blk-mq.c 70.5 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40 41 42
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

43 44 45 46
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
47
	ddir = rq_data_dir(rq);
48 49 50 51 52 53 54 55 56 57 58 59
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

60 61 62
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
63
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64
{
65 66 67
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
68 69
}

70 71 72 73 74 75
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
76 77
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 79 80 81 82
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
83
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 85
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128
		blk_mq_run_hw_queues(q, false);
129
	}
130
}
131
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
132

133
void blk_mq_freeze_queue_wait(struct request_queue *q)
134
{
135
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
136
}
137
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
138

139 140 141 142 143 144 145 146
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
147

148 149 150 151
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
152
void blk_freeze_queue(struct request_queue *q)
153
{
154 155 156 157 158 159 160
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
161
	blk_freeze_queue_start(q);
162 163
	blk_mq_freeze_queue_wait(q);
}
164 165 166 167 168 169 170 171 172

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
173
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
174

175
void blk_mq_unfreeze_queue(struct request_queue *q)
176
{
177
	int freeze_depth;
178

179 180 181
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
182
		percpu_ref_reinit(&q->q_usage_counter);
183
		wake_up_all(&q->mq_freeze_wq);
184
	}
185
}
186
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

202
/**
203
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
204 205 206
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
207 208 209
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
210 211 212 213 214 215 216
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

217
	blk_mq_quiesce_queue_nowait(q);
218

219 220
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
221
			synchronize_srcu(hctx->queue_rq_srcu);
222 223 224 225 226 227 228 229
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

230 231 232 233 234 235 236 237 238
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
239 240 241
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
242
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
243
	spin_unlock_irqrestore(q->queue_lock, flags);
244

245 246
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
247 248 249
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

250 251 252 253 254 255 256 257
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
258 259 260 261 262 263 264

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
265 266
}

267 268 269 270 271 272
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

273 274
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
275
{
276 277 278
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

279 280
	rq->rq_flags = 0;

281 282 283 284 285 286 287 288 289 290 291 292 293
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

294 295
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
296 297
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
298
	rq->cmd_flags = op;
299
	if (blk_queue_io_stat(data->q))
300
		rq->rq_flags |= RQF_IO_STAT;
301 302 303 304 305 306
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
307
	rq->start_time = jiffies;
308 309
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
310
	set_start_time_ns(rq);
311 312 313 314 315 316 317 318 319 320 321
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
322 323
	rq->timeout = 0;

324 325 326 327
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

328 329
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
330 331
}

332 333 334 335 336 337
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
338
	unsigned int tag;
339
	struct blk_mq_ctx *local_ctx = NULL;
340 341 342 343

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
344
		data->ctx = local_ctx = blk_mq_get_ctx(q);
345 346
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
347 348
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
349 350 351 352 353 354 355 356

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
357 358
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
359 360
	}

361 362
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
363 364 365 366
		if (local_ctx) {
			blk_mq_put_ctx(local_ctx);
			data->ctx = NULL;
		}
367 368
		blk_queue_exit(q);
		return NULL;
369 370
	}

371
	rq = blk_mq_rq_ctx_init(data, tag, op);
372 373
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
374
		if (e && e->type->ops.mq.prepare_request) {
375 376 377
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

378 379
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
380
		}
381 382 383
	}
	data->hctx->queued++;
	return rq;
384 385
}

386
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
387
		unsigned int flags)
388
{
389
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
390
	struct request *rq;
391
	int ret;
392

393
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
394 395
	if (ret)
		return ERR_PTR(ret);
396

397
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
398
	blk_queue_exit(q);
399

400
	if (!rq)
401
		return ERR_PTR(-EWOULDBLOCK);
402

403 404
	blk_mq_put_ctx(alloc_data.ctx);

405 406 407
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
408 409
	return rq;
}
410
EXPORT_SYMBOL(blk_mq_alloc_request);
411

412 413
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
414
{
415
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
416
	struct request *rq;
417
	unsigned int cpu;
M
Ming Lin 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

436 437 438 439
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
440 441 442 443
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
444
	}
445 446
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
447

448
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
449
	blk_queue_exit(q);
450

451 452 453 454
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
455 456 457
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

458
void blk_mq_free_request(struct request *rq)
459 460
{
	struct request_queue *q = rq->q;
461 462 463 464 465
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

466
	if (rq->rq_flags & RQF_ELVPRIV) {
467 468 469 470 471 472 473
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
474

