intel_engine_cs.c 47.9 KB
Newer Older
C
Chris Wilson 已提交
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2016 Intel Corporation
 */

6 7
#include <drm/drm_print.h>

8 9
#include "gem/i915_gem_context.h"

10
#include "i915_drv.h"
11

12
#include "intel_breadcrumbs.h"
13
#include "intel_context.h"
14
#include "intel_engine.h"
15
#include "intel_engine_pm.h"
16
#include "intel_engine_user.h"
17
#include "intel_execlists_submission.h"
18 19
#include "intel_gt.h"
#include "intel_gt_requests.h"
20
#include "intel_gt_pm.h"
21
#include "intel_lrc_reg.h"
22
#include "intel_reset.h"
23
#include "intel_ring.h"
24
#include "uc/intel_guc_submission.h"
25

26 27 28 29 30 31 32 33 34
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

35
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
36 37
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
38
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
39
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
40 41 42

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

43
#define MAX_MMIO_BASES 3
44
struct engine_info {
45
	unsigned int hw_id;
46 47
	u8 class;
	u8 instance;
48
	/* mmio bases table *must* be sorted in reverse graphics_ver order */
49
	struct engine_mmio_base {
50
		u32 graphics_ver : 8;
51 52
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
53 54 55
};

static const struct engine_info intel_engines[] = {
56 57
	[RCS0] = {
		.hw_id = RCS0_HW,
58 59
		.class = RENDER_CLASS,
		.instance = 0,
60
		.mmio_bases = {
61
			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
62
		},
63
	},
64 65
	[BCS0] = {
		.hw_id = BCS0_HW,
66 67
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
68
		.mmio_bases = {
69
			{ .graphics_ver = 6, .base = BLT_RING_BASE }
70
		},
71
	},
72 73
	[VCS0] = {
		.hw_id = VCS0_HW,
74 75
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
76
		.mmio_bases = {
77 78 79
			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
			{ .graphics_ver = 4, .base = BSD_RING_BASE }
80
		},
81
	},
82
	[VCS1] = {
83 84
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
85
		.mmio_bases = {
86 87
			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
88
		},
89
	},
90
	[VCS2] = {
91 92
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
93
		.mmio_bases = {
94
			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
95
		},
96
	},
97
	[VCS3] = {
98 99
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
100
		.mmio_bases = {
101
			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
102
		},
103
	},
104 105
	[VECS0] = {
		.hw_id = VECS0_HW,
106 107
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
108
		.mmio_bases = {
109 110
			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
111
		},
112
	},
113
	[VECS1] = {
114 115
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
116
		.mmio_bases = {
117
			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
118
		},
119
	},
120 121
};

122
/**
123
 * intel_engine_context_size() - return the size of the context for an engine
124
 * @gt: the gt
125 126 127 128 129 130 131 132 133 134 135
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
136
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
137
{
138
	struct intel_uncore *uncore = gt->uncore;
139 140 141 142 143 144
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
145
		switch (GRAPHICS_VER(gt->i915)) {
146
		default:
147
			MISSING_CASE(GRAPHICS_VER(gt->i915));
148
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
149
		case 12:
150 151
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
152
		case 10:
O
Oscar Mateo 已提交
153
			return GEN10_LR_CONTEXT_RENDER_SIZE;
154 155 156
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
157
			return GEN8_LR_CONTEXT_RENDER_SIZE;
158
		case 7:
159
			if (IS_HASWELL(gt->i915))
160 161
				return HSW_CXT_TOTAL_SIZE;

162
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
163 164 165
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
166
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
167 168 169
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
170
		case 4:
171 172 173 174 175 176 177 178 179 180
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
181
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
182
			drm_dbg(&gt->i915->drm,
183 184
				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
				GRAPHICS_VER(gt->i915), cxt_size * 64,
185
				cxt_size - 1);
186
			return round_up(cxt_size * 64, PAGE_SIZE);
187 188 189 190 191 192 193 194 195
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
196
		fallthrough;
197 198 199
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
200
		if (GRAPHICS_VER(gt->i915) < 8)
201 202 203 204 205
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

206 207 208 209 210 211
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
212
		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
213 214 215 216 217 218 219 220
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

