workqueue.c 105.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45

46
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50
	/*
	 * worker_pool flags
51
	 *
52
	 * A bound pool is either associated or disassociated with its CPU.
53 54 55 56 57 58
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59
	 * be executing on any CPU.  The pool behaves as an unbound one.
60 61
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62 63
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
64
	 */
65
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77

78
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79
				  WORKER_CPU_INTENSIVE,
80

81
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82

T
Tejun Heo 已提交
83
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84

85 86 87
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

88 89 90
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
91 92 93 94 95 96 97 98
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
99
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
100
};
L
Linus Torvalds 已提交
101 102

/*
T
Tejun Heo 已提交
103 104
 * Structure fields follow one of the following exclusion rules.
 *
105 106
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
107
 *
108 109 110
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
111
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
112
 *
113 114 115 116
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
117
 *
118 119
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
120
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
121 122
 */

123
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
124

125
struct worker_pool {
126
	spinlock_t		lock;		/* the pool lock */
127
	unsigned int		cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
128
	int			id;		/* I: pool ID */
129
	unsigned int		flags;		/* X: flags */
130 131 132

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
133 134

	/* nr_idle includes the ones off idle_list for rebinding */
135 136 137 138 139 140
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

141 142 143 144
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

145
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
146
	struct ida		worker_ida;	/* L: for worker IDs */
147 148
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
149
/*
150
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
151 152
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
153 154
 */
struct cpu_workqueue_struct {
155
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
156
	struct workqueue_struct *wq;		/* I: the owning workqueue */
157 158 159 160
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
161
	int			nr_active;	/* L: nr of active works */
162
	int			max_active;	/* L: max active works */
163
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
164
};
L
Linus Torvalds 已提交
165

166 167 168 169 170 171 172 173 174
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

175 176 177 178 179 180 181 182 183 184
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
185
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
186 187 188 189 190 191 192 193 194
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
195 196 197 198 199 200

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
201
	unsigned int		flags;		/* W: WQ_* flags */
202 203 204 205 206
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
207
	struct list_head	list;		/* W: list of all workqueues */
208 209 210 211 212 213 214 215 216

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

217
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
218 219
	struct worker		*rescuer;	/* I: rescue worker */

220
	int			nr_drainers;	/* W: drain in progress */
221
	int			saved_max_active; /* W: saved cwq max_active */
222
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
223
	struct lockdep_map	lockdep_map;
224
#endif
225
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
226 227
};

228 229
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
230
struct workqueue_struct *system_highpri_wq __read_mostly;
231
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
232
struct workqueue_struct *system_long_wq __read_mostly;
233
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
234
struct workqueue_struct *system_unbound_wq __read_mostly;
235
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
236
struct workqueue_struct *system_freezable_wq __read_mostly;
237
EXPORT_SYMBOL_GPL(system_freezable_wq);
238

239 240 241
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

242
#define for_each_std_worker_pool(pool, cpu)				\
T
Tejun Heo 已提交
243 244
	for ((pool) = &std_worker_pools(cpu)[0];			\
	     (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
245

246 247
#define for_each_busy_worker(worker, i, pos, pool)			\
	hash_for_each(pool->busy_hash, i, pos, worker, hentry)
248

249 250
static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				unsigned int sw)
251 252 253 254 255 256 257 258 259 260
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
261
	return WORK_CPU_END;
262 263
}

264 265
static inline int __next_cwq_cpu(int cpu, const struct cpumask *mask,
				 struct workqueue_struct *wq)
266
{
267
	return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
268 269
}

270 271 272
/*
 * CPU iterators
 *
273
 * An extra cpu number is defined using an invalid cpu number
274
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
275 276
 * specific CPU.  The following iterators are similar to for_each_*_cpu()
 * iterators but also considers the unbound CPU.
277
 *
278 279
 * for_each_wq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_wq_cpu()	: online CPUs + WORK_CPU_UNBOUND
280 281 282
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
283 284
#define for_each_wq_cpu(cpu)						\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3);		\
285
	     (cpu) < WORK_CPU_END;					\
286
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
287

288 289
#define for_each_online_wq_cpu(cpu)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3);		\
290
	     (cpu) < WORK_CPU_END;					\
291
	     (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
292 293

#define for_each_cwq_cpu(cpu, wq)					\
294
	for ((cpu) = __next_cwq_cpu(-1, cpu_possible_mask, (wq));	\
295
	     (cpu) < WORK_CPU_END;					\
296
	     (cpu) = __next_cwq_cpu((cpu), cpu_possible_mask, (wq)))
297

298 299 300 301
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

302 303 304 305 306
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
342
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
378
	.debug_hint	= work_debug_hint,
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

414 415
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
416
static LIST_HEAD(workqueues);
417
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
418

419
/*
T
Tejun Heo 已提交
420 421 422
 * The CPU standard worker pools.  nr_running is the only field which is
 * expected to be used frequently by other cpus via try_to_wake_up().  Put
 * it in a separate cacheline.
423
 */
T
Tejun Heo 已提交
424 425
static DEFINE_PER_CPU(struct worker_pool [NR_STD_WORKER_POOLS],
		      cpu_std_worker_pools);
426 427
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t [NR_STD_WORKER_POOLS],
				     cpu_std_pool_nr_running);
428

429
/*
T
Tejun Heo 已提交
430 431
 * Standard worker pools and nr_running counter for unbound CPU.  The pools
 * have POOL_DISASSOCIATED set, and all workers have WORKER_UNBOUND set.
432
 */
T
Tejun Heo 已提交
433
static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
434
static atomic_t unbound_std_pool_nr_running[NR_STD_WORKER_POOLS] = {
435
	[0 ... NR_STD_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
436
};
437

T
Tejun Heo 已提交
438 439 440 441
/* idr of all pools */
static DEFINE_MUTEX(worker_pool_idr_mutex);
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
442
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
443

T
Tejun Heo 已提交
444
static struct worker_pool *std_worker_pools(int cpu)
445
{
446
	if (cpu != WORK_CPU_UNBOUND)
T
Tejun Heo 已提交
447
		return per_cpu(cpu_std_worker_pools, cpu);
448
	else
T
Tejun Heo 已提交
449
		return unbound_std_worker_pools;
450 451
}

T
Tejun Heo 已提交
452 453
static int std_worker_pool_pri(struct worker_pool *pool)
{
T
Tejun Heo 已提交
454
	return pool - std_worker_pools(pool->cpu);
T
Tejun Heo 已提交
455 456
}

T
Tejun Heo 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

	mutex_lock(&worker_pool_idr_mutex);
	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	mutex_unlock(&worker_pool_idr_mutex);

	return ret;
}

470 471 472 473 474 475 476 477 478
/*
 * Lookup worker_pool by id.  The idr currently is built during boot and
 * never modified.  Don't worry about locking for now.
 */
static struct worker_pool *worker_pool_by_id(int pool_id)
{
	return idr_find(&worker_pool_idr, pool_id);
}

479 480
static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
{
T
Tejun Heo 已提交
481
	struct worker_pool *pools = std_worker_pools(cpu);
482

T
Tejun Heo 已提交
483
	return &pools[highpri];
484 485
}

486
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
487
{
488
	int cpu = pool->cpu;
489
	int idx = std_worker_pool_pri(pool);
490

491
	if (cpu != WORK_CPU_UNBOUND)
492
		return &per_cpu(cpu_std_pool_nr_running, cpu)[idx];
493
	else
494
		return &unbound_std_pool_nr_running[idx];
495 496
}

T
Tejun Heo 已提交
497 498
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
499
{
500
	if (!(wq->flags & WQ_UNBOUND)) {
501
		if (likely(cpu < nr_cpu_ids))
502 503 504 505
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
506 507
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
523

524
/*
525 526
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
527
 * is cleared and the high bits contain OFFQ flags and pool ID.
528
 *
529 530
 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, pool or clear
531 532
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
533
 *
534 535 536 537
 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
 * corresponding to a work.  Pool is available once the work has been
 * queued anywhere after initialization until it is sync canceled.  cwq is
 * available only while the work item is queued.
538
 *
539 540 541 542
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
543
 */
544 545
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
546
{
547
	BUG_ON(!work_pending(work));
548 549
	atomic_long_set(&work->data, data | flags | work_static(work));
}
550

