workqueue.c 105.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45

46
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50 51 52 53 54 55 56 57 58 59 60 61
	/*
	 * global_cwq flags
	 *
	 * A bound gcwq is either associated or disassociated with its CPU.
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
	 * be executing on any CPU.  The gcwq behaves as an unbound one.
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62
	 * assoc_mutex of all pools on the gcwq to avoid changing binding
63 64
	 * state while create_worker() is in progress.
	 */
65 66 67 68 69
	GCWQ_DISASSOCIATED	= 1 << 0,	/* cpu can't serve workers */
	GCWQ_FREEZING		= 1 << 1,	/* freeze in progress */

	/* pool flags */
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
70
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
71

T
Tejun Heo 已提交
72 73 74 75
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79

80
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
81
				  WORKER_CPU_INTENSIVE,
82

83
	NR_WORKER_POOLS		= 2,		/* # worker pools per gcwq */
84

T
Tejun Heo 已提交
85
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
86

87 88 89
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

90 91 92
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
93 94 95 96 97 98 99 100
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
101
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
102
};
L
Linus Torvalds 已提交
103 104

/*
T
Tejun Heo 已提交
105 106
 * Structure fields follow one of the following exclusion rules.
 *
107 108
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
109
 *
110 111 112
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
113
 * L: gcwq->lock protected.  Access with gcwq->lock held.
T
Tejun Heo 已提交
114
 *
115 116 117
 * X: During normal operation, modification requires gcwq->lock and
 *    should be done only from local cpu.  Either disabling preemption
 *    on local cpu or grabbing gcwq->lock is enough for read access.
118
 *    If GCWQ_DISASSOCIATED is set, it's identical to L.
119
 *
120 121
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
122
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
123 124
 */

125
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
126

127 128
struct worker_pool {
	struct global_cwq	*gcwq;		/* I: the owning gcwq */
129
	unsigned int		flags;		/* X: flags */
130 131 132

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
133 134

	/* nr_idle includes the ones off idle_list for rebinding */
135 136 137 138 139 140
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

141
	struct mutex		assoc_mutex;	/* protect GCWQ_DISASSOCIATED */
142 143 144
	struct ida		worker_ida;	/* L: for worker IDs */
};

145
/*
146 147 148
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
149 150 151 152
 */
struct global_cwq {
	spinlock_t		lock;		/* the gcwq lock */
	unsigned int		cpu;		/* I: the associated cpu */
153
	unsigned int		flags;		/* L: GCWQ_* flags */
T
Tejun Heo 已提交
154

155
	/* workers are chained either in busy_hash or pool idle_list */
156
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
T
Tejun Heo 已提交
157 158
						/* L: hash of busy workers */

159 160
	struct worker_pool	pools[NR_WORKER_POOLS];
						/* normal and highpri pools */
161 162
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
163
/*
164
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
165 166
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
167 168
 */
struct cpu_workqueue_struct {
169
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
170
	struct workqueue_struct *wq;		/* I: the owning workqueue */
171 172 173 174
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
175
	int			nr_active;	/* L: nr of active works */
176
	int			max_active;	/* L: max active works */
177
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
178
};
L
Linus Torvalds 已提交
179

180 181 182 183 184 185 186 187 188
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

189 190 191 192 193 194 195 196 197 198
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
199
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
200 201 202 203 204 205 206 207 208
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
209 210 211 212 213 214

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
215
	unsigned int		flags;		/* W: WQ_* flags */
216 217 218 219 220
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
221
	struct list_head	list;		/* W: list of all workqueues */
222 223 224 225 226 227 228 229 230

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

231
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
232 233
	struct worker		*rescuer;	/* I: rescue worker */

234
	int			nr_drainers;	/* W: drain in progress */
235
	int			saved_max_active; /* W: saved cwq max_active */
236
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
237
	struct lockdep_map	lockdep_map;
238
#endif
239
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
240 241
};

242 243
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
244
struct workqueue_struct *system_highpri_wq __read_mostly;
245
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
246
struct workqueue_struct *system_long_wq __read_mostly;
247
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
248
struct workqueue_struct *system_unbound_wq __read_mostly;
249
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
250
struct workqueue_struct *system_freezable_wq __read_mostly;
251
EXPORT_SYMBOL_GPL(system_freezable_wq);
252

253 254 255
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

256
#define for_each_worker_pool(pool, gcwq)				\
257 258
	for ((pool) = &(gcwq)->pools[0];				\
	     (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
259

260
#define for_each_busy_worker(worker, i, pos, gcwq)			\
261
	hash_for_each(gcwq->busy_hash, i, pos, worker, hentry)
262

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

284 285 286 287 288 289 290 291 292 293 294 295 296
/*
 * CPU iterators
 *
 * An extra gcwq is defined for an invalid cpu number
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 * specific CPU.  The following iterators are similar to
 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 *
 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

312 313 314 315
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

316 317 318 319 320
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
356
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
392
	.debug_hint	= work_debug_hint,
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

428 429
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
430
static LIST_HEAD(workqueues);
431
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
432

433 434 435 436 437
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
438
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
439
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
440

441 442 443 444 445 446
/*
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The
 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
 * workers have WORKER_UNBOUND set.
 */
static struct global_cwq unbound_global_cwq;
447 448 449
static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
	[0 ... NR_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
};
450

T
Tejun Heo 已提交
451
static int worker_thread(void *__worker);
T
Tejun Heo 已提交
452
static unsigned int work_cpu(struct work_struct *work);
L
Linus Torvalds 已提交
453

454 455 456 457 458
static int worker_pool_pri(struct worker_pool *pool)
{
	return pool - pool->gcwq->pools;
}

459 460
static struct global_cwq *get_gcwq(unsigned int cpu)
{
461 462 463 464
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
465 466
}

467
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
468
{
469
	int cpu = pool->gcwq->cpu;
470
	int idx = worker_pool_pri(pool);
471

472
	if (cpu != WORK_CPU_UNBOUND)
473
		return &per_cpu(pool_nr_running, cpu)[idx];
474
	else
475
		return &unbound_pool_nr_running[idx];
476 477
}

T
Tejun Heo 已提交
478 479
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
480
{
481
	if (!(wq->flags & WQ_UNBOUND)) {
482
		if (likely(cpu < nr_cpu_ids))
483 484 485 486
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
487 488
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
504

505
/*
506 507 508
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
 * is cleared and the high bits contain OFFQ flags and CPU number.
509
 *
510 511 512 513
 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, cpu or clear
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
514
 *
515 516 517 518
 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
 * a work.  gcwq is available once the work has been queued anywhere after
 * initialization until it is sync canceled.  cwq is available only while
 * the work item is queued.
519
 *
520 521 522 523
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
524
 */
525 526
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
527
{
528
	BUG_ON(!work_pending(work));
529 530
	atomic_long_set(&work->data, data | flags | work_static(work));
}
531

532 533 534 535 536
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
537
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
538 539
}

540 541
static void set_work_cpu_and_clear_pending(struct work_struct *work,
					   unsigned int cpu)
542
{
543 544 545 546 547 548 549
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
550
	set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
551
}
552

553
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
554
{
555
	smp_wmb();	/* see set_work_cpu_and_clear_pending() */
556
	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
L
Linus Torvalds 已提交
557 558
}

559
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
560
{
561
	unsigned long data = atomic_long_read(&work->data);
562

563 564 565 566
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
567 568
}

569
static struct global_cwq *get_work_gcwq(struct work_struct *work)
570
{
571
	unsigned long data = atomic_long_read(&work->data);
572 573
	unsigned int cpu;

574 575
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
576
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
577

578
	cpu = data >> WORK_OFFQ_CPU_SHIFT;
579
	if (cpu == WORK_CPU_NONE)
580 581
		return NULL;

582
	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
583
	return get_gcwq(cpu);
584 585
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
static void mark_work_canceling(struct work_struct *work)
{
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;

	set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
		      WORK_STRUCT_PENDING);
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

602
/*
603 604 605
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
 * they're being called with gcwq->lock held.
606 607
 */