221
static void __sprint_engine_name(struct intel_engine_cs *engine)
222
{
223 224 225 226 227 228 229 230
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
231 232
}

233 234 235 236 237 238
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
239
	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
240 241
		return;

242
	if (GRAPHICS_VER(engine->i915) >= 3)
243
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
244
	else
245
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
246 247 248 249 250 251 252 253
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

254 255 256 257 258
static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
	GEM_DEBUG_WARN_ON(iir);
}

259
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
260 261
{
	const struct engine_info *info = &intel_engines[id];
262
	struct drm_i915_private *i915 = gt->i915;
263
	struct intel_engine_cs *engine;
264
	u8 guc_class;
265

266 267 268
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

269 270 271
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

272
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
273 274
		return -EINVAL;

275
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
276 277
		return -EINVAL;

278
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
279 280
		return -EINVAL;

281 282 283
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
284

285 286
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

287
	engine->id = id;
288
	engine->legacy_idx = INVALID_ENGINE;
289
	engine->mask = BIT(id);
290
	engine->i915 = i915;
291 292
	engine->gt = gt;
	engine->uncore = gt->uncore;
293
	engine->hw_id = info->hw_id;
294 295 296
	guc_class = engine_class_to_guc_class(info->class);
	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
297

298 299
	engine->irq_handler = nop_irq_handler;

300 301
	engine->class = info->class;
	engine->instance = info->instance;
302
	__sprint_engine_name(engine);
303

304 305
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
306 307
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
308 309
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
310 311
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
312 313
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
314

315
	/* Override to uninterruptible for OpenCL workloads. */
316
	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
317 318
		engine->props.preempt_timeout_ms = 0;

319 320
	engine->defaults = engine->props; /* never to change again */

321
	engine->context_size = intel_engine_context_size(gt, engine->class);
322 323
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
324
	if (engine->context_size)
325
		DRIVER_CAPS(i915)->has_logical_contexts = true;
326

327
	ewma__engine_latency_init(&engine->latency);
328
	seqcount_init(&engine->stats.lock);
329

330 331
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

332 333 334
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

335
	gt->engine_class[info->class][info->instance] = engine;
336
	gt->engine[id] = engine;
337

338
	return 0;
339 340
}

341 342 343 344 345 346 347 348 349
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
350 351
		if (GRAPHICS_VER(i915) >= 11 ||
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
352 353 354 355 356 357 358
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
359
		if ((GRAPHICS_VER(i915) >= 11 &&
360 361
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
362
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
363 364 365
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
366
		if (GRAPHICS_VER(i915) >= 9)
367 368 369 370 371
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

372
static void intel_setup_engine_capabilities(struct intel_gt *gt)
373 374 375 376
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

377
	for_each_engine(engine, gt, id)
378 379 380
		__setup_engine_capabilities(engine);
}

381
/**
382
 * intel_engines_release() - free the resources allocated for Command Streamers
383
 * @gt: pointer to struct intel_gt
384
 */
385
void intel_engines_release(struct intel_gt *gt)
386 387 388 389
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

390 391 392 393 394 395 396 397 398 399 400 401 402
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

403
	/* Decouple the backend; but keep the layout for late GPU resets */
404
	for_each_engine(engine, gt, id) {
405 406 407
		if (!engine->release)
			continue;

408 409 410
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

411 412 413 414
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
415 416 417
	}
}

418 419 420 421 422 423 424 425
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

426 427 428 429 430
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

431 432 433
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

434
	for_each_engine(engine, gt, id) {
435
		intel_engine_free_request_pool(engine);
436 437 438 439 440
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
static
bool gen11_vdbox_has_sfc(struct drm_i915_private *i915,
			 unsigned int physical_vdbox,
			 unsigned int logical_vdbox, u16 vdbox_mask)
{
	/*
	 * In Gen11, only even numbered logical VDBOXes are hooked
	 * up to an SFC (Scaler & Format Converter) unit.
	 * In Gen12, Even numbered physical instance always are connected
	 * to an SFC. Odd numbered physical instances have SFC only if
	 * previous even instance is fused off.
	 */
	if (GRAPHICS_VER(i915) == 12)
		return (physical_vdbox % 2 == 0) ||
			!(BIT(physical_vdbox - 1) & vdbox_mask);
	else if (GRAPHICS_VER(i915) == 11)
		return logical_vdbox % 2 == 0;