475
	ctx->rq_completed[rq_is_sync(rq)]++;
476
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
477
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
478 479

	wbt_done(q->rq_wb, &rq->issue_stat);
480

481
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
483 484 485
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
486
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
487
	blk_mq_sched_restart(hctx);
488
	blk_queue_exit(q);
489
}
J
Jens Axboe 已提交
490
EXPORT_SYMBOL_GPL(blk_mq_free_request);
491

492
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
493
{
M
Ming Lei 已提交
494 495
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
496
	if (rq->end_io) {
J
Jens Axboe 已提交
497
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
498
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
499 500 501
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
502
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
503
	}
504
}
505
EXPORT_SYMBOL(__blk_mq_end_request);
506

507
void blk_mq_end_request(struct request *rq, blk_status_t error)
508 509 510
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
511
	__blk_mq_end_request(rq, error);
512
}
513
EXPORT_SYMBOL(blk_mq_end_request);
514

515
static void __blk_mq_complete_request_remote(void *data)
516
{
517
	struct request *rq = data;
518

519
	rq->q->softirq_done_fn(rq);
520 521
}

522
static void __blk_mq_complete_request(struct request *rq)
523 524
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
525
	bool shared = false;
526 527
	int cpu;

528 529 530 531 532 533 534
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
535
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
536 537 538
		rq->q->softirq_done_fn(rq);
		return;
	}
539 540

	cpu = get_cpu();
C
Christoph Hellwig 已提交
541 542 543 544
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
545
		rq->csd.func = __blk_mq_complete_request_remote;
546 547
		rq->csd.info = rq;
		rq->csd.flags = 0;
548
		smp_call_function_single_async(ctx->cpu, &rq->csd);
549
	} else {
550
		rq->q->softirq_done_fn(rq);
551
	}
552 553
	put_cpu();
}
554 555 556 557 558 559 560 561 562

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
563
void blk_mq_complete_request(struct request *rq)
564
{
565 566 567
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
568
		return;
569
	if (!blk_mark_rq_complete(rq))
570
		__blk_mq_complete_request(rq);
571 572
}
EXPORT_SYMBOL(blk_mq_complete_request);
573

574 575 576 577 578 579
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

580
void blk_mq_start_request(struct request *rq)
581 582 583
{
	struct request_queue *q = rq->q;

584 585
	blk_mq_sched_started_request(rq);

586 587
	trace_block_rq_issue(q, rq);

588
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
589
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
590
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
591
		wbt_issue(q->rq_wb, &rq->issue_stat);
592 593
	}

594
	blk_add_timer(rq);
595

596 597 598 599 600 601
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

602 603 604 605 606 607
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
608 609 610 611
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
612 613 614 615 616 617 618 619 620

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
621
}
622
EXPORT_SYMBOL(blk_mq_start_request);
623

624 625
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
626
 * flag isn't set yet, so there may be race with timeout handler,
627 628 629 630 631 632
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
633
static void __blk_mq_requeue_request(struct request *rq)
634 635 636 637
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
638
	wbt_requeue(q->rq_wb, &rq->issue_stat);
639
	blk_mq_sched_requeue_request(rq);
640

641 642 643 644
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
645 646
}

647
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
648 649 650 651
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
652
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
653 654 655
}
EXPORT_SYMBOL(blk_mq_requeue_request);

656 657 658
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
659
		container_of(work, struct request_queue, requeue_work.work);
660 661 662
	LIST_HEAD(rq_list);
	struct request *rq, *next;

663
	spin_lock_irq(&q->requeue_lock);
664
	list_splice_init(&q->requeue_list, &rq_list);
665
	spin_unlock_irq(&q->requeue_lock);
666 667

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
668
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
669 670
			continue;

671
		rq->rq_flags &= ~RQF_SOFTBARRIER;
672
		list_del_init(&rq->queuelist);
673
		blk_mq_sched_insert_request(rq, true, false, false, true);
674 675 676 677 678
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
679
		blk_mq_sched_insert_request(rq, false, false, false, true);
680 681
	}

682
	blk_mq_run_hw_queues(q, false);
683 684
}

685 686
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
687 688 689 690 691 692 693 694
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
695
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
696 697 698

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
699
		rq->rq_flags |= RQF_SOFTBARRIER;
700 701 702 703 704
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
705 706 707

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
708 709 710 711 712
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
713
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
714 715 716
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

717 718 719
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
720 721
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
722 723 724
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