608
static bool __need_more_worker(struct worker_pool *pool)
609
{
610
	return !atomic_read(get_pool_nr_running(pool));
611 612
}

613
/*
614 615
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
616 617 618 619
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound gcwq as long as the
 * worklist isn't empty.
620
 */
621
static bool need_more_worker(struct worker_pool *pool)
622
{
623
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
624
}
625

626
/* Can I start working?  Called from busy but !running workers. */
627
static bool may_start_working(struct worker_pool *pool)
628
{
629
	return pool->nr_idle;
630 631 632
}

/* Do I need to keep working?  Called from currently running workers. */
633
static bool keep_working(struct worker_pool *pool)
634
{
635
	atomic_t *nr_running = get_pool_nr_running(pool);
636

637
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
638 639 640
}

/* Do we need a new worker?  Called from manager. */
641
static bool need_to_create_worker(struct worker_pool *pool)
642
{
643
	return need_more_worker(pool) && !may_start_working(pool);
644
}
645

646
/* Do I need to be the manager? */
647
static bool need_to_manage_workers(struct worker_pool *pool)
648
{
649
	return need_to_create_worker(pool) ||
650
		(pool->flags & POOL_MANAGE_WORKERS);
651 652 653
}

/* Do we have too many workers and should some go away? */
654
static bool too_many_workers(struct worker_pool *pool)
655
{
656
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
657 658
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
659

660 661 662 663 664 665 666
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

667
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
668 669
}

670
/*
671 672 673
 * Wake up functions.
 */

674
/* Return the first worker.  Safe with preemption disabled */
675
static struct worker *first_worker(struct worker_pool *pool)
676
{
677
	if (unlikely(list_empty(&pool->idle_list)))
678 679
		return NULL;

680
	return list_first_entry(&pool->idle_list, struct worker, entry);
681 682 683 684
}

/**
 * wake_up_worker - wake up an idle worker
685
 * @pool: worker pool to wake worker from
686
 *
687
 * Wake up the first idle worker of @pool.
688 689 690 691
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
692
static void wake_up_worker(struct worker_pool *pool)
693
{
694
	struct worker *worker = first_worker(pool);
695 696 697 698 699

	if (likely(worker))
		wake_up_process(worker->task);
}

700
/**
701 702 703 704 705 706 707 708 709 710 711 712 713 714
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

715 716
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
		WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
717
		atomic_inc(get_pool_nr_running(worker->pool));
718
	}
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
740 741
	struct worker_pool *pool;
	atomic_t *nr_running;
742

743 744 745 746 747
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
748
	if (worker->flags & WORKER_NOT_RUNNING)
749 750
		return NULL;

751 752 753
	pool = worker->pool;
	nr_running = get_pool_nr_running(pool);

754 755 756 757 758 759 760 761
	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
762 763 764 765 766
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
	 * manipulating idle_list, so dereferencing idle_list without gcwq
	 * lock is safe.
767
	 */
768
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
769
		to_wakeup = first_worker(pool);
770 771 772 773 774
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
775
 * @worker: self
776 777 778
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
779 780 781
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
782
 *
783 784
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
785 786 787 788
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
789
	struct worker_pool *pool = worker->pool;
790

791 792
	WARN_ON_ONCE(worker->task != current);

793 794 795 796 797 798 799
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
800
		atomic_t *nr_running = get_pool_nr_running(pool);
801 802 803

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
804
			    !list_empty(&pool->worklist))
805
				wake_up_worker(pool);
806 807 808 809
		} else
			atomic_dec(nr_running);
	}

810 811 812 813
	worker->flags |= flags;
}

/**
814
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
815
 * @worker: self
816 817
 * @flags: flags to clear
 *
818
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
819
 *
820 821
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
822 823 824
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
825
	struct worker_pool *pool = worker->pool;
826 827
	unsigned int oflags = worker->flags;

828 829
	WARN_ON_ONCE(worker->task != current);

830
	worker->flags &= ~flags;
831

832 833 834 835 836
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
837 838
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
839
			atomic_inc(get_pool_nr_running(pool));
840 841
}

842 843 844 845 846
/**
 * find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @work: work to find worker for
 *
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
 * Find a worker which is executing @work on @gcwq by searching
 * @gcwq->busy_hash which is keyed by the address of @work.  For a worker
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
868 869 870 871 872 873 874
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
875
 */
876 877
static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
						 struct work_struct *work)
878
{
879 880 881
	struct worker *worker;
	struct hlist_node *tmp;

882 883 884 885
	hash_for_each_possible(gcwq->busy_hash, worker, tmp, hentry,
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
886 887 888
			return worker;

	return NULL;
889 890
}

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

932
static void cwq_activate_delayed_work(struct work_struct *work)
933
{
934
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
935 936 937 938 939 940 941

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

942 943 944 945 946 947 948 949
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	cwq_activate_delayed_work(work);
}

950 951 952 953 954 955 956 957 958 959 960
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
961
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
962 963 964 965 966 967 968
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

969 970 971 972 973
	cwq->nr_active--;
	if (!list_empty(&cwq->delayed_works)) {
		/* one down, submit a delayed one */
		if (cwq->nr_active < cwq->max_active)
			cwq_activate_first_delayed(cwq);
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

995
/**
996
 * try_to_grab_pending - steal work item from worklist and disable irq
997 998
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
999
 * @flags: place to store irq state
1000 1001 1002 1003 1004 1005 1006
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1007 1008
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1009
 *
1010
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1011 1012 1013
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1014 1015 1016 1017
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1018
 * This function is safe to call from any context including IRQ handler.
1019
 */
1020 1021
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1022 1023 1024
{
	struct global_cwq *gcwq;

1025 1026
	local_irq_save(*flags);

1027 1028 1029 1030
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1031 1032 1033 1034 1035
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1036 1037 1038 1039 1040
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1041 1042 1043 1044 1045 1046 1047 1048 1049
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
	gcwq = get_work_gcwq(work);
	if (!gcwq)
1050
		goto fail;
1051

1052
	spin_lock(&gcwq->lock);
1053 1054 1055 1056 1057 1058 1059 1060 1061
	if (!list_empty(&work->entry)) {
		/*
		 * This work is queued, but perhaps we locked the wrong gcwq.
		 * In that case we must see the new value after rmb(), see
		 * insert_work()->wmb().
		 */
		smp_rmb();
		if (gcwq == get_work_gcwq(work)) {
			debug_work_deactivate(work);
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

			/*
			 * A delayed work item cannot be grabbed directly
			 * because it might have linked NO_COLOR work items
			 * which, if left on the delayed_list, will confuse
			 * cwq->nr_active management later on and cause
			 * stall.  Make sure the work item is activated
			 * before grabbing.
			 */
			if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
				cwq_activate_delayed_work(work);

1074 1075
			list_del_init(&work->entry);
			cwq_dec_nr_in_flight(get_work_cwq(work),
1076
				get_work_color(work));
1077

1078
			spin_unlock(&gcwq->lock);
1079
			return 1;
1080 1081
		}
	}
1082 1083 1084 1085 1086 1087
	spin_unlock(&gcwq->lock);
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1088
	return -EAGAIN;
1089 1090
}

T
Tejun Heo 已提交
1091
/**
1092
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
1093 1094 1095 1096 1097
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1098 1099
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
1100 1101
 *
 * CONTEXT:
1102
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1103
 */
O
Oleg Nesterov 已提交
1104
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1105 1106
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1107
{
1108
	struct worker_pool *pool = cwq->pool;
1109

T
Tejun Heo 已提交
1110
	/* we own @work, set data and link */
1111
	set_work_cwq(work, cwq, extra_flags);
1112

1113 1114 1115 1116 1117
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
1118

