nn.py 581.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant, zeros
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
37
from ..data_feeder import convert_dtype
Y
Yu Yang 已提交
38 39

__all__ = [
X
Xin Pan 已提交
40
    'fc',
H
HaoRen 已提交
41
    'center_loss',
X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
51
    'bpr_loss',
X
Xin Pan 已提交
52 53 54 55 56 57 58 59 60 61
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
62 63
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
64
    'batch_norm',
L
lvmengsi 已提交
65
    'instance_norm',
H
heqiaozhi 已提交
66
    'data_norm',
X
Xin Pan 已提交
67 68 69 70 71 72
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
73
    'sequence_unpad',
X
Xin Pan 已提交
74 75 76 77 78 79
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
80 81
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
82 83
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
84
    'sequence_slice',
X
Xin Pan 已提交
85 86 87 88 89 90 91 92 93 94 95 96
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
97
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
98 99 100 101 102
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
103
    'group_norm',
D
dengkaipeng 已提交
104
    'spectral_norm',
X
Xin Pan 已提交
105 106 107 108 109 110 111 112
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
113
    'lod_append',
X
Xin Pan 已提交
114 115 116 117 118
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
119
    'roi_align',
X
Xin Pan 已提交
120 121 122 123
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
124
    'resize_trilinear',
125
    'resize_nearest',
X
Xin Pan 已提交
126
    'gather',
127
    'gather_nd',
X
Xin Pan 已提交
128
    'scatter',
129 130
    'scatter_nd_add',
    'scatter_nd',
X
Xin Pan 已提交
131 132 133 134
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
135
    'selu',
X
Xin Pan 已提交
136 137
    'log',
    'crop',
138
    'crop_tensor',
X
Xin Pan 已提交
139
    'rank_loss',
M
minqiyang 已提交
140
    'margin_rank_loss',
X
Xin Pan 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
Z
zhoukunsheng 已提交
157
    'unique',
158
    'unique_with_counts',
X
Xin Pan 已提交
159 160 161 162 163 164 165 166 167 168
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
169 170
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
171 172 173 174 175 176
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
W
wangchaochaohu 已提交
177
    'strided_slice',
X
Xin Pan 已提交
178
    'shape',
Z
zhoukunsheng 已提交
179
    'rank',
Z
zhoukunsheng 已提交
180
    'size',
X
Xin Pan 已提交
181 182 183 184 185 186 187 188 189 190
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
191
    'space_to_depth',
W
whs 已提交
192
    'affine_grid',
S
sneaxiy 已提交
193
    'sequence_reverse',
194
    'affine_channel',
B
barrierye 已提交
195
    'similarity_focus',
M
minqiyang 已提交
196
    'hash',
D
dengkaipeng 已提交
197
    'grid_sampler',
G
gmcather 已提交
198 199
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
200
    'bilinear_tensor_product',
C
chengduo 已提交
201 202
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
203
    'lstm',
S
shippingwang 已提交
204
    'shuffle_channel',
205
    'temporal_shift',
S
sneaxiy 已提交
206
    'py_func',
207
    'psroi_pool',
208
    'prroi_pool',
H
heqiaozhi 已提交
209
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
210
    'huber_loss',
D
dengkaipeng 已提交
211
    'kldiv_loss',
C
ceci3 已提交
212
    'npair_loss',
R
ruri 已提交
213
    'pixel_shuffle',
214
    'fsp_matrix',
H
heqiaozhi 已提交
215
    'continuous_value_model',
Z
zhoukunsheng 已提交
216
    'where',
Z
zhoukunsheng 已提交
217
    'sign',
218
    'deformable_conv',
219
    'unfold',
C
cjt222 已提交
220
    'deformable_roi_pooling',
J
Jiawei Wang 已提交
221
    'filter_by_instag',
222
    'shard_index',
H
huangjun12 已提交
223
    'hard_swish',
R
ruri 已提交
224
    'mse_loss',
225
    'uniform_random',
Y
Yu Yang 已提交
226 227
]

J
jerrywgz 已提交
228 229
kIgnoreIndex = -100

Y
Yu Yang 已提交
230 231 232 233 234 235 236

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
237
       name=None):
Y
Yu Yang 已提交
238
    """
239
    **Fully Connected Layer**
Y
Yu Yang 已提交
240

241
    This function creates a fully connected layer in the network. It can take
242
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
243
    Args in detail). It creates a variable called weights for each input tensor,
244 245 246 247
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
248
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
249 250
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
251

252
    When the input is single tensor:
C
caoying03 已提交
253

254 255 256 257 258
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
259 260 261

    .. math::

262
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
263 264 265

    In the above equation:

266 267 268
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
269
    * :math:`b`: The bias parameter created by this layer (if needed).
270
    * :math:`Act`: The activation function.
C
caoying03 已提交
271
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
272

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
291
    Args:
R
ranqiu 已提交
292 293 294 295 296 297 298 299 300 301
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
302
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
303 304 305 306
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
307 308
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
309 310
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
311

312
    Returns:
F
fengjiayi 已提交
313
        Variable: The transformation result.
314 315

    Raises:
C
caoying03 已提交
316
        ValueError: If rank of the input tensor is less than 2.
317 318 319 320

    Examples:
        .. code-block:: python

321
          import paddle.fluid as fluid
322
          # when input is single tensor
F
fengjiayi 已提交
323
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
324
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
325 326 327 328 329

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
330
    """
C
caoying03 已提交
331
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
332 333 334 335

    dtype = helper.input_dtype()

    mul_results = []
336 337
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
338 339 340
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
341

Y
Yu Yang 已提交
342
        w = helper.create_parameter(
343
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
344
        tmp = helper.create_variable_for_type_inference(dtype)
345
        helper.append_op(
346 347 348
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
349
            outputs={"Out": tmp},
M
mozga-intel 已提交
350 351
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
352 353 354 355
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
356
    else:
X
Xin Pan 已提交
357
        pre_bias = helper.create_variable_for_type_inference(dtype)
358
        helper.append_op(
359 360 361
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
362
            attrs={"use_mkldnn": False})
363 364 365 366
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
367 368


H
HaoRen 已提交
369 370 371 372 373 374 375 376 377
def center_loss(input,
                label,
                num_classes,
                alpha,
                param_attr,
                update_center=True):
    """
    **Center loss Cost layer**
    
378 379 380 381
    This OP accepts input (deep features,the output of the last hidden layer)
    and target label and return the center loss cost. The average of the 
    distances of each sample in the mini-batch from the center of the 
    corresponding category is calculated as the center loss.
H
HaoRen 已提交
382 383 384 385 386 387 388 389
    
    For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
    
    .. math::

        Out = \\frac{1}{2}(X - Y)^2

    Args:
390
        input (Variable): a 2-D tensor with shape[N x M]. Its dtype should be float32 or float64.
H
HaoRen 已提交
391
        label (Variable): the groud truth which is a 2-D tensor
392
                         with shape[N x 1],where N is the batch size. Its dtype should be int32.
H
HaoRen 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
        num_classes (int): the number of classification categories.
        alpha (float|Variable): learning rate of centers.
        param_attr (ParamAttr): Attribute initializer of centers. 
        update_center (bool): whether to update value of center.

    Returns:
        Variable: 2-D tensor with shape [N * 1] 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid 

          input = fluid.layers.data(name='x',shape=[20,30],dtype='float32')
          label = fluid.layers.data(name='y',shape=[20,1],dtype='int64')
          num_classes = 1000
          alpha = 0.01
          param_attr = fluid.initializer.Xavier(uniform=False)
          center_loss=fluid.layers.center_loss(input=input,
                 label=label,
                 num_classes=1000,
                 alpha=alpha,
                 param_attr=fluid.initializer.Xavier(uniform=False),
                 update_center=True)
    """
    helper = LayerHelper('center_loss', **locals())
    dtype = helper.input_dtype()
    centers_shape = [num_classes, input.shape[1]]
    centers_param = helper.create_parameter(
        attr=param_attr, shape=centers_shape, dtype=dtype)
    centers_param.stop_gradient = True
    if isinstance(alpha, Variable):
        alpha_param = alpha
    else:
        assert isinstance(alpha, float)
        alpha_param = helper.create_variable(
            name="centerloss_alpha",
            shape=[1],
            dtype="float32",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True,
            stop_gradient=True,
            initializer=Constant(alpha))

    centersdiff = helper.create_variable_for_type_inference(dtype=input.dtype)
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='center_loss',
        inputs={
            'X': [input],
            'Label': [label],
            'Centers': [centers_param],
            'CenterUpdateRate': [alpha_param]
        },
        outputs={
            'SampleCenterDiff': [centersdiff],
            'Loss': [loss],
            'CentersOut': [centers_param]
        },
        attrs={'cluster_num': num_classes,
               'need_update': update_center})
    return loss


457 458 459
def embedding(input,
              size,
              is_sparse=False,
460
              is_distributed=False,
461 462 463
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
464
    """
465 466
    **Embedding Layer**

467
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
468 469
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
470 471 472

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
473 474

    Args:
475
        input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
K
Kevin 已提交
476
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
477 478 479 480
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
481
        is_distributed(bool): Whether to run lookup table from remote parameter server.
K
Kevin 已提交
482 483 484 485 486 487 488 489
        padding_idx(int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        param_attr(ParamAttr): Parameters for this layer.
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
Y
Yu Yang 已提交
490

491 492 493
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
494

495 496
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
497

B
bdzhuxiaoning 已提交
498 499 500
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
501 502 503
    """

    helper = LayerHelper('embedding', **locals())
504
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
505 506
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
507 508
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
509
    tmp = helper.create_variable_for_type_inference(dtype)
510 511
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
512 513 514 515 516
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
517 518 519
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
520
            'remote_prefetch': remote_prefetch,
521 522
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
523 524 525
    return tmp


H
hutuxian 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
def _pull_box_sparse(input, size, dtype='float32'):
    """
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which 
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of 
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports 
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])    
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
            "BoxPS only support float type embedding now, and your type is: " +
            dtype)
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs},
        attrs={'size': size})
    if len(outs) == 1:
        return outs[0]
    return outs


W
wopeizl 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
590

W
wopeizl 已提交
591 592 593 594 595 596 597 598 599 600 601
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
602

W
wopeizl 已提交
603 604 605 606
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
607

W
wopeizl 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
644
            
645
            import paddle.fluid as fluid
646 647
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
648
            hidden_dim = 512
649 650 651 652 653 654
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
655
                                           bias_attr=False)
656

W
wopeizl 已提交
657 658 659
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
660
    assert in_dygraph_mode(
661
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
705 706


P
phlrain 已提交
707 708 709 710 711 712
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
713
         dropout_prob=0.0,
P
phlrain 已提交
714 715 716 717 718
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
719
    """
P
phlrain 已提交
720
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
721 722

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
723
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
724 725
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
726
    .. math::
M
minqiyang 已提交
727 728 729 730 731 732 733

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
734
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
735 736 737 738

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
739 740

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
741 742 743 744 745 746
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
747 748 749
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
750
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
751

M
minqiyang 已提交
752
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
753 754 755 756 757
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
758
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
759 760 761 762 763
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
764
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
765 766
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
767 768
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
769 770 771 772 773 774
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
775
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
776

L
liuhongyu 已提交
777 778

    Returns:
M
minqiyang 已提交
779 780
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
781
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
782

H
haowang101779990 已提交
783 784 785 786
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
787
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
788 789
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
790
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
791 792 793 794


    Examples:
        .. code-block:: python
795
            
796 797 798
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

799 800 801 802 803
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
804 805 806 807 808 809
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
810 811 812 813 814
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
815 816 817 818
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
819 820 821
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
881 882 883 884 885 886 887 888 889 890
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
891
                  proj_activation='tanh',
892
                  dtype='float32',
X
xuezhong 已提交
893 894 895 896 897
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
898 899 900
    """
    **Dynamic LSTMP Layer**

901 902 903 904 905 906
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
907 908 909 910 911

    The formula is as follows:

    .. math::

912
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
913

914
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
915

916
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
917

918
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
919

920
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
921

922
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
923

924
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
925

Y
Yibing Liu 已提交
926 927 928 929 930 931
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
932
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
933
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
934
          bias vector).
Y
Yibing Liu 已提交
935 936 937
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
938
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
939
    * :math:`h`: The hidden state.
940
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
941 942
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
943
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
944
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
945
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
946 947
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
948 949 950 951

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
952

Y
Yibing Liu 已提交
953 954 955 956 957 958 959 960 961 962 963 964
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
965
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
966 967
                               hidden-hidden weight and projection weight.

968 969
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
970 971
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
972 973
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
974
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
975 976 977 978 979

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
980
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
981 982 983 984 985 986
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
987
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
988 989 990
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
991
                                - The shape is (1 x 7D).
C
chengduo 已提交
992 993 994 995 996

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
997 998 999 1000 1001 1002 1003 1004 1005
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
1006
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
1007 1008
                              default "tanh".
        proj_activation(str): The activation for projection output.
1009
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
1010
                              default "tanh".
Y
Yibing Liu 已提交
1011
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
1012 1013
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
1025 1026

    Returns:
1027 1028 1029 1030
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
1031 1032

    Examples:
1033

Y
Yibing Liu 已提交
1034 1035
        .. code-block:: python

1036
            import paddle.fluid as fluid
1037 1038 1039 1040
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
1041
            hidden_dim, proj_dim = 512, 256
1042
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
1043
                                     act=None, bias_attr=None)
1044 1045 1046
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
1047 1048 1049 1050
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
1051
    """
1052

L
lujun 已提交
1053
    assert in_dygraph_mode(
1054 1055
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
1056
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
1057
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
1058
    size = size // 4
Y
Yibing Liu 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
1069 1070 1071 1072 1073 1074
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
1090

X
xuezhong 已提交
1091 1092 1093 1094 1095
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
1096 1097
    helper.append_op(
        type='lstmp',
1098
        inputs=inputs,
Y
Yibing Liu 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
1108 1109
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
1119 1120 1121 1122 1123 1124 1125
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
1126 1127
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
1128
    """
1129
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
1130

1131 1132 1133
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
1134

G
guosheng 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
1144

G
guosheng 已提交
1145
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
1146

Q
Qiao Longfei 已提交
1147 1148 1149

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1162
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1163 1164
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1165 1166 1167 1168
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1169
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1170 1171

    Args:
1172 1173
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1174
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1175
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1176 1177
            is the hidden size.
        size(int): The dimension of the gru cell.
1178
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1179 1180
            hidden-hidden weight matrix. Note:

1181
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1182
              :math:`D` is the hidden size.
1183
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1184
              The first part are weights of the update gate and reset gate with
1185
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1186
              candidate hidden state with shape :math:`(D \\times D)`.
1187 1188 1189 1190 1191

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1192
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1193
            the bias in the update gate, reset gate and candidate calculations.
1194 1195 1196
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1197 1198
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1199
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1200 1201 1202
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1203
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1204
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1205 1206 1207 1208
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1209 1210

    Returns:
G
guosheng 已提交
1211
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1212
            and sequence length is the same with the input.
1213

G
guosheng 已提交
1214
    Examples:
1215

G
guosheng 已提交
1216 1217
        .. code-block:: python

1218 1219
            import paddle.fluid as fluid

1220 1221 1222 1223
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1224
            hidden_dim = 512
1225
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1226
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1227 1228
    """