551 552 553 554 555
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
556
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
557 558
}

559 560
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
561
{
562 563 564 565 566 567 568
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
569
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
570
}
571

572
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
573
{
574 575
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
576 577
}

578
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
579
{
580
	unsigned long data = atomic_long_read(&work->data);
581

582 583 584 585
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
586 587
}

588 589 590 591 592 593 594
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
595
{
596
	unsigned long data = atomic_long_read(&work->data);
597 598
	struct worker_pool *pool;
	int pool_id;
599

600 601
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
602
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
603

604 605
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
606 607
		return NULL;

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
	pool = worker_pool_by_id(pool_id);
	WARN_ON_ONCE(!pool);
	return pool;
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
	struct worker_pool *pool = get_work_pool(work);

	return pool ? pool->id : WORK_OFFQ_POOL_NONE;
}

627 628
static void mark_work_canceling(struct work_struct *work)
{
629
	unsigned long pool_id = get_work_pool_id(work);
630

631 632
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
633 634 635 636 637 638 639 640 641
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

642
/*
643 644
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
645
 * they're being called with pool->lock held.
646 647
 */

648
static bool __need_more_worker(struct worker_pool *pool)
649
{
650
	return !atomic_read(get_pool_nr_running(pool));
651 652
}

653
/*
654 655
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
656 657
 *
 * Note that, because unbound workers never contribute to nr_running, this
658
 * function will always return %true for unbound pools as long as the
659
 * worklist isn't empty.
660
 */
661
static bool need_more_worker(struct worker_pool *pool)
662
{
663
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
664
}
665

666
/* Can I start working?  Called from busy but !running workers. */
667
static bool may_start_working(struct worker_pool *pool)
668
{
669
	return pool->nr_idle;
670 671 672
}

/* Do I need to keep working?  Called from currently running workers. */
673
static bool keep_working(struct worker_pool *pool)
674
{
675
	atomic_t *nr_running = get_pool_nr_running(pool);
676

677
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
678 679 680
}

/* Do we need a new worker?  Called from manager. */
681
static bool need_to_create_worker(struct worker_pool *pool)
682
{
683
	return need_more_worker(pool) && !may_start_working(pool);
684
}
685

686
/* Do I need to be the manager? */
687
static bool need_to_manage_workers(struct worker_pool *pool)
688
{
689
	return need_to_create_worker(pool) ||
690
		(pool->flags & POOL_MANAGE_WORKERS);
691 692 693
}

/* Do we have too many workers and should some go away? */
694
static bool too_many_workers(struct worker_pool *pool)
695
{
696
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
697 698
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
699

700 701 702 703 704 705 706
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

707
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
708 709
}

710
/*
711 712 713
 * Wake up functions.
 */

714
/* Return the first worker.  Safe with preemption disabled */
715
static struct worker *first_worker(struct worker_pool *pool)
716
{
717
	if (unlikely(list_empty(&pool->idle_list)))
718 719
		return NULL;

720
	return list_first_entry(&pool->idle_list, struct worker, entry);
721 722 723 724
}

/**
 * wake_up_worker - wake up an idle worker
725
 * @pool: worker pool to wake worker from
726
 *
727
 * Wake up the first idle worker of @pool.
728 729
 *
 * CONTEXT:
730
 * spin_lock_irq(pool->lock).
731
 */
732
static void wake_up_worker(struct worker_pool *pool)
733
{
734
	struct worker *worker = first_worker(pool);
735 736 737 738 739

	if (likely(worker))
		wake_up_process(worker->task);
}

740
/**
741 742 743 744 745 746 747 748 749 750 751 752 753 754
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

755
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
756
		WARN_ON_ONCE(worker->pool->cpu != cpu);
757
		atomic_inc(get_pool_nr_running(worker->pool));
758
	}
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
780 781
	struct worker_pool *pool;
	atomic_t *nr_running;
782

783 784 785 786 787
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
788
	if (worker->flags & WORKER_NOT_RUNNING)
789 790
		return NULL;

791 792 793
	pool = worker->pool;
	nr_running = get_pool_nr_running(pool);

794 795 796 797 798 799 800 801
	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
802 803 804
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
805
	 * manipulating idle_list, so dereferencing idle_list without pool
806
	 * lock is safe.
807
	 */
808
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
809
		to_wakeup = first_worker(pool);
810 811 812 813 814
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
815
 * @worker: self
816 817 818
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
819 820 821
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
822
 *
823
 * CONTEXT:
824
 * spin_lock_irq(pool->lock)
825 826 827 828
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
829
	struct worker_pool *pool = worker->pool;
830

831 832
	WARN_ON_ONCE(worker->task != current);

833 834 835 836 837 838 839
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
840
		atomic_t *nr_running = get_pool_nr_running(pool);
841 842 843

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
844
			    !list_empty(&pool->worklist))
845
				wake_up_worker(pool);
846 847 848 849
		} else
			atomic_dec(nr_running);
	}

850 851 852 853
	worker->flags |= flags;
}

/**
854
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
855
 * @worker: self
856 857
 * @flags: flags to clear
 *
858
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
859
 *
860
 * CONTEXT:
861
 * spin_lock_irq(pool->lock)
862 863 864
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
865
	struct worker_pool *pool = worker->pool;
866 867
	unsigned int oflags = worker->flags;

868 869
	WARN_ON_ONCE(worker->task != current);

870
	worker->flags &= ~flags;
871

872 873 874 875 876
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
877 878
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
879
			atomic_inc(get_pool_nr_running(pool));
880 881
}

882 883
/**
 * find_worker_executing_work - find worker which is executing a work
884
 * @pool: pool of interest
885 886
 * @work: work to find worker for
 *
887 888
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
908 909
 *
 * CONTEXT:
910
 * spin_lock_irq(pool->lock).
911 912 913 914
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
915
 */
916
static struct worker *find_worker_executing_work(struct worker_pool *pool,
917
						 struct work_struct *work)
918
{
919 920 921
	struct worker *worker;
	struct hlist_node *tmp;

922
	hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
923 924 925
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
926 927 928
			return worker;

	return NULL;
929 930
}

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
946
 * spin_lock_irq(pool->lock).
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

972
static void cwq_activate_delayed_work(struct work_struct *work)
973
{
974
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
975 976 977 978 979 980 981

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

982 983 984 985 986 987 988 989
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	cwq_activate_delayed_work(work);
}

990 991 992 993 994 995 996 997 998
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
999
 * spin_lock_irq(pool->lock).
1000
 */
1001
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1002 1003 1004 1005 1006 1007 1008
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

1009 1010 1011 1012 1013
	cwq->nr_active--;
	if (!list_empty(&cwq->delayed_works)) {
		/* one down, submit a delayed one */
		if (cwq->nr_active < cwq->max_active)
			cwq_activate_first_delayed(cwq);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1035
/**
1036
 * try_to_grab_pending - steal work item from worklist and disable irq
1037 1038
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1039
 * @flags: place to store irq state
1040 1041 1042 1043 1044 1045 1046
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1047 1048
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1049
 *
1050
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1051 1052 1053
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1054 1055 1056 1057
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1058
 * This function is safe to call from any context including IRQ handler.
1059
 */
1060 1061
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1062
{
1063
	struct worker_pool *pool;
1064

1065 1066
	local_irq_save(*flags);

1067 1068 1069 1070
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1071 1072 1073 1074 1075
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1076 1077 1078 1079 1080
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1081 1082 1083 1084 1085 1086 1087
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1088 1089
	pool = get_work_pool(work);
	if (!pool)
1090
		goto fail;
1091

1092
	spin_lock(&pool->lock);
1093 1094
	if (!list_empty(&work->entry)) {
		/*
1095 1096 1097
		 * This work is queued, but perhaps we locked the wrong
		 * pool.  In that case we must see the new value after
		 * rmb(), see insert_work()->wmb().
1098 1099
		 */
		smp_rmb();
1100
		if (pool == get_work_pool(work)) {
1101
			debug_work_deactivate(work);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