1119
	list_add_tail(&work->entry, head);
1120 1121 1122 1123 1124 1125 1126 1127

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1128 1129
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1130 1131
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

	for_each_gcwq_cpu(cpu) {
		struct global_cwq *gcwq = get_gcwq(cpu);
		struct worker *worker;
		struct hlist_node *pos;
		int i;

		spin_lock_irqsave(&gcwq->lock, flags);
		for_each_busy_worker(worker, i, pos, gcwq) {
			if (worker->task != current)
				continue;
			spin_unlock_irqrestore(&gcwq->lock, flags);
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
		spin_unlock_irqrestore(&gcwq->lock, flags);
	}
	return false;
}

T
Tejun Heo 已提交
1164
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1165 1166
			 struct work_struct *work)
{
1167 1168
	struct global_cwq *gcwq;
	struct cpu_workqueue_struct *cwq;
1169
	struct list_head *worklist;
1170
	unsigned int work_flags;
1171
	unsigned int req_cpu = cpu;
1172 1173 1174 1175 1176 1177 1178 1179

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1180

1181
	debug_work_activate(work);
1182

1183
	/* if dying, only works from the same workqueue are allowed */
1184
	if (unlikely(wq->flags & WQ_DRAINING) &&
1185
	    WARN_ON_ONCE(!is_chained_work(wq)))
1186 1187
		return;

1188 1189
	/* determine gcwq to use */
	if (!(wq->flags & WQ_UNBOUND)) {
1190 1191
		struct global_cwq *last_gcwq;

1192
		if (cpu == WORK_CPU_UNBOUND)
1193 1194
			cpu = raw_smp_processor_id();

1195
		/*
1196 1197 1198 1199
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1200
		 */
1201
		gcwq = get_gcwq(cpu);
1202 1203 1204
		last_gcwq = get_work_gcwq(work);

		if (last_gcwq && last_gcwq != gcwq) {
1205 1206
			struct worker *worker;

1207
			spin_lock(&last_gcwq->lock);
1208 1209 1210 1211 1212 1213 1214

			worker = find_worker_executing_work(last_gcwq, work);

			if (worker && worker->current_cwq->wq == wq)
				gcwq = last_gcwq;
			else {
				/* meh... not running there, queue here */
1215 1216
				spin_unlock(&last_gcwq->lock);
				spin_lock(&gcwq->lock);
1217
			}
1218 1219 1220
		} else {
			spin_lock(&gcwq->lock);
		}
1221 1222
	} else {
		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1223
		spin_lock(&gcwq->lock);
1224 1225 1226 1227
	}

	/* gcwq determined, get cwq and queue */
	cwq = get_cwq(gcwq->cpu, wq);
1228
	trace_workqueue_queue_work(req_cpu, cwq, work);
1229

1230
	if (WARN_ON(!list_empty(&work->entry))) {
1231
		spin_unlock(&gcwq->lock);
1232 1233
		return;
	}
1234

1235
	cwq->nr_in_flight[cwq->work_color]++;
1236
	work_flags = work_color_to_flags(cwq->work_color);
1237 1238

	if (likely(cwq->nr_active < cwq->max_active)) {
1239
		trace_workqueue_activate_work(work);
1240
		cwq->nr_active++;
1241
		worklist = &cwq->pool->worklist;
1242 1243
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1244
		worklist = &cwq->delayed_works;
1245
	}
1246

1247
	insert_work(cwq, work, worklist, work_flags);
1248

1249
	spin_unlock(&gcwq->lock);
L
Linus Torvalds 已提交
1250 1251
}

1252
/**
1253 1254
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1255 1256 1257
 * @wq: workqueue to use
 * @work: work to queue
 *
1258
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1259
 *
1260 1261
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1262
 */
1263 1264
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1265
{
1266
	bool ret = false;
1267
	unsigned long flags;
1268

1269
	local_irq_save(flags);
1270

1271
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1272
		__queue_work(cpu, wq, work);
1273
		ret = true;
1274
	}
1275

1276
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1277 1278
	return ret;
}
1279
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1280

1281
/**
1282
 * queue_work - queue work on a workqueue
1283 1284 1285
 * @wq: workqueue to use
 * @work: work to queue
 *
1286
 * Returns %false if @work was already on a queue, %true otherwise.
1287
 *
1288 1289
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1290
 */
1291
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1292
{
1293
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1294
}
1295
EXPORT_SYMBOL_GPL(queue_work);
1296

1297
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1298
{
1299
	struct delayed_work *dwork = (struct delayed_work *)__data;
1300
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
L
Linus Torvalds 已提交
1301

1302
	/* should have been called from irqsafe timer with irq already off */
1303
	__queue_work(dwork->cpu, cwq->wq, &dwork->work);
L
Linus Torvalds 已提交
1304
}
1305
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1306

1307 1308
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1309
{
1310 1311 1312 1313 1314 1315
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
	unsigned int lcpu;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1316 1317
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1330
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1331

1332 1333 1334 1335 1336 1337 1338 1339
	/*
	 * This stores cwq for the moment, for the timer_fn.  Note that the
	 * work's gcwq is preserved to allow reentrance detection for
	 * delayed works.
	 */
	if (!(wq->flags & WQ_UNBOUND)) {
		struct global_cwq *gcwq = get_work_gcwq(work);

1340 1341 1342 1343 1344 1345 1346
		/*
		 * If we cannot get the last gcwq from @work directly,
		 * select the last CPU such that it avoids unnecessarily
		 * triggering non-reentrancy check in __queue_work().
		 */
		lcpu = cpu;
		if (gcwq)
1347
			lcpu = gcwq->cpu;
1348
		if (lcpu == WORK_CPU_UNBOUND)
1349 1350 1351 1352 1353 1354 1355
			lcpu = raw_smp_processor_id();
	} else {
		lcpu = WORK_CPU_UNBOUND;
	}

	set_work_cwq(work, get_cwq(lcpu, wq), 0);

1356
	dwork->cpu = cpu;
1357 1358 1359 1360 1361 1362
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1363 1364
}

1365 1366 1367 1368
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1369
 * @dwork: work to queue
1370 1371
 * @delay: number of jiffies to wait before queueing
 *
1372 1373 1374
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1375
 */
1376 1377
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1378
{
1379
	struct work_struct *work = &dwork->work;
1380
	bool ret = false;
1381
	unsigned long flags;
1382

1383 1384
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1385

1386
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1387
		__queue_delayed_work(cpu, wq, dwork, delay);
1388
		ret = true;
1389
	}
1390

1391
	local_irq_restore(flags);
1392 1393
	return ret;
}
1394
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1395

1396 1397 1398 1399 1400 1401
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1402
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1403
 */
1404
bool queue_delayed_work(struct workqueue_struct *wq,
1405 1406
			struct delayed_work *dwork, unsigned long delay)
{
1407
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1408 1409
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1410

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1426
 * This function is safe to call from any context including IRQ handler.
1427 1428 1429 1430 1431 1432 1433
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1434

1435 1436 1437
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1438

1439 1440 1441
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1442
	}
1443 1444

	/* -ENOENT from try_to_grab_pending() becomes %true */
1445 1446
	return ret;
}
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1463

T
Tejun Heo 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1475
{
1476 1477
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1478 1479 1480 1481 1482

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1483 1484
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1485
	pool->nr_idle++;
1486
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1487 1488

	/* idle_list is LIFO */
1489
	list_add(&worker->entry, &pool->idle_list);
1490

1491 1492
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1493

1494
	/*
1495 1496 1497 1498
	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1499
	 */
1500
	WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1501
		     pool->nr_workers == pool->nr_idle &&
1502
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_leave_idle(struct worker *worker)
{
1516
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1517 1518