L
lujun 已提交
1229
    assert in_dygraph_mode(
1230 1231
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1232 1233 1234 1235 1236 1237 1238
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1239
    batch_size = input.shape[0]
G
guosheng 已提交
1240
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1241
    if h_0:
G
guosheng 已提交
1242
        assert h_0.shape == (
Y
Yancey 已提交
1243 1244 1245
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1246

X
Xin Pan 已提交
1247 1248 1249 1250
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1264 1265
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1266 1267 1268 1269
        })
    return hidden


Y
Yu Yang 已提交
1270 1271 1272
def gru_unit(input,
             hidden,
             size,
1273 1274
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1275
             activation='tanh',
Q
Qiao Longfei 已提交
1276 1277
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1278
    """
1279 1280 1281
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1282
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1283
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1284

1285 1286
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1287

1288
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1289

1290
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1307 1308

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1309 1310 1311
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1312 1313
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1314 1315
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1316 1317 1318
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1319 1320 1321

    Args:
        input (Variable): The fc transformed input value of current step.
1322
        hidden (Variable): The hidden value of gru unit from previous step.
1323
        size (integer): The input dimension value.
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1338
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1339
            the bias in the update gate, reset gate and candidate calculations.
1340 1341 1342
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1343 1344
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1345 1346 1347 1348
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1349

1350 1351 1352 1353 1354 1355
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1380
    size = size // 3
Y
Yu Yang 已提交
1381 1382

    # create weight
1383 1384
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1385

X
Xin Pan 已提交
1386 1387 1388
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1389
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1390
    # create bias
1391
    if helper.bias_attr:
Y
Yu Yang 已提交
1392 1393 1394
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1395
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1396 1397 1398

    helper.append_op(
        type='gru_unit',
1399
        inputs=inputs,
Y
Yu Yang 已提交
1400 1401 1402 1403 1404 1405
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1406 1407
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1408 1409 1410 1411 1412
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1413
@templatedoc()
1414
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
1415 1416 1417 1418 1419 1420 1421 1422
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        label(${label_type}): ${label_comment}
1423
        Length(${length_type}): ${length_comment}
1424
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
1425 1426

    Returns:
D
dzhwinter 已提交
1427 1428 1429
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1430

J
JesseyXujin 已提交
1431 1432 1433
    Examples:
        .. code-block:: python

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
            import paddle.fluid as fluid
            import numpy as np

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                input_data = fluid.layers.data(name='input_data', shape=[10], dtype='float32', lod_level=1)
                label = fluid.layers.data(name='label', shape=[1], dtype='int', lod_level=1)
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
                    learning_rate=0.01)) 
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)    
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
            print(loss) 

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                input_data2 = fluid.layers.data(name='input_data2', shape=[10,10], dtype='float32')
                label2 = fluid.layers.data(name='label2', shape=[10,1], dtype='int')
                label_length = fluid.layers.data(name='length', shape=[1], dtype='int')
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
1474
                     name='crfw',
1475 1476 1477 1478 1479 1480
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
1481

1482 1483 1484 1485 1486 1487 1488 1489
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
            ll=np.array([[3,3,4,2]])
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}

            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
            print(loss2) 
1490 1491 1492 1493
            
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
Y
yuyang18 已提交
1494
    """
Y
Yu Yang 已提交
1495
    helper = LayerHelper('linear_chain_crf', **locals())
1496
    size = input.shape[2] if length else input.shape[1]
Y
Yu Yang 已提交
1497 1498 1499 1500
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1501 1502 1503 1504 1505 1506 1507 1508
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
1509 1510 1511 1512 1513 1514
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
        "Label": [label]
    }
    if length:
1515
        this_inputs['Length'] = [length]
Y
Yu Yang 已提交
1516 1517
    helper.append_op(
        type='linear_chain_crf',
1518
        inputs=this_inputs,
Y
Yu Yang 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1529
@templatedoc()
1530
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
1531 1532
    """
    ${comment}
Y
yi.wu 已提交
1533

W
wopeizl 已提交
1534 1535
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1536

W
wopeizl 已提交
1537
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1538

W
wopeizl 已提交
1539
        label(${label_type}): ${label_comment}
1540 1541
        
        label(${length_type}): ${length_comment}
1542

W
wopeizl 已提交
1543 1544
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1545

W
wopeizl 已提交
1546 1547
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1548

1549
           import paddle.fluid as fluid
1550 1551 1552 1553 1554 1555 1556 1557

           # LoDTensor-based example
           num_labels = 10
           feature = fluid.layers.data(name='word_emb', shape=[784], dtype='float32', lod_level=1)
           label = fluid.layers.data(name='label', shape=[1], dtype='int64', lod_level=1)
           emission = fluid.layers.fc(input=feature, size=num_labels)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, 
Y
Yibing Liu 已提交
1558
                     param_attr=fluid.ParamAttr(name="crfw"))
1559
           crf_decode = fluid.layers.crf_decoding(input=emission, 
Y
Yibing Liu 已提交
1560
                     param_attr=fluid.ParamAttr(name="crfw"))
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573

           # Common tensor example
           num_labels, max_len = 10, 20
           feature = fluid.layers.data(name='word_emb_pad', shape=[max_len, 784], dtype='float32')
           label = fluid.layers.data(name='label_pad', shape=[max_len, 1], dtype='int64')
           length = fluid.layers.data(name='length', shape=[1], dtype='int64')
           emission = fluid.layers.fc(input=feature, size=num_labels,
                                      num_flatten_dims=2)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, length=length, 
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
           crf_decode = fluid.layers.crf_decoding(input=emission, length=length,
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
1574 1575 1576 1577 1578
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
1579 1580 1581
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
W
wopeizl 已提交
1582 1583
    helper.append_op(
        type='crf_decoding',
1584
        inputs=inputs,
W
wopeizl 已提交
1585
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1586

W
wopeizl 已提交
1587
    return viterbi_path
Y
Yu Yang 已提交
1588 1589


Y
yi.wu 已提交
1590
@templatedoc()
F
fengjiayi 已提交
1591
def cos_sim(X, Y):
Y
Yu Yang 已提交
1592
    """
Y
yi.wu 已提交
1593 1594 1595
    ${comment}

    Args:
1596 1597
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1598

Y
yi.wu 已提交
1599
    Returns:
1600
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1601 1602 1603 1604

    Examples:
        .. code-block:: python

1605
            import paddle.fluid as fluid
L
lvmengsi 已提交
1606 1607 1608
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1609
    """
F
fengjiayi 已提交
1610
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1611 1612 1613
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1624 1625 1626 1627 1628
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1629
            dropout_implementation="downgrade_in_infer"):
1630 1631 1632 1633 1634
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1635
    training. The dropout operator randomly sets (according to the given dropout
1636 1637 1638
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1639 1640
    dropout op can be removed from the program to make the program more efficient.

1641
    Args:
1642 1643
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1644 1645 1646 1647 1648 1649 1650
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1651 1652
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1653
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1654 1655

                                           - train: out = input * mask
C
ceci3 已提交
1656
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1657 1658 1659

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1660
                                        2. upscale_in_train, upscale the outcome at training time
1661

H
haowang101779990 已提交
1662 1663
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1664

H
haowang101779990 已提交
1665 1666
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1667

M
minqiyang 已提交
1668

1669
    Returns:
1670
        Variable: A tensor variable is the shape with `x`.
1671 1672

    Examples:
1673

1674 1675
        .. code-block:: python

1676
            import paddle.fluid as fluid
1677 1678
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1679 1680
    """

F
fengjiayi 已提交
1681
    helper = LayerHelper('dropout', **locals())
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

    if not isinstance(x, Variable):
        raise TypeError(
            "The type of 'input' in dropout must be Variable, but received %s" %
            (type(x)))
    if convert_dtype(x.dtype) in ['float16']:
        warnings.warn(
            "The data type of 'input' in dropout only support float16 on GPU now."
        )
    if convert_dtype(x.dtype) not in ['float16', 'float32', 'float64']:
        raise TypeError(
            "The data type of 'input' in dropout must be float16 or float32 or float64, but received %s."
            % (convert_dtype(x.dtype)))

X
Xin Pan 已提交
1696 1697
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1698
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1699 1700 1701 1702

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1703 1704 1705 1706 1707
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1708 1709 1710 1711
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
L
lvmengsi 已提交
1712
            'seed': seed if seed is not None else 0,
P
phlrain 已提交
1713
            'dropout_implementation': dropout_implementation,
1714
        })
1715 1716 1717
    return out


J
jerrywgz 已提交
1718
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1719
    """
Z
Zeng Jinle 已提交
1720 1721
    This operator computes the cross entropy between input and label. It
    supports both hard-label and and soft-label cross entropy computation.
Y
Yibing Liu 已提交
1722

Z
Zeng Jinle 已提交
1723 1724
    1. Hard-label cross entropy: if soft_label=False, :math:`label[i_1, i_2, ..., i_k]`
       is the hard label of each sample.
Y
yangyaming 已提交
1725

Y
Yibing Liu 已提交
1726
        .. math::
Y
yangyaming 已提交
1727

Z
Zeng Jinle 已提交
1728
           output[i_1, i_2, ..., i_k]=-log(input[i_1, i_2, ..., i_k, j]), label[i_1, i_2, ..., i_k] = j, j != ignore\_index
Y
Yibing Liu 已提交
1729

Z
Zeng Jinle 已提交
1730 1731
    2. Soft-label cross entropy: if soft_label=True,  :math:`label[i_1, i_2, ..., i_k, j]`
       is the soft label of each sample corresponding to the j-th class.
Y
Yibing Liu 已提交
1732 1733 1734

        .. math::

Z
Zeng Jinle 已提交
1735
           output[i_1, i_2, ..., i_k]= -\sum_{j}label[i_1,i_2,...,i_k,j]*log(input[i_1, i_2, ..., i_k,j])
Y
yangyaming 已提交
1736

Y
Yibing Liu 已提交
1737
    Args:
Z
Zeng Jinle 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
        input (Variable): a multidimensional Tensor with shape
                :math:`[N_1, N_2, ..., N_k, D]`, where the last dimension D is
                the class number. The data type should be float32 or float64.
        label (Variable): label value corresponding to input. If
                soft_label=False, the dimension of label should be :math:`[N_1, N_2, ..., N_k]`
                or :math:`[N_1, N_2, ..., N_k, 1]` , and its data type should be int64,
                and the value must be inside [0, D). If soft_label=True, the shape,
                data type of label should be the same with input, and the sum of
                soft label value of each sample should be 1.
        soft_label (bool): indicate whether label is soft. Default False, meaning that
                the label is hard. If soft_label=True, the label is soft.
        ignore_index (int): specify an ignorable label value. The ignored label would be
                omitted when computing. If it is a negative integer, no label would
                be ignored. Only valid when soft_label=False. Default -100.
Y
Yibing Liu 已提交
1752 1753

    Returns:
Z
Zeng Jinle 已提交
1754 1755 1756
         A Variable holding Tensor representing the cross entropy, whose data type is the same with input.
         If soft_label=False, the shape of output is the same with label.
         If soft_label=True, the shape of output is :math:`[N_1, N_2, ..., N_k, 1]` .
Y
Yibing Liu 已提交
1757 1758 1759 1760

    Examples:
        .. code-block:: python

Z
Zeng Jinle 已提交
1761 1762 1763 1764 1765 1766
            import paddle.fluid as fluid
            class_num = 7
            x = fluid.layers.data(name='x', shape=[3, 10], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            predict = fluid.layers.fc(input=x, size=class_num, act='softmax')
            cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1767
    """
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
    if not isinstance(input, Variable):
        raise TypeError(
            "The type of 'input' in cross_entropy must be Variable, but received %s"
            % (type(input)))
    if convert_dtype(input.dtype) in ['float16']:
        warnings.warn(
            "The data type of 'input' in cross_entropy only support float16 on GPU now."
        )
    if convert_dtype(input.dtype) not in ['float16', 'float32', 'float64']:
        raise TypeError(
            "The data type of 'input' in cross_entropy must be float16 or float32 or float64, but received %s."
            % (convert_dtype(input.dtype)))

S
sneaxiy 已提交
1781 1782
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1783
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1784
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1785 1786 1787 1788 1789
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1790 1791
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1792 1793 1794
    return out


S
sneaxiy 已提交
1795 1796 1797 1798
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1799
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1800 1801 1802 1803 1804
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1805
                 'MatchX': [match_x],
S
sneaxiy 已提交
1806 1807 1808 1809 1810
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1811
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1812
    """
1813
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1814

1815
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1816
    The loss at a given point in one session is defined as:
1817 1818 1819

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1820 1821

    Learn more details by reading paper <session-based recommendations with recurrent
1822
    neural networks>.
F
frankwhzhang 已提交
1823

1824 1825 1826 1827 1828 1829
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1830 1831
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1832 1833 1834
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1835 1836 1837
    Examples:
        .. code-block:: python

1838 1839 1840 1841 1842 1843 1844
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1845
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1846
    """
1847 1848 1849 1850 1851
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1852
                'Label': [label]},
1853 1854 1855 1856
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1857
def square_error_cost(input, label):
Y
Yu Yang 已提交
1858
    """
1859 1860
    **Square error cost layer**

1861 1862
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1863

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1877 1878
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1879 1880

    Returns:
G
guosheng 已提交
1881
        Variable: The tensor variable storing the element-wise squared error \
1882
                  difference of input and label.
1883 1884 1885 1886

    Examples:
        .. code-block:: python

1887
          import paddle.fluid as fluid
R
ruri 已提交
1888 1889 1890
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1891

Y
Yu Yang 已提交
1892
    """
F
fengjiayi 已提交
1893
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1894
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1895 1896 1897 1898 1899 1900
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1901
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1902
    helper.append_op(
F
fengjiayi 已提交
1903 1904
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1905 1906 1907
    return square_out


Y
yi.wu 已提交
1908
@templatedoc()
Y
Yu Yang 已提交
1909 1910 1911 1912
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1913 1914
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1915
    """
Y
yi.wu 已提交
1916
    **Chunk Evaluator**
Y
yi.wu 已提交
1917

Y
yangyaming 已提交
1918
    This function computes and outputs the precision, recall and
1919
    F1-score of chunk detection.
Y
yi.wu 已提交
1920

M
minqiyang 已提交
1921
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1922
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1923 1924 1925 1926 1927 1928

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1929

Y
yi.wu 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1955

Y
yi.wu 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1980
    Args:
1981 1982 1983 1984 1985
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
1986
        seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
F
fengjiayi 已提交
1987

Y
yi.wu 已提交
1988
    Returns:
Y
update  
yi.wu 已提交
1989 1990 1991
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1992

Y
yi.wu 已提交
1993 1994 1995
    Examples:
        .. code-block:: python

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
2007
            crf = fluid.layers.linear_chain_crf(
2008
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
2009
            crf_decode = fluid.layers.crf_decoding(
2010
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
2011 2012 2013 2014 2015
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
2016
    """
F
fengjiayi 已提交
2017
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
2018 2019

    # prepare output
X
Xin Pan 已提交
2020 2021 2022 2023 2024 2025 2026
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
2027

2028 2029 2030 2031 2032
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
2033 2034
    helper.append_op(
        type="chunk_eval",
2035
        inputs=this_input,
Y
Yu Yang 已提交
2036 2037 2038
        outputs={
            "Precision": [precision],
            "Recall": [recall],
2039 2040 2041 2042
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
2043 2044 2045
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
2046 2047
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
2048
        })
2049 2050
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
2051 2052


2053
@templatedoc()
Y
Yu Yang 已提交
2054 2055 2056 2057
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
2058 2059
                  padding=True,
                  padding_start=None,
Y
Yu Yang 已提交
2060 2061
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
2062 2063
                  act=None,
                  name=None):
Y
Yu Yang 已提交
2064
    """
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
    The sequence_conv receives input sequences with variable length and other convolutional
    configuration parameters for the filter and stride to apply the convolution operation.
    It fills all-zero padding data on both sides of the sequence by default to ensure that
    the output is the same length as the input. You can customize the padding behavior by
    configuring the parameter :attr:`padding\_start`.
    