			/*
			 * A delayed work item cannot be grabbed directly
			 * because it might have linked NO_COLOR work items
			 * which, if left on the delayed_list, will confuse
			 * cwq->nr_active management later on and cause
			 * stall.  Make sure the work item is activated
			 * before grabbing.
			 */
			if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
				cwq_activate_delayed_work(work);

1114 1115
			list_del_init(&work->entry);
			cwq_dec_nr_in_flight(get_work_cwq(work),
1116
				get_work_color(work));
1117

1118
			spin_unlock(&pool->lock);
1119
			return 1;
1120 1121
		}
	}
1122
	spin_unlock(&pool->lock);
1123 1124 1125 1126 1127
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1128
	return -EAGAIN;
1129 1130
}

T
Tejun Heo 已提交
1131
/**
1132
 * insert_work - insert a work into a pool
T
Tejun Heo 已提交
1133 1134 1135 1136 1137
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1138 1139
 * Insert @work which belongs to @cwq after @head.  @extra_flags is or'd to
 * work_struct flags.
T
Tejun Heo 已提交
1140 1141
 *
 * CONTEXT:
1142
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1143
 */
O
Oleg Nesterov 已提交
1144
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1145 1146
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1147
{
1148
	struct worker_pool *pool = cwq->pool;
1149

T
Tejun Heo 已提交
1150
	/* we own @work, set data and link */
1151
	set_work_cwq(work, cwq, extra_flags);
1152

1153 1154 1155 1156 1157
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
1158

1159
	list_add_tail(&work->entry, head);
1160 1161 1162 1163 1164 1165 1166 1167

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1168 1169
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1170 1171
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

1182
	for_each_wq_cpu(cpu) {
1183 1184
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		struct worker_pool *pool = cwq->pool;
1185 1186 1187 1188
		struct worker *worker;
		struct hlist_node *pos;
		int i;

1189
		spin_lock_irqsave(&pool->lock, flags);
1190
		for_each_busy_worker(worker, i, pos, pool) {
1191 1192
			if (worker->task != current)
				continue;
1193
			spin_unlock_irqrestore(&pool->lock, flags);
1194 1195 1196 1197 1198 1199
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
1200
		spin_unlock_irqrestore(&pool->lock, flags);
1201 1202 1203 1204
	}
	return false;
}

T
Tejun Heo 已提交
1205
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1206 1207
			 struct work_struct *work)
{
1208 1209
	bool highpri = wq->flags & WQ_HIGHPRI;
	struct worker_pool *pool;
1210
	struct cpu_workqueue_struct *cwq;
1211
	struct list_head *worklist;
1212
	unsigned int work_flags;
1213
	unsigned int req_cpu = cpu;
1214 1215 1216 1217 1218 1219 1220 1221

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1222

1223
	debug_work_activate(work);
1224

1225
	/* if dying, only works from the same workqueue are allowed */
1226
	if (unlikely(wq->flags & WQ_DRAINING) &&
1227
	    WARN_ON_ONCE(!is_chained_work(wq)))
1228 1229
		return;

1230
	/* determine pool to use */
1231
	if (!(wq->flags & WQ_UNBOUND)) {
1232
		struct worker_pool *last_pool;
1233

1234
		if (cpu == WORK_CPU_UNBOUND)
1235 1236
			cpu = raw_smp_processor_id();

1237
		/*
1238 1239 1240 1241
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1242
		 */
1243
		pool = get_std_worker_pool(cpu, highpri);
1244
		last_pool = get_work_pool(work);
1245

1246
		if (last_pool && last_pool != pool) {
1247 1248
			struct worker *worker;

1249
			spin_lock(&last_pool->lock);
1250

1251
			worker = find_worker_executing_work(last_pool, work);
1252 1253

			if (worker && worker->current_cwq->wq == wq)
1254
				pool = last_pool;
1255 1256
			else {
				/* meh... not running there, queue here */
1257 1258
				spin_unlock(&last_pool->lock);
				spin_lock(&pool->lock);
1259
			}
1260
		} else {
1261
			spin_lock(&pool->lock);
1262
		}
1263
	} else {
1264 1265
		pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
		spin_lock(&pool->lock);
1266 1267
	}

1268 1269
	/* pool determined, get cwq and queue */
	cwq = get_cwq(pool->cpu, wq);
1270
	trace_workqueue_queue_work(req_cpu, cwq, work);
1271

1272
	if (WARN_ON(!list_empty(&work->entry))) {
1273
		spin_unlock(&pool->lock);
1274 1275
		return;
	}
1276

1277
	cwq->nr_in_flight[cwq->work_color]++;
1278
	work_flags = work_color_to_flags(cwq->work_color);
1279 1280

	if (likely(cwq->nr_active < cwq->max_active)) {
1281
		trace_workqueue_activate_work(work);
1282
		cwq->nr_active++;
1283
		worklist = &cwq->pool->worklist;
1284 1285
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1286
		worklist = &cwq->delayed_works;
1287
	}
1288

1289
	insert_work(cwq, work, worklist, work_flags);
1290

1291
	spin_unlock(&pool->lock);
L
Linus Torvalds 已提交
1292 1293
}

1294
/**
1295 1296
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1297 1298 1299
 * @wq: workqueue to use
 * @work: work to queue
 *
1300
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1301
 *
1302 1303
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1304
 */
1305 1306
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1307
{
1308
	bool ret = false;
1309
	unsigned long flags;
1310

1311
	local_irq_save(flags);
1312

1313
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1314
		__queue_work(cpu, wq, work);
1315
		ret = true;
1316
	}
1317

1318
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1319 1320
	return ret;
}
1321
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1322

1323
/**
1324
 * queue_work - queue work on a workqueue
1325 1326 1327
 * @wq: workqueue to use
 * @work: work to queue
 *
1328
 * Returns %false if @work was already on a queue, %true otherwise.
1329
 *
1330 1331
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1332
 */
1333
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1334
{
1335
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1336
}
1337
EXPORT_SYMBOL_GPL(queue_work);
1338

1339
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1340
{
1341
	struct delayed_work *dwork = (struct delayed_work *)__data;
1342
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
L
Linus Torvalds 已提交
1343

1344
	/* should have been called from irqsafe timer with irq already off */
1345
	__queue_work(dwork->cpu, cwq->wq, &dwork->work);
L
Linus Torvalds 已提交
1346
}
1347
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1348

1349 1350
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1351
{
1352 1353 1354 1355 1356 1357
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
	unsigned int lcpu;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1358 1359
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1360

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1372
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1373

1374 1375
	/*
	 * This stores cwq for the moment, for the timer_fn.  Note that the
1376
	 * work's pool is preserved to allow reentrance detection for
1377 1378 1379
	 * delayed works.
	 */
	if (!(wq->flags & WQ_UNBOUND)) {
1380
		struct worker_pool *pool = get_work_pool(work);
1381

1382
		/*
1383
		 * If we cannot get the last pool from @work directly,
1384 1385 1386 1387
		 * select the last CPU such that it avoids unnecessarily
		 * triggering non-reentrancy check in __queue_work().
		 */
		lcpu = cpu;
1388 1389
		if (pool)
			lcpu = pool->cpu;
1390
		if (lcpu == WORK_CPU_UNBOUND)
1391 1392 1393 1394 1395 1396 1397
			lcpu = raw_smp_processor_id();
	} else {
		lcpu = WORK_CPU_UNBOUND;
	}

	set_work_cwq(work, get_cwq(lcpu, wq), 0);

1398
	dwork->cpu = cpu;
1399 1400 1401 1402 1403 1404
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1405 1406
}

1407 1408 1409 1410
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1411
 * @dwork: work to queue
1412 1413
 * @delay: number of jiffies to wait before queueing
 *
1414 1415 1416
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1417
 */
1418 1419
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1420
{
1421
	struct work_struct *work = &dwork->work;
1422
	bool ret = false;
1423
	unsigned long flags;
1424