	MISSING_CASE(GRAPHICS_VER(i915));
	return false;
}

463 464 465 466 467 468 469 470 471 472 473 474 475
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
476
	struct intel_gt_info *info = &gt->info;
477 478 479 480 481 482 483
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

484 485
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

486
	if (GRAPHICS_VER(i915) < 11)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
		return info->engine_mask;

	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

507
		if (gen11_vdbox_has_sfc(i915, i, logical_vdbox, vdbox_mask))
508
			gt->info.vdbox_sfc_access |= BIT(i);
509
		logical_vdbox++;
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

533
/**
534
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
535
 * @gt: pointer to struct intel_gt
536 537 538
 *
 * Return: non-zero if the initialization failed.
 */
539
int intel_engines_init_mmio(struct intel_gt *gt)
540
{
541
	struct drm_i915_private *i915 = gt->i915;
542
	const unsigned int engine_mask = init_engine_mask(gt);
543
	unsigned int mask = 0;
544
	unsigned int i;
545
	int err;
546

547 548 549
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
550

551
	if (i915_inject_probe_failure(i915))
552 553
		return -ENODEV;

554
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
555
		if (!HAS_ENGINE(gt, i))
556 557
			continue;

558
		err = intel_engine_setup(gt, i);
559 560 561
		if (err)
			goto cleanup;

562
		mask |= BIT(i);
563 564 565 566 567 568 569
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
570
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
571
		gt->info.engine_mask = mask;
572

573
	gt->info.num_engines = hweight32(mask);
574

575
	intel_gt_check_and_clear_faults(gt);
576

577
	intel_setup_engine_capabilities(gt);
578

579 580
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

581 582 583
	return 0;

cleanup:
584
	intel_engines_free(gt);
585 586 587
	return err;
}

588
void intel_engine_init_execlists(struct intel_engine_cs *engine)
589 590 591
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

592
	execlists->port_mask = 1;
593
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
594 595
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

596 597 598
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));
599 600
}

601
static void cleanup_status_page(struct intel_engine_cs *engine)
602
{
603 604
	struct i915_vma *vma;

605 606 607
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

608 609 610
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
611

612 613 614 615
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
616
	i915_gem_object_put(vma->obj);
617 618 619
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
620
				struct i915_gem_ww_ctx *ww,
621 622 623 624
				struct i915_vma *vma)
{
	unsigned int flags;

625
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
626 627 628 629 630 631 632 633 634 635 636
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
637
		flags = PIN_MAPPABLE;
638
	else
639
		flags = PIN_HIGH;
640

641
	return i915_ggtt_pin(vma, ww, 0, flags);
642 643 644 645 646
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
647
	struct i915_gem_ww_ctx ww;
648 649 650 651
	struct i915_vma *vma;
	void *vaddr;
	int ret;

652 653
	INIT_LIST_HEAD(&engine->status_page.timelines);

654 655 656 657 658 659 660
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
661 662
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
663 664
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
665 666 667
		return PTR_ERR(obj);
	}

668
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
669

670
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
671 672
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
673
		goto err_put;
674 675
	}

676 677 678 679 680 681 682 683
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

684 685 686
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
687
		goto err_unpin;
688 689
	}

690
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
691
	engine->status_page.vma = vma;
692

693
err_unpin:
694 695
	if (ret)
		i915_vma_unpin(vma);
696
err:
697 698 699 700 701 702 703 704 705
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
706 707 708
	return ret;
}

709
static int engine_setup_common(struct intel_engine_cs *engine)
710 711 712
{
	int err;

713 714
	init_llist_head(&engine->barrier_tasks);

715 716 717 718
	err = init_status_page(engine);
	if (err)
		return err;

719 720 721 722 723 724
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

725 726 727 728 729
	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
	if (!engine->sched_engine) {
		err = -ENOMEM;
		goto err_sched_engine;
	}
730
	engine->sched_engine->private_data = engine;
731

732 733 734 735
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

736 737
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
738
	intel_engine_init_retire(engine);
739

740 741
	/* Use the whole device by default */
	engine->sseu =
742
		intel_sseu_from_device_info(&engine->gt->info.sseu);
743