    **Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future.

    .. code-block:: text

            Here we'll illustrate the details of the padding operation:
            For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
            Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, 4].
            Besides, for the sake of simplicity, we assume M=1 and N=2.
            X = [[a1, a2;
                  b1, b2;
                  c1, c2]
                 [d1, d2]]

            This is to say that input (X) has 4 words and the dimension of each word
            representation is 2.

            * Case1:

                If padding_start is -1 and filter_size is 3.
                The length of padding data is calculated as follows:
                up_pad_len = max(0, -padding_start) = 1
                down_pad_len = max(0, filter_size + padding_start - 1) = 1

                The output of the input sequence after padding is:
                data_aftet_padding = [[0,  0,  a1, a2, b1, b2;
                                       a1, a2, b1, b2, c1, c2;
                                       b1, b2, c1, c2, 0,  0 ]
                                      [0,  0,  d1, d2, 0,  0 ]]

                It will be multiplied by the filter weight to get the final output.
2101 2102 2103

    Args:
        input (Variable): ${x_comment}
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
        num_filters (int): the number of filters.
        filter_size (int): the height of filter, the width is hidden size by default.
        filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1.
        padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the
            future. Currently, it will always pad input to make sure the length of the output is
            the same as input whether :attr:`padding` is set true or false. Because the length of
            input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution
            result to not be computed correctly. These padding data will not be trainable or updated
            while trainnig. 
        padding_start (int|None): It is used to indicate the start index for padding the input
            sequence, which can be negative. The negative number means to pad
            :attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance.
            The positive number means to skip :attr:`padding_start` time-steps of each instance,
            and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data
            at the end of the sequence to ensure that the output is the same length as the input.
            If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled
            on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data
            is padded at the end of each input sequence.
C
chengduo 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
2135

2136 2137
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
2138 2139

    Examples:
2140

B
bdzhuxiaoning 已提交
2141 2142 2143
        .. code-block:: python

             import paddle.fluid as fluid
2144

B
bdzhuxiaoning 已提交
2145
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
2146
             x_conved = fluid.layers.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1)
Y
Yu Yang 已提交
2147 2148
    """

L
lujun 已提交
2149
    assert not in_dygraph_mode(), (
2150
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
2151 2152 2153 2154 2155
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
2156
    pre_bias = helper.create_variable_for_type_inference(dtype)
2157 2158
    if padding_start is None:
        padding_start = -int(filter_size // 2)
Y
Yu Yang 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
2169 2170
            'contextStart': padding_start,
            'contextLength': filter_size,
Y
Yu Yang 已提交
2171 2172 2173 2174 2175
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
2176
def sequence_softmax(input, use_cudnn=False, name=None):
2177 2178 2179
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
2180
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
2197 2198 2199
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
2200

2201 2202 2203 2204 2205 2206 2207
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

2208
             import paddle.fluid as fluid
2209 2210 2211 2212
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
2213
    assert not in_dygraph_mode(), (
2214
        "sequence layer is not supported in dygraph mode yet.")
2215 2216
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2217
    softmax_out = helper.create_variable_for_type_inference(dtype)
2218 2219 2220 2221 2222 2223 2224 2225
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
2226
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
2227
    """
2228
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
2229
    has the same shape as the input.
Q
qiaolongfei 已提交
2230

D
dengkaipeng 已提交
2231
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
2232
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
2233
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
2234 2235 2236
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
2237
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
2238
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
2239 2240 2241 2242 2243 2244 2245

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
2246
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
2247 2248 2249 2250 2251 2252 2253 2254

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
2255 2256
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
2257 2258
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
2259 2260 2261
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
2262 2263 2264 2265 2266 2267 2268 2269

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
2270 2271
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
2272
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
2273
             # perform softmax in the second dimension
D
dengkaipeng 已提交
2274
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
2275 2276
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
2277 2278

    """
2279
    helper = LayerHelper('softmax', **locals())
2280 2281 2282 2283 2284 2285 2286 2287 2288
    if not isinstance(input, Variable):
        raise TypeError(
            "The type of 'input' in softmax must be Variable, but received %s" %
            (type(input)))
    if convert_dtype(input.dtype) not in ['float32', 'float64']:
        raise TypeError(
            "The data type of 'input' in softmax must be float32 or float64, but received %s."
            % (convert_dtype(input.dtype)))

2289
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2290
    softmax_out = helper.create_variable_for_type_inference(dtype)
2291 2292 2293 2294
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
2295 2296
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
2297 2298 2299
    return softmax_out


Y
Yu Yang 已提交
2300 2301 2302
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2303 2304
           stride=1,
           padding=0,
2305
           dilation=1,
Y
Yu Yang 已提交
2306 2307 2308
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2309
           use_cudnn=True,
2310
           act=None,
L
liym27 已提交
2311 2312
           name=None,
           data_format="NCHW"):
Y
Yu Yang 已提交
2313
    """
C
chengduoZH 已提交
2314
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2315
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
2316
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
2317
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2318 2319 2320 2321 2322 2323
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
2324
    for more details.
2325 2326 2327
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2328

2329
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2330

C
chengduoZH 已提交
2331 2332
    .. math::

C
refine  
chengduoZH 已提交
2333
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2334

T
tensor-tang 已提交
2335
    Where:
C
chengduoZH 已提交
2336

L
liym27 已提交
2337
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
2338 2339 2340 2341
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2342
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2343 2344 2345

    Example:

2346 2347
        - Input:

W
weixing02 已提交
2348
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2349

W
weixing02 已提交
2350
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2351

2352
        - Output:
T
tensor-tang 已提交
2353

W
weixing02 已提交
2354
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2355

C
chengduoZH 已提交
2356
        Where
2357 2358

        .. math::
C
chengduoZH 已提交
2359

W
weixing02 已提交
2360 2361
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2362

2363 2364 2365
    Note:
        padding mode is 'SAME' and 'VALID' can reference this link<https://github.com/PaddlePaddle/models/blob/develop/PaddleCV/PaddleGAN/network/base_network.py#L181>`_

C
chengduoZH 已提交
2366
    Args:
L
liym27 已提交
2367
        input (Variable): The input image with [N, C, H, W] or [N, H, W, C] format.
T
tensor-tang 已提交
2368
        num_filters(int): The number of filter. It is as same as the output
2369
            image channel.
2370 2371 2372 2373
        filter_size (int|tuple): The filter size. If filter_size 
            is a tuple, it must contain two integers, (filter_size_height, 
            filter_size_width). Otherwise, filter_size_height = filter_\
            size_width = filter_size.
2374
        stride (int|tuple): The stride size. If stride is a tuple, it must
2375 2376
            contain two integers, (stride_height, stride_width). Otherwise,
            stride_height = stride_width = stride. Default: stride = 1.
L
liym27 已提交
2377 2378 2379 2380 2381 2382 2383 2384
        padding (string|int|list|tuple): The padding size. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
2385
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2386 2387
            contain two integers, (dilation_height, dilation_width). Otherwise,
            dilation_height = dilation_width = dilation. Default: dilation = 1.
2388 2389 2390 2391
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2392 2393 2394 2395 2396
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2397
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2398 2399 2400 2401 2402
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2403 2404
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2405 2406
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2407
        name (str|None): A name for this layer(optional). If set None, the layer
L
liym27 已提交
2408 2409 2410 2411
            will be named automatically. Default: None.
        data_format (str): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
2412 2413

    Returns:
G
guosheng 已提交
2414
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2415 2416
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2417
    Raises:
2418 2419
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2420

C
chengduoZH 已提交
2421 2422 2423
    Examples:
        .. code-block:: python

2424
          import paddle.fluid as fluid
2425 2426
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2427 2428
    """

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
    if not isinstance(input, Variable):
        raise TypeError(
            "The type of 'input' in conv2d must be Variable, but received %s" %
            (type(input)))
    if convert_dtype(input.dtype) in ['float16']:
        warnings.warn(
            "The data type of 'input' in conv2d only support float16 on GPU now."
        )
    if convert_dtype(input.dtype) not in ['float16', 'float32', 'float64']:
        raise TypeError(
            "The data type of 'input' in conv2d must be float16 or float32 or float64, but received %s."
            % (convert_dtype(input.dtype)))

    num_channels = input.shape[1]
L
liym27 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NHWC")
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduo 已提交
2458
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
2459

2460
    l_type = 'conv2d'
X
xzl 已提交
2461 2462
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2463
        l_type = 'depthwise_conv2d'
2464 2465 2466 2467

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2468 2469 2470 2471
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
2472
            raise ValueError(
2473 2474 2475
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
                ", the groups is {}".format(num_channels, input.shape, groups))
M
minqiyang 已提交
2476
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2477

C
chengduoZH 已提交
2478 2479
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
2480
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2481

L
liym27 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')
            padding = [padding[0], padding[0], padding[1], padding[1]]

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0]

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
2526

M
minqiyang 已提交
2527
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2528 2529

    def _get_default_param_initializer():
C
chengduo 已提交
2530 2531
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2532 2533 2534 2535 2536 2537 2538 2539
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2540
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2541 2542

    helper.append_op(
2543
        type=l_type,
Y
Yu Yang 已提交
2544 2545 2546 2547 2548
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2549 2550 2551
        attrs={
            'strides': stride,
            'paddings': padding,
2552
            'dilations': dilation,
C
chengduoZH 已提交
2553
            'groups': groups,
2554
            'use_cudnn': use_cudnn,
2555
            'use_mkldnn': False,
L
liym27 已提交
2556 2557 2558
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
2559
        })
Y
Yu Yang 已提交
2560 2561 2562 2563 2564 2565

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
L
liym27 已提交
2577 2578
           name=None,
           data_format="NCDHW"):
C
chengduoZH 已提交
2579 2580 2581 2582 2583
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
L
liym27 已提交
2584
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
2585 2586 2587 2588 2589
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2590 2591 2592 2593 2594 2595 2596 2597 2598

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

L
liym27 已提交
2599
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
2600
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2601 2602 2603
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2604
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
L
liym27 已提交
2626
        input (Variable): The input image with [N, C, D, H, W] or [N, D, H, W, C]format.
2627
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2628
            image channel.
2629 2630 2631 2632
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_depth, filter_size_height, 
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size.
C
chengduoZH 已提交
2633
        stride (int|tuple): The stride size. If stride is a tuple, it must
2634 2635
            contain three integers, (stride_depth, stride_height, stride_width). Otherwise,
            stride_depth = stride_height = stride_width = stride. Default: stride = 1.
L
liym27 已提交
2636 2637 2638 2639 2640 2641 2642 2643 2644
        padding (string|int|list|tuple): The padding size. f `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
C
chengduoZH 已提交
2645
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2646 2647
            contain three integers, (dilation_depth, dilation_height, dilation_width). Otherwise,
            dilation_depth = dilation_height = dilation_width = dilation. Default: dilation = 1.
C
chengduoZH 已提交
2648 2649 2650 2651 2652
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2663 2664
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2665 2666
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2667
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2668
            will be named automatically. Default: None.
L
liym27 已提交
2669 2670 2671
        data_format (str): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
C
chengduoZH 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2684
          import paddle.fluid as fluid
2685 2686
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2687 2688 2689
    """

    l_type = 'conv3d'
C
chengduo 已提交
2690
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2691 2692 2693
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

L
liym27 已提交
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NDHWC")
    num_channels = input.shape[4] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduoZH 已提交
2709 2710 2711 2712 2713

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
2714 2715 2716 2717
            raise ValueError(
                "The number of input channels must be divisible by Attr(groups). "
                "Received: number of channels(%s), groups(%s)." %
                (str(num_channels), str(groups)))
M
minqiyang 已提交
2718
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2719 2720 2721 2722 2723

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

L
liym27 已提交
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')
            padding = [
                padding[0], padding[0], padding[1], padding[1], padding[2],
                padding[2]
            ]

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0, 0, 0]

    padding = _update_padding(padding, data_format)
C
chengduoZH 已提交
2773 2774 2775 2776 2777

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2778 2779 2780
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2781 2782 2783 2784 2785 2786 2787 2788
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2789
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
L
liym27 已提交
2804 2805 2806
            'use_mkldnn': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
2807 2808
        })

2809
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2810 2811 2812 2813

    return helper.append_activation(pre_act)


2814
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2815
    """
Y
yangyaming 已提交
2816 2817 2818
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2829 2830
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2831 2832 2833 2834
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2835
         out.dim = [4, 1]
2836
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2837 2838

       for different pool_type:
2839 2840 2841
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2842
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2843 2844 2845 2846 2847
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2848

L
Luo Tao 已提交
2849
    Args:
2850
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2851
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2852
            It supports average, sum, sqrt and max.
2853 2854
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2855 2856 2857 2858 2859 2860 2861

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2862

2863 2864
             import paddle.fluid as fluid

Y
yangyaming 已提交
2865
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2866 2867 2868 2869 2870
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2871 2872
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2873
    """
L
lujun 已提交
2874
    assert not in_dygraph_mode(), (
2875
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2876
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2877
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2878 2879
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2880 2881 2882 2883 2884 2885

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2886 2887 2888 2889 2890
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2891

Y
yangyaming 已提交
2892 2893 2894 2895 2896
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2897 2898 2899
    return pool_out


C
add doc  
chengduoZH 已提交
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2916 2917 2918 2919
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2920
    """
L
lujun 已提交
2921
    assert not in_dygraph_mode(), (
2922
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2923
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2924
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2925 2926 2927 2928 2929
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2930
def sequence_first_step(input):
L
Luo Tao 已提交
2931
    """
L
Luo Tao 已提交
2932
    This function gets the first step of sequence.
L
Luo Tao 已提交
2933 2934 2935 2936

    .. code-block:: text

       x is a 1-level LoDTensor:
2937
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2938 2939 2940 2941 2942
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2943
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2944
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2945

L
Luo Tao 已提交
2946 2947 2948 2949 2950 2951 2952 2953 2954
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2955

2956
             import paddle.fluid as fluid
Y
yangyaming 已提交
2957
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2958 2959 2960
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2961 2962 2963
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2964
def sequence_last_step(input):
L
Luo Tao 已提交
2965
    """
L
Luo Tao 已提交
2966
    This function gets the last step of sequence.
L
Luo Tao 已提交
2967 2968 2969 2970

    .. code-block:: text

       x is a 1-level LoDTensor:
2971
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2972 2973 2974 2975 2976
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2977
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2978
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2979

L
Luo Tao 已提交
2980 2981 2982 2983 2984 2985 2986 2987 2988
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2989

2990
             import paddle.fluid as fluid
Y
yangyaming 已提交
2991
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2992 2993 2994
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2995 2996 2997
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2998 2999 3000 3001
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

3002
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
3003 3004 3005 3006 3007
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
3008

H
haowang101779990 已提交
3009
              - Case:
Y
Yibing Liu 已提交
3010

3011
            Given the input Variable **input**:
3012

3013 3014 3015
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
3016

3017
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
3018

3019
            the output Variable will be
3020

3021 3022 3023
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
3024

M
minqiyang 已提交
3025
    Note:
H
haowang101779990 已提交
3026
          The first dimension size of **input**, **offset** and **length**
3027
          should be equal. The **offset** should start from 0.
3028