1425 1426
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1427

1428
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1429
		__queue_delayed_work(cpu, wq, dwork, delay);
1430
		ret = true;
1431
	}
1432

1433
	local_irq_restore(flags);
1434 1435
	return ret;
}
1436
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1437

1438 1439 1440 1441 1442 1443
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1444
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1445
 */
1446
bool queue_delayed_work(struct workqueue_struct *wq,
1447 1448
			struct delayed_work *dwork, unsigned long delay)
{
1449
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1450 1451
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1468
 * This function is safe to call from any context including IRQ handler.
1469 1470 1471 1472 1473 1474 1475
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1476

1477 1478 1479
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1480

1481 1482 1483
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1484
	}
1485 1486

	/* -ENOENT from try_to_grab_pending() becomes %true */
1487 1488
	return ret;
}
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1505

T
Tejun Heo 已提交
1506 1507 1508 1509 1510 1511 1512 1513
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1514
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1515 1516
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1517
{
1518
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1519 1520 1521 1522 1523

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1524 1525
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1526
	pool->nr_idle++;
1527
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1528 1529

	/* idle_list is LIFO */
1530
	list_add(&worker->entry, &pool->idle_list);
1531

1532 1533
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1534

1535
	/*
1536
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1537
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1538 1539
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1540
	 */
1541
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1542
		     pool->nr_workers == pool->nr_idle &&
1543
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1553
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1554 1555 1556
 */
static void worker_leave_idle(struct worker *worker)
{
1557
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1558 1559

	BUG_ON(!(worker->flags & WORKER_IDLE));
1560
	worker_clr_flags(worker, WORKER_IDLE);
1561
	pool->nr_idle--;
T
Tejun Heo 已提交
1562 1563 1564
	list_del_init(&worker->entry);
}

1565
/**
1566
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1578
 * verbatim as it's best effort and blocking and pool may be
1579 1580
 * [dis]associated in the meantime.
 *
1581
 * This function tries set_cpus_allowed() and locks pool and verifies the
1582
 * binding against %POOL_DISASSOCIATED which is set during
1583 1584 1585
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1586 1587
 *
 * CONTEXT:
1588
 * Might sleep.  Called without any lock but returns with pool->lock
1589 1590 1591
 * held.
 *
 * RETURNS:
1592
 * %true if the associated pool is online (@worker is successfully
1593 1594 1595
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1596
__acquires(&pool->lock)
1597
{
1598
	struct worker_pool *pool = worker->pool;
1599 1600 1601
	struct task_struct *task = worker->task;

	while (true) {
1602
		/*
1603 1604 1605
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1606
		 * against POOL_DISASSOCIATED.
1607
		 */
1608
		if (!(pool->flags & POOL_DISASSOCIATED))
1609
			set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
1610

1611
		spin_lock_irq(&pool->lock);
1612
		if (pool->flags & POOL_DISASSOCIATED)
1613
			return false;
1614
		if (task_cpu(task) == pool->cpu &&
1615
		    cpumask_equal(&current->cpus_allowed,
1616
				  get_cpu_mask(pool->cpu)))
1617
			return true;
1618
		spin_unlock_irq(&pool->lock);
1619

1620 1621 1622 1623 1624 1625
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1626
		cpu_relax();
1627
		cond_resched();
1628 1629 1630
	}
}

1631
/*
1632
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1633
 * list_empty(@worker->entry) before leaving idle and call this function.
1634 1635 1636
 */
static void idle_worker_rebind(struct worker *worker)
{
1637 1638 1639
	/* CPU may go down again inbetween, clear UNBOUND only on success */
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1640

1641 1642
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1643
	spin_unlock_irq(&worker->pool->lock);
1644 1645
}

1646
/*
1647
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1648 1649 1650
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1651
 */
1652
static void busy_worker_rebind_fn(struct work_struct *work)
1653 1654 1655
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1656 1657
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1658

1659
	spin_unlock_irq(&worker->pool->lock);
1660 1661
}

1662
/**
1663 1664
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1665
 *
1666
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1667 1668
 * is different for idle and busy ones.
 *
1669 1670 1671 1672
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1673
 *
1674 1675 1676 1677
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1678
 *
1679 1680 1681 1682
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1683
 */
1684
static void rebind_workers(struct worker_pool *pool)
1685
{
1686
	struct worker *worker, *n;
1687 1688 1689
	struct hlist_node *pos;
	int i;

1690 1691
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1692

1693
	/* dequeue and kick idle ones */
1694 1695 1696 1697 1698 1699
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1700

1701 1702 1703 1704 1705 1706
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1707

1708 1709 1710 1711
	/* rebind busy workers */
	for_each_busy_worker(worker, i, pos, pool) {
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1712

1713 1714 1715
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1716

1717
		debug_work_activate(rebind_work);
1718

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
		/*
		 * wq doesn't really matter but let's keep @worker->pool
		 * and @cwq->pool consistent for sanity.
		 */
		if (std_worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

		insert_work(get_cwq(pool->cpu, wq), rebind_work,
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1731
	}
1732 1733
}

T
Tejun Heo 已提交
1734 1735 1736 1737 1738
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1739 1740
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1741
		INIT_LIST_HEAD(&worker->scheduled);
1742
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1743 1744
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1745
	}
T
Tejun Heo 已提交
1746 1747 1748 1749 1750
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1751
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1752
 *
1753
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1763
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1764
{
1765
	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1766
	struct worker *worker = NULL;
1767
	int id = -1;
T
Tejun Heo 已提交
1768

1769
	spin_lock_irq(&pool->lock);
1770
	while (ida_get_new(&pool->worker_ida, &id)) {
1771
		spin_unlock_irq(&pool->lock);
1772
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1773
			goto fail;
1774
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1775
	}
1776
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1777 1778 1779 1780 1781

	worker = alloc_worker();
	if (!worker)
		goto fail;

1782
	worker->pool = pool;
T
Tejun Heo 已提交
1783 1784
	worker->id = id;

1785
	if (pool->cpu != WORK_CPU_UNBOUND)
1786
		worker->task = kthread_create_on_node(worker_thread,
1787 1788
					worker, cpu_to_node(pool->cpu),
					"kworker/%u:%d%s", pool->cpu, id, pri);
1789 1790
	else
		worker->task = kthread_create(worker_thread, worker,
1791
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1792 1793 1794
	if (IS_ERR(worker->task))
		goto fail;

1795
	if (std_worker_pool_pri(pool))
1796 1797
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1798
	/*
1799
	 * Determine CPU binding of the new worker depending on
1800
	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1801 1802 1803 1804 1805
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1806
	 */
1807
	if (!(pool->flags & POOL_DISASSOCIATED)) {
1808
		kthread_bind(worker->task, pool->cpu);
1809
	} else {
1810
		worker->task->flags |= PF_THREAD_BOUND;
1811
		worker->flags |= WORKER_UNBOUND;
1812
	}
T
Tejun Heo 已提交
1813 1814 1815 1816

	return worker;
fail:
	if (id >= 0) {
1817
		spin_lock_irq(&pool->lock);
1818
		ida_remove(&pool->worker_ida, id);
1819
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1829
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1830 1831
 *
 * CONTEXT:
1832
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1833 1834 1835
 */
static void start_worker(struct worker *worker)
{
1836
	worker->flags |= WORKER_STARTED;
1837
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1838
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1839 1840 1841 1842 1843 1844 1845
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1846
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1847 1848
 *
 * CONTEXT:
1849
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1850 1851 1852
 */
static void destroy_worker(struct worker *worker)
{
1853
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1854 1855 1856 1857
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1858
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1859

T
Tejun Heo 已提交
1860
	if (worker->flags & WORKER_STARTED)
1861
		pool->nr_workers--;
T
Tejun Heo 已提交
1862
	if (worker->flags & WORKER_IDLE)
1863
		pool->nr_idle--;
T
Tejun Heo 已提交
1864 1865

	list_del_init(&worker->entry);
1866
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1867