	BUG_ON(!(worker->flags & WORKER_IDLE));
1519
	worker_clr_flags(worker, WORKER_IDLE);
1520
	pool->nr_idle--;
T
Tejun Heo 已提交
1521 1522 1523
	list_del_init(&worker->entry);
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
1540 1541 1542 1543 1544
 * This function tries set_cpus_allowed() and locks gcwq and verifies the
 * binding against %GCWQ_DISASSOCIATED which is set during
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
 *
 * CONTEXT:
 * Might sleep.  Called without any lock but returns with gcwq->lock
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1555
__acquires(&gcwq->lock)
1556
{
1557
	struct global_cwq *gcwq = worker->pool->gcwq;
1558 1559 1560
	struct task_struct *task = worker->task;

	while (true) {
1561
		/*
1562 1563 1564 1565
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
		 * against GCWQ_DISASSOCIATED.
1566
		 */
1567 1568
		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

		spin_lock_irq(&gcwq->lock);
		if (gcwq->flags & GCWQ_DISASSOCIATED)
			return false;
		if (task_cpu(task) == gcwq->cpu &&
		    cpumask_equal(&current->cpus_allowed,
				  get_cpu_mask(gcwq->cpu)))
			return true;
		spin_unlock_irq(&gcwq->lock);

1579 1580 1581 1582 1583 1584
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1585
		cpu_relax();
1586
		cond_resched();
1587 1588 1589
	}
}

1590
/*
1591
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1592
 * list_empty(@worker->entry) before leaving idle and call this function.
1593 1594 1595 1596 1597
 */
static void idle_worker_rebind(struct worker *worker)
{
	struct global_cwq *gcwq = worker->pool->gcwq;

1598 1599 1600
	/* CPU may go down again inbetween, clear UNBOUND only on success */
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1601

1602 1603 1604
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
	spin_unlock_irq(&gcwq->lock);
1605 1606
}

1607
/*
1608
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1609 1610 1611
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1612
 */
1613
static void busy_worker_rebind_fn(struct work_struct *work)
1614 1615
{
	struct worker *worker = container_of(work, struct worker, rebind_work);
1616
	struct global_cwq *gcwq = worker->pool->gcwq;
1617

1618 1619
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1620 1621 1622 1623

	spin_unlock_irq(&gcwq->lock);
}

1624 1625 1626 1627 1628 1629 1630
/**
 * rebind_workers - rebind all workers of a gcwq to the associated CPU
 * @gcwq: gcwq of interest
 *
 * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
 * is different for idle and busy ones.
 *
1631 1632 1633 1634
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1635
 *
1636 1637 1638 1639
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1640
 *
1641 1642 1643 1644
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1645 1646 1647 1648
 */
static void rebind_workers(struct global_cwq *gcwq)
{
	struct worker_pool *pool;
1649
	struct worker *worker, *n;
1650 1651 1652 1653 1654 1655
	struct hlist_node *pos;
	int i;

	lockdep_assert_held(&gcwq->lock);

	for_each_worker_pool(pool, gcwq)
1656
		lockdep_assert_held(&pool->assoc_mutex);
1657

1658
	/* dequeue and kick idle ones */
1659
	for_each_worker_pool(pool, gcwq) {
1660 1661 1662 1663 1664 1665 1666
		list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
			/*
			 * idle workers should be off @pool->idle_list
			 * until rebind is complete to avoid receiving
			 * premature local wake-ups.
			 */
			list_del_init(&worker->entry);
1667

1668 1669 1670 1671
			/*
			 * worker_thread() will see the above dequeuing
			 * and call idle_worker_rebind().
			 */
1672 1673 1674 1675
			wake_up_process(worker->task);
		}
	}

1676
	/* rebind busy workers */
1677 1678
	for_each_busy_worker(worker, i, pos, gcwq) {
		struct work_struct *rebind_work = &worker->rebind_work;
1679
		struct workqueue_struct *wq;
1680 1681 1682 1683 1684 1685

		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;

		debug_work_activate(rebind_work);
1686

1687 1688 1689 1690 1691 1692 1693 1694
		/*
		 * wq doesn't really matter but let's keep @worker->pool
		 * and @cwq->pool consistent for sanity.
		 */
		if (worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;
1695

1696 1697 1698
		insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
			worker->scheduled.next,
			work_color_to_flags(WORK_NO_COLOR));
1699
	}
1700 1701
}

T
Tejun Heo 已提交
1702 1703 1704 1705 1706
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1707 1708
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1709
		INIT_LIST_HEAD(&worker->scheduled);
1710
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1711 1712
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1713
	}
T
Tejun Heo 已提交
1714 1715 1716 1717 1718
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1719
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1720
 *
1721
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1731
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1732
{
1733
	struct global_cwq *gcwq = pool->gcwq;
1734
	const char *pri = worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1735
	struct worker *worker = NULL;
1736
	int id = -1;
T
Tejun Heo 已提交
1737

1738
	spin_lock_irq(&gcwq->lock);
1739
	while (ida_get_new(&pool->worker_ida, &id)) {
1740
		spin_unlock_irq(&gcwq->lock);
1741
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1742
			goto fail;
1743
		spin_lock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1744
	}
1745
	spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1746 1747 1748 1749 1750

	worker = alloc_worker();
	if (!worker)
		goto fail;

1751
	worker->pool = pool;
T
Tejun Heo 已提交
1752 1753
	worker->id = id;

1754
	if (gcwq->cpu != WORK_CPU_UNBOUND)
1755
		worker->task = kthread_create_on_node(worker_thread,
1756 1757
					worker, cpu_to_node(gcwq->cpu),
					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1758 1759
	else
		worker->task = kthread_create(worker_thread, worker,
1760
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1761 1762 1763
	if (IS_ERR(worker->task))
		goto fail;

1764 1765 1766
	if (worker_pool_pri(pool))
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1767
	/*
1768 1769 1770 1771 1772 1773 1774
	 * Determine CPU binding of the new worker depending on
	 * %GCWQ_DISASSOCIATED.  The caller is responsible for ensuring the
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1775
	 */
1776
	if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1777
		kthread_bind(worker->task, gcwq->cpu);
1778
	} else {
1779
		worker->task->flags |= PF_THREAD_BOUND;
1780
		worker->flags |= WORKER_UNBOUND;
1781
	}
T
Tejun Heo 已提交
1782 1783 1784 1785

	return worker;
fail:
	if (id >= 0) {
1786
		spin_lock_irq(&gcwq->lock);
1787
		ida_remove(&pool->worker_ida, id);
1788
		spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1798
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1799 1800
 *
 * CONTEXT:
1801
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1802 1803 1804
 */
static void start_worker(struct worker *worker)
{
1805
	worker->flags |= WORKER_STARTED;
1806
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1807
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1808 1809 1810 1811 1812 1813 1814
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1815 1816 1817 1818
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1819 1820 1821
 */
static void destroy_worker(struct worker *worker)
{
1822 1823
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1824 1825 1826 1827
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1828
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1829

T
Tejun Heo 已提交
1830
	if (worker->flags & WORKER_STARTED)
1831
		pool->nr_workers--;
T
Tejun Heo 已提交
1832
	if (worker->flags & WORKER_IDLE)
1833
		pool->nr_idle--;
T
Tejun Heo 已提交
1834 1835

	list_del_init(&worker->entry);
1836
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1837 1838 1839

	spin_unlock_irq(&gcwq->lock);

T
Tejun Heo 已提交
1840 1841 1842
	kthread_stop(worker->task);
	kfree(worker);

1843
	spin_lock_irq(&gcwq->lock);
1844
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1845 1846
}

1847
static void idle_worker_timeout(unsigned long __pool)
1848
{
1849 1850
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1851 1852 1853

	spin_lock_irq(&gcwq->lock);

1854
	if (too_many_workers(pool)) {
1855 1856 1857 1858
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1859
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1860 1861 1862
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1863
			mod_timer(&pool->idle_timer, expires);
1864 1865
		else {
			/* it's been idle for too long, wake up manager */
1866
			pool->flags |= POOL_MANAGE_WORKERS;
1867
			wake_up_worker(pool);
1868
		}
1869 1870 1871 1872
	}

	spin_unlock_irq(&gcwq->lock);
}
1873

1874 1875 1876 1877
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1878
	unsigned int cpu;
1879 1880 1881 1882 1883

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1884
	cpu = cwq->pool->gcwq->cpu;
1885 1886 1887
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1888
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1889 1890 1891 1892
		wake_up_process(wq->rescuer->task);
	return true;
}