725 726
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
727 728
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
729
		return tags->rqs[tag];
730
	}
731 732

	return NULL;
733 734 735
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

736
struct blk_mq_timeout_data {
737 738
	unsigned long next;
	unsigned int next_set;
739 740
};

741
void blk_mq_rq_timed_out(struct request *req, bool reserved)
742
{
J
Jens Axboe 已提交
743
	const struct blk_mq_ops *ops = req->q->mq_ops;
744
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
745 746 747 748 749 750 751

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
752
	 * both flags will get cleared. So check here again, and ignore
753 754
	 * a timeout event with a request that isn't active.
	 */
755 756
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
757

758
	if (ops->timeout)
759
		ret = ops->timeout(req, reserved);
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
775
}
776

777 778 779 780
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
781

782
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
783
		return;
784

785 786 787 788 789 790 791 792 793 794 795 796 797
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
798 799
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
800
			blk_mq_rq_timed_out(rq, reserved);
801 802 803 804
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
805 806
}

807
static void blk_mq_timeout_work(struct work_struct *work)
808
{
809 810
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
811 812 813 814 815
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
816

817 818 819 820 821 822 823 824 825
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
826
	 * blk_freeze_queue_start, and the moment the last request is
827 828 829 830
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
831 832
		return;

833
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
834

835 836 837
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
838
	} else {
839 840
		struct blk_mq_hw_ctx *hctx;

841 842 843 844 845
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
846
	}
847
	blk_queue_exit(q);
848 849
}

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

868 869 870 871
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
872
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
873
{
874 875 876 877
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
878

879
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
880
}
881
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
882

883 884 885 886
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
887

888
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
889 890
}

891 892
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
893 894 895 896 897 898 899
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

900 901
	might_sleep_if(wait);

902 903
	if (rq->tag != -1)
		goto done;
904

905 906 907
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

908 909
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
910 911 912 913
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
914 915 916
		data.hctx->tags->rqs[rq->tag] = rq;
	}

917 918 919 920
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
921 922
}

923 924
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
925 926 927 928 929 930 931 932 933 934
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

979
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
980 981 982 983 984 985
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

986
	list_del(&wait->entry);
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

1017
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
1018
{
1019
	struct blk_mq_hw_ctx *hctx;
1020
	struct request *rq;
1021
	int errors, queued;
1022

1023 1024 1025
	if (list_empty(list))
		return false;

1026 1027 1028
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1029
	errors = queued = 0;
1030
	do {
1031
		struct blk_mq_queue_data bd;
1032
		blk_status_t ret;
1033

1034
		rq = list_first_entry(list, struct request, queuelist);
1035 1036 1037
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1038 1039

			/*
1040 1041
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1042
			 */
1043 1044 1045 1046 1047 1048 1049 1050 1051
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1052
				break;
1053
		}
1054

1055 1056
		list_del_init(&rq->queuelist);

1057
		bd.rq = rq;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1071 1072

		ret = q->mq_ops->queue_rq(hctx, &bd);
1073
		if (ret == BLK_STS_RESOURCE) {
1074
			blk_mq_put_driver_tag_hctx(hctx, rq);
1075
			list_add(&rq->queuelist, list);
1076
			__blk_mq_requeue_request(rq);
1077
			break;
1078 1079 1080
		}

		if (unlikely(ret != BLK_STS_OK)) {
1081
			errors++;
1082
			blk_mq_end_request(rq, BLK_STS_IOERR);
1083
			continue;
1084 1085
		}

1086
		queued++;
1087
	} while (!list_empty(list));
1088

1089
	hctx->dispatched[queued_to_index(queued)]++;
1090 1091 1092 1093 1094

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1095
	if (!list_empty(list)) {
1096
		/*
1097 1098
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1099 1100 1101 1102
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1103
		spin_lock(&hctx->lock);
1104
		list_splice_init(list, &hctx->dispatch);
1105
		spin_unlock(&hctx->lock);
1106

1107
		/*
1108 1109 1110
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1111
		 *
1112 1113 1114 1115
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1116
		 *
1117 1118 1119 1120 1121 1122 1123
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1124
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1125
		 *   and dm-rq.
1126
		 */
1127 1128
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1129
			blk_mq_run_hw_queue(hctx, true);
1130
	}
1131

1132
	return (queued + errors) != 0;
1133 1134
}

1135 1136 1137 1138
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1139 1140 1141 1142
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1143 1144 1145
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1146 1147 1148 1149 1150 1151
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1152 1153
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1154
		blk_mq_sched_dispatch_requests(hctx);
1155 1156
		rcu_read_unlock();
	} else {
1157 1158
		might_sleep();