1868
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1869

T
Tejun Heo 已提交
1870 1871 1872
	kthread_stop(worker->task);
	kfree(worker);

1873
	spin_lock_irq(&pool->lock);
1874
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1875 1876
}

1877
static void idle_worker_timeout(unsigned long __pool)
1878
{
1879
	struct worker_pool *pool = (void *)__pool;
1880

1881
	spin_lock_irq(&pool->lock);
1882

1883
	if (too_many_workers(pool)) {
1884 1885 1886 1887
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1888
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1889 1890 1891
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1892
			mod_timer(&pool->idle_timer, expires);
1893 1894
		else {
			/* it's been idle for too long, wake up manager */
1895
			pool->flags |= POOL_MANAGE_WORKERS;
1896
			wake_up_worker(pool);
1897
		}
1898 1899
	}

1900
	spin_unlock_irq(&pool->lock);
1901
}
1902

1903 1904 1905 1906
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1907
	unsigned int cpu;
1908 1909 1910 1911 1912

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1913
	cpu = cwq->pool->cpu;
1914 1915 1916
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1917
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1918 1919 1920 1921
		wake_up_process(wq->rescuer->task);
	return true;
}

1922
static void pool_mayday_timeout(unsigned long __pool)
1923
{
1924
	struct worker_pool *pool = (void *)__pool;
1925 1926
	struct work_struct *work;

1927
	spin_lock_irq(&pool->lock);
1928

1929
	if (need_to_create_worker(pool)) {
1930 1931 1932 1933 1934 1935
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1936
		list_for_each_entry(work, &pool->worklist, entry)
1937
			send_mayday(work);
L
Linus Torvalds 已提交
1938
	}
1939

1940
	spin_unlock_irq(&pool->lock);
1941

1942
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1943 1944
}

1945 1946
/**
 * maybe_create_worker - create a new worker if necessary
1947
 * @pool: pool to create a new worker for
1948
 *
1949
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1950 1951
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1952
 * sent to all rescuers with works scheduled on @pool to resolve
1953 1954 1955 1956 1957 1958
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1959
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1960 1961 1962 1963
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1964
 * false if no action was taken and pool->lock stayed locked, true
1965 1966
 * otherwise.
 */
1967
static bool maybe_create_worker(struct worker_pool *pool)
1968 1969
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1970
{
1971
	if (!need_to_create_worker(pool))
1972 1973
		return false;
restart:
1974
	spin_unlock_irq(&pool->lock);
1975

1976
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1977
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1978 1979 1980 1981

	while (true) {
		struct worker *worker;

1982
		worker = create_worker(pool);
1983
		if (worker) {
1984
			del_timer_sync(&pool->mayday_timer);
1985
			spin_lock_irq(&pool->lock);
1986
			start_worker(worker);
1987
			BUG_ON(need_to_create_worker(pool));
1988 1989 1990
			return true;
		}

1991
		if (!need_to_create_worker(pool))
1992
			break;
L
Linus Torvalds 已提交
1993

1994 1995
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1996

1997
		if (!need_to_create_worker(pool))
1998 1999 2000
			break;
	}

2001
	del_timer_sync(&pool->mayday_timer);
2002
	spin_lock_irq(&pool->lock);
2003
	if (need_to_create_worker(pool))
2004 2005 2006 2007 2008 2009
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2010
 * @pool: pool to destroy workers for
2011
 *
2012
 * Destroy @pool workers which have been idle for longer than
2013 2014 2015
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
2016
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2017 2018 2019
 * multiple times.  Called only from manager.
 *
 * RETURNS:
2020
 * false if no action was taken and pool->lock stayed locked, true
2021 2022
 * otherwise.
 */
2023
static bool maybe_destroy_workers(struct worker_pool *pool)
2024 2025
{
	bool ret = false;
L
Linus Torvalds 已提交
2026

2027
	while (too_many_workers(pool)) {
2028 2029
		struct worker *worker;
		unsigned long expires;
2030

2031
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2032
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2033

2034
		if (time_before(jiffies, expires)) {
2035
			mod_timer(&pool->idle_timer, expires);
2036
			break;
2037
		}
L
Linus Torvalds 已提交
2038

2039 2040
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2041
	}
2042

2043
	return ret;
2044 2045
}

2046
/**
2047 2048
 * manage_workers - manage worker pool
 * @worker: self
2049
 *
2050
 * Assume the manager role and manage the worker pool @worker belongs
2051
 * to.  At any given time, there can be only zero or one manager per
2052
 * pool.  The exclusion is handled automatically by this function.
2053 2054 2055 2056
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2057 2058
 *
 * CONTEXT:
2059
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2060 2061 2062
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2063 2064
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2065
 */
2066
static bool manage_workers(struct worker *worker)
2067
{
2068
	struct worker_pool *pool = worker->pool;
2069
	bool ret = false;
2070

2071
	if (pool->flags & POOL_MANAGING_WORKERS)
2072
		return ret;
2073

2074
	pool->flags |= POOL_MANAGING_WORKERS;
2075

2076 2077 2078 2079 2080 2081
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2082
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2083 2084
	 * manager against CPU hotplug.
	 *
2085
	 * assoc_mutex would always be free unless CPU hotplug is in
2086
	 * progress.  trylock first without dropping @pool->lock.
2087
	 */
2088
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2089
		spin_unlock_irq(&pool->lock);
2090
		mutex_lock(&pool->assoc_mutex);
2091 2092
		/*
		 * CPU hotplug could have happened while we were waiting
2093
		 * for assoc_mutex.  Hotplug itself can't handle us
2094
		 * because manager isn't either on idle or busy list, and
2095
		 * @pool's state and ours could have deviated.
2096
		 *
2097
		 * As hotplug is now excluded via assoc_mutex, we can
2098
		 * simply try to bind.  It will succeed or fail depending
2099
		 * on @pool's current state.  Try it and adjust
2100 2101 2102 2103 2104 2105
		 * %WORKER_UNBOUND accordingly.
		 */
		if (worker_maybe_bind_and_lock(worker))
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2106

2107 2108
		ret = true;
	}
2109

2110
	pool->flags &= ~POOL_MANAGE_WORKERS;
2111 2112

	/*
2113 2114
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2115
	 */
2116 2117
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2118

2119
	pool->flags &= ~POOL_MANAGING_WORKERS;
2120
	mutex_unlock(&pool->assoc_mutex);
2121
	return ret;
2122 2123
}

2124 2125
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2126
 * @worker: self
2127 2128 2129 2130 2131 2132 2133 2134 2135
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2136
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2137
 */
T
Tejun Heo 已提交
2138
static void process_one_work(struct worker *worker, struct work_struct *work)
2139 2140
__releases(&pool->lock)
__acquires(&pool->lock)
2141
{
2142
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2143
	struct worker_pool *pool = worker->pool;
2144
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2145
	int work_color;
2146
	struct worker *collision;
2147 2148 2149 2150 2151 2152 2153 2154
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2155 2156 2157
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2158
#endif
2159 2160 2161
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2162
	 * unbound or a disassociated pool.
2163
	 */
2164
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2165
		     !(pool->flags & POOL_DISASSOCIATED) &&
2166
		     raw_smp_processor_id() != pool->cpu);
2167

2168 2169 2170 2171 2172 2173
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2174
	collision = find_worker_executing_work(pool, work);
2175 2176 2177 2178 2179
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2180
	/* claim and dequeue */
2181
	debug_work_deactivate(work);
2182
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2183
	worker->current_work = work;
2184
	worker->current_func = work->func;
2185
	worker->current_cwq = cwq;
2186
	work_color = get_work_color(work);
2187

2188 2189
	list_del_init(&work->entry);

2190 2191 2192 2193 2194 2195 2196
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2197
	/*
2198
	 * Unbound pool isn't concurrency managed and work items should be
2199 2200
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2201 2202
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2203

2204
	/*
2205
	 * Record the last pool and clear PENDING which should be the last
2206
	 * update to @work.  Also, do this inside @pool->lock so that
2207 2208
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2209
	 */
2210
	set_work_pool_and_clear_pending(work, pool->id);
2211

