workqueue.c 121.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/jhash.h>
45
#include <linux/hashtable.h>
46
#include <linux/rculist.h>
47

48
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
49

T
Tejun Heo 已提交
50
enum {
51 52
	/*
	 * worker_pool flags
53
	 *
54
	 * A bound pool is either associated or disassociated with its CPU.
55 56 57 58 59 60
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
61
	 * be executing on any CPU.  The pool behaves as an unbound one.
62
	 *
63 64
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
65
	 * create_worker() is in progress.
66
	 */
67
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
68
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
69
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78

79
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
80
				  WORKER_CPU_INTENSIVE,
81

82
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
83

84
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
85
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
86

87 88 89
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

90 91 92
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
93 94 95 96 97 98 99 100
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
101
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
102
};
L
Linus Torvalds 已提交
103 104

/*
T
Tejun Heo 已提交
105 106
 * Structure fields follow one of the following exclusion rules.
 *
107 108
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
109
 *
110 111 112
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
113
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
114
 *
115 116 117 118
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
119
 *
120 121
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
122
 * W: workqueue_lock protected.
123 124
 *
 * R: workqueue_lock protected for writes.  Sched-RCU protected for reads.
125 126 127
 *
 * FR: wq->flush_mutex and workqueue_lock protected for writes.  Sched-RCU
 *     protected for reads.
L
Linus Torvalds 已提交
128 129
 */

130
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
131

132
struct worker_pool {
133
	spinlock_t		lock;		/* the pool lock */
134
	int			cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
135
	int			id;		/* I: pool ID */
136
	unsigned int		flags;		/* X: flags */
137 138 139

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
140 141

	/* nr_idle includes the ones off idle_list for rebinding */
142 143 144 145 146 147
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

148
	/* a workers is either on busy_hash or idle_list, or the manager */
149 150 151
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

152
	/* see manage_workers() for details on the two manager mutexes */
153
	struct mutex		manager_arb;	/* manager arbitration */
154
	struct mutex		manager_mutex;	/* manager exclusion */
155
	struct ida		worker_ida;	/* L: for worker IDs */
156

T
Tejun Heo 已提交
157
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
158 159
	struct hlist_node	hash_node;	/* W: unbound_pool_hash node */
	int			refcnt;		/* W: refcnt for unbound pools */
T
Tejun Heo 已提交
160

161 162 163 164 165 166
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
167 168 169 170 171 172

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
173 174
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
175
/*
176 177 178 179
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
180
 */
181
struct pool_workqueue {
182
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
183
	struct workqueue_struct *wq;		/* I: the owning workqueue */
184 185
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
186
	int			refcnt;		/* L: reference count */
187 188
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
189
	int			nr_active;	/* L: nr of active works */
190
	int			max_active;	/* L: max active works */
191
	struct list_head	delayed_works;	/* L: delayed works */
192
	struct list_head	pwqs_node;	/* FR: node on wq->pwqs */
193
	struct list_head	mayday_node;	/* W: node on wq->maydays */
T
Tejun Heo 已提交
194 195 196 197 198 199 200 201 202

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
	 * determined without grabbing workqueue_lock.
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
203
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
204

205 206 207 208 209 210 211 212 213
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

214 215
struct wq_device;

L
Linus Torvalds 已提交
216
/*
217 218
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
219 220
 */
struct workqueue_struct {
221
	unsigned int		flags;		/* W: WQ_* flags */
222
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
223
	struct list_head	pwqs;		/* FR: all pwqs of this wq */
T
Tejun Heo 已提交
224
	struct list_head	list;		/* W: list of all workqueues */
225 226 227 228

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
229
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
230 231 232 233
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

234
	struct list_head	maydays;	/* W: pwqs requesting rescue */
235 236
	struct worker		*rescuer;	/* I: rescue worker */

237
	int			nr_drainers;	/* W: drain in progress */
238
	int			saved_max_active; /* W: saved pwq max_active */
239 240 241 242

#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
243
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
244
	struct lockdep_map	lockdep_map;
245
#endif
246
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
247 248
};

249 250
static struct kmem_cache *pwq_cache;

251
/* W: hash of all unbound pools keyed by pool->attrs */
252 253
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

254
/* I: attributes used when instantiating standard unbound pools on demand */
255 256
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

257 258
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
259
struct workqueue_struct *system_highpri_wq __read_mostly;
260
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
261
struct workqueue_struct *system_long_wq __read_mostly;
262
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
263
struct workqueue_struct *system_unbound_wq __read_mostly;
264
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
265
struct workqueue_struct *system_freezable_wq __read_mostly;
266
EXPORT_SYMBOL_GPL(system_freezable_wq);
267

268 269 270
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

271 272 273 274 275
#define assert_rcu_or_wq_lock()						\
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
			   lockdep_is_held(&workqueue_lock),		\
			   "sched RCU or workqueue lock should be held")

276 277 278
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
279
	     (pool)++)
280

281 282
#define for_each_busy_worker(worker, i, pool)				\
	hash_for_each(pool->busy_hash, i, worker, hentry)
283

T
Tejun Heo 已提交
284 285 286
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
287
 * @pi: integer used for iteration
288 289 290 291 292 293 294
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
295
 */
296 297
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
298 299
		if (({ assert_rcu_or_wq_lock(); false; })) { }		\
		else
T
Tejun Heo 已提交
300

301 302 303 304
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
305 306 307 308 309 310 311
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
312 313
 */
#define for_each_pwq(pwq, wq)						\
314 315 316
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
		if (({ assert_rcu_or_wq_lock(); false; })) { }		\
		else
317

318 319 320 321
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

322 323 324 325 326
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
362
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
398
	.debug_hint	= work_debug_hint,
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

434 435
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
436
static LIST_HEAD(workqueues);
437
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
438

439
/* the per-cpu worker pools */
440
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
441
				     cpu_worker_pools);
442

443
/*
444 445
 * R: idr of all pools.  Modifications are protected by workqueue_lock.
 * Read accesses are protected by sched-RCU protected.
446
 */
T
Tejun Heo 已提交
447 448
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
449
static int worker_thread(void *__worker);
450 451
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);
L
Linus Torvalds 已提交
452

T
Tejun Heo 已提交
453 454 455 456 457
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

458 459 460
	do {
		if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
			return -ENOMEM;
T
Tejun Heo 已提交
461

462 463 464 465
		spin_lock_irq(&workqueue_lock);
		ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
		spin_unlock_irq(&workqueue_lock);
	} while (ret == -EAGAIN);
T
Tejun Heo 已提交
466

467
	return ret;
468 469
}

470 471 472 473 474 475 476 477
/**
 * first_pwq - return the first pool_workqueue of the specified workqueue
 * @wq: the target workqueue
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 */
478
static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
479
{
480 481 482
	assert_rcu_or_wq_lock();
	return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
				      pwqs_node);
483 484
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
500

501
/*
502 503
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
504
 * is cleared and the high bits contain OFFQ flags and pool ID.
505
 *
506 507
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
508 509
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
510
 *
511
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
512
 * corresponding to a work.  Pool is available once the work has been
513
 * queued anywhere after initialization until it is sync canceled.  pwq is
514
 * available only while the work item is queued.
515
 *
516 517 518 519
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
520
 */
521 522
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
523
{
524
	WARN_ON_ONCE(!work_pending(work));
525 526
	atomic_long_set(&work->data, data | flags | work_static(work));
}
527

528
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
529 530
			 unsigned long extra_flags)
{
531 532
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
533 534
}

535 536 537 538 539 540 541
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

542 543
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
544
{
545 546 547 548 549 550 551
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
552
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
553
}
554

555
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
556
{
557 558
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
559 560
}

561
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
562
{
563
	unsigned long data = atomic_long_read(&work->data);
564

565
	if (data & WORK_STRUCT_PWQ)
566 567 568
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
569 570
}

571 572 573 574 575
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
576 577 578 579 580 581 582 583 584
 *
 * Pools are created and destroyed under workqueue_lock, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under workqueue_lock or with preemption disabled.
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
585 586
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
587
{
588
	unsigned long data = atomic_long_read(&work->data);
589
	int pool_id;
590

591 592
	assert_rcu_or_wq_lock();

593 594
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
595
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
596

597 598
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
599 600
		return NULL;

601
	return idr_find(&worker_pool_idr, pool_id);
602 603 604 605 606 607 608 609 610 611 612
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
613 614
	unsigned long data = atomic_long_read(&work->data);

615 616
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
617
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
618

619
	return data >> WORK_OFFQ_POOL_SHIFT;
620 621
}

622 623
static void mark_work_canceling(struct work_struct *work)
{
624
	unsigned long pool_id = get_work_pool_id(work);
625

626 627
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
628 629 630 631 632 633
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

634
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
635 636
}

637
/*
638 639
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
640
 * they're being called with pool->lock held.
641 642
 */