1159
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1160
		blk_mq_sched_dispatch_requests(hctx);
1161
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1162 1163 1164
	}
}

1165 1166 1167 1168 1169 1170 1171 1172
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1173 1174
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1175 1176

	if (--hctx->next_cpu_batch <= 0) {
1177
		int next_cpu;
1178 1179 1180 1181 1182 1183 1184 1185 1186

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1187
	return hctx->next_cpu;
1188 1189
}

1190 1191
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1192
{
1193 1194 1195 1196
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1197 1198
		return;

1199
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1200 1201
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1202
			__blk_mq_run_hw_queue(hctx);
1203
			put_cpu();
1204 1205
			return;
		}
1206

1207
		put_cpu();
1208
	}
1209

1210 1211 1212
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1224
}
O
Omar Sandoval 已提交
1225
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1226

1227
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1228 1229 1230 1231 1232
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1233
		if (!blk_mq_hctx_has_pending(hctx) ||
1234
		    blk_mq_hctx_stopped(hctx))
1235 1236
			continue;

1237
		blk_mq_run_hw_queue(hctx, async);
1238 1239
	}
}
1240
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1241

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1262 1263 1264
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1265
 * BLK_STS_RESOURCE is usually returned.
1266 1267 1268 1269 1270
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1271 1272
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1273
	cancel_delayed_work(&hctx->run_work);
1274

1275
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1276
}
1277
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1278

1279 1280 1281
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1282
 * BLK_STS_RESOURCE is usually returned.
1283 1284 1285 1286 1287
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1288 1289
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1290 1291 1292 1293 1294
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1295 1296 1297
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1298 1299 1300
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1301

1302
	blk_mq_run_hw_queue(hctx, false);
1303 1304 1305
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1326
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1327 1328 1329 1330
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1331 1332
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1333 1334 1335
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1336
static void blk_mq_run_work_fn(struct work_struct *work)
1337 1338 1339
{
	struct blk_mq_hw_ctx *hctx;

1340
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1341

1342 1343 1344 1345 1346 1347 1348 1349
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1350

1351 1352 1353
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1354 1355 1356 1357

	__blk_mq_run_hw_queue(hctx);
}

1358 1359 1360

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1361
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1362
		return;
1363

1364 1365 1366 1367 1368
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1369
	blk_mq_stop_hw_queue(hctx);
1370 1371 1372 1373
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1374 1375 1376
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1377 1378 1379
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1380
{
J
Jens Axboe 已提交
1381 1382
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1383 1384
	lockdep_assert_held(&ctx->lock);

1385 1386
	trace_block_rq_insert(hctx->queue, rq);

1387 1388 1389 1390
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1391
}
1392

1393 1394
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1395 1396 1397
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1398 1399
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1400
	__blk_mq_insert_req_list(hctx, rq, at_head);
1401 1402 1403
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
void blk_mq_request_bypass_insert(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

	blk_mq_run_hw_queue(hctx, false);
}

1420 1421
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1433
		BUG_ON(rq->mq_ctx != ctx);
1434
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1435
		__blk_mq_insert_req_list(hctx, rq, false);
1436
	}
1437
	blk_mq_hctx_mark_pending(hctx, ctx);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1474 1475 1476 1477
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1494 1495 1496
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1497 1498 1499 1500 1501
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1502
	blk_init_request_from_bio(rq, bio);
1503

1504
	blk_account_io_start(rq, true);
1505 1506
}

1507 1508 1509 1510 1511 1512
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1513 1514 1515 1516 1517 1518 1519
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1520
}
1521

1522 1523
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1524 1525 1526 1527
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1528 1529
}

M
Ming Lei 已提交
1530 1531 1532
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1533 1534 1535 1536
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1537
		.last = true,
1538
	};
1539
	blk_qc_t new_cookie;
1540
	blk_status_t ret;
M
Ming Lei 已提交
1541 1542
	bool run_queue = true;

1543 1544
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1545 1546 1547
		run_queue = false;
		goto insert;
	}
1548

1549
	if (q->elevator)
1550 1551
		goto insert;

M
Ming Lei 已提交
1552
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1553 1554 1555 1556
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1557 1558 1559 1560 1561 1562
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1563 1564
	switch (ret) {
	case BLK_STS_OK:
1565
		*cookie = new_cookie;
1566
		return;
1567 1568 1569 1570
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1571
		*cookie = BLK_QC_T_NONE;
1572
		blk_mq_end_request(rq, ret);
1573
		return;
1574
	}
1575