744 745 746 747
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

748
	if (GRAPHICS_VER(engine->i915) >= 12)
749 750
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

751
	return 0;
752

753
err_cmd_parser:
754 755
	i915_sched_engine_put(engine->sched_engine);
err_sched_engine:
756
	intel_breadcrumbs_free(engine->breadcrumbs);
757 758 759
err_status:
	cleanup_status_page(engine);
	return err;
760 761
}

762 763 764
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
765
	u32 cs[2048];
766 767
};

768
static int measure_breadcrumb_dw(struct intel_context *ce)
769
{
770
	struct intel_engine_cs *engine = ce->engine;
771
	struct measure_breadcrumb *frame;
772
	int dw;
773

774
	GEM_BUG_ON(!engine->gt->scratch);
775 776 777 778 779

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

780 781 782
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
783
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
784

785 786
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
787 788
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
789 790 791
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
792

793
	mutex_lock(&ce->timeline->mutex);
794
	spin_lock_irq(&engine->sched_engine->lock);
795

796
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
797

798
	spin_unlock_irq(&engine->sched_engine->lock);
799
	mutex_unlock(&ce->timeline->mutex);
800

801
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
802

803
	kfree(frame);
804 805 806
	return dw;
}

807 808 809 810 811 812 813
struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs *engine,
				   struct i915_address_space *vm,
				   unsigned int ring_size,
				   unsigned int hwsp,
				   struct lock_class_key *key,
				   const char *name)
814 815 816 817
{
	struct intel_context *ce;
	int err;

818
	ce = intel_context_create(engine);
819 820 821
	if (IS_ERR(ce))
		return ce;

822
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
823
	ce->timeline = page_pack_bits(NULL, hwsp);
824 825
	ce->ring = NULL;
	ce->ring_size = ring_size;
826 827 828

	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
829

830
	err = intel_context_pin(ce); /* perma-pin so it is always available */
831 832 833 834 835
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

836 837 838 839 840 841
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
842
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
843

844 845 846
	return ce;
}

847
void intel_engine_destroy_pinned_context(struct intel_context *ce)
848 849 850 851 852 853 854 855 856 857 858 859 860 861
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

	intel_context_unpin(ce);
	intel_context_put(ce);
}

862 863 864 865 866
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

867 868 869
	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
						  I915_GEM_HWS_SEQNO_ADDR,
						  &kernel, "kernel_context");
870 871
}

872 873 874 875 876 877 878 879 880 881 882
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
883
static int engine_init_common(struct intel_engine_cs *engine)
884
{
885
	struct intel_context *ce;
886 887
	int ret;

888 889
	engine->set_default_submission(engine);

890 891
	/*
	 * We may need to do things with the shrinker which
892 893 894 895 896 897
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
898 899 900 901
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

902 903 904 905 906
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
907
	engine->kernel_context = ce;
908

909
	return 0;
910 911

err_context:
912
	intel_engine_destroy_pinned_context(ce);
913
	return ret;
914
}
915

916 917 918 919 920 921 922
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

923 924
	if (intel_uc_uses_guc_submission(&gt->uc)) {
		gt->submission_method = INTEL_SUBMISSION_GUC;
925
		setup = intel_guc_submission_setup;
926 927
	} else if (HAS_EXECLISTS(gt->i915)) {
		gt->submission_method = INTEL_SUBMISSION_ELSP;
928
		setup = intel_execlists_submission_setup;
929 930
	} else {
		gt->submission_method = INTEL_SUBMISSION_RING;
931
		setup = intel_ring_submission_setup;
932
	}
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

953 954 955 956 957 958 959 960 961
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
962
	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
963

964
	i915_sched_engine_put(engine->sched_engine);
965
	intel_breadcrumbs_free(engine->breadcrumbs);
966

967
	intel_engine_fini_retire(engine);
968
	intel_engine_cleanup_cmd_parser(engine);
969

970
	if (engine->default_state)
971
		fput(engine->default_state);
972

973
	if (engine->kernel_context)
974
		intel_engine_destroy_pinned_context(engine->kernel_context);
975

976
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
977
	cleanup_status_page(engine);
978

979
	intel_wa_list_free(&engine->ctx_wa_list);
980
	intel_wa_list_free(&engine->wa_list);
981
	intel_wa_list_free(&engine->whitelist);
982
}
983