643
static bool __need_more_worker(struct worker_pool *pool)
644
{
645
	return !atomic_read(&pool->nr_running);
646 647
}

648
/*
649 650
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
651 652
 *
 * Note that, because unbound workers never contribute to nr_running, this
653
 * function will always return %true for unbound pools as long as the
654
 * worklist isn't empty.
655
 */
656
static bool need_more_worker(struct worker_pool *pool)
657
{
658
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
659
}
660

661
/* Can I start working?  Called from busy but !running workers. */
662
static bool may_start_working(struct worker_pool *pool)
663
{
664
	return pool->nr_idle;
665 666 667
}

/* Do I need to keep working?  Called from currently running workers. */
668
static bool keep_working(struct worker_pool *pool)
669
{
670 671
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
672 673 674
}

/* Do we need a new worker?  Called from manager. */
675
static bool need_to_create_worker(struct worker_pool *pool)
676
{
677
	return need_more_worker(pool) && !may_start_working(pool);
678
}
679

680
/* Do I need to be the manager? */
681
static bool need_to_manage_workers(struct worker_pool *pool)
682
{
683
	return need_to_create_worker(pool) ||
684
		(pool->flags & POOL_MANAGE_WORKERS);
685 686 687
}

/* Do we have too many workers and should some go away? */
688
static bool too_many_workers(struct worker_pool *pool)
689
{
690
	bool managing = mutex_is_locked(&pool->manager_arb);
691 692
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
693

694 695 696 697 698 699 700
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

701
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
702 703
}

704
/*
705 706 707
 * Wake up functions.
 */

708
/* Return the first worker.  Safe with preemption disabled */
709
static struct worker *first_worker(struct worker_pool *pool)
710
{
711
	if (unlikely(list_empty(&pool->idle_list)))
712 713
		return NULL;

714
	return list_first_entry(&pool->idle_list, struct worker, entry);
715 716 717 718
}

/**
 * wake_up_worker - wake up an idle worker
719
 * @pool: worker pool to wake worker from
720
 *
721
 * Wake up the first idle worker of @pool.
722 723
 *
 * CONTEXT:
724
 * spin_lock_irq(pool->lock).
725
 */
726
static void wake_up_worker(struct worker_pool *pool)
727
{
728
	struct worker *worker = first_worker(pool);
729 730 731 732 733

	if (likely(worker))
		wake_up_process(worker->task);
}

734
/**
735 736 737 738 739 740 741 742 743 744
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
745
void wq_worker_waking_up(struct task_struct *task, int cpu)
746 747 748
{
	struct worker *worker = kthread_data(task);

749
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
750
		WARN_ON_ONCE(worker->pool->cpu != cpu);
751
		atomic_inc(&worker->pool->nr_running);
752
	}
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
770
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
771 772
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
773
	struct worker_pool *pool;
774

775 776 777 778 779
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
780
	if (worker->flags & WORKER_NOT_RUNNING)
781 782
		return NULL;

783 784
	pool = worker->pool;

785
	/* this can only happen on the local cpu */
786 787
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
788 789 790 791 792 793

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
794 795 796
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
797
	 * manipulating idle_list, so dereferencing idle_list without pool
798
	 * lock is safe.
799
	 */
800 801
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
802
		to_wakeup = first_worker(pool);
803 804 805 806 807
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
808
 * @worker: self
809 810 811
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
812 813 814
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
815
 *
816
 * CONTEXT:
817
 * spin_lock_irq(pool->lock)
818 819 820 821
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
822
	struct worker_pool *pool = worker->pool;
823

824 825
	WARN_ON_ONCE(worker->task != current);

826 827 828 829 830 831 832 833
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
834
			if (atomic_dec_and_test(&pool->nr_running) &&
835
			    !list_empty(&pool->worklist))
836
				wake_up_worker(pool);
837
		} else
838
			atomic_dec(&pool->nr_running);
839 840
	}

841 842 843 844
	worker->flags |= flags;
}

/**
845
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
846
 * @worker: self
847 848
 * @flags: flags to clear
 *
849
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
850
 *
851
 * CONTEXT:
852
 * spin_lock_irq(pool->lock)
853 854 855
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
856
	struct worker_pool *pool = worker->pool;
857 858
	unsigned int oflags = worker->flags;

859 860
	WARN_ON_ONCE(worker->task != current);

861
	worker->flags &= ~flags;
862

863 864 865 866 867
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
868 869
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
870
			atomic_inc(&pool->nr_running);
871 872
}

873 874
/**
 * find_worker_executing_work - find worker which is executing a work
875
 * @pool: pool of interest
876 877
 * @work: work to find worker for
 *
878 879
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
880 881 882 883 884 885 886 887 888 889 890 891
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
892 893 894 895 896 897
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
898 899
 *
 * CONTEXT:
900
 * spin_lock_irq(pool->lock).
901 902 903 904
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
905
 */
906
static struct worker *find_worker_executing_work(struct worker_pool *pool,
907
						 struct work_struct *work)
908
{
909 910
	struct worker *worker;

911
	hash_for_each_possible(pool->busy_hash, worker, hentry,
912 913 914
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
915 916 917
			return worker;

	return NULL;
918 919
}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
935
 * spin_lock_irq(pool->lock).
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1000
static void pwq_activate_delayed_work(struct work_struct *work)
1001
{
1002
	struct pool_workqueue *pwq = get_work_pwq(work);
1003 1004

	trace_workqueue_activate_work(work);
1005
	move_linked_works(work, &pwq->pool->worklist, NULL);
1006
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1007
	pwq->nr_active++;
1008 1009
}

1010
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1011
{
1012
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1013 1014
						    struct work_struct, entry);

1015
	pwq_activate_delayed_work(work);
1016 1017
}

1018
/**
1019 1020
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1021 1022 1023
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1024
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1025 1026
 *
 * CONTEXT:
1027
 * spin_lock_irq(pool->lock).
1028
 */
1029
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1030
{
T
Tejun Heo 已提交
1031
	/* uncolored work items don't participate in flushing or nr_active */
1032
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1033
		goto out_put;
1034

1035
	pwq->nr_in_flight[color]--;
1036

1037 1038
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1039
		/* one down, submit a delayed one */
1040 1041
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1042 1043 1044
	}

	/* is flush in progress and are we at the flushing tip? */
1045
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1046
		goto out_put;
1047 1048

	/* are there still in-flight works? */
1049
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1050
		goto out_put;
1051

1052 1053
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1054 1055

	/*
1056
	 * If this was the last pwq, wake up the first flusher.  It
1057 1058
	 * will handle the rest.
	 */
1059 1060
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1061 1062
out_put:
	put_pwq(pwq);
1063 1064
}

1065
/**
1066
 * try_to_grab_pending - steal work item from worklist and disable irq
1067 1068
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1069
 * @flags: place to store irq state
1070 1071 1072 1073 1074 1075 1076
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1077 1078
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1079
 *
1080
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1081 1082 1083
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1084 1085 1086 1087
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1088
 * This function is safe to call from any context including IRQ handler.
1089
 */
1090 1091
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1092
{
1093
	struct worker_pool *pool;
1094
	struct pool_workqueue *pwq;
1095

1096 1097
	local_irq_save(*flags);

1098 1099 1100 1101
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1102 1103 1104 1105 1106
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1107 1108 1109 1110 1111
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1112 1113 1114 1115 1116 1117 1118
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1119 1120
	pool = get_work_pool(work);
	if (!pool)
1121
		goto fail;
1122

1123
	spin_lock(&pool->lock);
1124
	/*
1125 1126 1127 1128 1129
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1130 1131
	 * item is currently queued on that pool.
	 */
1132 1133
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1134 1135 1136 1137 1138
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1139
		 * on the delayed_list, will confuse pwq->nr_active
1140 1141 1142 1143
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1144
			pwq_activate_delayed_work(work);
1145 1146

		list_del_init(&work->entry);
1147
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1148

1149
		/* work->data points to pwq iff queued, point to pool */
1150 1151 1152 1153
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1154
	}
1155
	spin_unlock(&pool->lock);
1156 1157 1158 1159 1160
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1161
	return -EAGAIN;
1162 1163
}

T
Tejun Heo 已提交
1164
/**
1165
 * insert_work - insert a work into a pool
1166
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1167 1168 1169 1170
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1171
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1172
 * work_struct flags.
T
Tejun Heo 已提交
1173 1174
 *
 * CONTEXT:
1175
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1176
 */
1177 1178
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1179
{
1180
	struct worker_pool *pool = pwq->pool;
1181

T
Tejun Heo 已提交
1182
	/* we own @work, set data and link */
1183
	set_work_pwq(work, pwq, extra_flags);
1184
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1185
	get_pwq(pwq);
1186 1187

	/*
1188 1189 1190
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1191 1192 1193
	 */
	smp_mb();