Y
Yibing Liu 已提交
3029
    Args:
3030
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
3031
                         sequences.
Y
Yibing Liu 已提交
3032 3033 3034 3035 3036 3037
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
3038
        Variable: The output subsequences.
Y
Yibing Liu 已提交
3039 3040 3041 3042 3043

    Examples:

        .. code-block:: python

3044
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
3045 3046 3047 3048 3049
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
3050
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
3051 3052
                                                   length=length)
    """
L
lujun 已提交
3053
    assert not in_dygraph_mode(), (
3054
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
3055 3056
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3057
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
3072
@templatedoc()
Y
Yu Yang 已提交
3073
def pool2d(input,
C
chengduoZH 已提交
3074 3075
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
3076 3077
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
3078
           global_pooling=False,
C
chengduoZH 已提交
3079
           use_cudnn=True,
3080
           ceil_mode=False,
3081
           name=None,
3082 3083
           exclusive=True,
           data_format="NCHW"):
Y
Yu Yang 已提交
3084
    """
F
fengjiayi 已提交
3085
    ${comment}
3086 3087

    Args:
3088
        input (Variable): The input tensor of pooling operator. The format of
3089 3090 3091
                          input tensor is `"NCHW"` or `"NHWC"`, where `N` is batch size, `C` is
                          the number of channels, `H` is the height of the
                          feature, and `W` is the width of the feature.
J
JiabinYang 已提交
3092
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
3093 3094
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
3095
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
3096 3097 3098
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
3099 3100 3101 3102 3103 3104 3105
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
3106
            Otherwise, the pool padding size will be a square of an int.
3107 3108 3109
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
3110
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
3111
                        layer will be named automatically.
3112
        exclusive (bool): Whether to exclude padding points in average pooling
3113 3114 3115 3116
                          mode, default is `true`.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
3117

3118
    Returns:
F
fengjiayi 已提交
3119
        Variable: The pooling result.
F
fengjiayi 已提交
3120 3121

    Raises:
3122 3123 3124
        ValueError: If `pool_type` is not "max" nor "avg"
        ValueError: If `global_pooling` is False and `pool_size` is -1
        ValueError: If `use_cudnn` is not a bool value.
F
fengjiayi 已提交
3125 3126 3127 3128 3129

    Examples:

        .. code-block:: python

3130
          import paddle.fluid as fluid
3131

F
fengjiayi 已提交
3132
          data = fluid.layers.data(
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
              name='data', shape=[10, 3, 32, 32], append_batch_size=False, dtype='float32')

          # example 1:
          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # example 2:
          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
3154 3155 3156
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
3157
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
3158
            str(pool_type))
C
chengduoZH 已提交
3159

C
chengduoZH 已提交
3160 3161
    if global_pooling is False and pool_size == -1:
        raise ValueError(
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received pool_size: %s." % str(pool_size))

    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s." % str(use_cudnn))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
C
chengduoZH 已提交
3173

C
chengduoZH 已提交
3174 3175 3176
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
3199

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
            pool_padding = [0, 0, 0, 0]
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
            pool_padding = [0, 0, 0, 0]

    pool_padding = update_padding(pool_padding, data_format)

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3227
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3228
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
3229 3230

    helper.append_op(
3231
        type=op_type,
3232 3233 3234 3235 3236 3237 3238 3239
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
3240
            "padding_algorithm": padding_algorithm,
3241 3242
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
3243 3244
            "use_mkldnn": False,
            "exclusive": exclusive,
3245
            "data_format": data_format,
3246 3247 3248 3249 3250
        })

    return pool_out


D
dengkaipeng 已提交
3251
@templatedoc()
3252 3253 3254 3255 3256 3257 3258 3259
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
3260
           name=None,
3261 3262
           exclusive=True,
           data_format="NCDHW"):
3263
    """
3264
    ${comment}
3265 3266

    Args:
D
dengkaipeng 已提交
3267
        input (Variable): The input tensor of pooling operator. The format of
3268 3269 3270
                          input tensor is `"NCDHW"` or `"NDHWC"`, where `N` is batch size, `C` is
                          the number of channels, `D` is the depth of the feature,
                          `H` is the height of the feature, and `W` is the width
D
dengkaipeng 已提交
3271
                          of the feature.
D
dengkaipeng 已提交
3272 3273 3274 3275 3276
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
        pool_stride (string|int|list|tuple)): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool stride size is a tuple or list,
            it must contain three integers, `[stride_Depth, stride_Height, stride_Width]`.
            Otherwise, the pool stride size will be a cube of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
3288 3289 3290 3291 3292
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
3293
        exclusive (bool): Whether to exclude padding points in average pooling
3294 3295 3296 3297
                          mode, default is true.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_depth, input_height, input_width]`.
3298

3299
    Returns:
3300
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
3301 3302 3303 3304 3305

    Examples:

        .. code-block:: python

3306
          import paddle.fluid as fluid
3307

D
dengkaipeng 已提交
3308
          data = fluid.layers.data(
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
              name='data', shape=[10, 3, 32, 32, 32], append_batch_size=False, dtype='float32')

          # example 1:
          # Attr(pool_padding) is a list with 6 elements, Attr(data_format) is "NCDHW".
          out_1 = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0, 1, 2],
            global_pooling = False,
            data_format = "NCDHW")

          # example 2:
          # Attr(pool_padding) is a string, Attr(data_format) is "NCDHW".
          out_2 = fluid.layers.pool3d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            global_pooling = False,
            data_format = "NCDHW")

Y
Yu Yang 已提交
3333 3334 3335
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
3336
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
3337
            str(pool_type))
C
chengduoZH 已提交
3338

C
chengduoZH 已提交
3339 3340
    if global_pooling is False and pool_size == -1:
        raise ValueError(
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received Attr(pool_size): %s." %
            str(pool_size))

    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s" % str(data_format))
C
chengduoZH 已提交
3353

3354 3355
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
3356

3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, (list, tuple)):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
Y
Yu Yang 已提交
3382

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
            pool_padding = [0, 0, 0, 0, 0, 0]
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", ceil_mode must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
            pool_padding = [0, 0, 0, 0, 0, 0]

    pool_padding = update_padding(pool_padding, data_format)

    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3410
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3411
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
3412 3413

    helper.append_op(
3414
        type=op_type,
Y
Yu Yang 已提交
3415 3416 3417 3418 3419 3420 3421
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
3422
            "paddings": pool_padding,
3423
            "padding_algorithm": padding_algorithm,
3424
            "use_cudnn": use_cudnn,
3425
            "ceil_mode": ceil_mode,
3426 3427
            "use_mkldnn": False,
            "exclusive": exclusive,
3428
            "data_format": data_format,
Y
Yu Yang 已提交
3429 3430 3431 3432 3433
        })

    return pool_out


3434 3435 3436 3437 3438 3439 3440
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3441 3442 3443 3444 3445 3446 3447
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
3448

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
3462 3463 3464 3465 3466 3467 3468 3469 3470

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3471 3472
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
3487
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
3488
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
3489
          # of input data into m * n grids averagely and performs poolings in each
3490 3491
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3492
          #
3493 3494 3495 3496 3497 3498 3499 3500
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
3501
          import paddle.fluid as fluid
3502 3503
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
3504
          pool_out = fluid.layers.adaptive_pool2d(
3505 3506
                            input=data,
                            pool_size=[3, 3],
3507
                            pool_type='avg')
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3518
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3544
    return (pool_out, mask) if require_index else pool_out
3545 3546 3547 3548 3549 3550 3551 3552 3553


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3554 3555 3556 3557 3558 3559 3560
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
3561

3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
3579 3580 3581

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
3582 3583 3584
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
3585
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
3586
            it must contain three integers, (Depth, Height, Width).
3587
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3588 3589
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

3604 3605
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
3606
          # of input data into l * m * n grids averagely and performs poolings in each
3607 3608
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3609
          #
3610 3611 3612 3613 3614 3615 3616 3617 3618
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3619
          #                 output[:, :, i, j, k] =
3620 3621
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3622 3623 3624

          import paddle.fluid as fluid

3625
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3626 3627
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3628
                            input=data,
D
dengkaipeng 已提交
3629
                            pool_size=[3, 3, 3],
3630
                            pool_type='avg')
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3641
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3667
    return (pool_out, mask) if require_index else pool_out
3668 3669


Y
Yu Yang 已提交
3670 3671 3672 3673 3674 3675 3676
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3677
               data_layout='NCHW',
Y
Yang Yang 已提交
3678
               in_place=False,
3679 3680
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3681
               moving_variance_name=None,
3682
               do_model_average_for_mean_and_var=False,
3683 3684
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3685
    """
Q
qiaolongfei 已提交
3686 3687 3688 3689
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3690

Q
qiaolongfei 已提交
3691
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3692

Q
qiaolongfei 已提交
3693 3694
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3695 3696 3697
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3710

3711 3712 3713 3714
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum)
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum)
        moving_mean and moving_var is global mean and global variance.

3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
3728 3729 3730 3731
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.

3732
    Args:
Q
qingqing01 已提交
3733
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3734
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3735 3736 3737 3738 3739 3740 3741 3742 3743
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3744 3745
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3746 3747 3748
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3749 3750
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3751 3752 3753
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3754
        data_layout(string, default NCHW): NCHW|NHWC
3755
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3756 3757
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3758 3759 3760
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3761
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3762 3763
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3764
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3765
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3766 3767 3768 3769 3770
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3771 3772

    Returns:
Q
qiaolongfei 已提交
3773
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3774 3775 3776 3777 3778

    Examples:

        .. code-block:: python

3779
            import paddle.fluid as fluid
L
lvmengsi 已提交
3780
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3781 3782
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3783
    """
C
chengduo 已提交
3784
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3785 3786
    helper = LayerHelper('batch_norm', **locals())

3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
    if not isinstance(input, Variable):
        raise TypeError(
            "The type of 'input' in batch_norm must be Variable, but received %s"
            % (type(input)))
    if convert_dtype(input.dtype) in ['float16']:
        warnings.warn(
            "The data type of 'input' in batch_norm only support float16 on GPU now."
        )
    if convert_dtype(input.dtype) not in ['float16', 'float32', 'float64']:
        raise TypeError(
            "The data type of 'input' in batch_norm must be float16 or float32 or float64, but received %s."
            % (convert_dtype(input.dtype)))

    dtype = helper.input_dtype()
W
Wu Yi 已提交
3801 3802 3803 3804
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3823
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3824

3825 3826
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3827 3828 3829
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3830
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3831
        shape=param_shape,
W
Wu Yi 已提交
3832
        dtype=dtype)
3833 3834 3835 3836 3837 3838
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3839
            trainable=False,
W
wanghaoshuang 已提交
3840
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3841
        shape=param_shape,
W
Wu Yi 已提交
3842
        dtype=dtype)
3843
    variance.stop_gradient = True
Y
Yu Yang 已提交
3844 3845 3846 3847 3848 3849

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3850 3851 3852 3853
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3854

X
Xin Pan 已提交
3855 3856
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3874 3875 3876 3877
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3878
            "data_layout": data_layout,
X
Xin Pan 已提交
3879
            "use_mkldnn": False,
3880 3881
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3882
        })
Y
Yu Yang 已提交
3883 3884 3885 3886

    return helper.append_activation(batch_norm_out)


L
lvmengsi 已提交
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
def instance_norm(input,
                  epsilon=1e-05,
                  param_attr=None,
                  bias_attr=None,
                  name=None):
    """
    **Instance Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for 
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean of one  feature map in mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance of one feature map in mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

    Args:
        input(variable): The rank of input variable can be 2, 3, 4, 5.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: A tensor variable which is the result after applying instance normalization on the input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.instance_norm(input=hidden1)
    """
    assert bias_attr is not False, "bias_attr should not be False in instance_norm."
    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
    channel_num = input_shape[1]

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=dtype,
        is_bias=True,
        default_initializer=Constant(0.0))

    # create output
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type="instance_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
        },
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"epsilon": epsilon, })

    return instance_norm_out


H
heqiaozhi 已提交
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
4051 4052
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
4053

4054 4055
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
4121
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
4122 4123 4124 4125

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
4126
@templatedoc()
G
guosheng 已提交
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
4137
    ${comment}
G
guosheng 已提交
4138 4139 4140

    The formula is as follows:

Y
yuyang18 已提交
4141
    ..  math::
G
guosheng 已提交
4142 4143 4144 4145 4146 4147 4148

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
4149 4150 4151 4152 4153 4154 4155 4156
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
4157

G
guosheng 已提交
4158 4159
    Args:
        input(Variable): The input tensor variable.
4160
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
4161
            normalization. Default True.
4162
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
4163 4164
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
4165
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
4166
            Default 1.
4167
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
4168
            division by zero. Default 1e-05.
G
guosheng 已提交
4169
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
4170 4171
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
4172 4173
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
4174
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
4175 4176
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
4177
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
4178
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
4179
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
4180 4181 4182
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
4183 4184

    Returns:
Y
yuyang18 已提交
4185
        ${y_comment}
G
guosheng 已提交
4186 4187 4188

    Examples:

4189
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4190 4191 4192
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
4193
    """
L
lujun 已提交
4194
    assert in_dygraph_mode(
L
lujun 已提交
4195
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
4210
    if shift:
G
guosheng 已提交
4211 4212 4213 4214 4215 4216
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
4217 4218 4219 4220 4221
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
4249
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
4263
        data_layout(string, default NCHW): NCHW(num_batch, channels, h, w) or NHWC(num_batch, h, w, channels).
D
Dun 已提交
4264 4265 4266 4267 4268 4269 4270
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

4271
        >>> import paddle.fluid as fluid
D
Dun 已提交
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
4282 4283 4284 4285 4286 4287
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received "
            + data_layout + " but only NCHW or NHWC supported.")
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
D
Dun 已提交
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
4301 4302
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
4313 4314 4315 4316 4317
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout
        })
D
dengkaipeng 已提交
4318 4319 4320 4321 4322

    return helper.append_activation(group_norm_out)


@templatedoc()
4323
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
4324 4325 4326
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
4327
    This layer calculates the spectral normalization value of weight parameters of
4328
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
4329
    Parameters. Calculations are showed as follows.
4330

D
dengkaipeng 已提交
4331 4332 4333
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
4334
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
4347
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
4348 4349 4350 4351

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
4352

D
dengkaipeng 已提交
4353
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
4354 4355
                

D
dengkaipeng 已提交
4356 4357 4358 4359
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
4360 4361 4362
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
4363 4364 4365
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
4366
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
4367 4368

    Examples:
K
Kaipeng Deng 已提交
4369
       .. code-block:: python
D
dengkaipeng 已提交
4370

K
Kaipeng Deng 已提交
4371 4372 4373 4374 4375
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
4376 4377
    """
    helper = LayerHelper('spectral_norm', **locals())
4378
    dtype = weight.dtype
D
dengkaipeng 已提交
4379 4380 4381

    # create intput and parameters
    inputs = {'Weight': weight}
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
4400 4401

    # create output
4402
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
4403 4404

    helper.append_op(
4405
        type="spectral_norm",
D
Dun 已提交
4406
        inputs=inputs,
4407 4408 4409 4410 4411 4412
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
4413

