static void work_for_cpu_fn(struct work_struct *work)
3590
{
3591 3592
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3593 3594 3595 3596 3597 3598 3599 3600 3601
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3602 3603
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3604
 * The caller must not hold any locks which would prevent @fn from completing.
3605 3606 3607
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3608
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3609

3610 3611 3612
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3613 3614 3615 3616 3617
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3618 3619 3620 3621 3622
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3623 3624
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
3625
 * pool->worklist.
3626 3627
 *
 * CONTEXT:
3628
 * Grabs and releases workqueue_lock and pool->lock's.
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3639
	for_each_wq_cpu(cpu) {
3640
		struct worker_pool *pool;
3641
		struct workqueue_struct *wq;
3642

3643
		for_each_std_worker_pool(pool, cpu) {
3644
			spin_lock_irq(&pool->lock);
3645

3646 3647
			WARN_ON_ONCE(pool->flags & POOL_FREEZING);
			pool->flags |= POOL_FREEZING;
3648

3649 3650
			list_for_each_entry(wq, &workqueues, list) {
				struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3651

3652 3653 3654 3655
				if (cwq && cwq->pool == pool &&
				    (wq->flags & WQ_FREEZABLE))
					cwq->max_active = 0;
			}
3656

3657 3658
			spin_unlock_irq(&pool->lock);
		}
3659 3660 3661 3662 3663 3664
	}

	spin_unlock(&workqueue_lock);
}

/**
3665
 * freeze_workqueues_busy - are freezable workqueues still busy?
3666 3667 3668 3669 3670 3671 3672 3673
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3674 3675
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3686
	for_each_wq_cpu(cpu) {
3687
		struct workqueue_struct *wq;
3688 3689 3690 3691 3692 3693 3694
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3695
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3714
 * frozen works are transferred to their respective pool worklists.
3715 3716
 *
 * CONTEXT:
3717
 * Grabs and releases workqueue_lock and pool->lock's.
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3728
	for_each_wq_cpu(cpu) {
3729
		struct worker_pool *pool;
3730
		struct workqueue_struct *wq;
3731

3732
		for_each_std_worker_pool(pool, cpu) {
3733
			spin_lock_irq(&pool->lock);
3734

3735 3736
			WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
			pool->flags &= ~POOL_FREEZING;
3737

3738 3739
			list_for_each_entry(wq, &workqueues, list) {
				struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3740

3741 3742 3743
				if (!cwq || cwq->pool != pool ||
				    !(wq->flags & WQ_FREEZABLE))
					continue;
3744

3745 3746 3747
				/* restore max_active and repopulate worklist */
				cwq_set_max_active(cwq, wq->saved_max_active);
			}
3748

3749
			wake_up_worker(pool);
3750 3751

			spin_unlock_irq(&pool->lock);
3752
		}
3753 3754 3755 3756 3757 3758 3759 3760
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3761
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3762
{
T
Tejun Heo 已提交
3763 3764
	unsigned int cpu;

3765 3766
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3767
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
3768

3769
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3770
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3771

3772 3773
	/* initialize CPU pools */
	for_each_wq_cpu(cpu) {
3774
		struct worker_pool *pool;
3775

3776
		for_each_std_worker_pool(pool, cpu) {
3777
			spin_lock_init(&pool->lock);
3778
			pool->cpu = cpu;
3779
			pool->flags |= POOL_DISASSOCIATED;
3780 3781
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3782
			hash_init(pool->busy_hash);
3783

3784 3785 3786
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3787

3788
			setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3789 3790
				    (unsigned long)pool);

3791
			mutex_init(&pool->assoc_mutex);
3792
			ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3793 3794 3795

			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
3796
		}
3797 3798
	}

3799
	/* create the initial worker */
3800
	for_each_online_wq_cpu(cpu) {
3801
		struct worker_pool *pool;
3802

3803
		for_each_std_worker_pool(pool, cpu) {
3804 3805
			struct worker *worker;

3806 3807 3808
			if (cpu != WORK_CPU_UNBOUND)
				pool->flags &= ~POOL_DISASSOCIATED;

3809
			worker = create_worker(pool);
3810
			BUG_ON(!worker);
3811
			spin_lock_irq(&pool->lock);
3812
			start_worker(worker);
3813
			spin_unlock_irq(&pool->lock);
3814
		}
3815 3816
	}

3817
	system_wq = alloc_workqueue("events", 0, 0);
3818
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3819
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3820 3821
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3822 3823
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3824
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3825
	       !system_unbound_wq || !system_freezable_wq);
3826
	return 0;
L
Linus Torvalds 已提交
3827
}
3828
early_initcall(init_workqueues);