1576
insert:
M
Ming Lei 已提交
1577
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1578 1579
}

1580 1581 1582 1583 1584
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1585
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1586 1587
		rcu_read_unlock();
	} else {
1588 1589 1590 1591
		unsigned int srcu_idx;

		might_sleep();

1592
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1593
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1594
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1595 1596 1597
	}
}

1598
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1599
{
1600
	const int is_sync = op_is_sync(bio->bi_opf);
1601
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1602
	struct blk_mq_alloc_data data = { .flags = 0 };
1603
	struct request *rq;
1604
	unsigned int request_count = 0;
1605
	struct blk_plug *plug;
1606
	struct request *same_queue_rq = NULL;
1607
	blk_qc_t cookie;
J
Jens Axboe 已提交
1608
	unsigned int wb_acct;
1609 1610 1611

	blk_queue_bounce(q, &bio);

1612
	blk_queue_split(q, &bio);
1613

1614
	if (!bio_integrity_prep(bio))
1615
		return BLK_QC_T_NONE;
1616

1617 1618 1619
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1620

1621 1622 1623
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1624 1625
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1626 1627
	trace_block_getrq(q, bio, bio->bi_opf);

1628
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1629 1630
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1631 1632
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1633
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1634 1635 1636
	}

	wbt_track(&rq->issue_stat, wb_acct);
1637

1638
	cookie = request_to_qc_t(data.hctx, rq);
1639

1640
	plug = current->plug;
1641
	if (unlikely(is_flush_fua)) {
1642
		blk_mq_put_ctx(data.ctx);
1643
		blk_mq_bio_to_request(rq, bio);
1644 1645 1646
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1647
		} else {
1648 1649
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1650
		}
1651
	} else if (plug && q->nr_hw_queues == 1) {
1652 1653
		struct request *last = NULL;

1654
		blk_mq_put_ctx(data.ctx);
1655
		blk_mq_bio_to_request(rq, bio);
1656 1657 1658 1659 1660 1661 1662

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1663 1664 1665
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1666
		if (!request_count)
1667
			trace_block_plug(q);
1668 1669
		else
			last = list_entry_rq(plug->mq_list.prev);
1670

1671 1672
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1673 1674
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1675
		}
1676

1677
		list_add_tail(&rq->queuelist, &plug->mq_list);
1678
	} else if (plug && !blk_queue_nomerges(q)) {
1679
		blk_mq_bio_to_request(rq, bio);
1680 1681

		/*
1682
		 * We do limited plugging. If the bio can be merged, do that.
1683 1684
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1685 1686
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1687
		 */
1688 1689 1690 1691 1692 1693
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1694 1695
		blk_mq_put_ctx(data.ctx);

1696 1697 1698
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1699 1700
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1701
		}
1702
	} else if (q->nr_hw_queues > 1 && is_sync) {
1703
		blk_mq_put_ctx(data.ctx);
1704 1705
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1706
	} else if (q->elevator) {
1707
		blk_mq_put_ctx(data.ctx);
1708
		blk_mq_bio_to_request(rq, bio);
1709
		blk_mq_sched_insert_request(rq, false, true, true, true);
1710
	} else {
1711
		blk_mq_put_ctx(data.ctx);
1712 1713
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1714
		blk_mq_run_hw_queue(data.hctx, true);
1715
	}
1716

1717
	return cookie;
1718 1719
}

1720 1721
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1722
{
1723
	struct page *page;
1724

1725
	if (tags->rqs && set->ops->exit_request) {
1726
		int i;
1727

1728
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1729 1730 1731
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1732
				continue;
1733
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1734
			tags->static_rqs[i] = NULL;
1735
		}
1736 1737
	}

1738 1739
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1740
		list_del_init(&page->lru);
1741 1742 1743 1744 1745
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1746 1747
		__free_pages(page, page->private);
	}
1748
}
1749

1750 1751
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1752
	kfree(tags->rqs);
1753
	tags->rqs = NULL;
J
Jens Axboe 已提交
1754 1755
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1756

1757
	blk_mq_free_tags(tags);
1758 1759
}

1760 1761 1762 1763
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1764
{
1765
	struct blk_mq_tags *tags;
1766
	int node;
1767

1768 1769 1770 1771 1772
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1773
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1774 1775
	if (!tags)
		return NULL;
1776