1893
static void gcwq_mayday_timeout(unsigned long __pool)
1894
{
1895 1896
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1897 1898 1899 1900
	struct work_struct *work;

	spin_lock_irq(&gcwq->lock);

1901
	if (need_to_create_worker(pool)) {
1902 1903 1904 1905 1906 1907
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1908
		list_for_each_entry(work, &pool->worklist, entry)
1909
			send_mayday(work);
L
Linus Torvalds 已提交
1910
	}
1911 1912 1913

	spin_unlock_irq(&gcwq->lock);

1914
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1915 1916
}

1917 1918
/**
 * maybe_create_worker - create a new worker if necessary
1919
 * @pool: pool to create a new worker for
1920
 *
1921
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1922 1923
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1924
 * sent to all rescuers with works scheduled on @pool to resolve
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
1939
static bool maybe_create_worker(struct worker_pool *pool)
1940 1941
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
L
Linus Torvalds 已提交
1942
{
1943 1944 1945
	struct global_cwq *gcwq = pool->gcwq;

	if (!need_to_create_worker(pool))
1946 1947
		return false;
restart:
1948 1949
	spin_unlock_irq(&gcwq->lock);

1950
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1951
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1952 1953 1954 1955

	while (true) {
		struct worker *worker;

1956
		worker = create_worker(pool);
1957
		if (worker) {
1958
			del_timer_sync(&pool->mayday_timer);
1959 1960
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
1961
			BUG_ON(need_to_create_worker(pool));
1962 1963 1964
			return true;
		}

1965
		if (!need_to_create_worker(pool))
1966
			break;
L
Linus Torvalds 已提交
1967

1968 1969
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1970

1971
		if (!need_to_create_worker(pool))
1972 1973 1974
			break;
	}

1975
	del_timer_sync(&pool->mayday_timer);
1976
	spin_lock_irq(&gcwq->lock);
1977
	if (need_to_create_worker(pool))
1978 1979 1980 1981 1982 1983
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1984
 * @pool: pool to destroy workers for
1985
 *
1986
 * Destroy @pool workers which have been idle for longer than
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Called only from manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
1997
static bool maybe_destroy_workers(struct worker_pool *pool)
1998 1999
{
	bool ret = false;
L
Linus Torvalds 已提交
2000

2001
	while (too_many_workers(pool)) {
2002 2003
		struct worker *worker;
		unsigned long expires;
2004

2005
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2006
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2007

2008
		if (time_before(jiffies, expires)) {
2009
			mod_timer(&pool->idle_timer, expires);
2010
			break;
2011
		}
L
Linus Torvalds 已提交
2012

2013 2014
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2015
	}
2016

2017
	return ret;
2018 2019
}

2020
/**
2021 2022
 * manage_workers - manage worker pool
 * @worker: self
2023
 *
2024 2025 2026 2027 2028 2029 2030
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2031 2032
 *
 * CONTEXT:
2033 2034 2035 2036 2037 2038
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true if
 * some action was taken.
2039
 */
2040
static bool manage_workers(struct worker *worker)
2041
{
2042
	struct worker_pool *pool = worker->pool;
2043
	bool ret = false;
2044

2045
	if (pool->flags & POOL_MANAGING_WORKERS)
2046
		return ret;
2047

2048
	pool->flags |= POOL_MANAGING_WORKERS;
2049

2050 2051 2052 2053 2054 2055
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2056
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2057 2058
	 * manager against CPU hotplug.
	 *
2059
	 * assoc_mutex would always be free unless CPU hotplug is in
2060 2061
	 * progress.  trylock first without dropping @gcwq->lock.
	 */
2062
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2063
		spin_unlock_irq(&pool->gcwq->lock);
2064
		mutex_lock(&pool->assoc_mutex);
2065 2066
		/*
		 * CPU hotplug could have happened while we were waiting
2067
		 * for assoc_mutex.  Hotplug itself can't handle us
2068 2069 2070
		 * because manager isn't either on idle or busy list, and
		 * @gcwq's state and ours could have deviated.
		 *
2071
		 * As hotplug is now excluded via assoc_mutex, we can
2072 2073 2074 2075 2076 2077 2078 2079
		 * simply try to bind.  It will succeed or fail depending
		 * on @gcwq's current state.  Try it and adjust
		 * %WORKER_UNBOUND accordingly.
		 */
		if (worker_maybe_bind_and_lock(worker))
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2080

2081 2082
		ret = true;
	}
2083

2084
	pool->flags &= ~POOL_MANAGE_WORKERS;
2085 2086

	/*
2087 2088
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2089
	 */
2090 2091
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2092

2093
	pool->flags &= ~POOL_MANAGING_WORKERS;
2094
	mutex_unlock(&pool->assoc_mutex);
2095
	return ret;
2096 2097
}

2098 2099
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2100
 * @worker: self
2101 2102 2103 2104 2105 2106 2107 2108 2109
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2110
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2111
 */
T
Tejun Heo 已提交
2112
static void process_one_work(struct worker *worker, struct work_struct *work)
2113 2114
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
2115
{
2116
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2117 2118
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
2119
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2120
	int work_color;
2121
	struct worker *collision;
2122 2123 2124 2125 2126 2127 2128 2129
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2130 2131 2132
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2133
#endif
2134 2135 2136 2137 2138
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
	 * unbound or a disassociated gcwq.
	 */
2139
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2140
		     !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2141 2142
		     raw_smp_processor_id() != gcwq->cpu);

2143 2144 2145 2146 2147 2148
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2149
	collision = find_worker_executing_work(gcwq, work);
2150 2151 2152 2153 2154
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2155
	/* claim and dequeue */
2156
	debug_work_deactivate(work);
2157
	hash_add(gcwq->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2158
	worker->current_work = work;
2159
	worker->current_func = work->func;
2160
	worker->current_cwq = cwq;
2161
	work_color = get_work_color(work);
2162

2163 2164
	list_del_init(&work->entry);

2165 2166 2167 2168 2169 2170 2171
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2172 2173 2174 2175
	/*
	 * Unbound gcwq isn't concurrency managed and work items should be
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2176 2177
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2178

2179
	/*
2180 2181 2182 2183
	 * Record the last CPU and clear PENDING which should be the last
	 * update to @work.  Also, do this inside @gcwq->lock so that
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2184 2185
	 */
	set_work_cpu_and_clear_pending(work, gcwq->cpu);
2186

2187
	spin_unlock_irq(&gcwq->lock);
2188

2189
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2190
	lock_map_acquire(&lockdep_map);
2191
	trace_workqueue_execute_start(work);
2192
	worker->current_func(work);
2193 2194 2195 2196 2197
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2198 2199 2200 2201
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2202 2203
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2204 2205
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2206 2207 2208 2209
		debug_show_held_locks(current);
		dump_stack();
	}

2210
	spin_lock_irq(&gcwq->lock);
2211

2212 2213 2214 2215
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2216
	/* we're done with it, release */
2217
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2218
	worker->current_work = NULL;
2219
	worker->current_func = NULL;
2220
	worker->current_cwq = NULL;
2221
	cwq_dec_nr_in_flight(cwq, work_color);
2222 2223
}

2224 2225 2226 2227 2228 2229 2230 2231 2232
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2233
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2234 2235 2236
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2237
{
2238 2239
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2240
						struct work_struct, entry);
T
Tejun Heo 已提交
2241
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2242 2243 2244
	}
}

T
Tejun Heo 已提交
2245 2246
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2247
 * @__worker: self
T
Tejun Heo 已提交
2248
 *
2249 2250 2251 2252 2253
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2254
 */
T
Tejun Heo 已提交
2255
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2256
{
T
Tejun Heo 已提交
2257
	struct worker *worker = __worker;
2258 2259
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
L
Linus Torvalds 已提交
2260

2261 2262
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2263 2264
woke_up:
	spin_lock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2265

2266 2267
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
T
Tejun Heo 已提交
2268
		spin_unlock_irq(&gcwq->lock);
2269

2270
		/* if DIE is set, destruction is requested */
2271 2272 2273 2274 2275
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2276
		/* otherwise, rebind */
2277 2278
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2279
	}
2280