1194 1195
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1196 1197
}

1198 1199
/*
 * Test whether @work is being queued from another work executing on the
1200
 * same workqueue.
1201 1202 1203
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1204 1205 1206 1207 1208 1209 1210
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1211
	return worker && worker->current_pwq->wq == wq;
1212 1213
}

1214
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1215 1216
			 struct work_struct *work)
{
1217
	struct pool_workqueue *pwq;
1218
	struct worker_pool *last_pool;
1219
	struct list_head *worklist;
1220
	unsigned int work_flags;
1221
	unsigned int req_cpu = cpu;
1222 1223 1224 1225 1226 1227 1228 1229

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1230

1231
	debug_work_activate(work);
1232

1233
	/* if dying, only works from the same workqueue are allowed */
1234
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1235
	    WARN_ON_ONCE(!is_chained_work(wq)))
1236
		return;
1237
retry:
1238
	/* pwq which will be used unless @work is executing elsewhere */
1239
	if (!(wq->flags & WQ_UNBOUND)) {
1240
		if (cpu == WORK_CPU_UNBOUND)
1241
			cpu = raw_smp_processor_id();
1242
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1243 1244 1245
	} else {
		pwq = first_pwq(wq);
	}
1246

1247 1248 1249 1250 1251 1252 1253 1254
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1255

1256
		spin_lock(&last_pool->lock);
1257

1258
		worker = find_worker_executing_work(last_pool, work);
1259

1260 1261
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1262
		} else {
1263 1264
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1265
			spin_lock(&pwq->pool->lock);
1266
		}
1267
	} else {
1268
		spin_lock(&pwq->pool->lock);
1269 1270
	}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
	 * without another pwq replacing it as the first pwq or while a
	 * work item is executing on it, so the retying is guaranteed to
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1290 1291
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1292

1293
	if (WARN_ON(!list_empty(&work->entry))) {
1294
		spin_unlock(&pwq->pool->lock);
1295 1296
		return;
	}
1297

1298 1299
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1300

1301
	if (likely(pwq->nr_active < pwq->max_active)) {
1302
		trace_workqueue_activate_work(work);
1303 1304
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1305 1306
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1307
		worklist = &pwq->delayed_works;
1308
	}
1309

1310
	insert_work(pwq, work, worklist, work_flags);
1311

1312
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1313 1314
}

1315
/**
1316 1317
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1318 1319 1320
 * @wq: workqueue to use
 * @work: work to queue
 *
1321
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1322
 *
1323 1324
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1325
 */
1326 1327
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1328
{
1329
	bool ret = false;
1330
	unsigned long flags;
1331

1332
	local_irq_save(flags);
1333

1334
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1335
		__queue_work(cpu, wq, work);
1336
		ret = true;
1337
	}
1338

1339
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1340 1341
	return ret;
}
1342
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1343

1344
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1345
{
1346
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1347

1348
	/* should have been called from irqsafe timer with irq already off */
1349
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1350
}
1351
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1352

1353 1354
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1355
{
1356 1357 1358 1359 1360
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1361 1362
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1363

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1375
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1376

1377
	dwork->wq = wq;
1378
	dwork->cpu = cpu;
1379 1380 1381 1382 1383 1384
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1385 1386
}

1387 1388 1389 1390
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1391
 * @dwork: work to queue
1392 1393
 * @delay: number of jiffies to wait before queueing
 *
1394 1395 1396
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1397
 */
1398 1399
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1400
{
1401
	struct work_struct *work = &dwork->work;
1402
	bool ret = false;
1403
	unsigned long flags;
1404

1405 1406
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1407

1408
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1409
		__queue_delayed_work(cpu, wq, dwork, delay);
1410
		ret = true;
1411
	}
1412

1413
	local_irq_restore(flags);
1414 1415
	return ret;
}
1416
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1417

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1433
 * This function is safe to call from any context including IRQ handler.
1434 1435 1436 1437 1438 1439 1440
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1441

1442 1443 1444
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1445

1446 1447 1448
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1449
	}
1450 1451

	/* -ENOENT from try_to_grab_pending() becomes %true */
1452 1453
	return ret;
}
1454 1455
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1456 1457 1458 1459 1460 1461 1462 1463
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1464
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1465 1466
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1467
{
1468
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1469

1470 1471 1472 1473
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1474

1475 1476
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1477
	pool->nr_idle++;
1478
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1479 1480

	/* idle_list is LIFO */
1481
	list_add(&worker->entry, &pool->idle_list);
1482

1483 1484
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1485

1486
	/*
1487
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1488
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1489 1490
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1491
	 */
1492
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1493
		     pool->nr_workers == pool->nr_idle &&
1494
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1504
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1505 1506 1507
 */
static void worker_leave_idle(struct worker *worker)
{
1508
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1509

1510 1511
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1512
	worker_clr_flags(worker, WORKER_IDLE);
1513
	pool->nr_idle--;
T
Tejun Heo 已提交
1514 1515 1516
	list_del_init(&worker->entry);
}

1517
/**
1518 1519 1520 1521
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1522 1523 1524 1525 1526 1527
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1528
 * This function is to be used by unbound workers and rescuers to bind
1529 1530 1531
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1532
 * verbatim as it's best effort and blocking and pool may be
1533 1534
 * [dis]associated in the meantime.
 *
1535
 * This function tries set_cpus_allowed() and locks pool and verifies the
1536
 * binding against %POOL_DISASSOCIATED which is set during
1537 1538 1539
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1540 1541
 *
 * CONTEXT:
1542
 * Might sleep.  Called without any lock but returns with pool->lock
1543 1544 1545
 * held.
 *
 * RETURNS:
1546
 * %true if the associated pool is online (@worker is successfully
1547 1548
 * bound), %false if offline.
 */
1549
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1550
__acquires(&pool->lock)
1551 1552
{
	while (true) {
1553
		/*
1554 1555 1556
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1557
		 * against POOL_DISASSOCIATED.
1558
		 */
1559
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1560
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1561

1562
		spin_lock_irq(&pool->lock);
1563
		if (pool->flags & POOL_DISASSOCIATED)
1564
			return false;
1565
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1566
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1567
			return true;
1568
		spin_unlock_irq(&pool->lock);
1569

1570 1571 1572 1573 1574 1575
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1576
		cpu_relax();
1577
		cond_resched();
1578 1579 1580
	}
}

1581
/*
1582
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1583
 * list_empty(@worker->entry) before leaving idle and call this function.
1584 1585 1586
 */
static void idle_worker_rebind(struct worker *worker)
{
1587
	/* CPU may go down again inbetween, clear UNBOUND only on success */
1588
	if (worker_maybe_bind_and_lock(worker->pool))
1589
		worker_clr_flags(worker, WORKER_UNBOUND);
1590

1591 1592
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1593
	spin_unlock_irq(&worker->pool->lock);
1594 1595
}

1596
/*
1597
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1598 1599 1600
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1601
 */
1602
static void busy_worker_rebind_fn(struct work_struct *work)
1603 1604 1605
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1606
	if (worker_maybe_bind_and_lock(worker->pool))
1607
		worker_clr_flags(worker, WORKER_UNBOUND);
1608

1609
	spin_unlock_irq(&worker->pool->lock);
1610 1611
}

1612
/**
1613 1614
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1615
 *
1616
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1617 1618
 * is different for idle and busy ones.
 *
1619 1620 1621 1622
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1623
 *
1624 1625 1626 1627
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1628
 *
1629 1630 1631 1632
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1633
 */
1634
static void rebind_workers(struct worker_pool *pool)
1635
{
1636
	struct worker *worker, *n;
1637 1638
	int i;

1639
	lockdep_assert_held(&pool->manager_mutex);
1640
	lockdep_assert_held(&pool->lock);
1641

1642
	/* dequeue and kick idle ones */
1643 1644 1645 1646 1647 1648
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1649

1650 1651 1652 1653 1654 1655
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1656

1657
	/* rebind busy workers */
1658
	for_each_busy_worker(worker, i, pool) {
1659 1660
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1661

1662 1663 1664
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1665

1666
		debug_work_activate(rebind_work);
1667

1668 1669
		/*
		 * wq doesn't really matter but let's keep @worker->pool
1670
		 * and @pwq->pool consistent for sanity.
1671
		 */
T
Tejun Heo 已提交
1672
		if (worker->pool->attrs->nice < 0)
1673 1674 1675 1676
			wq = system_highpri_wq;
		else
			wq = system_wq;

1677
		insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
1678 1679
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1680
	}
1681 1682
}

T
Tejun Heo 已提交
1683 1684 1685 1686 1687
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1688 1689
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1690
		INIT_LIST_HEAD(&worker->scheduled);
1691
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1692 1693
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1694
	}
T
Tejun Heo 已提交
1695 1696 1697 1698 1699
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1700
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1701
 *
1702
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1712
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1713
{
T
Tejun Heo 已提交
1714
	const char *pri = pool->attrs->nice < 0  ? "H" : "";
T
Tejun Heo 已提交
1715
	struct worker *worker = NULL;
1716
	int id = -1;
T
Tejun Heo 已提交
1717