1777
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1778
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1779
				 node);
1780 1781 1782 1783
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1784

J
Jens Axboe 已提交
1785 1786
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1787
				 node);
J
Jens Axboe 已提交
1788 1789 1790 1791 1792 1793
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1807 1808 1809 1810 1811
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1812 1813 1814

	INIT_LIST_HEAD(&tags->page_list);

1815 1816 1817 1818
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1819
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1820
				cache_line_size());
1821
	left = rq_size * depth;
1822

1823
	for (i = 0; i < depth; ) {
1824 1825 1826 1827 1828
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1829
		while (this_order && left < order_to_size(this_order - 1))
1830 1831 1832
			this_order--;

		do {
1833
			page = alloc_pages_node(node,
1834
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1835
				this_order);
1836 1837 1838 1839 1840 1841 1842 1843 1844
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1845
			goto fail;
1846 1847

		page->private = this_order;
1848
		list_add_tail(&page->lru, &tags->page_list);
1849 1850

		p = page_address(page);
1851 1852 1853 1854
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1855
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1856
		entries_per_page = order_to_size(this_order) / rq_size;
1857
		to_do = min(entries_per_page, depth - i);
1858 1859
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1860 1861 1862
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1863
			if (set->ops->init_request) {
1864
				if (set->ops->init_request(set, rq, hctx_idx,
1865
						node)) {
J
Jens Axboe 已提交
1866
					tags->static_rqs[i] = NULL;
1867
					goto fail;
1868
				}
1869 1870
			}

1871 1872 1873 1874
			p += rq_size;
			i++;
		}
	}
1875
	return 0;
1876

1877
fail:
1878 1879
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1880 1881
}

J
Jens Axboe 已提交
1882 1883 1884 1885 1886
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1887
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1888
{
1889
	struct blk_mq_hw_ctx *hctx;
1890 1891 1892
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1893
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1894
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1895 1896 1897 1898 1899 1900 1901 1902 1903

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1904
		return 0;
1905

J
Jens Axboe 已提交
1906 1907 1908
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1909 1910

	blk_mq_run_hw_queue(hctx, true);
1911
	return 0;
1912 1913
}

1914
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1915
{
1916 1917
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1918 1919
}

1920
/* hctx->ctxs will be freed in queue's release handler */
1921 1922 1923 1924
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1925 1926
	blk_mq_debugfs_unregister_hctx(hctx);

1927 1928
	blk_mq_tag_idle(hctx);

1929
	if (set->ops->exit_request)
1930
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1931

1932 1933
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1934 1935 1936
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1937
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1938
		cleanup_srcu_struct(hctx->queue_rq_srcu);
1939

1940
	blk_mq_remove_cpuhp(hctx);
1941
	blk_free_flush_queue(hctx->fq);
1942
	sbitmap_free(&hctx->ctx_map);
1943 1944
}

M
Ming Lei 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1954
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1955 1956 1957
	}
}

1958 1959 1960
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1961
{
1962 1963 1964 1965 1966 1967
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1968
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1969 1970 1971
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
1972
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1973

1974
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1975 1976

	hctx->tags = set->tags[hctx_idx];
1977 1978

	/*
1979 1980
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1981
	 */
1982 1983 1984 1985
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1986

1987 1988
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1989
		goto free_ctxs;
1990

1991
	hctx->nr_ctx = 0;
1992

1993 1994 1995
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1996

1997 1998 1999
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2000 2001
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2002
		goto sched_exit_hctx;
2003

2004
	if (set->ops->init_request &&
2005 2006
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2007
		goto free_fq;
2008

2009
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2010
		init_srcu_struct(hctx->queue_rq_srcu);
2011

2012 2013
	blk_mq_debugfs_register_hctx(q, hctx);

2014
	return 0;
2015

2016 2017
 free_fq:
	kfree(hctx->fq);
2018 2019
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2020 2021 2022
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2023
 free_bitmap:
2024
	sbitmap_free(&hctx->ctx_map);
2025 2026 2027
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2028
	blk_mq_remove_cpuhp(hctx);
2029 2030
	return -1;
}
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2046 2047
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2048 2049
			continue;

C
Christoph Hellwig 已提交
2050
		hctx = blk_mq_map_queue(q, i);
2051

2052 2053 2054 2055 2056
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2057
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2058 2059 2060
	}
}

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2083 2084 2085 2086 2087
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2088 2089
}