4414
    return out
D
Dun 已提交
4415 4416


Y
Yu Yang 已提交
4417 4418 4419 4420
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
4421 4422 4423
                     padding=0,
                     stride=1,
                     dilation=1,
4424
                     groups=None,
C
caoying03 已提交
4425
                     param_attr=None,
4426
                     bias_attr=None,
C
chengduoZH 已提交
4427
                     use_cudnn=True,
4428
                     act=None,
4429 4430
                     name=None,
                     data_format='NCHW'):
Y
Yu Yang 已提交
4431
    """
4432 4433 4434 4435
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
4436
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
4437 4438 4439
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
4440
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
4441
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
4442 4443 4444
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
4445 4446 4447 4448 4449

    For each input :math:`X`, the equation is:

    .. math::

4450
        Out = \sigma (W \\ast X + b)
4451

4452
    Where:
4453

4454 4455
    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
4456
    * :math:`\\ast`: Convolution operation.
4457
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
4458
    * :math:`\\sigma`: Activation function.
4459
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4460

4461 4462 4463 4464
    Example:

        - Input:

4465
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
4466

4467
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
4468 4469 4470

        - Output:

4471
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
4472 4473

        Where
Y
Yu Yang 已提交
4474

4475 4476
        .. math::

4477 4478
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
4479
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
4480 4481 4482
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    padding mode is 'SAME' and 'VALID' can reference this link<https://github.com/PaddlePaddle/models/blob/develop/PaddleCV/PaddleGAN/network/base_network.py#L181>`_
L
lvmengsi 已提交
4483 4484 4485 4486 4487 4488 4489

    Note:
          if output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
4490 4491

    Args:
4492 4493
        input(Variable): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
                         its data type is float32 or float64.
4494 4495
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
4496
        output_size(int|tuple, optional): The output image size. If output size is a
4497
            tuple, it must contain two integers, (image_height, image_width). None if use
4498 4499
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
4500 4501
            should follow the formula above. Default: None.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
4502 4503
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
            use output size to calculate filter_size. Default: None.
        padding(int|list|str|tuple, optional):The padding size. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in three forms:
             `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and
            when `data_format` is `'NCHW'`,
            `padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NHWC'`, `padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
        stride(int|tuple, optional): The stride size. If stride is a tuple, it must
4516 4517
            contain two integers, (stride_height, stride_width). Otherwise,
            stride_height = stride_width = stride. Default: stride = 1.
4518
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
4519 4520
            contain two integers, (dilation_height, dilation_width). Otherwise, 
            dilation_height = dilation_width = dilation. Default: dilation = 1.
4521
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
4522 4523 4524 4525
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
4526
            Default: groups = 1.
4527
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
4528 4529 4530
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
4531
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose.
C
chengduo 已提交
4532 4533 4534 4535
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4536
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
4537
            library is installed. Default: True.
4538
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
4539
            Default: None.
4540
        name(str, optional): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
4541
            will be named automatically. Default: True.
4542 4543 4544
        data_format(str, optional): The data format of the input and output data. An optional string
            from: `"NCHW"`, `"NHWC"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. Default: 'NCHW'.
Y
Yu Yang 已提交
4545 4546

    Returns:
4547 4548
        Variable: A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or
        (num_batches, out_h, out_w, channels).
4549 4550

    Raises:
4551 4552
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4553 4554 4555 4556

    Examples:
       .. code-block:: python

4557
          import paddle.fluid as fluid
4558 4559
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4560
    """
C
chengduo 已提交
4561
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
4562 4563 4564 4565
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(fluid.layers.conv2d_transpose) got wrong value: received "
            + data_format + " but only NCHW or NHWC supported.")
4566

4567
    input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1]
4568 4569 4570 4571 4572 4573
    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
4574 4575 4576
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
4577 4578
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
4579

C
chengduoZH 已提交
4580 4581
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
4582

4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')
            padding = [padding[0], padding[0], padding[1], padding[1]]
        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0]

    padding = _update_padding(padding, data_format)

Y
Yu Yang 已提交
4626 4627 4628 4629 4630
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
4631

4632 4633
        h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1]
        w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2]
G
guosheng 已提交
4634

4635 4636 4637 4638
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
4639
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
4640 4641 4642
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
4643

4644 4645 4646 4647 4648 4649
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
4650
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4651
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
4652

Y
Yu Yang 已提交
4653 4654 4655
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4656
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4657
    helper.append_op(
4658
        type=op_type,
Y
Yu Yang 已提交
4659 4660
        inputs={'Input': [input],
                'Filter': [img_filter]},
4661
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4662
        attrs={
4663
            'output_size': output_size,
4664 4665
            'strides': stride,
            'paddings': padding,
4666
            'padding_algorithm': padding_algorithm,
4667 4668
            'dilations': dilation,
            'groups': groups,
4669 4670
            'use_cudnn': use_cudnn,
            'data_format': data_format
Y
Yu Yang 已提交
4671 4672
        })

4673 4674 4675
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
4676 4677


4678
def conv3d_transpose(input,
Y
Yu Yang 已提交
4679 4680 4681
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
4682 4683 4684
                     padding=0,
                     stride=1,
                     dilation=1,
4685
                     groups=None,
C
caoying03 已提交
4686
                     param_attr=None,
4687
                     bias_attr=None,
C
chengduoZH 已提交
4688
                     use_cudnn=True,
4689
                     act=None,
4690 4691
                     name=None,
                     data_format='NCDHW'):
Y
Yu Yang 已提交
4692
    """
4693
    **Convlution3D transpose layer**
4694

4695
    The convolution3D transpose layer calculates the output based on the input,
4696
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
4697
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
4698 4699 4700 4701
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
4702
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
4703 4704 4705
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
4706 4707 4708 4709 4710

    For each input :math:`X`, the equation is:

    .. math::

4711
        Out = \sigma (W \\ast X + b)
4712 4713 4714

    In the above equation:

4715 4716
    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
4717
    * :math:`\\ast`: Convolution operation.
4718
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
4719 4720
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4721

4722 4723 4724 4725
    Example:

        - Input:

4726
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
4727

4728
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
4729 4730 4731

        - Output:

4732
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
4733 4734

        Where
Y
Yu Yang 已提交
4735

4736 4737
        .. math::

4738 4739 4740 4741 4742 4743
           D_{out} &= (D_{in} - 1) * strides[0] - pad_depth_front - pad_depth_back + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - pad_height_top - pad_height_bottom + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - pad_width_left - pad_width_right + dilations[2] * (W_f - 1) + 1

        Padding mode is 'SAME' and 'VALID' can reference this
        link<https://github.com/PaddlePaddle/models/blob/develop/PaddleCV/PaddleGAN/network/base_network.py#L181>`_
Y
Yu Yang 已提交
4744 4745

    Args:
4746
        input(Variable): A 5-D Tensor with [N, C, H, W] or [N, H, W, C] format. Its data type is float32 or float64.
4747 4748
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
4749
        output_size(int|tuple, optional): The output image size. If output size is a
4750
            tuple, it must contain three integers, (image_D, image_H, image_W). This
4751
            parameter only works when filter_size is None.
4752
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
4753 4754 4755
            it must contain three integers, (filter_size_depth, filter_size_height, \
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size. None if use output size to
4756
            calculate filter_size.
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
        padding(int|list|str|tuple, optional): The padding size. if `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
        stride(int|tuple, optional): The stride size. If stride is a tuple, it must
4767 4768
            contain three integers, (stride_depth, stride_height, stride_width). Otherwise,
            stride_depth = stride_height = stride_width = stride. Default: stride = 1.
4769
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
4770 4771
            contain three integers, (dilation_depth, dilation_height, dilation_width). Otherwise,
            dilation_depth = dilation_height = dilation_width = dilation. Default: dilation = 1.
4772
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
4773 4774 4775 4776 4777
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
4778
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
4779 4780 4781
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
4782
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
C
chengduo 已提交
4783 4784 4785 4786
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4787
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
4788
            library is installed. Default: True
4789
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
4790
            Default: None.
4791
        name(str, optional): A name for this layer(optional). If set None, the layer
4792
            will be named automatically.
4793 4794 4795
        data_format(str, optional):The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            Default: 'NCDHW'.
Y
Yu Yang 已提交
4796 4797

    Returns:
4798 4799
        A 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or 
        (num_batches, out_d, out_h, out_w, channels).
4800 4801

    Raises:
4802 4803
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4804 4805 4806 4807

    Examples:
       .. code-block:: python

4808
          import paddle.fluid as fluid
4809 4810
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4811
    """
C
chengduo 已提交
4812
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4813 4814 4815 4816
    if data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received "
            + data_format + " but only NCDHW or NDHWC supported.")
4817 4818
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4819
    if not isinstance(input, Variable):
4820
        raise TypeError("Input of conv3d_transpose must be Variable")
4821 4822
    input_channel = input.shape[1] if data_format == 'NCDHW' else input.shape[
        -1]
Y
Yu Yang 已提交
4823

4824 4825
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4826

C
chengduoZH 已提交
4827 4828 4829
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')
            padding = [
                padding[0], padding[0], padding[1], padding[1], padding[2],
                padding[2]
            ]

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0, 0, 0]

    padding = _update_padding(padding, data_format)

Y
Yu Yang 已提交
4880 4881 4882 4883 4884 4885
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

4886 4887 4888
        d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
        h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
        w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]
C
chengduoZH 已提交
4889

4890 4891 4892 4893 4894 4895
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + padding[4] +
                         padding[5] - 1) // dilation[2] + 1
4896
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4897
    else:
4898 4899
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4900

4901
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4902
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4903 4904 4905
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

4906 4907 4908 4909 4910
    if data_format == 'NCDHW':
        data_format = 'NCHW'
    if data_format == 'NDHWC':
        data_format = 'NHWC'

X
Xin Pan 已提交
4911
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4912
    helper.append_op(
4913
        type=l_type,
Y
Yu Yang 已提交
4914 4915
        inputs={'Input': [input],
                'Filter': [img_filter]},
4916
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4917 4918 4919
        attrs={
            'strides': stride,
            'paddings': padding,
4920
            'padding_algorithm': padding_algorithm,
C
chengduoZH 已提交
4921
            'dilations': dilation,
4922
            'groups': groups,
4923 4924
            'use_cudnn': use_cudnn,
            'data_format': data_format
C
chengduoZH 已提交
4925
        })
Y
Yu Yang 已提交
4926

4927 4928
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4929
    return out
Y
yangyaming 已提交
4930 4931


Y
yangyaming 已提交
4932
def sequence_expand(x, y, ref_level=-1, name=None):
4933
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4934 4935 4936 4937
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4938 4939 4940 4941 4942

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4943
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4944
                x.data = [[a], [b], [c], [d]]
4945 4946 4947
                x.dims = [4, 1]

            y is a LoDTensor:
4948 4949
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4950

Y
yangyaming 已提交
4951
            ref_level: 0
4952

Y
yangyaming 已提交
4953
            then output is a 1-level LoDTensor:
4954
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4955
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4956 4957 4958 4959
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4960
                x.data = [[a], [b], [c]]
4961 4962 4963
                x.dims = [3, 1]

            y is a LoDTensor:
4964
                y.lod = [[2, 0, 3]]
4965

Y
yangyaming 已提交
4966
            ref_level: -1
4967

Y
yangyaming 已提交
4968 4969 4970
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4971 4972 4973
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4974 4975
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4976
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4977
                        will be named automatically.
4978 4979 4980 4981 4982 4983

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4984
	
4985
            import paddle.fluid as fluid
4986
            import paddle.fluid.layers as layers
4987 4988 4989
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4990
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4991
    """
L
lujun 已提交
4992
    assert not in_dygraph_mode(), (
4993
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4994
    helper = LayerHelper('sequence_expand', input=x, **locals())
4995
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4996
    tmp = helper.create_variable_for_type_inference(dtype)
4997
    helper.append_op(
Y
yangyaming 已提交
4998 4999 5000 5001 5002
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
5003
    return tmp
5004 5005


C
chengduo 已提交
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
5054 5055
            
            import paddle.fluid as fluid
5056
            import paddle.fluid.layers as layers
C
chengduo 已提交
5057 5058 5059 5060 5061 5062

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
5063
    assert not in_dygraph_mode(), (
5064
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
5065 5066
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5067
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5068 5069 5070 5071 5072 5073 5074 5075
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
5076
@templatedoc()
5077
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
5078 5079 5080 5081 5082
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
5083 5084 5085
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
5086
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
5087 5088 5089 5090
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
5091 5092 5093
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
5094

F
fengjiayi 已提交
5095
    Returns:
M
minqiyang 已提交
5096
        Variable: The padded sequence batch and the original lengths before
5097
                  padding. All sequences has the same length.
M
minqiyang 已提交
5098

F
fengjiayi 已提交
5099 5100 5101
    Examples:
        .. code-block:: python

5102
            import paddle.fluid as fluid
F
fengjiayi 已提交
5103 5104
            import numpy

5105
            x = fluid.layers.data(name='x', shape=[10, 5],
F
fengjiayi 已提交
5106
                             dtype='float32', lod_level=1)
G
gmcather 已提交
5107
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
5108
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
5109 5110 5111
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
5112
    assert not in_dygraph_mode(), (
5113
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
5114 5115
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5116 5117
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
5118 5119 5120 5121

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
5122 5123 5124 5125 5126 5127
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
5128 5129
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
5130
        attrs={'padded_length': maxlen})
5131
    return out, length
F
fengjiayi 已提交
5132 5133


5134
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
5135
    """
5136
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
5137

5138 5139
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
5140 5141 5142 5143 5144 5145 5146 5147 5148
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
5149 5150 5151
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
5152
	specified by input Variable **length**:
Y
Yibing Liu 已提交
5153

5154
	    length.data = [2, 3, 4],
Y
Yibing Liu 已提交
5155 5156 5157 5158

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
5159
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
5160 5161 5162 5163 5164 5165

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
5166 5167
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
5168 5169 5170 5171 5172 5173 5174

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

5175
            import paddle.fluid as fluid
5176 5177 5178 5179 5180 5181 5182 5183 5184
            import numpy

            # pad data
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0.0], dtype=numpy.float32))
            pad_data, len = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
            
            # upad data
            unpad_data = fluid.layers.sequence_unpad(x=pad_data, length=len)
Y
Yibing Liu 已提交
5185 5186
    """

L
lujun 已提交
5187
    assert not in_dygraph_mode(), (
5188
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
5189 5190
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5191
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


5203 5204 5205 5206 5207 5208 5209
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
5210
                is_accumulated=True,
5211 5212
                name=None,
                return_parent_idx=False):
5213
    """
5214 5215
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
5216 5217 5218

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
5219 5220

    This layer does the search in beams for one time step. Specifically, it
5221 5222 5223
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
5235 5236 5237 5238

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
5239

5240
    Args:
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
5264 5265
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
5266 5267
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5268 5269 5270 5271
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
5272

5273
    Returns:
5274 5275 5276 5277
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
5278 5279 5280 5281

    Examples:
        .. code-block:: python

5282 5283
            import paddle.fluid as fluid

5284 5285 5286
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
5299
                axis=0)
5300
            selected_ids, selected_scores = fluid.layers.beam_search(
5301 5302 5303 5304 5305 5306 5307
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
5308
    helper = LayerHelper('beam_search', **locals())
5309 5310 5311 5312 5313 5314
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
5315

X
Xin Pan 已提交
5316 5317 5318
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
5319 5320 5321 5322 5323
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
5324 5325 5326

    helper.append_op(
        type='beam_search',
5327
        inputs=inputs,
Q
Qiao Longfei 已提交
5328 5329 5330
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
5331
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
5332 5333 5334 5335 5336 5337
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
5338
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
5339
        })
5340 5341 5342 5343
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
5344 5345