1718
	spin_lock_irq(&pool->lock);
1719
	while (ida_get_new(&pool->worker_ida, &id)) {
1720
		spin_unlock_irq(&pool->lock);
1721
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1722
			goto fail;
1723
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1724
	}
1725
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1726 1727 1728 1729 1730

	worker = alloc_worker();
	if (!worker)
		goto fail;

1731
	worker->pool = pool;
T
Tejun Heo 已提交
1732 1733
	worker->id = id;

1734
	if (pool->cpu >= 0)
1735
		worker->task = kthread_create_on_node(worker_thread,
1736
					worker, cpu_to_node(pool->cpu),
1737
					"kworker/%d:%d%s", pool->cpu, id, pri);
1738 1739
	else
		worker->task = kthread_create(worker_thread, worker,
1740 1741
					      "kworker/u%d:%d%s",
					      pool->id, id, pri);
T
Tejun Heo 已提交
1742 1743 1744
	if (IS_ERR(worker->task))
		goto fail;

1745 1746 1747 1748
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1749 1750
	set_user_nice(worker->task, pool->attrs->nice);
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1751

1752
	/*
T
Tejun Heo 已提交
1753 1754 1755
	 * %PF_THREAD_BOUND is used to prevent userland from meddling with
	 * cpumask of workqueue workers.  This is an abuse.  We need
	 * %PF_NO_SETAFFINITY.
1756
	 */
T
Tejun Heo 已提交
1757 1758 1759 1760 1761 1762 1763 1764
	worker->task->flags |= PF_THREAD_BOUND;

	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1765
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1766 1767 1768 1769

	return worker;
fail:
	if (id >= 0) {
1770
		spin_lock_irq(&pool->lock);
1771
		ida_remove(&pool->worker_ida, id);
1772
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1782
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1783 1784
 *
 * CONTEXT:
1785
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1786 1787 1788
 */
static void start_worker(struct worker *worker)
{
1789
	worker->flags |= WORKER_STARTED;
1790
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1791
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1792 1793 1794
	wake_up_process(worker->task);
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
 * Create and start a new worker for @pool.
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1815 1816 1817 1818
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1819
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1820 1821
 *
 * CONTEXT:
1822
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1823 1824 1825
 */
static void destroy_worker(struct worker *worker)
{
1826
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1827 1828 1829
	int id = worker->id;

	/* sanity check frenzy */
1830 1831 1832
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1833

T
Tejun Heo 已提交
1834
	if (worker->flags & WORKER_STARTED)
1835
		pool->nr_workers--;
T
Tejun Heo 已提交
1836
	if (worker->flags & WORKER_IDLE)
1837
		pool->nr_idle--;
T
Tejun Heo 已提交
1838 1839

	list_del_init(&worker->entry);
1840
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1841

1842
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1843

T
Tejun Heo 已提交
1844 1845 1846
	kthread_stop(worker->task);
	kfree(worker);

1847
	spin_lock_irq(&pool->lock);
1848
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1849 1850
}

1851
static void idle_worker_timeout(unsigned long __pool)
1852
{
1853
	struct worker_pool *pool = (void *)__pool;
1854

1855
	spin_lock_irq(&pool->lock);
1856

1857
	if (too_many_workers(pool)) {
1858 1859 1860 1861
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1862
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1863 1864 1865
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1866
			mod_timer(&pool->idle_timer, expires);
1867 1868
		else {
			/* it's been idle for too long, wake up manager */
1869
			pool->flags |= POOL_MANAGE_WORKERS;
1870
			wake_up_worker(pool);
1871
		}
1872 1873
	}

1874
	spin_unlock_irq(&pool->lock);
1875
}
1876

1877
static void send_mayday(struct work_struct *work)
1878
{
1879 1880
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1881 1882

	lockdep_assert_held(&workqueue_lock);
1883

1884
	if (!wq->rescuer)
1885
		return;
1886 1887

	/* mayday mayday mayday */
1888 1889
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1890
		wake_up_process(wq->rescuer->task);
1891
	}
1892 1893
}

1894
static void pool_mayday_timeout(unsigned long __pool)
1895
{
1896
	struct worker_pool *pool = (void *)__pool;
1897 1898
	struct work_struct *work;

1899 1900
	spin_lock_irq(&workqueue_lock);		/* for wq->maydays */
	spin_lock(&pool->lock);
1901

1902
	if (need_to_create_worker(pool)) {
1903 1904 1905 1906 1907 1908
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1909
		list_for_each_entry(work, &pool->worklist, entry)
1910
			send_mayday(work);
L
Linus Torvalds 已提交
1911
	}
1912

1913 1914
	spin_unlock(&pool->lock);
	spin_unlock_irq(&workqueue_lock);
1915

1916
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1917 1918
}

1919 1920
/**
 * maybe_create_worker - create a new worker if necessary
1921
 * @pool: pool to create a new worker for
1922
 *
1923
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1924 1925
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1926
 * sent to all rescuers with works scheduled on @pool to resolve
1927 1928
 * possible allocation deadlock.
 *
1929 1930
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1931 1932
 *
 * LOCKING:
1933
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1934 1935 1936 1937
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1938
 * %false if no action was taken and pool->lock stayed locked, %true
1939 1940
 * otherwise.
 */
1941
static bool maybe_create_worker(struct worker_pool *pool)
1942 1943
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1944
{
1945
	if (!need_to_create_worker(pool))
1946 1947
		return false;
restart:
1948
	spin_unlock_irq(&pool->lock);
1949

1950
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1951
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1952 1953 1954 1955

	while (true) {
		struct worker *worker;

1956
		worker = create_worker(pool);
1957
		if (worker) {
1958
			del_timer_sync(&pool->mayday_timer);
1959
			spin_lock_irq(&pool->lock);
1960
			start_worker(worker);
1961 1962
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1963 1964 1965
			return true;
		}

1966
		if (!need_to_create_worker(pool))
1967
			break;
L
Linus Torvalds 已提交
1968

1969 1970
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1971

1972
		if (!need_to_create_worker(pool))
1973 1974 1975
			break;
	}

1976
	del_timer_sync(&pool->mayday_timer);
1977
	spin_lock_irq(&pool->lock);
1978
	if (need_to_create_worker(pool))
1979 1980 1981 1982 1983 1984
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1985
 * @pool: pool to destroy workers for
1986
 *
1987
 * Destroy @pool workers which have been idle for longer than
1988 1989 1990
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1991
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1992 1993 1994
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1995
 * %false if no action was taken and pool->lock stayed locked, %true
1996 1997
 * otherwise.
 */
1998
static bool maybe_destroy_workers(struct worker_pool *pool)
1999 2000
{
	bool ret = false;
L
Linus Torvalds 已提交
2001

2002
	while (too_many_workers(pool)) {
2003 2004
		struct worker *worker;
		unsigned long expires;
2005

2006
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2007
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2008

2009
		if (time_before(jiffies, expires)) {
2010
			mod_timer(&pool->idle_timer, expires);
2011
			break;
2012
		}
L
Linus Torvalds 已提交
2013

2014 2015
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2016
	}
2017

2018
	return ret;
2019 2020
}

2021
/**
2022 2023
 * manage_workers - manage worker pool
 * @worker: self
2024
 *
2025
 * Assume the manager role and manage the worker pool @worker belongs
2026
 * to.  At any given time, there can be only zero or one manager per
2027
 * pool.  The exclusion is handled automatically by this function.
2028 2029 2030 2031
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2032 2033
 *
 * CONTEXT:
2034
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2035 2036 2037
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2038 2039
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2040
 */
2041
static bool manage_workers(struct worker *worker)
2042
{
2043
	struct worker_pool *pool = worker->pool;
2044
	bool ret = false;
2045

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2067
	if (!mutex_trylock(&pool->manager_arb))
2068
		return ret;
2069

2070
	/*
2071 2072
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2073
	 */
2074
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2075
		spin_unlock_irq(&pool->lock);
2076
		mutex_lock(&pool->manager_mutex);
2077 2078
		/*
		 * CPU hotplug could have happened while we were waiting
2079
		 * for assoc_mutex.  Hotplug itself can't handle us
2080
		 * because manager isn't either on idle or busy list, and
2081
		 * @pool's state and ours could have deviated.
2082
		 *
2083
		 * As hotplug is now excluded via manager_mutex, we can
2084
		 * simply try to bind.  It will succeed or fail depending
2085
		 * on @pool's current state.  Try it and adjust
2086 2087
		 * %WORKER_UNBOUND accordingly.
		 */
2088
		if (worker_maybe_bind_and_lock(pool))
2089 2090 2091
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2092