984 985 986 987 988 989 990 991 992 993 994 995 996 997
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

998
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
999
{
1000 1001
	struct drm_i915_private *i915 = engine->i915;

1002 1003
	u64 acthd;

1004
	if (GRAPHICS_VER(i915) >= 8)
1005
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1006
	else if (GRAPHICS_VER(i915) >= 4)
1007
		acthd = ENGINE_READ(engine, RING_ACTHD);
1008
	else
1009
		acthd = ENGINE_READ(engine, ACTHD);
1010 1011 1012 1013

	return acthd;
}

1014
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1015 1016 1017
{
	u64 bbaddr;

1018
	if (GRAPHICS_VER(engine->i915) >= 8)
1019
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1020
	else
1021
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1022 1023 1024

	return bbaddr;
}
1025

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1041 1042 1043
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1044
{
1045
	struct intel_uncore *uncore = engine->uncore;
1046
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1047 1048
	int err;

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1065
	if (GRAPHICS_VER(engine->i915) < 3)
1066 1067
		return -ENODEV;

1068
	ENGINE_TRACE(engine, "\n");
1069
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1083 1084 1085 1086 1087
	}

	return err;
}

1088 1089
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1090
	ENGINE_TRACE(engine, "\n");
1091

1092
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1093 1094
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1106
static u32
1107 1108
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1109
{
1110 1111
	return intel_uncore_read_with_mcr_steering(engine->uncore, reg,
						   slice, subslice);
1112 1113 1114
}

/* NB: please notice the memset */
1115
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1116 1117
			       struct intel_instdone *instdone)
{
1118
	struct drm_i915_private *i915 = engine->i915;
1119
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1120
	struct intel_uncore *uncore = engine->uncore;
1121 1122 1123 1124 1125 1126
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1127
	switch (GRAPHICS_VER(i915)) {
1128
	default:
1129 1130
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1131

1132
		if (engine->id != RCS0)
1133 1134
			break;

1135 1136
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1137
		if (GRAPHICS_VER(i915) >= 12) {
1138 1139 1140 1141 1142
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1143
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1144
			instdone->sampler[slice][subslice] =
1145
				read_subslice_reg(engine, slice, subslice,
1146 1147
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1148
				read_subslice_reg(engine, slice, subslice,
1149 1150 1151 1152
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1153 1154
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1155

1156
		if (engine->id != RCS0)
1157 1158
			break;

1159 1160 1161 1162 1163 1164
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1165 1166 1167 1168 1169

		break;
	case 6:
	case 5:
	case 4:
1170 1171
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1172
		if (engine->id == RCS0)
1173
			/* HACK: Using the wrong struct member */
1174 1175
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1176 1177 1178
		break;
	case 3:
	case 2:
1179
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1180 1181 1182
		break;
	}
}
1183

1184 1185 1186 1187
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1188 1189 1190
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1191
	if (!intel_engine_pm_get_if_awake(engine))
1192
		return true;
1193

1194
	/* First check that no commands are left in the ring */
1195 1196
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1197
		idle = false;
1198

1199
	/* No bit for gen2, so assume the CS parser is idle */
1200
	if (GRAPHICS_VER(engine->i915) > 2 &&
1201
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1202 1203
		idle = false;

1204
	intel_engine_pm_put(engine);
1205 1206 1207 1208

	return idle;
}

1209
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1210
{
1211
	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1212

1213
	if (!t->callback)
1214 1215
		return;

1216 1217 1218 1219
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
1220
			t->callback(t);
1221
		tasklet_unlock(t);
1222
	}
1223
	local_bh_enable();
1224 1225 1226 1227

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1228 1229
}

1230 1231 1232 1233 1234 1235 1236 1237 1238
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1239
	/* More white lies, if wedged, hw state is inconsistent */
1240
	if (intel_gt_is_wedged(engine->gt))
1241 1242
		return true;

1243
	if (!intel_engine_pm_is_awake(engine))
1244 1245
		return true;

1246
	/* Waiting to drain ELSP? */
1247
	intel_synchronize_hardirq(engine->i915);
1248
	intel_engine_flush_submission(engine);
1249