5346 5347 5348 5349 5350 5351 5352
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
5353

5354 5355 5356 5357 5358 5359 5360 5361 5362
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
5363

5364 5365 5366 5367 5368 5369
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
5370

5371 5372
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
5373

5374 5375
            import paddle.fluid as fluid

5376 5377
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
5378 5379 5380
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
5381 5382 5383
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
5384 5385
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
5401 5402 5403 5404
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
5405
              param_attr=None,
C
caoying03 已提交
5406 5407
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
5408 5409 5410 5411
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

5412
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
5413

5414
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
5415

5416
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
5417

5418
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
5419 5420 5421

            h_t & = o_t tanh(c_t)

5422 5423 5424 5425 5426 5427
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
5428 5429 5430

        .. math::

5431
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
5432 5433 5434 5435 5436 5437 5438 5439

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

5440
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
5441 5442

    Args:
Y
yangyaming 已提交
5443 5444 5445 5446 5447 5448
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
5449
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
5462 5463
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
5464 5465

    Returns:
Y
yangyaming 已提交
5466
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
5467 5468

    Raises:
5469 5470 5471 5472
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
5473 5474 5475 5476 5477

    Examples:

        .. code-block:: python

5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
5505
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
5506 5507 5508 5509
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
5510 5511
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
5512 5513 5514
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
5515
    size = cell_t_prev.shape[1]
5516
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
5517 5518
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
5519
                param_attr=param_attr,
5520
                bias_attr=bias_attr)
Y
yangyaming 已提交
5521
    dtype = x_t.dtype
X
Xin Pan 已提交
5522 5523
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
5524 5525 5526 5527 5528 5529 5530 5531 5532

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
5533
    return h, c
G
guosheng 已提交
5534 5535


C
caoying03 已提交
5536
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
5537
    """
Y
yangyaming 已提交
5538
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
5539 5540 5541

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5542
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
5543 5544
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
5545 5546
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
5547
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
5548
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
5549
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
5550 5551
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5552 5553 5554

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
5555

G
guosheng 已提交
5556 5557 5558
    Examples:
        .. code-block:: python

5559
            import paddle.fluid as fluid
G
guosheng 已提交
5560 5561 5562
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
5563
            # Each example is followed by the corresponding output tensor.
5564
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
5565 5566 5567 5568
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
5569

5570
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5571 5572
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
5573
            # Each example is followed by the corresponding output tensor.
5574 5575 5576
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
5577

G
guosheng 已提交
5578 5579
    """
    helper = LayerHelper('reduce_sum', **locals())
5580 5581 5582 5583 5584 5585 5586 5587 5588
    if not isinstance(input, Variable):
        raise TypeError(
            "The type of 'input' in reduce_sum must be Variable, but received %s"
            % (type(input)))
    if convert_dtype(
            input.dtype) not in ['float32', 'float64', 'int32', 'int64']:
        raise TypeError(
            "The data type of 'input' in reduce_sum  must be float32 or float64 or int32 or int64, but received %s."
            % (convert_dtype(input.dtype)))
X
Xin Pan 已提交
5589
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5590 5591
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
5592 5593 5594 5595 5596
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5597
            'dim': dim if dim != None else [0],
G
guosheng 已提交
5598 5599 5600 5601
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
5602 5603


C
caoying03 已提交
5604
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
5605
    """
Y
Yibing Liu 已提交
5606
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
5607 5608 5609

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
5610 5611 5612
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
5613
            must be in the range :math:`[-rank(input), rank(input))`. If
5614
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
5615
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
5616 5617
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
5618
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
5619
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
5620
                       will be named automatically.
G
guosheng 已提交
5621 5622

    Returns:
Y
Yibing Liu 已提交
5623
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
5624

G
guosheng 已提交
5625 5626 5627
    Examples:
        .. code-block:: python

5628
            import paddle.fluid as fluid
G
guosheng 已提交
5629 5630 5631 5632
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5633
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
5634 5635 5636
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
5637
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
5638

5639
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5640 5641 5642
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5643 5644 5645
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
5646 5647
    """
    helper = LayerHelper('reduce_mean', **locals())
5648 5649 5650 5651 5652 5653 5654 5655 5656
    if not isinstance(input, Variable):
        raise TypeError(
            "The type of 'input' in reduce_mean must be Variable, but received %s"
            % (type(input)))
    if convert_dtype(
            input.dtype) not in ['float32', 'float64', 'int32', 'int64']:
        raise TypeError(
            "The data type of 'input' in reduce_mean  must be float32 or float64 or int32 or int64, but received %s."
            % (convert_dtype(input.dtype)))
X
Xin Pan 已提交
5657
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5658 5659
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
5660 5661 5662 5663 5664
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5665
            'dim': dim if dim != None else [0],
G
guosheng 已提交
5666 5667 5668 5669
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
5670 5671


C
caoying03 已提交
5672
def reduce_max(input, dim=None, keep_dim=False, name=None):
5673
    """
Y
yangyaming 已提交
5674
    Computes the maximum of tensor elements over the given dimension.
5675 5676 5677

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5678
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
5679 5680 5681
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
5682
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
5683 5684
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
5685
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
5686 5687
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
5688 5689 5690

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
5691

5692 5693 5694
    Examples:
        .. code-block:: python

5695
            import paddle.fluid as fluid
5696 5697 5698 5699
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5700
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5701 5702 5703 5704
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
5705

5706
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5707 5708 5709
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5710 5711 5712
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
5713 5714
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
5715
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5716 5717
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5718 5719 5720 5721 5722
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5723
            'dim': dim if dim != None else [0],
5724 5725 5726 5727 5728 5729
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5730
def reduce_min(input, dim=None, keep_dim=False, name=None):
5731
    """
Y
yangyaming 已提交
5732
    Computes the minimum of tensor elements over the given dimension.
5733 5734 5735

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5736
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
5737 5738 5739
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
5740
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
5741 5742
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
5743
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
5744 5745
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
5746 5747 5748

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
5749

5750 5751 5752
    Examples:
        .. code-block:: python

5753
            import paddle.fluid as fluid
5754 5755 5756 5757
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5758
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5759 5760 5761 5762
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
5763

5764
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5765 5766 5767
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5768 5769 5770
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
5771 5772
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
5773
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5774 5775
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5776 5777 5778 5779 5780
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5781
            'dim': dim if dim != None else [0],
5782 5783 5784 5785
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
5786 5787


5788 5789 5790 5791 5792 5793
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5794
        dim (list|int|None): The dimensions along which the product is performed. If
5795 5796
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
5797 5798
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
5799 5800 5801
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
5802
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
5803
            layer will be named automatically.
5804 5805 5806 5807 5808 5809 5810

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

5811
            import paddle.fluid as fluid
5812 5813 5814 5815
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5816
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5817 5818 5819
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
5820
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
5821
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
5822

5823
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5824 5825 5826
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5827 5828 5829
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
5830 5831
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
5832
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5833 5834
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5835 5836 5837 5838 5839
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5840
            'dim': dim if dim != None else [0],
5841 5842 5843 5844 5845 5846
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
5847 5848
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5849
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5869
        
5870
            import paddle.fluid as fluid
5871 5872 5873
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5874 5875 5876
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
5877 5878 5879 5880 5881 5882 5883
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5904
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5924

5925
            import paddle.fluid as fluid
5926 5927 5928
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5929 5930 5931
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5932 5933 5934 5935 5936 5937 5938
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5953 5954 5955 5956 5957
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5958
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5959
    """
C
caoying03 已提交
5960
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5961 5962 5963

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5964 5965 5966 5967 5968
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5969
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5970
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5971
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5972 5973
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5974 5975

    Returns:
D
dzhwinter 已提交
5976
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5977 5978 5979 5980

    Examples:
        .. code-block:: python

5981 5982 5983 5984 5985 5986
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5987
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5988 5989 5990 5991 5992 5993 5994 5995
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5996 5997 5998 5999 6000 6001 6002 6003
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
6004
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
6005 6006 6007
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
6008
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
6022 6023 6024 6025 6026 6027 6028 6029 6030


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

6031
    .. math::
6032 6033

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
6034 6035 6036 6037 6038

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
6039
        x(Variable|list): The input tensor to l2_normalize layer.
6040
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
6041 6042
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
6043
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
6044
            the default value is 1e-12.
6045
        name(str|None): A name for this layer(optional). If set None, the layer \
6046
            will be named automatically.
C
caoying03 已提交
6047 6048

    Returns:
6049
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
6050 6051

    Examples:
6052

C
caoying03 已提交
6053 6054
        .. code-block:: python

6055
            import paddle.fluid as fluid
6056 6057 6058 6059
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
6060 6061
    """

F
fengjiayi 已提交
6062 6063
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
6064 6065
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
6066 6067
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6068
    helper.append_op(
6069 6070 6071 6072
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
6073
        attrs={
6074 6075
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
6076 6077
        })
    return out
6078 6079


S
sneaxiy 已提交
6080
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
6081
    """
Y
ying 已提交
6082 6083 6084 6085
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
6086

C
chengduoZH 已提交
6087
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
6088
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
6089

6090 6091 6092 6093 6094
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
6095
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
6096

C
chengduoZH 已提交
6097
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
6098
      performs in the following way.
G
guosheng 已提交
6099

6100
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
6101
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
6102
        last two dimensions and a batched matrix multiply supporting broadcast
6103
        applies on the two tensors.
G
guosheng 已提交
6104

Y
ying 已提交
6105 6106
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
6107
    removed after matrix multiplication.
G
guosheng 已提交
6108 6109 6110

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
6111 6112 6113
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
6114
        alpha (float): The scale of output. Default 1.0.
6115
        name(str|None): A name for this layer(optional). If set None, the layer
6116
            will be named automatically.
G
guosheng 已提交
6117 6118

    Returns:
石晓伟 已提交
6119
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
6120

G
guosheng 已提交
6121 6122 6123
    Examples:
        .. code-block:: python

6124
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
6125
            # x: [B, ..., M, K], y: [B, ..., K, N]
6126
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
6127

6128
            # x: [B, M, K], y: [B, K, N]
6129
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
6130

6131
            # x: [B, M, K], y: [K, N]
6132
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
6133

6134
            # x: [M, K], y: [K, N]
6135
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
6136 6137

            # x: [B, M, K], y: [K]
6138
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
6139

6140
            # x: [K], y: [K]
6141
            # fluid.layers.matmul(x, y)  # out: [1]
6142

Y
ying 已提交
6143
            # x: [M], y: [N]
6144 6145
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

6146
            import paddle.fluid as fluid
6147 6148 6149
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
6150
    """
Y
ying 已提交
6151 6152 6153 6154 6155 6156 6157

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
6158
            y_shape = y_shape + [1]
Y
ying 已提交
6159 6160 6161 6162 6163 6164 6165

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
6166 6167
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
6168

C
chengduo 已提交
6169
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
6170
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
6171 6172 6173
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
6174
                if dim_x != y_shape[i]:
C
chengduo 已提交
6175 6176
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
6177 6178 6179

    __check_input(x, y)

6180
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
6181
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
6182
    helper.append_op(
6183 6184 6185 6186
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
6187 6188 6189
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
6190
            'alpha': float(alpha),
S
sneaxiy 已提交
6191
        })
6192
    return out
6193 6194


6195
def topk(input, k, name=None):
Q
qingqing01 已提交
6196 6197 6198 6199
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
6200
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
6201 6202 6203 6204 6205 6206
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
6228 6229 6230
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
6231
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
6232
                 of input.
6233
        name(str|None): A name for this layer(optional). If set None, the layer
6234
                       will be named automatically.
F
fengjiayi 已提交
6235
                       Default: None
Q
qingqing01 已提交
6236 6237

    Returns:
6238 6239 6240
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
6241
        within the last dimension of input.
Q
qingqing01 已提交
6242

F
fengjiayi 已提交
6243 6244
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
6245 6246 6247 6248

    Examples:
        .. code-block:: python

6249
            import paddle.fluid as fluid
6250 6251
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
6252 6253 6254
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
6255 6256
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
6257 6258 6259 6260 6261 6262
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
6263 6264
    helper.append_op(
        type="top_k",
W
whs 已提交
6265
        inputs=inputs,
Q
qingqing01 已提交
6266 6267
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
6268
        attrs=attrs)
Q
qingqing01 已提交
6269 6270 6271 6272 6273
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


6274 6275 6276 6277 6278 6279
def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
6280
    """
R
ruri 已提交
6281
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
6282 6283 6284 6285 6286 6287 6288 6289
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
6290

Y
ying 已提交
6291
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
6292

6293
    The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
Y
ying 已提交
6294
    the total number denoted by `batch_size`, and the separation is specified
6295 6296
    by the LoD information or input_length. And the `batch_size` reference strings are arranged
    in order in the same way as `input`.
W
wanghaoshuang 已提交
6297

6298
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
6299 6300
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
6301

6302
    Args:
6303 6304
        input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
        label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
6305
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
6306
                          the length of reference string.
6307
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
6308
                                     calculating edit distance.
6309 6310
        input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
        label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
6311

W
wanghaoshuang 已提交
6312
    Returns:
6313 6314 6315
        edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
        sequence_num(Variable): sequence number in shape [].
        