T
Tejun Heo 已提交
2281
	worker_leave_idle(worker);
2282
recheck:
2283
	/* no more worker necessary? */
2284
	if (!need_more_worker(pool))
2285 2286 2287
		goto sleep;

	/* do we need to manage? */
2288
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2289 2290
		goto recheck;

T
Tejun Heo 已提交
2291 2292 2293 2294 2295 2296 2297
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2298 2299 2300 2301 2302 2303 2304 2305
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2306
		struct work_struct *work =
2307
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2308 2309 2310 2311 2312 2313
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2314
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2315 2316 2317
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2318
		}
2319
	} while (keep_working(pool));
2320 2321

	worker_set_flags(worker, WORKER_PREP, false);
2322
sleep:
2323
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2324
		goto recheck;
2325

T
Tejun Heo 已提交
2326
	/*
2327 2328 2329 2330 2331
	 * gcwq->lock is held and there's no work to process and no
	 * need to manage, sleep.  Workers are woken up only while
	 * holding gcwq->lock or from local cpu, so setting the
	 * current state before releasing gcwq->lock is enough to
	 * prevent losing any event.
T
Tejun Heo 已提交
2332 2333 2334 2335 2336 2337
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
	spin_unlock_irq(&gcwq->lock);
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2338 2339
}

2340 2341
/**
 * rescuer_thread - the rescuer thread function
2342
 * @__rescuer: self
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2359
static int rescuer_thread(void *__rescuer)
2360
{
2361 2362
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2363
	struct list_head *scheduled = &rescuer->scheduled;
2364
	bool is_unbound = wq->flags & WQ_UNBOUND;
2365 2366 2367
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2368 2369 2370 2371 2372 2373

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2374 2375 2376
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2377 2378
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2379
		rescuer->task->flags &= ~PF_WQ_WORKER;
2380
		return 0;
2381
	}
2382

2383 2384 2385 2386
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2387
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2388 2389
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2390 2391
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
2392 2393 2394
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2395
		mayday_clear_cpu(cpu, wq->mayday_mask);
2396 2397

		/* migrate to the target cpu if possible */
2398
		rescuer->pool = pool;
2399 2400 2401 2402 2403 2404 2405
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2406
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2407 2408 2409 2410
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2411 2412 2413 2414 2415 2416

		/*
		 * Leave this gcwq.  If keep_working() is %true, notify a
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2417 2418
		if (keep_working(pool))
			wake_up_worker(pool);
2419

2420 2421 2422
		spin_unlock_irq(&gcwq->lock);
	}

2423 2424
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2425 2426
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2427 2428
}

O
Oleg Nesterov 已提交
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2440 2441 2442 2443
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2444 2445
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2446
 *
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2460 2461
 *
 * CONTEXT:
2462
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
2463
 */
2464
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2465 2466
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2467
{
2468 2469 2470
	struct list_head *head;
	unsigned int linked = 0;

2471
	/*
2472
	 * debugobject calls are safe here even with gcwq->lock locked
2473 2474 2475 2476
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2477
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2478
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2479
	init_completion(&barr->done);
2480

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2496
	debug_work_activate(&barr->work);
2497 2498
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2499 2500
}

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2534
{
2535 2536
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2537

2538 2539 2540
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2541
	}
2542

2543
	for_each_cwq_cpu(cpu, wq) {
2544
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2545
		struct global_cwq *gcwq = cwq->pool->gcwq;
O
Oleg Nesterov 已提交
2546

2547
		spin_lock_irq(&gcwq->lock);
2548

2549 2550
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2551

2552 2553 2554 2555 2556 2557
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2558

2559 2560 2561 2562
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2563

2564
		spin_unlock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2565
	}
2566

2567 2568
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2569

2570
	return wait;
L
Linus Torvalds 已提交
2571 2572
}

2573
/**
L
Linus Torvalds 已提交
2574
 * flush_workqueue - ensure that any scheduled work has run to completion.
2575
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2576 2577 2578 2579
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2580 2581
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2582
 */
2583
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2584
{
2585 2586 2587 2588 2589 2590
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2591

2592 2593
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2655 2656 2657 2658
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2726
}
2727
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2728

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2759
		bool drained;
2760

2761
		spin_lock_irq(&cwq->pool->gcwq->lock);
2762
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2763
		spin_unlock_irq(&cwq->pool->gcwq->lock);
2764 2765

		if (drained)
2766 2767 2768 2769
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2770 2771
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2782
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2783
{
2784
	struct worker *worker = NULL;
2785
	struct global_cwq *gcwq;
2786 2787 2788
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2789 2790
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2791
		return false;
2792

2793
	spin_lock_irq(&gcwq->lock);
2794 2795 2796
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2797 2798
		 * If it was re-queued to a different gcwq under us, we
		 * are not going to wait.
2799 2800
		 */
		smp_rmb();
2801
		cwq = get_work_cwq(work);
2802
		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
T
Tejun Heo 已提交
2803
			goto already_gone;
2804
	} else {
2805
		worker = find_worker_executing_work(gcwq, work);
2806
		if (!worker)
T
Tejun Heo 已提交
2807
			goto already_gone;
2808
		cwq = worker->current_cwq;
2809
	}
2810

2811
	insert_wq_barrier(cwq, barr, work, worker);
2812
	spin_unlock_irq(&gcwq->lock);
2813

2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2824
	lock_map_release(&cwq->wq->lockdep_map);
2825

2826
	return true;
T
Tejun Heo 已提交
2827
already_gone:
2828
	spin_unlock_irq(&gcwq->lock);
2829
	return false;
2830
}
2831 2832 2833 2834 2835

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2836 2837
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2838 2839 2840 2841 2842 2843 2844 2845 2846
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2847 2848 2849
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2850
	if (start_flush_work(work, &barr)) {
2851 2852 2853
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2854
	} else {
2855
		return false;
2856 2857
	}
}
2858
EXPORT_SYMBOL_GPL(flush_work);
2859

2860
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2861
{
2862
	unsigned long flags;
2863 2864 2865
	int ret;

	do {
2866 2867 2868 2869 2870 2871
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2872
			flush_work(work);
2873 2874
	} while (unlikely(ret < 0));

2875 2876 2877 2878
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2879
	flush_work(work);
2880
	clear_work_data(work);
2881 2882 2883
	return ret;
}

2884
/**
2885 2886
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2887
 *
2888 2889 2890 2891
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2892
 *
2893 2894
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2895
 *
2896
 * The caller must ensure that the workqueue on which @work was last
2897
 * queued can't be destroyed before this function returns.
2898 2899 2900
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2901
 */
2902
bool cancel_work_sync(struct work_struct *work)
2903
{
2904
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2905
}
2906
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2907

2908
/**
2909 2910
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2911
 *
2912 2913 2914
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2915
 *
2916 2917 2918
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2919
 */
2920 2921
bool flush_delayed_work(struct delayed_work *dwork)
{
2922
	local_irq_disable();
2923
	if (del_timer_sync(&dwork->timer))
2924
		__queue_work(dwork->cpu,
2925
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2926
	local_irq_enable();
2927 2928 2929 2930
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2931
/**
2932 2933
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2934
 *
2935 2936 2937 2938 2939
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2940
 *
2941
 * This function is safe to call from any context including IRQ handler.
2942
 */
2943
bool cancel_delayed_work(struct delayed_work *dwork)
2944
{
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

	set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
	local_irq_restore(flags);
2957
	return ret;
2958
}
2959
EXPORT_SYMBOL(cancel_delayed_work);
2960

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2971
{
2972
	return __cancel_work_timer(&dwork->work, true);
2973
}
2974
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2975

2976
/**
2977 2978 2979 2980 2981 2982
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2983
bool schedule_work_on(int cpu, struct work_struct *work)
2984
{
2985
	return queue_work_on(cpu, system_wq, work);
2986 2987 2988
}
EXPORT_SYMBOL(schedule_work_on);