1250
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1251
	if (!i915_sched_engine_is_empty(engine->sched_engine))
1252 1253
		return false;

1254
	/* Ring stopped? */
1255
	return ring_is_idle(engine);
1256 1257
}

1258
bool intel_engines_are_idle(struct intel_gt *gt)
1259 1260 1261 1262
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1263 1264
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1265 1266
	 * report that it is still busy, even though we have stopped using it.
	 */
1267
	if (intel_gt_is_wedged(gt))
1268 1269
		return true;

1270
	/* Already parked (and passed an idleness test); must still be idle */
1271
	if (!READ_ONCE(gt->awake))
1272 1273
		return true;

1274
	for_each_engine(engine, gt, id) {
1275 1276 1277 1278 1279 1280 1281
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1282
void intel_engines_reset_default_submission(struct intel_gt *gt)
1283 1284 1285 1286
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1287 1288 1289 1290
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1291
		engine->set_default_submission(engine);
1292
	}
1293 1294
}

1295 1296
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
1297
	switch (GRAPHICS_VER(engine->i915)) {
1298 1299 1300 1301 1302
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1303 1304
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1305 1306 1307 1308 1309 1310 1311
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1312 1313 1314 1315 1316
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
1317
	 * Even though we are holding the engine->sched_engine->lock here, there
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1377
		drm_printf(m, "[%04zx] %s\n", pos, line);
1378 1379 1380 1381 1382 1383

		prev = buf + pos;
		skip = false;
	}
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1395
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1396
					 struct drm_printer *m)
1397 1398
{
	struct drm_i915_private *dev_priv = engine->i915;
1399
	struct intel_engine_execlists * const execlists = &engine->execlists;
1400 1401
	u64 addr;

1402
	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1403
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1404 1405 1406 1407 1408 1409
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1410
	drm_printf(m, "\tRING_START: 0x%08x\n",
1411
		   ENGINE_READ(engine, RING_START));
1412
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1413
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1414
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1415
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1416
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1417 1418
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1419
	if (GRAPHICS_VER(engine->i915) > 2) {
1420
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1421 1422
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1423
	}
1424

1425
	if (GRAPHICS_VER(dev_priv) >= 6) {
1426
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1427
			   ENGINE_READ(engine, RING_IMR));
1428 1429 1430 1431 1432 1433
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1434 1435
	}

1436 1437 1438 1439 1440 1441
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1442
	if (GRAPHICS_VER(dev_priv) >= 8)
1443
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1444
	else if (GRAPHICS_VER(dev_priv) >= 4)
1445
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1446
	else
1447
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1448 1449
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1450
	if (GRAPHICS_VER(dev_priv) >= 4) {
1451
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1452
			   ENGINE_READ(engine, RING_IPEIR));
1453
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1454
			   ENGINE_READ(engine, RING_IPEHR));
1455
	} else {
1456 1457
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1458
	}
1459

1460
	if (intel_engine_uses_guc(engine)) {
1461 1462
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1463
		struct i915_request * const *port, *rq;
1464 1465
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1466
		const u8 num_entries = execlists->csb_size;
1467
		unsigned int idx;
1468
		u8 read, write;
1469

1470
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1471
			   yesno(test_bit(TASKLET_STATE_SCHED,
1472 1473
					  &engine->sched_engine->tasklet.state)),
			   enableddisabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1474
			   repr_timer(&engine->execlists.preempt),
1475
			   repr_timer(&engine->execlists.timer));
1476

1477 1478 1479
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1480 1481 1482 1483 1484
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1485
		if (read >= num_entries)
1486
			read = 0;
1487
		if (write >= num_entries)
1488 1489
			write = 0;
		if (read > write)
1490
			write += num_entries;
1491
		while (read < write) {
1492 1493 1494
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1495 1496
		}

1497
		i915_sched_engine_active_lock_bh(engine->sched_engine);
1498
		rcu_read_lock();
1499
		for (port = execlists->active; (rq = *port); port++) {
1500
			char hdr[160];
1501 1502
			int len;

1503
			len = scnprintf(hdr, sizeof(hdr),
1504
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1505
					(int)(port - execlists->active),
1506 1507 1508
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1509
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1510
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1511
			i915_request_show(m, rq, hdr, 0);
1512 1513
		}
		for (port = execlists->pending; (rq = *port); port++) {
1514 1515
			char hdr[160];
			int len;
1516