2093 2094
		ret = true;
	}
2095

2096
	pool->flags &= ~POOL_MANAGE_WORKERS;
2097 2098

	/*
2099 2100
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2101
	 */
2102 2103
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2104

2105
	mutex_unlock(&pool->manager_mutex);
2106
	mutex_unlock(&pool->manager_arb);
2107
	return ret;
2108 2109
}

2110 2111
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2112
 * @worker: self
2113 2114 2115 2116 2117 2118 2119 2120 2121
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2122
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2123
 */
T
Tejun Heo 已提交
2124
static void process_one_work(struct worker *worker, struct work_struct *work)
2125 2126
__releases(&pool->lock)
__acquires(&pool->lock)
2127
{
2128
	struct pool_workqueue *pwq = get_work_pwq(work);
2129
	struct worker_pool *pool = worker->pool;
2130
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2131
	int work_color;
2132
	struct worker *collision;
2133 2134 2135 2136 2137 2138 2139 2140
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2141 2142 2143
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2144
#endif
2145 2146 2147
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2148
	 * unbound or a disassociated pool.
2149
	 */
2150
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2151
		     !(pool->flags & POOL_DISASSOCIATED) &&
2152
		     raw_smp_processor_id() != pool->cpu);
2153

2154 2155 2156 2157 2158 2159
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2160
	collision = find_worker_executing_work(pool, work);
2161 2162 2163 2164 2165
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2166
	/* claim and dequeue */
2167
	debug_work_deactivate(work);
2168
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2169
	worker->current_work = work;
2170
	worker->current_func = work->func;
2171
	worker->current_pwq = pwq;
2172
	work_color = get_work_color(work);
2173

2174 2175
	list_del_init(&work->entry);

2176 2177 2178 2179 2180 2181 2182
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2183
	/*
2184
	 * Unbound pool isn't concurrency managed and work items should be
2185 2186
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2187 2188
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2189

2190
	/*
2191
	 * Record the last pool and clear PENDING which should be the last
2192
	 * update to @work.  Also, do this inside @pool->lock so that
2193 2194
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2195
	 */
2196
	set_work_pool_and_clear_pending(work, pool->id);
2197

2198
	spin_unlock_irq(&pool->lock);
2199

2200
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2201
	lock_map_acquire(&lockdep_map);
2202
	trace_workqueue_execute_start(work);
2203
	worker->current_func(work);
2204 2205 2206 2207 2208
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2209
	lock_map_release(&lockdep_map);
2210
	lock_map_release(&pwq->wq->lockdep_map);
2211 2212

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2213 2214
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2215 2216
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2217 2218 2219 2220
		debug_show_held_locks(current);
		dump_stack();
	}

2221
	spin_lock_irq(&pool->lock);
2222

2223 2224 2225 2226
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2227
	/* we're done with it, release */
2228
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2229
	worker->current_work = NULL;
2230
	worker->current_func = NULL;
2231 2232
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2233 2234
}

2235 2236 2237 2238 2239 2240 2241 2242 2243
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2244
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2245 2246 2247
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2248
{
2249 2250
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2251
						struct work_struct, entry);
T
Tejun Heo 已提交
2252
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2253 2254 2255
	}
}

T
Tejun Heo 已提交
2256 2257
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2258
 * @__worker: self
T
Tejun Heo 已提交
2259
 *
2260 2261 2262 2263 2264
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
T
Tejun Heo 已提交
2265
 */
T
Tejun Heo 已提交
2266
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2267
{
T
Tejun Heo 已提交
2268
	struct worker *worker = __worker;
2269
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2270

2271 2272
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2273
woke_up:
2274
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2275

2276 2277
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2278
		spin_unlock_irq(&pool->lock);
2279

2280
		/* if DIE is set, destruction is requested */
2281 2282 2283 2284 2285
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2286
		/* otherwise, rebind */
2287 2288
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2289
	}
2290

T
Tejun Heo 已提交
2291
	worker_leave_idle(worker);
2292
recheck:
2293
	/* no more worker necessary? */
2294
	if (!need_more_worker(pool))
2295 2296 2297
		goto sleep;

	/* do we need to manage? */
2298
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2299 2300
		goto recheck;

T
Tejun Heo 已提交
2301 2302 2303 2304 2305
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2306
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2307

2308 2309 2310 2311 2312 2313 2314 2315
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2316
		struct work_struct *work =
2317
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2318 2319 2320 2321 2322 2323
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2324
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2325 2326 2327
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2328
		}
2329
	} while (keep_working(pool));
2330 2331

	worker_set_flags(worker, WORKER_PREP, false);
2332
sleep:
2333
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2334
		goto recheck;
2335

T
Tejun Heo 已提交
2336
	/*
2337 2338 2339 2340 2341
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2342 2343 2344
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2345
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2346 2347
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2348 2349
}

2350 2351
/**
 * rescuer_thread - the rescuer thread function
2352
 * @__rescuer: self
2353 2354
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2355
 * workqueue which has WQ_MEM_RECLAIM set.
2356
 *
2357
 * Regular work processing on a pool may block trying to create a new
2358 2359 2360 2361 2362
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2363 2364
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2365 2366 2367 2368
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2369
static int rescuer_thread(void *__rescuer)
2370
{
2371 2372
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2373 2374 2375
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2376 2377 2378 2379 2380 2381

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2382 2383 2384
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2385 2386
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2387
		rescuer->task->flags &= ~PF_WQ_WORKER;
2388
		return 0;
2389
	}
2390

2391 2392 2393 2394 2395 2396
	/* see whether any pwq is asking for help */
	spin_lock_irq(&workqueue_lock);

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2397
		struct worker_pool *pool = pwq->pool;
2398 2399 2400
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2401 2402 2403
		list_del_init(&pwq->mayday_node);

		spin_unlock_irq(&workqueue_lock);
2404 2405

		/* migrate to the target cpu if possible */
2406
		worker_maybe_bind_and_lock(pool);
2407
		rescuer->pool = pool;
2408 2409 2410 2411 2412

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2413
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2414
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2415
			if (get_work_pwq(work) == pwq)
2416 2417 2418
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2419 2420

		/*
2421
		 * Leave this pool.  If keep_working() is %true, notify a
2422 2423 2424
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2425 2426
		if (keep_working(pool))
			wake_up_worker(pool);
2427

2428
		rescuer->pool = NULL;
2429 2430
		spin_unlock(&pool->lock);
		spin_lock(&workqueue_lock);
2431 2432
	}

2433 2434
	spin_unlock_irq(&workqueue_lock);

2435 2436
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2437 2438
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2439 2440
}

O
Oleg Nesterov 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2452 2453
/**
 * insert_wq_barrier - insert a barrier work
2454
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2455
 * @barr: wq_barrier to insert
2456 2457
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2458
 *
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2471
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2472 2473
 *
 * CONTEXT:
2474
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2475
 */
2476
static void insert_wq_barrier(struct pool_workqueue *pwq,
2477 2478
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2479
{
2480 2481 2482
	struct list_head *head;
	unsigned int linked = 0;

2483
	/*
2484
	 * debugobject calls are safe here even with pool->lock locked
2485 2486 2487 2488
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2489
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2490
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2491
	init_completion(&barr->done);
2492

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2508
	debug_work_activate(&barr->work);
2509
	insert_work(pwq, &barr->work, head,
2510
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2511 2512
}

2513
/**
2514
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2515 2516 2517 2518
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2519
 * Prepare pwqs for workqueue flushing.
2520
 *
2521 2522 2523 2524 2525
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2526 2527 2528 2529 2530 2531 2532
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2533
 * If @work_color is non-negative, all pwqs should have the same
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2544
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2545
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2546
{
2547
	bool wait = false;
2548
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2549

2550
	if (flush_color >= 0) {
2551
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2552
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2553
	}
2554

2555 2556
	local_irq_disable();

2557
	for_each_pwq(pwq, wq) {
2558
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2559

2560
		spin_lock(&pool->lock);
2561

2562
		if (flush_color >= 0) {
2563
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2564

2565 2566 2567
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2568 2569 2570
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2571

2572
		if (work_color >= 0) {
2573
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2574
			pwq->work_color = work_color;
2575
		}
L
Linus Torvalds 已提交
2576

2577
		spin_unlock(&pool->lock);
L
Linus Torvalds 已提交
2578
	}
2579

2580 2581
	local_irq_enable();

2582
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2583
		complete(&wq->first_flusher->done);
2584

2585
	return wait;
L
Linus Torvalds 已提交
2586 2587
}

2588
/**
L
Linus Torvalds 已提交
2589
 * flush_workqueue - ensure that any scheduled work has run to completion.
2590
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2591
 *
2592 2593
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2594
 */
2595
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2596
{
2597 2598 2599 2600 2601 2602
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2603

2604 2605
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2620
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2621 2622 2623 2624 2625
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2626
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2627 2628 2629

			wq->first_flusher = &this_flusher;