2212
	spin_unlock_irq(&pool->lock);
2213

2214
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2215
	lock_map_acquire(&lockdep_map);
2216
	trace_workqueue_execute_start(work);
2217
	worker->current_func(work);
2218 2219 2220 2221 2222
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2223 2224 2225 2226
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2227 2228
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2229 2230
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2231 2232 2233 2234
		debug_show_held_locks(current);
		dump_stack();
	}

2235
	spin_lock_irq(&pool->lock);
2236

2237 2238 2239 2240
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2241
	/* we're done with it, release */
2242
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2243
	worker->current_work = NULL;
2244
	worker->current_func = NULL;
2245
	worker->current_cwq = NULL;
2246
	cwq_dec_nr_in_flight(cwq, work_color);
2247 2248
}

2249 2250 2251 2252 2253 2254 2255 2256 2257
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2258
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2259 2260 2261
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2262
{
2263 2264
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2265
						struct work_struct, entry);
T
Tejun Heo 已提交
2266
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2267 2268 2269
	}
}

T
Tejun Heo 已提交
2270 2271
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2272
 * @__worker: self
T
Tejun Heo 已提交
2273
 *
2274 2275
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2276 2277 2278
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2279
 */
T
Tejun Heo 已提交
2280
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2281
{
T
Tejun Heo 已提交
2282
	struct worker *worker = __worker;
2283
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2284

2285 2286
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2287
woke_up:
2288
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2289

2290 2291
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2292
		spin_unlock_irq(&pool->lock);
2293

2294
		/* if DIE is set, destruction is requested */
2295 2296 2297 2298 2299
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2300
		/* otherwise, rebind */
2301 2302
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2303
	}
2304

T
Tejun Heo 已提交
2305
	worker_leave_idle(worker);
2306
recheck:
2307
	/* no more worker necessary? */
2308
	if (!need_more_worker(pool))
2309 2310 2311
		goto sleep;

	/* do we need to manage? */
2312
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2313 2314
		goto recheck;

T
Tejun Heo 已提交
2315 2316 2317 2318 2319 2320 2321
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2322 2323 2324 2325 2326 2327 2328 2329
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2330
		struct work_struct *work =
2331
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2332 2333 2334 2335 2336 2337
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2338
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2339 2340 2341
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2342
		}
2343
	} while (keep_working(pool));
2344 2345

	worker_set_flags(worker, WORKER_PREP, false);
2346
sleep:
2347
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2348
		goto recheck;
2349

T
Tejun Heo 已提交
2350
	/*
2351 2352 2353 2354 2355
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2356 2357 2358
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2359
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2360 2361
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2362 2363
}

2364 2365
/**
 * rescuer_thread - the rescuer thread function
2366
 * @__rescuer: self
2367 2368 2369 2370
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
2371
 * Regular work processing on a pool may block trying to create a new
2372 2373 2374 2375 2376
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2377 2378
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2379 2380 2381 2382
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2383
static int rescuer_thread(void *__rescuer)
2384
{
2385 2386
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2387
	struct list_head *scheduled = &rescuer->scheduled;
2388
	bool is_unbound = wq->flags & WQ_UNBOUND;
2389 2390 2391
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2392 2393 2394 2395 2396 2397

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2398 2399 2400
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2401 2402
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2403
		rescuer->task->flags &= ~PF_WQ_WORKER;
2404
		return 0;
2405
	}
2406

2407 2408 2409 2410
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2411
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2412 2413
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2414
		struct worker_pool *pool = cwq->pool;
2415 2416 2417
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2418
		mayday_clear_cpu(cpu, wq->mayday_mask);
2419 2420

		/* migrate to the target cpu if possible */
2421
		rescuer->pool = pool;
2422 2423 2424 2425 2426 2427 2428
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2429
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2430 2431 2432 2433
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2434 2435

		/*
2436
		 * Leave this pool.  If keep_working() is %true, notify a
2437 2438 2439
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2440 2441
		if (keep_working(pool))
			wake_up_worker(pool);
2442

2443
		spin_unlock_irq(&pool->lock);
2444 2445
	}

2446 2447
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2448 2449
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2450 2451
}

O
Oleg Nesterov 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2463 2464 2465 2466
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2467 2468
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2469
 *
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2483 2484
 *
 * CONTEXT:
2485
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2486
 */
2487
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2488 2489
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2490
{
2491 2492 2493
	struct list_head *head;
	unsigned int linked = 0;

2494
	/*
2495
	 * debugobject calls are safe here even with pool->lock locked
2496 2497 2498 2499
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2500
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2501
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2502
	init_completion(&barr->done);
2503

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2519
	debug_work_activate(&barr->work);
2520 2521
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2522 2523
}

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2557
{
2558 2559
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2560

2561 2562 2563
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2564
	}
2565

2566
	for_each_cwq_cpu(cpu, wq) {
2567
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2568
		struct worker_pool *pool = cwq->pool;
O
Oleg Nesterov 已提交
2569

2570
		spin_lock_irq(&pool->lock);
2571

2572 2573
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2574

2575 2576 2577 2578 2579 2580
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2581

2582 2583 2584 2585
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2586

2587
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2588
	}
2589

2590 2591
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2592

2593
	return wait;
L
Linus Torvalds 已提交
2594 2595
}

2596
/**
L
Linus Torvalds 已提交
2597
 * flush_workqueue - ensure that any scheduled work has run to completion.
2598
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2599 2600 2601 2602
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2603 2604
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2605
 */
2606
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2607
{
2608 2609 2610 2611 2612 2613
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2614

2615 2616
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2678 2679 2680 2681
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2749
}
2750
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2751

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2782
		bool drained;
2783

2784
		spin_lock_irq(&cwq->pool->lock);
2785
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2786
		spin_unlock_irq(&cwq->pool->lock);
2787 2788

		if (drained)
2789 2790 2791 2792
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2793 2794
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2805
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2806
{
2807
	struct worker *worker = NULL;
2808
	struct worker_pool *pool;
2809 2810 2811
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2812 2813
	pool = get_work_pool(work);
	if (!pool)
2814
		return false;
2815

2816
	spin_lock_irq(&pool->lock);
2817 2818 2819
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2820
		 * If it was re-queued to a different pool under us, we
2821
		 * are not going to wait.
2822 2823
		 */
		smp_rmb();
2824
		cwq = get_work_cwq(work);
2825
		if (unlikely(!cwq || pool != cwq->pool))
T
Tejun Heo 已提交
2826
			goto already_gone;
2827
	} else {
2828
		worker = find_worker_executing_work(pool, work);
2829
		if (!worker)
T
Tejun Heo 已提交
2830
			goto already_gone;
2831
		cwq = worker->current_cwq;
2832
	}
2833

2834
	insert_wq_barrier(cwq, barr, work, worker);
2835
	spin_unlock_irq(&pool->lock);
2836

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2847
	lock_map_release(&cwq->wq->lockdep_map);
2848

2849
	return true;
T
Tejun Heo 已提交
2850
already_gone:
2851
	spin_unlock_irq(&pool->lock);
2852
	return false;
2853
}
2854 2855 2856 2857 2858

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2859 2860
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2861 2862 2863 2864 2865 2866 2867 2868 2869
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2870 2871 2872
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2873
	if (start_flush_work(work, &barr)) {
2874 2875 2876
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2877
	} else {
2878
		return false;
2879 2880
	}
}
2881
EXPORT_SYMBOL_GPL(flush_work);
2882

2883
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2884
{
2885
	unsigned long flags;
2886 2887 2888
	int ret;

	do {
2889 2890 2891 2892 2893 2894
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2895
			flush_work(work);
2896 2897
	} while (unlikely(ret < 0));

2898 2899 2900 2901
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2902
	flush_work(work);
2903
	clear_work_data(work);
2904 2905 2906
	return ret;
}

2907
/**
2908 2909
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2910
 *
2911 2912 2913 2914
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2915
 *
2916 2917
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2918
 *
2919
 * The caller must ensure that the workqueue on which @work was last
2920
 * queued can't be destroyed before this function returns.
2921 2922 2923
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2924
 */
2925
bool cancel_work_sync(struct work_struct *work)
2926
{
2927
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2928
}
2929
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2930