W
wanghaoshuang 已提交
6316 6317 6318

    Examples:
        .. code-block:: python
6319
            
R
ruri 已提交
6320 6321
            import paddle.fluid as fluid

6322 6323 6324 6325
            # using LoDTensor
            x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
            y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
            distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
R
ruri 已提交
6326

6327 6328 6329 6330 6331 6332 6333 6334
            # using Tensor
            x_seq_len = 5
            y_seq_len = 6
            x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
            y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
            x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
            y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
            distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
R
ruri 已提交
6335

6336
    """
6337
    helper = LayerHelper("edit_distance", **locals())
6338

6339
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
6340
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
6341 6342
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
6343 6344 6345 6346 6347

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
6348
            attrs={"tokens": ignored_tokens})
6349 6350 6351 6352 6353
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
6354
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
6355
            attrs={"tokens": ignored_tokens})
6356 6357
        label = erased_label

6358 6359 6360 6361 6362
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length and label_length:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

6363
    # edit distance op
X
Xin Pan 已提交
6364 6365
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
6366 6367
    helper.append_op(
        type="edit_distance",
6368
        inputs=this_inputs,
6369 6370
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
6371 6372
        attrs={"normalized": normalized})

6373
    return edit_distance_out, sequence_num
6374 6375


6376 6377 6378 6379 6380
def ctc_greedy_decoder(input,
                       blank,
                       input_length=None,
                       padding_value=0,
                       name=None):
6381 6382
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
6383

Y
ying 已提交
6384 6385 6386 6387
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
6388 6389 6390 6391 6392 6393

    A simple example as below:

    .. code-block:: text

        Given:
6394
        for lod mode:
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

6406
        input.lod = [[4, 4]]
M
minqiyang 已提交
6407

W
whs 已提交
6408
        Computation:
6409

W
whs 已提交
6410 6411 6412 6413 6414 6415
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
6416 6417 6418 6419 6420

        output.data = [[2],
                       [1],
                       [3]]

6421
        output.lod = [[2, 1]]
6422

6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
        for padding mode:

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
        step2: Change the argmax result to use padding mode, then argmax result is 
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]



W
whs 已提交
6451

6452 6453
    Args:

Y
ying 已提交
6454
        input(Variable): (LoDTensor<float>), the probabilities of
6455 6456
                         variable-length sequences. When in lod mode, it is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1] 
Y
ying 已提交
6457
                         where Lp is the sum of all input sequences' length and
6458 6459 6460
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
                         (not including the blank label).
Y
ying 已提交
6461 6462 6463
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
6464 6465 6466 6467
        input_length(Variable, optional): (LoDTensor<int>), shape is [batch_size, 1], when in lod mode, input_length
                                 is None.
        padding_value(int): padding value.
        name (str, optional): The name of this layer. It is optional.
6468 6469

    Returns:
6470
        output(Variable): For lod mode, CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
H
haowang101779990 已提交
6471 6472
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
6473 6474 6475 6476
                  LoD [[]] and dims [1, 1]. For padding mode, CTC greedy decode result is a 2-D tensor \
                  with shape [batch_size, N], output length's shape is [batch_size, 1] which is length \
                  of every sequence in output.
        output_length(Variable, optional): length of each sequence of output for padding mode.
6477 6478 6479 6480

    Examples:
        .. code-block:: python

6481
            # for lod mode
S
SunGaofeng 已提交
6482
            import paddle.fluid as fluid
6483 6484
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
6485 6486 6487 6488 6489 6490 6491

            # for padding mode
            x_pad = fluid.layers.data(name='x_pad', shape=[4,8], dtype='float32')
            x_pad_len = fluid.layers.data(name='x_pad_len', shape=[1], dtype='int64')
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
6492
    """
6493
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
6494
    _, topk_indices = topk(input, k=1)
6495 6496

    # ctc align op
X
Xin Pan 已提交
6497
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522

    if input_length is None:
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True,
                   "blank": blank})
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
        ctc_input = squeeze(topk_indices, [2])

        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input],
                    "InputLength": [input_length]},
            outputs={"Output": [ctc_out],
                     "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value
            })
        return ctc_out, ctc_out_len
6523 6524


6525 6526 6527 6528 6529 6530
def warpctc(input,
            label,
            blank=0,
            norm_by_times=False,
            input_length=None,
            label_length=None):
W
wanghaoshuang 已提交
6531
    """
6532 6533
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
6534
    to compute Connectionist Temporal Classification (CTC) loss.
6535 6536
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
6537 6538 6539
    input tensor.

    Args:
6540
       input (Variable): The unscaled probabilities of variable-length sequences,
6541 6542 6543
         which is a 2-D Tensor with LoD information, or a 3-D Tensor without Lod
         information. When it is a 2-D LodTensor, it's shape is 
         [Lp, num_classes + 1], where Lp is the sum of all input
W
wanghaoshuang 已提交
6544
         sequences' length and num_classes is the true number of classes.
6545 6546 6547 6548
         (not including the blank label). When it is a 3-D Tensor, it's shape 
         is [max_logit_length, batch_size, num_classes + 1],
         where max_logit_length is the length of the longest
         input logit sequence.
6549
       label (Variable): The ground truth of variable-length sequence,
6550 6551 6552
         which is a 2-D Tensor with LoD information or a 2-D Tensor without
         LoD information. When it is a 2-D LoDTensor or 2-D Tensor, 
         it is of the shape [Lg, 1], where Lg is th sum of all labels' length.
6553
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
6554 6555
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
6556 6557 6558
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
6559
         follewed by a mean_op.
6560 6561 6562 6563
       input_length(Variable): The length for each input sequence if it is 
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
       label_length(Variable): The length for each label sequence if it is
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
W
wanghaoshuang 已提交
6564 6565

    Returns:
6566 6567
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
6568 6569 6570

    Examples:
        .. code-block:: python
6571

6572
            # using LoDTensor
B
Bai Yifan 已提交
6573
            import paddle.fluid as fluid
6574 6575 6576
            import numpy as np
            
            label = fluid.layers.data(name='label', shape=[12, 1],
B
Bai Yifan 已提交
6577
                                      dtype='float32', lod_level=1)
6578 6579 6580
            predict = fluid.layers.data(name='predict', 
                                        shape=[11, 8],
                                        dtype='float32',lod_level=1)
6581
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
6582

6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600
            # using Tensor
            input_length = fluid.layers.data(name='logits_length', shape=[11],
                                         dtype='int64')
            label_length = fluid.layers.data(name='labels_length', shape=[12],
                                         dtype='int64')
            target = fluid.layers.data(name='target', shape=[12, 1],
                                       dtype='int32')
            # length of the longest logit sequence
            max_seq_length = 4
            # number of logit sequences
            batch_size = 4
            output = fluid.layers.data(name='output', 
                                       shape=[max_seq_length, batch_size, 8],
                                       dtype='float32')
            loss = fluid.layers.warpctc(input=output,label=target,
                                        input_length=input_length,
                                        label_length=label_length)

W
wanghaoshuang 已提交
6601
    """
F
fengjiayi 已提交
6602
    helper = LayerHelper('warpctc', **locals())
6603 6604 6605 6606 6607
    this_inputs = {'Logits': [input], 'Label': [label]}
    if input_length and label_length:
        this_inputs['LogitsLength'] = [input_length]
        this_inputs['LabelLength'] = [label_length]

X
Xin Pan 已提交
6608 6609
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
6610

W
wanghaoshuang 已提交
6611 6612
    helper.append_op(
        type='warpctc',
6613
        inputs=this_inputs,
W
wanghaoshuang 已提交
6614 6615
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
6616 6617 6618 6619
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
        })
W
wanghaoshuang 已提交
6620
    return loss_out
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
6636 6637 6638
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
6639 6640 6641 6642 6643
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
6644

6645
            out.lod  = [[0, 1, 3]]
6646 6647 6648 6649

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
6650 6651 6652 6653 6654 6655 6656
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
6657 6658 6659

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
6660 6661

    Returns:
6662

6663 6664 6665 6666 6667
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
6668 6669 6670
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
6671
    """
L
lujun 已提交
6672
    assert not in_dygraph_mode(), (
6673
        "sequence layer is not supported in dygraph mode yet.")
6674
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
6675
    out = helper.create_variable_for_type_inference(helper.input_dtype())
6676 6677 6678 6679 6680 6681
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
6682 6683


6684 6685 6686 6687
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
6688 6689 6690 6691 6692 6693
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
6694
        num_neg_samples=None,
6695 6696 6697
        name=None,
        sampler="uniform",
        custom_dist=None,
6698 6699
        seed=0,
        is_sparse=False):
6700 6701 6702 6703 6704 6705 6706
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
6707 6708
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
6709
            sample is 1.0.
C
chengduo 已提交
6710 6711 6712 6713 6714 6715 6716 6717 6718
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
6719
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
6720 6721
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
6722 6723 6724
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
6725
        custom_dist (float[]): A float[] with size=num_total_classes.
6726 6727 6728 6729
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
6730
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
6731

6732
    Returns:
Y
Yibing Liu 已提交
6733 6734 6735 6736 6737 6738
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


X
xsrobin 已提交
6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
            import paddle.fluid as fluid
            import numpy as np

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(fluid.layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
                                   param_attr='embed', is_sparse=True)
                embs.append(emb)

            embs = fluid.layers.concat(input=embs, axis=1)
            loss = fluid.layers.nce(input=embs, label=words[label_word],
                      num_total_classes=dict_size, param_attr='nce.w_0',
                      bias_attr='nce.b_0')

             #or use custom distribution
             dist = np.array([0.05,0.5,0.1,0.3,0.05])
             loss = fluid.layers.nce(input=embs, label=words[label_word],
                       num_total_classes=5, param_attr='nce.w_1',
                       bias_attr='nce.b_1',
                       num_neg_samples=3,
                       sampler="custom_dist",
                       custom_dist=dist)
6773
    """
Y
Yang Yu 已提交
6774 6775 6776
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
6777 6778

    dim = input.shape[1]
Y
Yang Yu 已提交
6779 6780 6781 6782 6783 6784
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
6785
    inputs = {}
C
chengduo 已提交
6786 6787 6788 6789 6790 6791 6792
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
6793 6794 6795
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
6796

6797 6798 6799 6800
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
6801 6802 6803 6804 6805 6806 6807

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
6808 6809
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
6810
        custom_dist_len = num_total_classes
6811 6812 6813 6814 6815 6816
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
6817
            if normal_prob - 1.0 > 0:
6818
                bigs.append((i, normal_prob))
6819
            elif 1.0 - normal_prob > 0:
6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
6835
            if big_left - 1.0 > 0:
6836
                bigs.append((big_idx, big_left))
6837
            elif 1.0 - big_left > 0:
6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
6867 6868 6869 6870
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

6871 6872 6873 6874 6875
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

6876 6877 6878 6879
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6880

Y
Yang Yu 已提交
6881 6882
    attrs = {
        'num_total_classes': int(num_total_classes),
6883 6884
        'num_neg_samples': num_neg_samples,
        'seed': seed,
6885
        'sampler': sampler,
6886 6887
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
6888
    }
Y
Yang Yu 已提交
6889 6890 6891

    helper.append_op(
        type='nce',
C
chengduo 已提交
6892
        inputs=inputs,
Y
Yang Yu 已提交
6893 6894 6895 6896 6897 6898
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
6899
    return cost / (num_neg_samples + 1)
6900 6901


C
chengduo 已提交
6902 6903
def hsigmoid(input,
             label,
6904
             num_classes,
C
chengduo 已提交
6905 6906
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
6907
             name=None,
6908 6909 6910
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
6911
             is_sparse=False):
W
weixing02 已提交
6912 6913
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
6914
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
6915
    complete binary tree, or you can use is_custom to pass your own tree to
6916
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
6917 6918 6919 6920 6921 6922
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

6923
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
6924
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
6925

6926 6927
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
6928 6929 6930 6931
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
6932
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
6933
       related to the same batch of inputs.
6934

W
weixing02 已提交
6935
    Args:
M
minqiyang 已提交
6936
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
6937 6938 6939 6940
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
6941 6942
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
6943
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
6955
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
6956
            it should be in leaf -> root order
M
minqiyang 已提交
6957 6958 6959
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
6960
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
6961
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
6962
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
6963
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
6964
             of W and input will be sparse.
W
weixing02 已提交
6965 6966

    Returns:
J
JiabinYang 已提交
6967
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
6968 6969 6970 6971 6972

    Examples:

        .. code-block:: python

6973
            import paddle.fluid as fluid
G
guosheng 已提交
6974 6975 6976
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
6977 6978 6979 6980
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6981 6982
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
6983
    dim = input.shape[1]
6984
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
6985 6986 6987
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

6988 6989 6990 6991 6992 6993 6994 6995 6996
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

6997
    if (is_custom) and (path_code is None):
6998
        raise ValueError("path_code should not be None with custom tree")
6999
    elif (is_custom) and (path_table is None):
7000
        raise ValueError("path_table should not be None with custom tree")
7001
    elif (is_custom) and (num_classes is None):
7002
        raise ValueError("num_classes should not be None with custom tree")
7003 7004 7005
    else:
        pass

J
JiabinYang 已提交
7006
    weights = None
7007 7008 7009 7010
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
7011
    if not is_custom:
J
JiabinYang 已提交
7012 7013 7014 7015 7016 7017 7018 7019
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
7020
            shape=[num_classes, dim],
J
JiabinYang 已提交
7021 7022
            is_bias=False,
            dtype=input.dtype)
7023 7024 7025
    inputs = {
        "X": input,
        "W": weights,
7026
        "PathTable": path_table,
7027
        "PathCode": path_code,
7028 7029
        "Label": label
    }
W
weixing02 已提交
7030
    if helper.bias_attr:
7031
        if not is_custom:
J
JiabinYang 已提交
7032 7033
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
7034
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
7035 7036 7037 7038 7039 7040
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
7041
                shape=[num_classes, 1],
J
JiabinYang 已提交
7042 7043 7044
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
7045 7046
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
7047
        inputs=inputs,
W
weixing02 已提交
7048
        outputs={"Out": out,
7049 7050 7051 7052 7053 7054 7055
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
7056 7057 7058
    return out


Y
fix ci.  
ying 已提交
7059
def transpose(x, perm, name=None):
Y
ying 已提交
7060 7061 7062 7063 7064 7065 7066
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
7067 7068 7069
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
7070 7071 7072 7073 7074 7075 7076

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

7077
            # use append_batch_size=False to avoid prepending extra
7078
            # batch size in shape
7079
            import paddle.fluid as fluid
7080
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
7081
                            dtype='float32', append_batch_size=False)
7082
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
7083 7084
    """

Y
fix ci.  
ying 已提交
7085
    if len(perm) != len(x.shape):
Y
ying 已提交
7086 7087
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
7088
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
7089 7090 7091 7092 7093 7094
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
7095 7096

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
7097 7098
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
7099
    helper.append_op(
7100
        type='transpose2',
Y
fix ci.  
ying 已提交
7101
        inputs={'X': [x]},
7102 7103
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
7104 7105
        attrs={'axis': perm})
    return out
7106 7107


7108 7109 7110 7111 7112 7113 7114
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
7115
    """
7116 7117 7118 7119 7120 7121 7122
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

7151 7152 7153 7154 7155 7156 7157 7158 7159
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

7160 7161 7162
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
7163 7164 7165 7166 7167
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
7195 7196 7197
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

7210
            output.dims = {8, 8}
7211

7212
            output.lod = [[4, 4]]
7213

T
Tink_Y 已提交
7214
    Examples:
7215 7216 7217

        .. code-block:: python

B
Bai Yifan 已提交
7218 7219 7220
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
7221
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
7222 7223
                input=data, stride=[1, 1], filter_size=[2, 2])

7224 7225

    """
L
lujun 已提交
7226
    assert not in_dygraph_mode(), (
7227
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
7228 7229 7230 7231 7232 7233 7234 7235 7236 7237

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
7238
    inputs = {"X": input}
7239
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
7240 7241 7242 7243 7244
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
7245
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
7246
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
7247
    helper.append_op(
7248
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
7249
    return out
7250 7251


Y
yuyang18 已提交
7252
@templatedoc()
7253
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
7254 7255
    """
    ${comment}
7256 7257

    Args:
Y
yuyang18 已提交
7258
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
7259 7260
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
7261 7262 7263 7264 7265
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
7266
        ${out_comment}.
7267 7268

    Examples:
Y
yuyang18 已提交
7269 7270 7271 7272
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
7273 7274 7275 7276 7277 7278
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
7279
    out = helper.create_variable_for_type_inference(dtype)
7280 7281 7282 7283 7284
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
7285
    return helper.append_activation(out)
7286 7287


Y
yuyang18 已提交
7288
@templatedoc()
7289 7290
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
7291 7292
    ${comment}

L
lujun 已提交
7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
7336 7337

    Args:
Y
yuyang18 已提交
7338 7339
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
7340 7341

    Returns:
Y
yuyang18 已提交
7342
        ${out_comment}.
7343 7344
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
7345 7346 7347 7348 7349

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
7350
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
7351 7352 7353 7354 7355 7356
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
7357 7358


7359 7360 7361
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
7362
                               ignore_index=kIgnoreIndex,
7363
                               numeric_stable_mode=True,
7364 7365
                               return_softmax=False,
                               axis=-1):
7366 7367
    """
    **Softmax With Cross Entropy Operator.**
7368

7369
    Cross entropy loss with softmax is used as the output layer extensively. This
7370 7371 7372
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
7373

7374 7375 7376
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
7377

7378 7379 7380 7381
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
7382

7383
    The equation is as follows:
7384

7385
    1) Hard label (one-hot label, so every sample has exactly one class)
7386

7387 7388 7389 7390
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
7391

7392 7393 7394
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
7395

7396 7397 7398 7399
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

7400 7401
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
7402 7403

    .. math::
7404

H
haowang101779990 已提交
7405
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
7406

H
haowang101779990 已提交
7407
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
7408

H
haowang101779990 已提交
7409
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
7410 7411 7412

    and then cross entropy loss is calculated by softmax and label.