2090
static void blk_mq_map_swqueue(struct request_queue *q)
2091
{
2092
	unsigned int i, hctx_idx;
2093 2094
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2095
	struct blk_mq_tag_set *set = q->tag_set;
2096

2097 2098 2099 2100 2101
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2102
	queue_for_each_hw_ctx(q, hctx, i) {
2103
		cpumask_clear(hctx->cpumask);
2104 2105 2106 2107
		hctx->nr_ctx = 0;
	}

	/*
2108 2109 2110
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2111
	 */
2112
	for_each_present_cpu(i) {
2113 2114
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2115 2116
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2117 2118 2119 2120 2121 2122
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2123
			q->mq_map[i] = 0;
2124 2125
		}

2126
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2127
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2128

2129
		cpumask_set_cpu(i, hctx->cpumask);
2130 2131 2132
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2133

2134 2135
	mutex_unlock(&q->sysfs_lock);

2136
	queue_for_each_hw_ctx(q, hctx, i) {
2137
		/*
2138 2139
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2140 2141
		 */
		if (!hctx->nr_ctx) {
2142 2143 2144 2145
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2146 2147 2148
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2149
			hctx->tags = NULL;
2150 2151 2152
			continue;
		}

M
Ming Lei 已提交
2153 2154 2155
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2156 2157 2158 2159 2160
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2161
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2162

2163 2164 2165
		/*
		 * Initialize batch roundrobin counts
		 */
2166 2167 2168
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2169 2170
}

2171 2172 2173 2174
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2175
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2176 2177 2178 2179
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2180
	queue_for_each_hw_ctx(q, hctx, i) {
2181 2182 2183
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2184
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2185 2186 2187
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2188
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2189
		}
2190 2191 2192
	}
}

2193 2194
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2195 2196
{
	struct request_queue *q;
2197

2198 2199
	lockdep_assert_held(&set->tag_list_lock);

2200 2201
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2202
		queue_set_hctx_shared(q, shared);
2203 2204 2205 2206 2207 2208 2209 2210 2211
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2212 2213
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2214 2215 2216 2217 2218 2219
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2220
	mutex_unlock(&set->tag_list_lock);
2221 2222

	synchronize_rcu();
2223 2224 2225 2226 2227 2228 2229 2230
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2231 2232 2233 2234 2235 2236 2237 2238 2239

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2240
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2241

2242 2243 2244
	mutex_unlock(&set->tag_list_lock);
}

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2257 2258 2259
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2260
		kobject_put(&hctx->kobj);
2261
	}
2262

2263 2264
	q->mq_map = NULL;

2265 2266
	kfree(q->queue_hw_ctx);

2267 2268 2269 2270 2271 2272
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2273 2274 2275
	free_percpu(q->queue_ctx);
}

2276
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2306 2307
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2308
{
K
Keith Busch 已提交
2309 2310
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2311

K
Keith Busch 已提交
2312
	blk_mq_sysfs_unregister(q);
2313
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2314
		int node;
2315

K
Keith Busch 已提交
2316 2317 2318 2319
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2320
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2321
					GFP_KERNEL, node);
2322
		if (!hctxs[i])
K
Keith Busch 已提交
2323
			break;
2324

2325
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2326 2327 2328 2329 2330
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2331

2332
		atomic_set(&hctxs[i]->nr_active, 0);
2333
		hctxs[i]->numa_node = node;
2334
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2335 2336 2337 2338 2339 2340 2341 2342

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2343
	}
K
Keith Busch 已提交
2344 2345 2346 2347
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2348 2349
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2363 2364 2365
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2366
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2367 2368
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2369 2370 2371
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2372 2373
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2374
		goto err_exit;
K
Keith Busch 已提交
2375

2376 2377 2378
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2379 2380 2381 2382 2383
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2384
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2385 2386 2387 2388

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2389

2390
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2391
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2392 2393 2394

	q->nr_queues = nr_cpu_ids;

2395
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2396

2397 2398 2399
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2400 2401
	q->sg_reserved_size = INT_MAX;

2402
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2403 2404 2405
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2406
	blk_queue_make_request(q, blk_mq_make_request);
2407

2408 2409 2410 2411 2412
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2413 2414 2415 2416 2417
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2418 2419
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2420

2421
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2422
	blk_mq_add_queue_tag_set(set, q);
2423
	blk_mq_map_swqueue(q);
2424

2425 2426 2427 2428 2429 2430 2431 2432
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2433
	return q;
2434