1517
			len = scnprintf(hdr, sizeof(hdr),
1518
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1519
					(int)(port - execlists->pending),
1520 1521 1522
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1523 1524
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1525
			i915_request_show(m, rq, hdr, 0);
1526
		}
1527
		rcu_read_unlock();
1528
		i915_sched_engine_active_unlock_bh(engine->sched_engine);
1529
	} else if (GRAPHICS_VER(dev_priv) > 6) {
1530
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1531
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1532
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1533
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1534
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1535
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1536
	}
1537 1538
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1618 1619 1620 1621 1622
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1623
	struct i915_request *rq;
1624
	intel_wakeref_t wakeref;
1625
	unsigned long flags;
1626
	ktime_t dummy;
1627 1628 1629 1630 1631 1632 1633 1634 1635

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1636
	if (intel_gt_is_wedged(engine->gt))
1637 1638
		drm_printf(m, "*** WEDGED ***\n");

1639
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1640 1641
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1642 1643
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1644 1645 1646 1647
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1648
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1649
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1650 1651 1652 1653 1654 1655 1656

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1657 1658 1659
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1660
	print_properties(engine, m);
1661 1662 1663

	drm_printf(m, "\tRequests:\n");

1664
	spin_lock_irqsave(&engine->sched_engine->lock, flags);
1665
	rq = intel_engine_find_active_request(engine);
1666
	if (rq) {
1667 1668
		struct intel_timeline *tl = get_timeline(rq);

1669
		i915_request_show(m, rq, "\t\tactive ", 0);
1670

1671
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1672
			   i915_ggtt_offset(rq->ring->vma));
1673
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1674
			   rq->ring->head);
1675
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1676
			   rq->ring->tail);
1677 1678 1679 1680
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1681 1682 1683 1684 1685 1686

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1687 1688

		print_request_ring(m, rq);
1689

1690
		if (rq->context->lrc_reg_state) {
1691
			drm_printf(m, "Logical Ring Context:\n");
1692
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1693
		}
1694
	}
1695 1696 1697
	drm_printf(m, "\tOn hold?: %lu\n",
		   list_count(&engine->sched_engine->hold));
	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
1698

1699
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1700
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1701
	if (wakeref) {
1702
		intel_engine_print_registers(engine, m);
1703
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1704 1705 1706
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1707

C
Chris Wilson 已提交
1708
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1709

1710
	drm_printf(m, "HWSP:\n");
1711
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1712

1713
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1714 1715

	intel_engine_print_breadcrumbs(engine, m);
1716 1717
}

1718 1719
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1720 1721 1722 1723 1724 1725 1726
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1727
	*now = ktime_get();
1728
	if (READ_ONCE(engine->stats.active))
1729
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1730 1731 1732 1733 1734 1735 1736

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1737
 * @now: monotonic timestamp of sampling
1738 1739 1740
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1741
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1742
{
1743
	unsigned int seq;
1744 1745
	ktime_t total;

1746
	do {
1747
		seq = read_seqcount_begin(&engine->stats.lock);
1748
		total = __intel_engine_get_busy_time(engine, now);
1749
	} while (read_seqcount_retry(&engine->stats.lock, seq));
1750 1751 1752 1753

	return total;
}

1754 1755
static bool match_ring(struct i915_request *rq)
{
1756
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1777
	lockdep_assert_held(&engine->sched_engine->lock);
1778 1779 1780 1781 1782 1783 1784

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1785
			if (__i915_request_is_complete(request))
1786 1787 1788 1789 1790 1791 1792 1793 1794
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1795 1796
	list_for_each_entry(request, &engine->sched_engine->requests,
			    sched.link) {
1797
		if (__i915_request_is_complete(request))
1798 1799
			continue;

1800
		if (!__i915_request_has_started(request))
1801
			continue;
1802 1803 1804

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1805
			continue;
1806 1807 1808 1809 1810 1811 1812 1813

		active = request;
		break;
	}

	return active;
}

1814
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1815
#include "mock_engine.c"
1816
#include "selftest_engine.c"
1817
#include "selftest_engine_cs.c"
1818
#endif