2931
/**
2932 2933
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2934
 *
2935 2936 2937
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2938
 *
2939 2940 2941
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2942
 */
2943 2944
bool flush_delayed_work(struct delayed_work *dwork)
{
2945
	local_irq_disable();
2946
	if (del_timer_sync(&dwork->timer))
2947
		__queue_work(dwork->cpu,
2948
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2949
	local_irq_enable();
2950 2951 2952 2953
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2954
/**
2955 2956
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2957
 *
2958 2959 2960 2961 2962
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2963
 *
2964
 * This function is safe to call from any context including IRQ handler.
2965
 */
2966
bool cancel_delayed_work(struct delayed_work *dwork)
2967
{
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2978 2979
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2980
	local_irq_restore(flags);
2981
	return ret;
2982
}
2983
EXPORT_SYMBOL(cancel_delayed_work);
2984

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2995
{
2996
	return __cancel_work_timer(&dwork->work, true);
2997
}
2998
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2999

3000
/**
3001 3002 3003 3004 3005 3006
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
3007
bool schedule_work_on(int cpu, struct work_struct *work)
3008
{
3009
	return queue_work_on(cpu, system_wq, work);
3010 3011 3012
}
EXPORT_SYMBOL(schedule_work_on);

3013 3014 3015 3016
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
3017 3018
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
3019 3020 3021 3022
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
3023
 */
3024
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3025
{
3026
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3027
}
3028
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3029

3030 3031 3032
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
3033
 * @dwork: job to be done
3034 3035 3036 3037 3038
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
3039 3040
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
3041
{
3042
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
3043
}
3044
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
3045

3046 3047
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3048 3049
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3050 3051 3052 3053
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3054
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3055
{
3056
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3057
}
3058
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3059

3060
/**
3061
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3062 3063
 * @func: the function to call
 *
3064 3065
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3066
 * schedule_on_each_cpu() is very slow.
3067 3068 3069
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3070
 */
3071
int schedule_on_each_cpu(work_func_t func)
3072 3073
{
	int cpu;
3074
	struct work_struct __percpu *works;
3075

3076 3077
	works = alloc_percpu(struct work_struct);
	if (!works)
3078
		return -ENOMEM;
3079

3080 3081
	get_online_cpus();

3082
	for_each_online_cpu(cpu) {
3083 3084 3085
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3086
		schedule_work_on(cpu, work);
3087
	}
3088 3089 3090 3091

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3092
	put_online_cpus();
3093
	free_percpu(works);
3094 3095 3096
	return 0;
}

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3121 3122
void flush_scheduled_work(void)
{
3123
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3124
}
3125
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3126

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3139
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3140 3141
{
	if (!in_interrupt()) {
3142
		fn(&ew->work);
3143 3144 3145
		return 0;
	}

3146
	INIT_WORK(&ew->work, fn);
3147 3148 3149 3150 3151 3152
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3153 3154
int keventd_up(void)
{
3155
	return system_wq != NULL;
L
Linus Torvalds 已提交
3156 3157
}

3158
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3159
{
3160
	/*
T
Tejun Heo 已提交
3161 3162 3163
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3164
	 */
T
Tejun Heo 已提交
3165 3166 3167
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3168

3169
	if (!(wq->flags & WQ_UNBOUND))
3170
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3171
	else {
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3184
	}
3185

3186
	/* just in case, make sure it's actually aligned */
3187 3188
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3189 3190
}

3191
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3192
{
3193
	if (!(wq->flags & WQ_UNBOUND))
3194 3195 3196
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3197
		kfree(*(void **)(wq->cpu_wq.single + 1));
3198
	}
T
Tejun Heo 已提交
3199 3200
}

3201 3202
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3203
{
3204 3205 3206
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3207 3208
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3209

3210
	return clamp_val(max_active, 1, lim);
3211 3212
}

3213
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3214 3215 3216
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3217
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3218
{
3219
	va_list args, args1;
L
Linus Torvalds 已提交
3220
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3221
	unsigned int cpu;
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3236

3237 3238 3239 3240 3241 3242 3243
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3244
	max_active = max_active ?: WQ_DFL_ACTIVE;
3245
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3246

3247
	/* init wq */
3248
	wq->flags = flags;
3249
	wq->saved_max_active = max_active;
3250 3251 3252 3253
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3254

3255
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3256
	INIT_LIST_HEAD(&wq->list);
3257

3258 3259 3260
	if (alloc_cwqs(wq) < 0)
		goto err;

3261
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3262 3263
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

T
Tejun Heo 已提交
3264
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
T
Tejun Heo 已提交
3265
		cwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3266
		cwq->wq = wq;
3267
		cwq->flush_color = -1;
3268 3269
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3270
	}
T
Tejun Heo 已提交
3271

3272 3273 3274
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3275
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3276 3277 3278 3279 3280 3281
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3282 3283
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3284
					       wq->name);
3285 3286 3287 3288 3289
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3290 3291
	}

3292 3293 3294 3295 3296
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3297
	spin_lock(&workqueue_lock);
3298

3299
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3300
		for_each_cwq_cpu(cpu, wq)
3301 3302
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3303
	list_add(&wq->list, &workqueues);
3304

T
Tejun Heo 已提交
3305 3306
	spin_unlock(&workqueue_lock);

3307
	return wq;
T
Tejun Heo 已提交
3308 3309
err:
	if (wq) {
3310
		free_cwqs(wq);
3311
		free_mayday_mask(wq->mayday_mask);
3312
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3313 3314 3315
		kfree(wq);
	}
	return NULL;
3316
}
3317
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3318

3319 3320 3321 3322 3323 3324 3325 3326
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3327
	unsigned int cpu;
3328

3329 3330
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3331

3332 3333 3334 3335
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3336
	spin_lock(&workqueue_lock);
3337
	list_del(&wq->list);
3338
	spin_unlock(&workqueue_lock);
3339

3340
	/* sanity check */
3341
	for_each_cwq_cpu(cpu, wq) {
3342 3343 3344 3345 3346
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3347 3348
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3349
	}
3350

3351 3352
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3353
		free_mayday_mask(wq->mayday_mask);
3354
		kfree(wq->rescuer);
3355 3356
	}

3357
	free_cwqs(wq);
3358 3359 3360 3361
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3362 3363 3364 3365 3366 3367 3368 3369 3370
/**
 * cwq_set_max_active - adjust max_active of a cwq
 * @cwq: target cpu_workqueue_struct
 * @max_active: new max_active value.
 *
 * Set @cwq->max_active to @max_active and activate delayed works if
 * increased.
 *
 * CONTEXT:
3371
 * spin_lock_irq(pool->lock).
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
 */
static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
{
	cwq->max_active = max_active;

	while (!list_empty(&cwq->delayed_works) &&
	       cwq->nr_active < cwq->max_active)
		cwq_activate_first_delayed(cwq);
}

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3396
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3397 3398 3399 3400 3401

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3402
	for_each_cwq_cpu(cpu, wq) {
3403 3404
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		struct worker_pool *pool = cwq->pool;
3405

3406
		spin_lock_irq(&pool->lock);
3407

3408
		if (!(wq->flags & WQ_FREEZABLE) ||
3409 3410
		    !(pool->flags & POOL_FREEZING))
			cwq_set_max_active(cwq, max_active);
3411

3412
		spin_unlock_irq(&pool->lock);
3413
	}
3414

3415
	spin_unlock(&workqueue_lock);
3416
}
3417
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3418

3419
/**
3420 3421 3422
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3423
 *
3424 3425 3426
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3427
 *
3428 3429
 * RETURNS:
 * %true if congested, %false otherwise.
3430
 */
3431
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3432
{
3433 3434 3435
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3436
}
3437
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3438

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3451
{
3452
	struct worker_pool *pool = get_work_pool(work);
3453 3454
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3455