2989 2990 2991 2992
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2993 2994
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2995 2996 2997 2998
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2999
 */
3000
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3001
{
3002
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3003
}
3004
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3005

3006 3007 3008
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
3009
 * @dwork: job to be done
3010 3011 3012 3013 3014
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
3015 3016
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
3017
{
3018
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
3019
}
3020
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
3021

3022 3023
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3024 3025
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3026 3027 3028 3029
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3030
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3031
{
3032
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3033
}
3034
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3035

3036
/**
3037
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3038 3039
 * @func: the function to call
 *
3040 3041
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3042
 * schedule_on_each_cpu() is very slow.
3043 3044 3045
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3046
 */
3047
int schedule_on_each_cpu(work_func_t func)
3048 3049
{
	int cpu;
3050
	struct work_struct __percpu *works;
3051

3052 3053
	works = alloc_percpu(struct work_struct);
	if (!works)
3054
		return -ENOMEM;
3055

3056 3057
	get_online_cpus();

3058
	for_each_online_cpu(cpu) {
3059 3060 3061
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3062
		schedule_work_on(cpu, work);
3063
	}
3064 3065 3066 3067

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3068
	put_online_cpus();
3069
	free_percpu(works);
3070 3071 3072
	return 0;
}

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3097 3098
void flush_scheduled_work(void)
{
3099
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3100
}
3101
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3102

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3115
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3116 3117
{
	if (!in_interrupt()) {
3118
		fn(&ew->work);
3119 3120 3121
		return 0;
	}

3122
	INIT_WORK(&ew->work, fn);
3123 3124 3125 3126 3127 3128
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3129 3130
int keventd_up(void)
{
3131
	return system_wq != NULL;
L
Linus Torvalds 已提交
3132 3133
}

3134
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3135
{
3136
	/*
T
Tejun Heo 已提交
3137 3138 3139
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3140
	 */
T
Tejun Heo 已提交
3141 3142 3143
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3144

3145
	if (!(wq->flags & WQ_UNBOUND))
3146
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3147
	else {
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3160
	}
3161

3162
	/* just in case, make sure it's actually aligned */
3163 3164
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3165 3166
}

3167
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3168
{
3169
	if (!(wq->flags & WQ_UNBOUND))
3170 3171 3172
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3173
		kfree(*(void **)(wq->cpu_wq.single + 1));
3174
	}
T
Tejun Heo 已提交
3175 3176
}

3177 3178
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3179
{
3180 3181 3182
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3183 3184
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3185

3186
	return clamp_val(max_active, 1, lim);
3187 3188
}

3189
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3190 3191 3192
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3193
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3194
{
3195
	va_list args, args1;
L
Linus Torvalds 已提交
3196
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3197
	unsigned int cpu;
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3212

3213 3214 3215 3216 3217 3218 3219
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3220
	max_active = max_active ?: WQ_DFL_ACTIVE;
3221
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3222

3223
	/* init wq */
3224
	wq->flags = flags;
3225
	wq->saved_max_active = max_active;
3226 3227 3228 3229
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3230

3231
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3232
	INIT_LIST_HEAD(&wq->list);
3233

3234 3235 3236
	if (alloc_cwqs(wq) < 0)
		goto err;

3237
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3238
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3239
		struct global_cwq *gcwq = get_gcwq(cpu);
3240
		int pool_idx = (bool)(flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3241

T
Tejun Heo 已提交
3242
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3243
		cwq->pool = &gcwq->pools[pool_idx];
T
Tejun Heo 已提交
3244
		cwq->wq = wq;
3245
		cwq->flush_color = -1;
3246 3247
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3248
	}
T
Tejun Heo 已提交
3249

3250 3251 3252
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3253
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3254 3255 3256 3257 3258 3259
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3260 3261
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3262
					       wq->name);
3263 3264 3265 3266 3267
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3268 3269
	}

3270 3271 3272 3273 3274
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3275
	spin_lock(&workqueue_lock);
3276

3277
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3278
		for_each_cwq_cpu(cpu, wq)
3279 3280
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3281
	list_add(&wq->list, &workqueues);
3282

T
Tejun Heo 已提交
3283 3284
	spin_unlock(&workqueue_lock);

3285
	return wq;
T
Tejun Heo 已提交
3286 3287
err:
	if (wq) {
3288
		free_cwqs(wq);
3289
		free_mayday_mask(wq->mayday_mask);
3290
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3291 3292 3293
		kfree(wq);
	}
	return NULL;
3294
}
3295
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3296

3297 3298 3299 3300 3301 3302 3303 3304
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3305
	unsigned int cpu;
3306

3307 3308
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3309

3310 3311 3312 3313
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3314
	spin_lock(&workqueue_lock);
3315
	list_del(&wq->list);
3316
	spin_unlock(&workqueue_lock);
3317

3318
	/* sanity check */
3319
	for_each_cwq_cpu(cpu, wq) {
3320 3321 3322 3323 3324
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3325 3326
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3327
	}
3328

3329 3330
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3331
		free_mayday_mask(wq->mayday_mask);
3332
		kfree(wq->rescuer);
3333 3334
	}

3335
	free_cwqs(wq);
3336 3337 3338 3339
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
/**
 * cwq_set_max_active - adjust max_active of a cwq
 * @cwq: target cpu_workqueue_struct
 * @max_active: new max_active value.
 *
 * Set @cwq->max_active to @max_active and activate delayed works if
 * increased.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
{
	cwq->max_active = max_active;

	while (!list_empty(&cwq->delayed_works) &&
	       cwq->nr_active < cwq->max_active)
		cwq_activate_first_delayed(cwq);
}

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3374
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3375 3376 3377 3378 3379

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3380
	for_each_cwq_cpu(cpu, wq) {
3381 3382 3383 3384
		struct global_cwq *gcwq = get_gcwq(cpu);

		spin_lock_irq(&gcwq->lock);

3385
		if (!(wq->flags & WQ_FREEZABLE) ||
3386
		    !(gcwq->flags & GCWQ_FREEZING))
3387
			cwq_set_max_active(get_cwq(gcwq->cpu, wq), max_active);
3388

3389
		spin_unlock_irq(&gcwq->lock);
3390
	}
3391

3392
	spin_unlock(&workqueue_lock);
3393
}
3394
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3395

3396
/**
3397 3398 3399
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3400
 *
3401 3402 3403
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3404
 *
3405 3406
 * RETURNS:
 * %true if congested, %false otherwise.
3407
 */
3408
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3409
{
3410 3411 3412
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3413
}
3414
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3415

3416
/**
3417 3418
 * work_cpu - return the last known associated cpu for @work
 * @work: the work of interest
3419
 *
3420
 * RETURNS:
3421
 * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3422
 */
T
Tejun Heo 已提交
3423
static unsigned int work_cpu(struct work_struct *work)
3424
{
3425
	struct global_cwq *gcwq = get_work_gcwq(work);
3426

3427
	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3428 3429
}

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3444
{
3445 3446 3447
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3448

3449
	if (!gcwq)
3450
		return 0;
L
Linus Torvalds 已提交
3451

3452
	spin_lock_irqsave(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3453

3454 3455 3456 3457
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
	if (find_worker_executing_work(gcwq, work))
		ret |= WORK_BUSY_RUNNING;
L
Linus Torvalds 已提交
3458

3459
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3460

3461
	return ret;
L
Linus Torvalds 已提交
3462
}
3463
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3464

3465 3466 3467
/*
 * CPU hotplug.
 *
3468 3469 3470 3471 3472 3473 3474
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
 * gcwqs serve mix of short, long and very long running works making
 * blocked draining impractical.
 *
3475 3476 3477
 * This is solved by allowing a gcwq to be disassociated from the CPU
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3478
 */
L
Linus Torvalds 已提交
3479

3480
/* claim manager positions of all pools */
3481
static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
3482 3483 3484 3485
{
	struct worker_pool *pool;

	for_each_worker_pool(pool, gcwq)
3486
		mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
T
Tejun Heo 已提交
3487
	spin_lock_irq(&gcwq->lock);
3488 3489 3490
}