2630
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2631 2632 2633 2634 2635 2636 2637 2638
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2639
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2640
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2641
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2667 2668 2669 2670
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2671 2672
	wq->first_flusher = NULL;

2673 2674
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2687 2688
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2708
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2709 2710 2711
		}

		if (list_empty(&wq->flusher_queue)) {
2712
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2713 2714 2715 2716 2717
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2718
		 * the new first flusher and arm pwqs.
2719
		 */
2720 2721
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2722 2723 2724 2725

		list_del_init(&next->list);
		wq->first_flusher = next;

2726
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2738
}
2739
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2740

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2755
	struct pool_workqueue *pwq;
2756 2757 2758 2759

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2760
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2761
	 */
2762
	spin_lock_irq(&workqueue_lock);
2763
	if (!wq->nr_drainers++)
2764
		wq->flags |= __WQ_DRAINING;
2765
	spin_unlock_irq(&workqueue_lock);
2766 2767 2768
reflush:
	flush_workqueue(wq);

2769 2770
	local_irq_disable();

2771
	for_each_pwq(pwq, wq) {
2772
		bool drained;
2773

2774
		spin_lock(&pwq->pool->lock);
2775
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2776
		spin_unlock(&pwq->pool->lock);
2777 2778

		if (drained)
2779 2780 2781 2782
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2783
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2784
				wq->name, flush_cnt);
2785 2786

		local_irq_enable();
2787 2788 2789
		goto reflush;
	}

2790
	spin_lock(&workqueue_lock);
2791
	if (!--wq->nr_drainers)
2792
		wq->flags &= ~__WQ_DRAINING;
2793 2794 2795
	spin_unlock(&workqueue_lock);

	local_irq_enable();
2796 2797 2798
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2799
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2800
{
2801
	struct worker *worker = NULL;
2802
	struct worker_pool *pool;
2803
	struct pool_workqueue *pwq;
2804 2805

	might_sleep();
2806 2807

	local_irq_disable();
2808
	pool = get_work_pool(work);
2809 2810
	if (!pool) {
		local_irq_enable();
2811
		return false;
2812
	}
2813

2814
	spin_lock(&pool->lock);
2815
	/* see the comment in try_to_grab_pending() with the same code */
2816 2817 2818
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2819
			goto already_gone;
2820
	} else {
2821
		worker = find_worker_executing_work(pool, work);
2822
		if (!worker)
T
Tejun Heo 已提交
2823
			goto already_gone;
2824
		pwq = worker->current_pwq;
2825
	}
2826

2827
	insert_wq_barrier(pwq, barr, work, worker);
2828
	spin_unlock_irq(&pool->lock);
2829

2830 2831 2832 2833 2834 2835
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2836
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2837
		lock_map_acquire(&pwq->wq->lockdep_map);
2838
	else
2839 2840
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2841

2842
	return true;
T
Tejun Heo 已提交
2843
already_gone:
2844
	spin_unlock_irq(&pool->lock);
2845
	return false;
2846
}
2847 2848 2849 2850 2851

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2852 2853
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2854 2855 2856 2857 2858 2859 2860 2861 2862
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2863 2864 2865
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2866
	if (start_flush_work(work, &barr)) {
2867 2868 2869
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2870
	} else {
2871
		return false;
2872 2873
	}
}
2874
EXPORT_SYMBOL_GPL(flush_work);
2875

2876
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2877
{
2878
	unsigned long flags;
2879 2880 2881
	int ret;

	do {
2882 2883 2884 2885 2886 2887
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2888
			flush_work(work);
2889 2890
	} while (unlikely(ret < 0));

2891 2892 2893 2894
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2895
	flush_work(work);
2896
	clear_work_data(work);
2897 2898 2899
	return ret;
}

2900
/**
2901 2902
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2903
 *
2904 2905 2906 2907
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2908
 *
2909 2910
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2911
 *
2912
 * The caller must ensure that the workqueue on which @work was last
2913
 * queued can't be destroyed before this function returns.
2914 2915 2916
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2917
 */
2918
bool cancel_work_sync(struct work_struct *work)
2919
{
2920
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2921
}
2922
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2923

2924
/**
2925 2926
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2927
 *
2928 2929 2930
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2931
 *
2932 2933 2934
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2935
 */
2936 2937
bool flush_delayed_work(struct delayed_work *dwork)
{
2938
	local_irq_disable();
2939
	if (del_timer_sync(&dwork->timer))
2940
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2941
	local_irq_enable();
2942 2943 2944 2945
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2946
/**
2947 2948
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2949
 *
2950 2951 2952 2953 2954
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2955
 *
2956
 * This function is safe to call from any context including IRQ handler.
2957
 */
2958
bool cancel_delayed_work(struct delayed_work *dwork)
2959
{
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2970 2971
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2972
	local_irq_restore(flags);
2973
	return ret;
2974
}
2975
EXPORT_SYMBOL(cancel_delayed_work);
2976

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2987
{
2988
	return __cancel_work_timer(&dwork->work, true);
2989
}
2990
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2991

2992
/**
2993
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2994 2995
 * @func: the function to call
 *
2996 2997
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2998
 * schedule_on_each_cpu() is very slow.
2999 3000 3001
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3002
 */
3003
int schedule_on_each_cpu(work_func_t func)
3004 3005
{
	int cpu;
3006
	struct work_struct __percpu *works;
3007

3008 3009
	works = alloc_percpu(struct work_struct);
	if (!works)
3010
		return -ENOMEM;
3011

3012 3013
	get_online_cpus();

3014
	for_each_online_cpu(cpu) {
3015 3016 3017
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3018
		schedule_work_on(cpu, work);
3019
	}
3020 3021 3022 3023

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3024
	put_online_cpus();
3025
	free_percpu(works);
3026 3027 3028
	return 0;
}

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3053 3054
void flush_scheduled_work(void)
{
3055
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3056
}
3057
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3058

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3071
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3072 3073
{
	if (!in_interrupt()) {
3074
		fn(&ew->work);
3075 3076 3077
		return 0;
	}

3078
	INIT_WORK(&ew->work, fn);
3079 3080 3081 3082 3083 3084
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t wq_per_cpu_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}

static ssize_t wq_max_active_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t wq_max_active_store(struct device *dev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}

static struct device_attribute wq_sysfs_attrs[] = {
	__ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
	__ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
	__ATTR_NULL,
};

static ssize_t wq_pool_id_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct worker_pool *pool;
	int written;

	rcu_read_lock_sched();
	pool = first_pwq(wq)->pool;
	written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	rcu_read_lock_sched();
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    first_pwq(wq)->pool->attrs->nice);
	rcu_read_unlock_sched();

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	rcu_read_lock_sched();
	copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
	rcu_read_unlock_sched();
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= -20 && attrs->nice <= 19)
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	rcu_read_lock_sched();
	written = cpumask_scnprintf(buf, PAGE_SIZE,
				    first_pwq(wq)->pool->attrs->cpumask);
	rcu_read_unlock_sched();

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_id, 0444, wq_pool_id_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_attrs			= wq_sysfs_attrs,
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Returns 0 on success, -errno on failure.
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.  Returns NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_setall(attrs->cpumask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
}

/*
 * Hacky implementation of jhash of bitmaps which only considers the
 * specified number of bits.  We probably want a proper implementation in
 * include/linux/jhash.h.
 */
static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
{
	int nr_longs = bits / BITS_PER_LONG;
	int nr_leftover = bits % BITS_PER_LONG;
	unsigned long leftover = 0;

	if (nr_longs)
		hash = jhash(bitmap, nr_longs * sizeof(long), hash);
	if (nr_leftover) {
		bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
		hash = jhash(&leftover, sizeof(long), hash);
	}
	return hash;
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
	hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3446 3447 3448 3449 3450
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3451 3452 3453
 * Returns 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3454 3455
 */
static int init_worker_pool(struct worker_pool *pool)
3456 3457
{
	spin_lock_init(&pool->lock);
3458 3459
	pool->id = -1;
	pool->cpu = -1;
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3473
	mutex_init(&pool->manager_mutex);
3474
	ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3475

3476 3477 3478 3479
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3480 3481 3482 3483
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3484 3485
}

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3500 3501 3502
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

	spin_lock_irq(&workqueue_lock);
	if (--pool->refcnt) {
		spin_unlock_irq(&workqueue_lock);
		return;
	}

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
	    WARN_ON(!list_empty(&pool->worklist))) {
		spin_unlock_irq(&workqueue_lock);
		return;
	}

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

	spin_unlock_irq(&workqueue_lock);

3528 3529 3530 3531 3532
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
	mutex_lock(&pool->manager_arb);
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.  On failure, returns NULL.
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	static DEFINE_MUTEX(create_mutex);
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;

	mutex_lock(&create_mutex);

	/* do we already have a matching pool? */
	spin_lock_irq(&workqueue_lock);
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}
	spin_unlock_irq(&workqueue_lock);