3456 3457
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3458

3459 3460 3461 3462 3463 3464
	if (pool) {
		spin_lock_irqsave(&pool->lock, flags);
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
		spin_unlock_irqrestore(&pool->lock, flags);
	}
L
Linus Torvalds 已提交
3465

3466
	return ret;
L
Linus Torvalds 已提交
3467
}
3468
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3469

3470 3471 3472
/*
 * CPU hotplug.
 *
3473 3474
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
3475
 * pool which make migrating pending and scheduled works very
3476
 * difficult to implement without impacting hot paths.  Secondly,
3477
 * worker pools serve mix of short, long and very long running works making
3478 3479
 * blocked draining impractical.
 *
3480
 * This is solved by allowing the pools to be disassociated from the CPU
3481 3482
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3483
 */
L
Linus Torvalds 已提交
3484

3485
static void wq_unbind_fn(struct work_struct *work)
3486
{
3487
	int cpu = smp_processor_id();
3488
	struct worker_pool *pool;
3489 3490 3491
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3492

3493 3494
	for_each_std_worker_pool(pool, cpu) {
		BUG_ON(cpu != smp_processor_id());
3495

3496 3497
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3498

3499 3500 3501 3502 3503 3504 3505
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3506
		list_for_each_entry(worker, &pool->idle_list, entry)
3507
			worker->flags |= WORKER_UNBOUND;
3508

3509 3510
		for_each_busy_worker(worker, i, pos, pool)
			worker->flags |= WORKER_UNBOUND;
3511

3512
		pool->flags |= POOL_DISASSOCIATED;
3513

3514 3515 3516
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3517

3518
	/*
3519
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3520 3521
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3522 3523
	 */
	schedule();
3524

3525
	/*
3526 3527
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3528 3529 3530
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3531 3532 3533 3534
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3535
	 */
3536
	for_each_std_worker_pool(pool, cpu)
3537
		atomic_set(get_pool_nr_running(pool), 0);
3538 3539
}

T
Tejun Heo 已提交
3540 3541 3542 3543
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3544
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3545 3546
					       unsigned long action,
					       void *hcpu)
3547 3548
{
	unsigned int cpu = (unsigned long)hcpu;
3549
	struct worker_pool *pool;
3550

T
Tejun Heo 已提交
3551
	switch (action & ~CPU_TASKS_FROZEN) {
3552
	case CPU_UP_PREPARE:
3553
		for_each_std_worker_pool(pool, cpu) {
3554 3555 3556 3557 3558 3559 3560 3561 3562
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3563
			spin_lock_irq(&pool->lock);
3564
			start_worker(worker);
3565
			spin_unlock_irq(&pool->lock);
3566
		}
T
Tejun Heo 已提交
3567
		break;
3568

3569 3570
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3571
		for_each_std_worker_pool(pool, cpu) {
3572 3573 3574
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3575
			pool->flags &= ~POOL_DISASSOCIATED;
3576 3577 3578 3579 3580
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3581
		break;
3582
	}
3583 3584 3585 3586 3587 3588 3589
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3590
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3591 3592 3593
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3594 3595 3596
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3597 3598
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3599
		/* unbinding should happen on the local CPU */
3600
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3601
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3602 3603
		flush_work(&unbind_work);
		break;
3604 3605 3606 3607
	}
	return NOTIFY_OK;
}

3608
#ifdef CONFIG_SMP
3609

3610
struct work_for_cpu {
3611
	struct work_struct work;
3612 3613 3614 3615 3616
	long (*fn)(void *);
	void *arg;
	long ret;
};

3617
static void work_for_cpu_fn(struct work_struct *work)
3618
{
3619 3620
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3621 3622 3623 3624 3625 3626 3627 3628 3629
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3630 3631
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3632
 * The caller must not hold any locks which would prevent @fn from completing.
3633 3634 3635
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3636
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3637

3638 3639 3640
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3641 3642 3643 3644 3645
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3646 3647 3648 3649 3650
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3651 3652
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
3653
 * pool->worklist.
3654 3655
 *
 * CONTEXT:
3656
 * Grabs and releases workqueue_lock and pool->lock's.
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3667
	for_each_wq_cpu(cpu) {
3668
		struct worker_pool *pool;
3669
		struct workqueue_struct *wq;
3670

3671
		for_each_std_worker_pool(pool, cpu) {
3672
			spin_lock_irq(&pool->lock);
3673

3674 3675
			WARN_ON_ONCE(pool->flags & POOL_FREEZING);
			pool->flags |= POOL_FREEZING;
3676

3677 3678
			list_for_each_entry(wq, &workqueues, list) {
				struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3679

3680 3681 3682 3683
				if (cwq && cwq->pool == pool &&
				    (wq->flags & WQ_FREEZABLE))
					cwq->max_active = 0;
			}
3684

3685 3686
			spin_unlock_irq(&pool->lock);
		}
3687 3688 3689 3690 3691 3692
	}

	spin_unlock(&workqueue_lock);
}

/**
3693
 * freeze_workqueues_busy - are freezable workqueues still busy?
3694 3695 3696 3697 3698 3699 3700 3701
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3702 3703
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3714
	for_each_wq_cpu(cpu) {
3715
		struct workqueue_struct *wq;
3716 3717 3718 3719 3720 3721 3722
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3723
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3742
 * frozen works are transferred to their respective pool worklists.
3743 3744
 *
 * CONTEXT:
3745
 * Grabs and releases workqueue_lock and pool->lock's.
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3756
	for_each_wq_cpu(cpu) {
3757
		struct worker_pool *pool;
3758
		struct workqueue_struct *wq;
3759

3760
		for_each_std_worker_pool(pool, cpu) {
3761
			spin_lock_irq(&pool->lock);
3762

3763 3764
			WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
			pool->flags &= ~POOL_FREEZING;
3765

3766 3767
			list_for_each_entry(wq, &workqueues, list) {
				struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3768

3769 3770 3771
				if (!cwq || cwq->pool != pool ||
				    !(wq->flags & WQ_FREEZABLE))
					continue;
3772

3773 3774 3775
				/* restore max_active and repopulate worklist */
				cwq_set_max_active(cwq, wq->saved_max_active);
			}
3776

3777
			wake_up_worker(pool);
3778 3779

			spin_unlock_irq(&pool->lock);
3780
		}
3781 3782 3783 3784 3785 3786 3787 3788
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3789
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3790
{
T
Tejun Heo 已提交
3791 3792
	unsigned int cpu;

3793 3794
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3795
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
3796

3797
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3798
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3799

3800 3801
	/* initialize CPU pools */
	for_each_wq_cpu(cpu) {
3802
		struct worker_pool *pool;
3803

3804
		for_each_std_worker_pool(pool, cpu) {
3805
			spin_lock_init(&pool->lock);
3806
			pool->cpu = cpu;
3807
			pool->flags |= POOL_DISASSOCIATED;
3808 3809
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3810
			hash_init(pool->busy_hash);
3811

3812 3813 3814
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3815

3816
			setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3817 3818
				    (unsigned long)pool);

3819
			mutex_init(&pool->assoc_mutex);
3820
			ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3821 3822 3823

			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
3824
		}
3825 3826
	}

3827
	/* create the initial worker */
3828
	for_each_online_wq_cpu(cpu) {
3829
		struct worker_pool *pool;
3830

3831
		for_each_std_worker_pool(pool, cpu) {
3832 3833
			struct worker *worker;

3834 3835 3836
			if (cpu != WORK_CPU_UNBOUND)
				pool->flags &= ~POOL_DISASSOCIATED;

3837
			worker = create_worker(pool);
3838
			BUG_ON(!worker);
3839
			spin_lock_irq(&pool->lock);
3840
			start_worker(worker);
3841
			spin_unlock_irq(&pool->lock);
3842
		}
3843 3844
	}

3845
	system_wq = alloc_workqueue("events", 0, 0);
3846
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3847
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3848 3849
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3850 3851
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3852
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3853
	       !system_unbound_wq || !system_freezable_wq);
3854
	return 0;
L
Linus Torvalds 已提交
3855
}
3856
early_initcall(init_workqueues);