/* release manager positions */
3491
static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
3492 3493 3494
{
	struct worker_pool *pool;

T
Tejun Heo 已提交
3495
	spin_unlock_irq(&gcwq->lock);
3496
	for_each_worker_pool(pool, gcwq)
3497
		mutex_unlock(&pool->assoc_mutex);
3498 3499
}

3500
static void gcwq_unbind_fn(struct work_struct *work)
3501
{
3502
	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3503
	struct worker_pool *pool;
3504 3505 3506
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3507

3508 3509
	BUG_ON(gcwq->cpu != smp_processor_id());

3510
	gcwq_claim_assoc_and_lock(gcwq);
3511

3512 3513 3514 3515 3516 3517
	/*
	 * We've claimed all manager positions.  Make all workers unbound
	 * and set DISASSOCIATED.  Before this, all workers except for the
	 * ones which are still executing works from before the last CPU
	 * down must be on the cpu.  After this, they may become diasporas.
	 */
3518
	for_each_worker_pool(pool, gcwq)
3519
		list_for_each_entry(worker, &pool->idle_list, entry)
3520
			worker->flags |= WORKER_UNBOUND;
3521

3522
	for_each_busy_worker(worker, i, pos, gcwq)
3523
		worker->flags |= WORKER_UNBOUND;
3524

3525 3526
	gcwq->flags |= GCWQ_DISASSOCIATED;

3527
	gcwq_release_assoc_and_unlock(gcwq);
3528

3529
	/*
3530
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3531 3532
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3533 3534
	 */
	schedule();
3535

3536
	/*
3537 3538 3539 3540 3541 3542 3543 3544 3545
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
	 * are always true as long as the worklist is not empty.  @gcwq now
	 * behaves as unbound (in terms of concurrency management) gcwq
	 * which is served by workers tied to the CPU.
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3546
	 */
3547 3548
	for_each_worker_pool(pool, gcwq)
		atomic_set(get_pool_nr_running(pool), 0);
3549 3550
}

T
Tejun Heo 已提交
3551 3552 3553 3554
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3555
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3556 3557
					       unsigned long action,
					       void *hcpu)
3558 3559
{
	unsigned int cpu = (unsigned long)hcpu;
3560
	struct global_cwq *gcwq = get_gcwq(cpu);
3561
	struct worker_pool *pool;
3562

T
Tejun Heo 已提交
3563
	switch (action & ~CPU_TASKS_FROZEN) {
3564
	case CPU_UP_PREPARE:
3565
		for_each_worker_pool(pool, gcwq) {
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
3578
		}
T
Tejun Heo 已提交
3579
		break;
3580

3581 3582
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3583
		gcwq_claim_assoc_and_lock(gcwq);
3584
		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3585
		rebind_workers(gcwq);
3586
		gcwq_release_assoc_and_unlock(gcwq);
3587
		break;
3588
	}
3589 3590 3591 3592 3593 3594 3595
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3596
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3597 3598 3599
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3600 3601 3602
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3603 3604
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3605 3606
		/* unbinding should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3607
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3608 3609
		flush_work(&unbind_work);
		break;
3610 3611 3612 3613
	}
	return NOTIFY_OK;
}

3614
#ifdef CONFIG_SMP
3615

3616
struct work_for_cpu {
3617
	struct work_struct work;
3618 3619 3620 3621 3622
	long (*fn)(void *);
	void *arg;
	long ret;
};

3623
static void work_for_cpu_fn(struct work_struct *work)
3624
{
3625 3626
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3627 3628 3629 3630 3631 3632 3633 3634 3635
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3636 3637
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3638
 * The caller must not hold any locks which would prevent @fn from completing.
3639 3640 3641
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3642
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3643

3644 3645 3646
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3647 3648 3649 3650 3651
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3652 3653 3654 3655 3656
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3657 3658 3659
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
 * gcwq->worklist.
3660 3661
 *
 * CONTEXT:
3662
 * Grabs and releases workqueue_lock and gcwq->lock's.
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3673
	for_each_gcwq_cpu(cpu) {
3674
		struct global_cwq *gcwq = get_gcwq(cpu);
3675
		struct workqueue_struct *wq;
3676 3677 3678

		spin_lock_irq(&gcwq->lock);

3679 3680 3681
		BUG_ON(gcwq->flags & GCWQ_FREEZING);
		gcwq->flags |= GCWQ_FREEZING;

3682 3683 3684
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3685
			if (cwq && wq->flags & WQ_FREEZABLE)
3686 3687
				cwq->max_active = 0;
		}
3688 3689

		spin_unlock_irq(&gcwq->lock);
3690 3691 3692 3693 3694 3695
	}

	spin_unlock(&workqueue_lock);
}

/**
3696
 * freeze_workqueues_busy - are freezable workqueues still busy?
3697 3698 3699 3700 3701 3702 3703 3704
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3705 3706
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3717
	for_each_gcwq_cpu(cpu) {
3718
		struct workqueue_struct *wq;
3719 3720 3721 3722 3723 3724 3725
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3726
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3745
 * frozen works are transferred to their respective gcwq worklists.
3746 3747
 *
 * CONTEXT:
3748
 * Grabs and releases workqueue_lock and gcwq->lock's.
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3759
	for_each_gcwq_cpu(cpu) {
3760
		struct global_cwq *gcwq = get_gcwq(cpu);
3761
		struct worker_pool *pool;
3762
		struct workqueue_struct *wq;
3763 3764 3765

		spin_lock_irq(&gcwq->lock);

3766 3767 3768
		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
		gcwq->flags &= ~GCWQ_FREEZING;

3769 3770 3771
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3772
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3773 3774 3775
				continue;

			/* restore max_active and repopulate worklist */
3776
			cwq_set_max_active(cwq, wq->saved_max_active);
3777
		}
3778

3779 3780
		for_each_worker_pool(pool, gcwq)
			wake_up_worker(pool);
3781

3782
		spin_unlock_irq(&gcwq->lock);
3783 3784 3785 3786 3787 3788 3789 3790
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3791
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3792
{
T
Tejun Heo 已提交
3793 3794
	unsigned int cpu;

3795 3796 3797 3798
	/* make sure we have enough bits for OFFQ CPU number */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
		     WORK_CPU_LAST);

3799
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3800
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3801 3802

	/* initialize gcwqs */
3803
	for_each_gcwq_cpu(cpu) {
3804
		struct global_cwq *gcwq = get_gcwq(cpu);
3805
		struct worker_pool *pool;
3806 3807 3808

		spin_lock_init(&gcwq->lock);
		gcwq->cpu = cpu;
3809
		gcwq->flags |= GCWQ_DISASSOCIATED;
3810

3811
		hash_init(gcwq->busy_hash);
T
Tejun Heo 已提交
3812

3813 3814 3815 3816
		for_each_worker_pool(pool, gcwq) {
			pool->gcwq = gcwq;
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3817

3818 3819 3820
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3821

3822 3823 3824
			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
				    (unsigned long)pool);

3825
			mutex_init(&pool->assoc_mutex);
3826 3827
			ida_init(&pool->worker_ida);
		}
3828 3829
	}

3830
	/* create the initial worker */
3831
	for_each_online_gcwq_cpu(cpu) {
3832
		struct global_cwq *gcwq = get_gcwq(cpu);
3833
		struct worker_pool *pool;
3834

3835 3836
		if (cpu != WORK_CPU_UNBOUND)
			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3837 3838 3839 3840

		for_each_worker_pool(pool, gcwq) {
			struct worker *worker;

3841
			worker = create_worker(pool);
3842 3843 3844 3845 3846
			BUG_ON(!worker);
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
		}
3847 3848
	}

3849
	system_wq = alloc_workqueue("events", 0, 0);
3850
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3851
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3852 3853
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3854 3855
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3856
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3857
	       !system_unbound_wq || !system_freezable_wq);
3858
	return 0;
L
Linus Torvalds 已提交
3859
}
3860
early_initcall(init_workqueues);