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

T
Tejun Heo 已提交
3583
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3584 3585 3586 3587 3588 3589
	copy_workqueue_attrs(pool->attrs, attrs);

	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3590
	if (create_and_start_worker(pool) < 0)
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
		goto fail;

	/* install */
	spin_lock_irq(&workqueue_lock);
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	spin_unlock_irq(&workqueue_lock);
	mutex_unlock(&create_mutex);
	return pool;
fail:
	mutex_unlock(&create_mutex);
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3627 3628 3629 3630 3631 3632
	/*
	 * Unlink @pwq.  Synchronization against flush_mutex isn't strictly
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
	mutex_lock(&wq->flush_mutex);
T
Tejun Heo 已提交
3633 3634 3635
	spin_lock_irq(&workqueue_lock);
	list_del_rcu(&pwq->pwqs_node);
	spin_unlock_irq(&workqueue_lock);
3636
	mutex_unlock(&wq->flush_mutex);
T
Tejun Heo 已提交
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648

	put_unbound_pool(pool);
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
	if (list_empty(&wq->pwqs))
		kfree(wq);
}

3649
/**
3650
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3651 3652
 * @pwq: target pool_workqueue
 *
3653 3654 3655
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3656
 */
3657
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3658
{
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
	lockdep_assert_held(&workqueue_lock);

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

	spin_lock(&pwq->pool->lock);

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3673

3674 3675 3676 3677 3678 3679 3680 3681
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
	} else {
		pwq->max_active = 0;
	}

	spin_unlock(&pwq->pool->lock);
3682 3683
}

3684 3685
static void init_and_link_pwq(struct pool_workqueue *pwq,
			      struct workqueue_struct *wq,
3686 3687
			      struct worker_pool *pool,
			      struct pool_workqueue **p_last_pwq)
3688 3689 3690 3691 3692 3693
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3694
	pwq->refcnt = 1;
3695 3696
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3697
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3698

3699 3700 3701
	mutex_lock(&wq->flush_mutex);
	spin_lock_irq(&workqueue_lock);

3702 3703 3704 3705
	/*
	 * Set the matching work_color.  This is synchronized with
	 * flush_mutex to avoid confusing flush_workqueue().
	 */
3706 3707
	if (p_last_pwq)
		*p_last_pwq = first_pwq(wq);
3708
	pwq->work_color = wq->work_color;
3709 3710 3711 3712 3713

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3714
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3715 3716 3717

	spin_unlock_irq(&workqueue_lock);
	mutex_unlock(&wq->flush_mutex);
3718 3719
}

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  If @attrs doesn't match the
 * current attributes, a new pwq is created and made the first pwq which
 * will serve all new work items.  Older pwqs are released as in-flight
 * work items finish.  Note that a work item which repeatedly requeues
 * itself back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.  Returns 0 on success and -errno on
 * failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	struct pool_workqueue *pwq, *last_pwq;
	struct worker_pool *pool;

3740
	/* only unbound workqueues can change attributes */
3741 3742 3743
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3744 3745 3746 3747
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
	pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
	if (!pwq)
		return -ENOMEM;

	pool = get_unbound_pool(attrs);
	if (!pool) {
		kmem_cache_free(pwq_cache, pwq);
		return -ENOMEM;
	}

	init_and_link_pwq(pwq, wq, pool, &last_pwq);
	if (last_pwq) {
		spin_lock_irq(&last_pwq->pool->lock);
		put_pwq(last_pwq);
		spin_unlock_irq(&last_pwq->pool->lock);
	}

	return 0;
}

3768
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3769
{
3770
	bool highpri = wq->flags & WQ_HIGHPRI;
3771 3772 3773
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3774 3775
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3776 3777 3778
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3779 3780
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3781
			struct worker_pool *cpu_pools =
3782
				per_cpu(cpu_worker_pools, cpu);
3783

3784
			init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
3785
		}
3786
		return 0;
3787
	} else {
3788
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3789
	}
T
Tejun Heo 已提交
3790 3791
}

3792 3793
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3794
{
3795 3796 3797
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3798 3799
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3800

3801
	return clamp_val(max_active, 1, lim);
3802 3803
}

3804
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3805 3806 3807
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3808
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3809
{
3810
	va_list args, args1;
L
Linus Torvalds 已提交
3811
	struct workqueue_struct *wq;
3812
	struct pool_workqueue *pwq;
3813 3814 3815 3816 3817 3818 3819 3820 3821
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
3822
		return NULL;
3823 3824 3825 3826

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3827

3828
	max_active = max_active ?: WQ_DFL_ACTIVE;
3829
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3830

3831
	/* init wq */
3832
	wq->flags = flags;
3833
	wq->saved_max_active = max_active;
3834
	mutex_init(&wq->flush_mutex);
3835
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3836
	INIT_LIST_HEAD(&wq->pwqs);
3837 3838
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3839
	INIT_LIST_HEAD(&wq->maydays);
3840

3841
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3842
	INIT_LIST_HEAD(&wq->list);
3843

3844
	if (alloc_and_link_pwqs(wq) < 0)
3845
		goto err_free_wq;
T
Tejun Heo 已提交
3846

3847 3848 3849 3850 3851
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3852 3853
		struct worker *rescuer;

3854
		rescuer = alloc_worker();
3855
		if (!rescuer)
3856
			goto err_destroy;
3857

3858 3859
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3860
					       wq->name);
3861 3862 3863 3864
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3865

3866
		wq->rescuer = rescuer;
3867 3868
		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3869 3870
	}

3871 3872 3873
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

3874
	/*
3875 3876 3877
	 * workqueue_lock protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new workqueue to
	 * workqueues list.
3878
	 */
3879
	spin_lock_irq(&workqueue_lock);
3880

3881 3882
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3883

T
Tejun Heo 已提交
3884
	list_add(&wq->list, &workqueues);
3885

3886
	spin_unlock_irq(&workqueue_lock);
T
Tejun Heo 已提交
3887

3888
	return wq;
3889 3890 3891 3892 3893 3894

err_free_wq:
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3895
	return NULL;
3896
}
3897
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3898

3899 3900 3901 3902 3903 3904 3905 3906
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3907
	struct pool_workqueue *pwq;
3908

3909 3910
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3911

3912 3913
	spin_lock_irq(&workqueue_lock);

3914
	/* sanity checks */
3915
	for_each_pwq(pwq, wq) {
3916 3917
		int i;

3918 3919 3920
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
				spin_unlock_irq(&workqueue_lock);
3921
				return;
3922 3923 3924
			}
		}

T
Tejun Heo 已提交
3925 3926
		if (WARN_ON(pwq->refcnt > 1) ||
		    WARN_ON(pwq->nr_active) ||
3927 3928
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
			spin_unlock_irq(&workqueue_lock);
3929
			return;
3930
		}
3931 3932
	}

3933 3934 3935 3936
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3937
	list_del_init(&wq->list);
3938

3939
	spin_unlock_irq(&workqueue_lock);
3940

3941 3942
	workqueue_sysfs_unregister(wq);

3943
	if (wq->rescuer) {
3944
		kthread_stop(wq->rescuer->task);
3945
		kfree(wq->rescuer);
3946
		wq->rescuer = NULL;
3947 3948
	}

T
Tejun Heo 已提交
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
		 * access the first pwq and put the base ref.  As both pwqs
		 * and pools are sched-RCU protected, the lock operations
		 * are safe.  @wq will be freed when the last pwq is
		 * released.
		 */
3964 3965
		pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
				       pwqs_node);
T
Tejun Heo 已提交
3966 3967 3968
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
3969
	}
3970 3971 3972
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3985
	struct pool_workqueue *pwq;
3986

3987 3988 3989 3990
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

3991
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3992

3993
	spin_lock_irq(&workqueue_lock);
3994 3995 3996

	wq->saved_max_active = max_active;

3997 3998
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3999

4000
	spin_unlock_irq(&workqueue_lock);
4001
}
4002
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4003

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

	return worker && worker == worker->current_pwq->wq->rescuer;
}

4017
/**
4018 4019 4020
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4021
 *
4022 4023 4024
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4025
 *
4026 4027
 * RETURNS:
 * %true if congested, %false otherwise.
4028
 */
4029
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4030
{
4031
	struct pool_workqueue *pwq;
4032 4033 4034
	bool ret;

	preempt_disable();
4035 4036 4037 4038 4039

	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
		pwq = first_pwq(wq);
4040

4041 4042 4043 4044
	ret = !list_empty(&pwq->delayed_works);
	preempt_enable();

	return ret;
L
Linus Torvalds 已提交
4045
}
4046
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4047

4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4060
{
4061
	struct worker_pool *pool;
4062 4063
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4064