2435
err_hctxs:
K
Keith Busch 已提交
2436
	kfree(q->queue_hw_ctx);
2437
err_percpu:
K
Keith Busch 已提交
2438
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2439 2440
err_exit:
	q->mq_ops = NULL;
2441 2442
	return ERR_PTR(-ENOMEM);
}
2443
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2444 2445 2446

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2447
	struct blk_mq_tag_set	*set = q->tag_set;
2448

2449
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2450
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2451 2452 2453
}

/* Basically redo blk_mq_init_queue with queue frozen */
2454
static void blk_mq_queue_reinit(struct request_queue *q)
2455
{
2456
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2457

2458
	blk_mq_debugfs_unregister_hctxs(q);
2459 2460
	blk_mq_sysfs_unregister(q);

2461 2462 2463 2464 2465 2466
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2467
	blk_mq_map_swqueue(q);
2468

2469
	blk_mq_sysfs_register(q);
2470
	blk_mq_debugfs_register_hctxs(q);
2471 2472
}

2473 2474 2475 2476
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2477 2478
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2479 2480 2481 2482 2483 2484
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2485
		blk_mq_free_rq_map(set->tags[i]);
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2525 2526 2527 2528 2529 2530 2531 2532
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2533 2534 2535 2536 2537 2538
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2539 2540
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2541 2542
	int ret;

B
Bart Van Assche 已提交
2543 2544
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2545 2546
	if (!set->nr_hw_queues)
		return -EINVAL;
2547
	if (!set->queue_depth)
2548 2549 2550 2551
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2552
	if (!set->ops->queue_rq)
2553 2554
		return -EINVAL;

2555 2556 2557 2558 2559
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2560

2561 2562 2563 2564 2565 2566 2567 2568 2569
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2570 2571 2572 2573 2574
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2575

K
Keith Busch 已提交
2576
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2577 2578
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2579
		return -ENOMEM;
2580

2581 2582 2583
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2584 2585 2586
	if (!set->mq_map)
		goto out_free_tags;

2587
	ret = blk_mq_update_queue_map(set);
2588 2589 2590 2591 2592
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2593
		goto out_free_mq_map;
2594

2595 2596 2597
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2598
	return 0;
2599 2600 2601 2602 2603

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2604 2605
	kfree(set->tags);
	set->tags = NULL;
2606
	return ret;
2607 2608 2609 2610 2611 2612 2613
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2614 2615
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2616

2617 2618 2619
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2620
	kfree(set->tags);
2621
	set->tags = NULL;
2622 2623 2624
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2625 2626 2627 2628 2629 2630
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2631
	if (!set)
2632 2633
		return -EINVAL;

2634 2635
	blk_mq_freeze_queue(q);

2636 2637
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2638 2639
		if (!hctx->tags)
			continue;
2640 2641 2642 2643
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2644 2645 2646 2647 2648 2649 2650 2651
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2652 2653 2654 2655 2656 2657 2658
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2659 2660
	blk_mq_unfreeze_queue(q);

2661 2662 2663
	return ret;
}

2664 2665
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2666 2667 2668
{
	struct request_queue *q;

2669 2670
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2671 2672 2673 2674 2675 2676 2677 2678 2679
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2680
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2681 2682
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2683
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2684 2685 2686 2687 2688
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2689 2690 2691 2692 2693 2694 2695

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2696 2697
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2724
	int bucket;
2725

2726 2727 2728 2729
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2730 2731
}

2732 2733 2734 2735 2736
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2737
	int bucket;
2738 2739 2740 2741 2742

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2743
	if (!blk_poll_stats_enable(q))
2744 2745 2746 2747 2748 2749 2750 2751
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2752 2753
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2754
	 */
2755 2756 2757 2758 2759 2760
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2761 2762 2763 2764

	return ret;
}

2765
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2766
				     struct blk_mq_hw_ctx *hctx,
2767 2768 2769 2770
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2771
	unsigned int nsecs;
2772 2773
	ktime_t kt;

2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2792 2793 2794 2795 2796 2797 2798 2799
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2800
	kt = nsecs;
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2823 2824 2825 2826 2827
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2828 2829 2830 2831 2832 2833 2834
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2835
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2836 2837
		return true;

J
Jens Axboe 已提交
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2881 2882
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2883
	else {
2884
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2885 2886 2887 2888 2889 2890 2891 2892 2893
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2894 2895 2896 2897 2898

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2899 2900
static int __init blk_mq_init(void)
{
2901 2902
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2903 2904 2905
	return 0;
}
subsys_initcall(blk_mq_init);