4065 4066
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4067

4068 4069
	local_irq_save(flags);
	pool = get_work_pool(work);
4070
	if (pool) {
4071
		spin_lock(&pool->lock);
4072 4073
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4074
		spin_unlock(&pool->lock);
4075
	}
4076
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4077

4078
	return ret;
L
Linus Torvalds 已提交
4079
}
4080
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4081

4082 4083 4084
/*
 * CPU hotplug.
 *
4085
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4086
 * are a lot of assumptions on strong associations among work, pwq and
4087
 * pool which make migrating pending and scheduled works very
4088
 * difficult to implement without impacting hot paths.  Secondly,
4089
 * worker pools serve mix of short, long and very long running works making
4090 4091
 * blocked draining impractical.
 *
4092
 * This is solved by allowing the pools to be disassociated from the CPU
4093 4094
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4095
 */
L
Linus Torvalds 已提交
4096

4097
static void wq_unbind_fn(struct work_struct *work)
4098
{
4099
	int cpu = smp_processor_id();
4100
	struct worker_pool *pool;
4101 4102
	struct worker *worker;
	int i;
4103

4104
	for_each_cpu_worker_pool(pool, cpu) {
4105
		WARN_ON_ONCE(cpu != smp_processor_id());
4106

4107
		mutex_lock(&pool->manager_mutex);
4108
		spin_lock_irq(&pool->lock);
4109

4110
		/*
4111
		 * We've blocked all manager operations.  Make all workers
4112 4113 4114 4115 4116
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4117
		list_for_each_entry(worker, &pool->idle_list, entry)
4118
			worker->flags |= WORKER_UNBOUND;
4119

4120
		for_each_busy_worker(worker, i, pool)
4121
			worker->flags |= WORKER_UNBOUND;
4122

4123
		pool->flags |= POOL_DISASSOCIATED;
4124

4125
		spin_unlock_irq(&pool->lock);
4126
		mutex_unlock(&pool->manager_mutex);
4127
	}
4128

4129
	/*
4130
	 * Call schedule() so that we cross rq->lock and thus can guarantee
4131 4132
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
4133 4134
	 */
	schedule();
4135

4136
	/*
4137 4138
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
4139 4140 4141
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
4142 4143 4144 4145
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
4146
	 */
4147
	for_each_cpu_worker_pool(pool, cpu)
4148
		atomic_set(&pool->nr_running, 0);
4149 4150
}

T
Tejun Heo 已提交
4151 4152 4153 4154
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4155
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4156 4157
					       unsigned long action,
					       void *hcpu)
4158
{
4159
	int cpu = (unsigned long)hcpu;
4160
	struct worker_pool *pool;
4161

T
Tejun Heo 已提交
4162
	switch (action & ~CPU_TASKS_FROZEN) {
4163
	case CPU_UP_PREPARE:
4164
		for_each_cpu_worker_pool(pool, cpu) {
4165 4166
			if (pool->nr_workers)
				continue;
4167
			if (create_and_start_worker(pool) < 0)
4168
				return NOTIFY_BAD;
4169
		}
T
Tejun Heo 已提交
4170
		break;
4171

4172 4173
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4174
		for_each_cpu_worker_pool(pool, cpu) {
4175
			mutex_lock(&pool->manager_mutex);
4176 4177
			spin_lock_irq(&pool->lock);

4178
			pool->flags &= ~POOL_DISASSOCIATED;
4179 4180 4181
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
4182
			mutex_unlock(&pool->manager_mutex);
4183
		}
4184
		break;
4185
	}
4186 4187 4188 4189 4190 4191 4192
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4193
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4194 4195 4196
						 unsigned long action,
						 void *hcpu)
{
4197
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4198 4199
	struct work_struct unbind_work;

4200 4201
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
4202
		/* unbinding should happen on the local CPU */
4203
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4204
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
4205 4206
		flush_work(&unbind_work);
		break;
4207 4208 4209 4210
	}
	return NOTIFY_OK;
}

4211
#ifdef CONFIG_SMP
4212

4213
struct work_for_cpu {
4214
	struct work_struct work;
4215 4216 4217 4218 4219
	long (*fn)(void *);
	void *arg;
	long ret;
};

4220
static void work_for_cpu_fn(struct work_struct *work)
4221
{
4222 4223
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4224 4225 4226 4227 4228 4229 4230 4231 4232
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4233 4234
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
4235
 * The caller must not hold any locks which would prevent @fn from completing.
4236
 */
4237
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4238
{
4239
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4240

4241 4242 4243
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
4244 4245 4246 4247 4248
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4249 4250 4251 4252 4253
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4254
 * Start freezing workqueues.  After this function returns, all freezable
4255
 * workqueues will queue new works to their delayed_works list instead of
4256
 * pool->worklist.
4257 4258
 *
 * CONTEXT:
4259
 * Grabs and releases workqueue_lock and pool->lock's.
4260 4261 4262
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4263
	struct worker_pool *pool;
4264 4265
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4266
	int pi;
4267

4268
	spin_lock_irq(&workqueue_lock);
4269

4270
	WARN_ON_ONCE(workqueue_freezing);
4271 4272
	workqueue_freezing = true;

4273
	/* set FREEZING */
4274
	for_each_pool(pool, pi) {
T
Tejun Heo 已提交
4275 4276 4277
		spin_lock(&pool->lock);
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4278 4279
		spin_unlock(&pool->lock);
	}
4280

4281 4282
	/* suppress further executions by setting max_active to zero */
	list_for_each_entry(wq, &workqueues, list) {
4283 4284
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4285 4286
	}

4287
	spin_unlock_irq(&workqueue_lock);
4288 4289 4290
}

/**
4291
 * freeze_workqueues_busy - are freezable workqueues still busy?
4292 4293 4294 4295 4296 4297 4298 4299
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
4300 4301
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4302 4303 4304 4305
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4306 4307
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4308

4309
	spin_lock_irq(&workqueue_lock);
4310

4311
	WARN_ON_ONCE(!workqueue_freezing);
4312

4313 4314 4315
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4316 4317 4318 4319
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4320
		for_each_pwq(pwq, wq) {
4321
			WARN_ON_ONCE(pwq->nr_active < 0);
4322
			if (pwq->nr_active) {
4323 4324 4325 4326 4327 4328
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
4329
	spin_unlock_irq(&workqueue_lock);
4330 4331 4332 4333 4334 4335 4336
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4337
 * frozen works are transferred to their respective pool worklists.
4338 4339
 *
 * CONTEXT:
4340
 * Grabs and releases workqueue_lock and pool->lock's.
4341 4342 4343
 */
void thaw_workqueues(void)
{
4344 4345 4346
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4347
	int pi;
4348

4349
	spin_lock_irq(&workqueue_lock);
4350 4351 4352 4353

	if (!workqueue_freezing)
		goto out_unlock;

4354
	/* clear FREEZING */
4355
	for_each_pool(pool, pi) {
4356 4357 4358 4359 4360
		spin_lock(&pool->lock);
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
		spin_unlock(&pool->lock);
	}
4361

4362 4363
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4364 4365
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4366 4367
	}

4368
	/* kick workers */
4369
	for_each_pool(pool, pi) {
4370 4371 4372 4373 4374
		spin_lock(&pool->lock);
		wake_up_worker(pool);
		spin_unlock(&pool->lock);
	}

4375 4376
	workqueue_freezing = false;
out_unlock:
4377
	spin_unlock_irq(&workqueue_lock);
4378 4379 4380
}
#endif /* CONFIG_FREEZER */

4381
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4382
{
T
Tejun Heo 已提交
4383 4384
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4385

4386 4387
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4388
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4389

4390 4391 4392 4393
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4394
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4395
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4396

4397
	/* initialize CPU pools */
4398
	for_each_possible_cpu(cpu) {
4399
		struct worker_pool *pool;
4400

T
Tejun Heo 已提交
4401
		i = 0;
4402
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4403
			BUG_ON(init_worker_pool(pool));
4404
			pool->cpu = cpu;
4405
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4406 4407
			pool->attrs->nice = std_nice[i++];

T
Tejun Heo 已提交
4408 4409
			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
4410
		}
4411 4412
	}

4413
	/* create the initial worker */
4414
	for_each_online_cpu(cpu) {
4415
		struct worker_pool *pool;
4416

4417
		for_each_cpu_worker_pool(pool, cpu) {
4418
			pool->flags &= ~POOL_DISASSOCIATED;
4419
			BUG_ON(create_and_start_worker(pool) < 0);
4420
		}
4421 4422
	}

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));

		attrs->nice = std_nice[i];
		cpumask_setall(attrs->cpumask);

		unbound_std_wq_attrs[i] = attrs;
	}

4435
	system_wq = alloc_workqueue("events", 0, 0);
4436
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4437
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4438 4439
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4440 4441
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4442
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4443
	       !system_unbound_wq || !system_freezable_wq);
4444
	return 0;
L
Linus Torvalds 已提交
4445
}
4446
early_initcall(init_workqueues);