7413
    Args:
7414 7415 7416 7417 7418 7419
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
7420
        soft_label (bool): A flag to indicate whether to interpretate the given
7421
            labels as soft labels. Default False.
M
minqiyang 已提交
7422 7423
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
7424 7425
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
7426 7427
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
7428 7429 7430 7431
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
7432
                                    Note that the speed may be slower when use
7433
                                    stable algorithm. Default: True
7434
        return_softmax (bool): A flag indicating whether to return the softmax
7435
                               along with the cross entropy loss. Default: False
7436 7437 7438
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
7439

7440
    Returns:
H
haowang101779990 已提交
7441 7442
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
7443 7444 7445 7446
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
7447 7448 7449 7450

    Examples:
        .. code-block:: python

7451 7452
            import paddle.fluid as fluid

7453 7454 7455
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
7456 7457
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
7458 7459
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
7460 7461
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
7462 7463 7464 7465 7466 7467
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
7468 7469 7470
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
7471 7472
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
7473
        })
7474 7475 7476 7477

    if return_softmax:
        return loss, softmax

7478 7479 7480
    return loss


7481 7482 7483
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
7484
                                       num_true=1,
7485
                                       remove_accidental_hits=True,
X
xuezhong 已提交
7486 7487 7488
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
7489
                                       seed=0):
X
xuezhong 已提交
7490 7491 7492 7493 7494
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
7495
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
7496 7497 7498 7499 7500 7501 7502 7503
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
7504
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
7505 7506 7507 7508 7509 7510 7511 7512
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
7513
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
7525
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
7526 7527 7528 7529 7530
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
7531
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
7532
            logits.
X
xuezhong 已提交
7533 7534 7535 7536 7537
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
7538 7539 7540
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
7541 7542 7543 7544 7545 7546 7547
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

7548 7549 7550
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
7551
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
7552
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
7553
            out = fluid.layers.sampled_softmax_with_cross_entropy(
7554
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
7555 7556 7557 7558 7559 7560 7561 7562
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
7563 7564
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
7565 7566
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
7567 7568 7569 7570 7571

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
7572
            'Labels': label,
X
xuezhong 已提交
7573 7574
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
7575 7576 7577 7578
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
7579
            'SampledLabels': sampled_label,
7580 7581 7582
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
7583 7584
        },
        attrs={
X
xuezhong 已提交
7585
            'use_customized_samples': use_customized_samples,
7586
            'uniq': True,
X
xuezhong 已提交
7587 7588 7589 7590
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
7591 7592
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
7593 7594 7595 7596 7597 7598
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

7599 7600
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
7601
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
7602
                'Label': sampled_softlabel},
X
xuezhong 已提交
7603 7604 7605
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
7606
            'soft_label': True,
X
xuezhong 已提交
7607 7608 7609
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
7610
    return loss / num_true
X
xuezhong 已提交
7611 7612


7613 7614
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
7615 7616
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
7617
    For each instance, it computes the smooth L1 loss element by element first
7618
    and then sums all the losses. So the shape of ouput Variable is
7619
    [batch_size, 1].
7620

7621 7622
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
7623
            L1 loss op with shape [batch_size, dim1, ..., dimN].
7624
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
7625
            L1 loss op with same shape as :attr:`x`.
7626
        inside_weight (Variable|None):  A tensor with rank at least 2. This
7627 7628
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
7629
            by this tensor element by element.
7630
        outside_weight (Variable|None): A tensor with rank at least 2. This
7631 7632
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
7633
            element by element.
7634
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
7635 7636
           scalar with default value 1.0.

7637
    Returns:
7638
        Variable: The output smooth L1 loss with shape [batch_size, 1].
7639 7640 7641 7642

    Examples:
        .. code-block:: python

7643
            import paddle.fluid as fluid
7644
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
7645 7646
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
7647
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
7648
            out = fluid.layers.smooth_l1(x=fc, y=label)
7649
    """
7650

7651
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
7652 7653
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
7654 7655 7656 7657 7658 7659 7660 7661 7662 7663
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
7664
        attrs={'sigma': sigma if sigma is not None else 1.0})
7665
    return loss
7666 7667


7668
def one_hot(input, depth, allow_out_of_range=False):
7669
    """
Y
Yibing Liu 已提交
7670
    This layer creates the one-hot representations for input indices.
7671 7672

    Args:
Y
Yibing Liu 已提交
7673 7674
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
7675 7676 7677 7678
        allow_out_of_range(bool): A bool value indicating whether the input
            indices could be out of range [0, depth). When input indices are
            out of range, exceptions is raised if allow_out_of_range is False,
            or zero-filling representations is created if it is set True
7679 7680

    Returns:
Y
Yibing Liu 已提交
7681
        Variable: The one-hot representations of input.
7682 7683

    Examples:
C
caoying03 已提交
7684
        .. code-block:: python
7685

7686
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
7687 7688
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
7689 7690
    """
    helper = LayerHelper("one_hot", **locals())
7691

X
Xin Pan 已提交
7692
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
7693 7694 7695 7696 7697 7698 7699 7700 7701 7702

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
7703
            depth.stop_gradient = True
7704 7705
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
7706 7707
    helper.append_op(
        type="one_hot",
7708 7709
        inputs=inputs,
        attrs=attrs,
7710 7711
        outputs={'Out': one_hot_out})
    one_hot_out.stop_gradient = True
7712
    return one_hot_out
Y
Yu Yang 已提交
7713 7714


Y
Yu Yang 已提交
7715
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
7716
    """
Y
yi.wu 已提交
7717 7718 7719
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
7720 7721 7722 7723 7724 7725

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

7726 7727
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
7728 7729 7730 7731

    Examples:
        .. code-block:: python

7732
           import paddle.fluid as fluid
Y
yi.wu 已提交
7733
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
7734
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
7735 7736
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
7737 7738
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
7739 7740 7741 7742 7743
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
7744
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
7745
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
7746 7747
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
7748
            outputs={'Out': [counter]},
7749
            attrs={'step': float(step)})
Y
Yu Yang 已提交
7750 7751 7752
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
7753 7754


7755
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
7756
    """
C
caoying03 已提交
7757 7758
    Gives a new shape to the input Tensor without changing its data.

7759
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
7760
    :attr:`shape` is a list of integer or tensor variable while :attr:`actual_shape` is a tensor
7761
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
7762
    if it is provided and it only contains integer, while :attr:`shape` still should be set correctly to
7763
    gurantee shape inference in compile-time.
C
caoying03 已提交
7764

7765
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
7766

7767 7768 7769 7770
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

7771
    2. 0 means the actual dimension value is going to be copied from the
7772 7773 7774 7775
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
7776 7777

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
7778
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
7779
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
7780

7781
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
7782 7783
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
7784 7785
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
7786
    dimensions.
C
caoying03 已提交
7787

7788
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
7789 7790 7791 7792
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
7793

7794 7795
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the future and only use :attr:`shape` instead.

C
caoying03 已提交
7796
    Args:
7797
        x(variable): The input tensor.
7798 7799 7800 7801
        shape(list|tuple|Variable): The new shape. At most one dimension of the new shape can
                     be -1. If :attr:`shape` is a list or tuple, it can contain Variable or not and
                     the shape of Variable must be [1].

7802 7803 7804 7805
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
7806 7807 7808 7809
                                than :attr:`shape(list|tuple)` but not :attr:`shape(Variable)`. \
                                This argument :attr:`actual_shape` will be removed in a future version. \
                                Instructions for updating: :attr:`actual_shape` is deprecated,
                                only use :attr:`shape` instead.
7810 7811
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
7812 7813 7814
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
7815
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
7816
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
7817

7818
    Returns:
G
guosheng 已提交
7819 7820 7821 7822
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
7823

X
Xin Pan 已提交
7824 7825 7826
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
7827 7828
    Examples:
        .. code-block:: python
G
guosheng 已提交
7829

7830
            import paddle.fluid as fluid
7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            data_1 = fluid.layers.data(
                name='data_1', shape=[2, 4, 6], dtype='float32')
            reshaped_1 = fluid.layers.reshape(
                x=data_1, shape=[-1, 0, 3, 2], inplace=True)

            # example 2:
            # attr shape is a list which contains tensor Variable.
            data_2 = fluid.layers.fill_constant([2,25], "int32", 3)
            dim = fluid.layers.fill_constant([1], "int32", 5)
            reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10])
C
caoying03 已提交
7844 7845
    """

7846 7847 7848
    if not isinstance(shape, (list, tuple, Variable)):
        raise TypeError(
            "Input shape must be an Variable or python list or tuple.")
7849

7850 7851
    if not isinstance(actual_shape, Variable) and (actual_shape is not None):
        raise TypeError("actual_shape should either be Variable or None.")
7852

7853
    helper = LayerHelper("reshape2", **locals())
7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896
    inputs = {"X": x}
    attrs = {}

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension in shape can be unknown.")
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The indice of 0s in shape can not exceed Rank(X).")
                else:
                    assert dim_size > 0, (
                        "Each dimension size given in shape must not be negtive "
                        "except one unknown dimension.")
        return attrs_shape

7897 7898 7899 7900
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["Shape"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
            if contain_var(shape):
                inputs['ShapeTensor'] = get_new_shape_tensor(shape)
            elif isinstance(actual_shape, Variable):
                actual_shape.stop_gradient = True
                inputs["Shape"] = actual_shape
7913

7914 7915
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
7916
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
7917
    helper.append_op(
7918
        type="reshape2",
X
Xin Pan 已提交
7919
        inputs=inputs,
7920
        attrs=attrs,
7921 7922
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
7923

D
dzhwinter 已提交
7924
    return helper.append_activation(out)
7925

7926

7927
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
7928
    """
M
minqiyang 已提交
7929 7930 7931
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
7932
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
7933

H
haowang101779990 已提交
7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
7955

Y
Yibing Liu 已提交
7956
    Args:
7957
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
7958
        axes (list): List of integers, indicating the dimensions to be squeezed.
7959
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7960 7961 7962 7963 7964 7965 7966

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

7967
            import paddle.fluid as fluid
7968
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
7969
            x = layers.data(name='x', shape=[5, 1, 10])
7970
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7971
    """
L
lujun 已提交
7972
    assert not in_dygraph_mode(), (
L
lujun 已提交
7973
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
7974
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
7975 7976
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7977
    helper.append_op(
7978
        type="squeeze2",
7979
        inputs={"X": input},
Y
Yibing Liu 已提交
7980
        attrs={"axes": axes},
7981 7982
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7983

7984 7985 7986
    return out


7987
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
7988
    """
M
minqiyang 已提交
7989 7990 7991
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
7992

M
minqiyang 已提交
7993
    For example:
H
haowang101779990 已提交
7994 7995 7996

    .. code-block:: text

M
minqiyang 已提交
7997
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
7998
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
7999

Y
Yibing Liu 已提交
8000
    Args:
8001
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
8002
        axes (list): List of integers, indicating the dimensions to be inserted.
8003
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
8004 8005 8006 8007 8008 8009 8010

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

8011 8012 8013
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
8014 8015
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
8016 8017
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
8018
    helper.append_op(
8019
        type="unsqueeze2",
8020
        inputs={"X": input},
Y
Yibing Liu 已提交
8021
        attrs={"axes": axes},
8022 8023
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
8024

8025 8026
    return out

8027

Y
yangyaming 已提交
8028
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
8029
    """
Y
Yibing Liu 已提交
8030
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
8031 8032 8033 8034
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
8035
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
8036 8037 8038 8039 8040 8041

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
8042
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
8043 8044 8045
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

8046
            target_lod: [4, 2]
Y
yangyaming 已提交
8047 8048

            then we get a 1-level LoDTensor:
8049
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
8050 8051 8052 8053 8054 8055
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
8056
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
8057 8058 8059 8060
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
8061
                y.data = [[2, 4]]
Y
yangyaming 已提交
8062 8063 8064
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
8065
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
8066 8067 8068 8069 8070 8071
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
8072
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
8073 8074 8075 8076
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
8077
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
8078 8079 8080 8081
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
8082
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
8083 8084 8085 8086
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
8087
        x (Variable): Input variable which could be a Tensor or LoDTensor.
8088
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
8089
                           from :attr:`y`.
Y
yangyaming 已提交
8090
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
8091
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
8092 8093

    Returns:
Y
Yibing Liu 已提交
8094
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
8095 8096

    Raises:
Y
Yibing Liu 已提交
8097
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
8098 8099 8100 8101

    Examples:
        .. code-block:: python

8102
            import paddle.fluid as fluid
8103 8104 8105
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
8106 8107
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
8108
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
8146
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
8147 8148 8149 8150 8151 8152

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
8153

8154 8155 8156 8157 8158 8159 8160 8161 8162 8163
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
8164 8165 8166
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

8167 8168
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8169 8170 8171 8172 8173 8174 8175 8176

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
8177
    helper.append_op(
8178
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
8179
    return out
D
dragonwarrior 已提交
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
8191
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

8220
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
8221 8222
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
8235 8236 8237
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
8251 8252 8253 8254


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
8255
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
8256
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
8257

G
guosheng 已提交
8258
    Specifically, the number of values padded before the contents of :attr:`x`
8259
    in dimension :attr:`i` is indicated by :attr:`paddings[2i]`, and the number
G
guosheng 已提交
8260
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
8261
    indicated by :attr:`paddings[2i+1]`.
G
guosheng 已提交
8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
8284
                         The length of :attr:paddings must be
G
guosheng 已提交
8285 8286 8287 8288 8289 8290 8291 8292 8293 8294
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
8295

G
guosheng 已提交
8296
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
8297 8298
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
8299 8300 8301 8302 8303
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8304
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
8305 8306 8307 8308 8309 8310 8311
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
8312 8313


C
chengduo 已提交
8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
8345 8346
		And
            pad_value = -1,
C
chengduo 已提交
8347

T
Tink_Y 已提交
8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
8378 8379 8380
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
8381 8382 8383 8384 8385
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8386
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
8387 8388 8389 8390 8391 8392 8393 8394 8395
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


8396 8397 8398 8399 8400 8401 8402
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
8403 8404
    called label-smoothing regularization (LSR).

8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
8428
                              be :math:`(1, class\_num)`.
8429 8430
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
8431
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
8432 8433 8434 8435 8436 8437 8438 8439 8440
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
8441
            
8442
            import paddle.fluid as fluid
8443
            import paddle.fluid.layers as layers
8444 8445 8446 8447 8448 8449 8450 8451 8452 8453

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
8454
    smooth_label = helper.create_variable_for_type_inference(dtype)
8455 8456 8457 8458 8459 8460 8461
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
8462 8463


W
wopeizl 已提交
8464 8465 8466 8467 8468 8469 8470
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
8471 8472 8473 8474 8475
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
W
wopeizl 已提交
8476 8477 8478 8479 8480 8481 8482 8483 8484 8485
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
8516 8517


J
jerrywgz 已提交
8518 8519 8520 8521 8522 8523
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
8524 8525
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
8526 8527 8528 8529 8530
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
8531
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
W
wangguanzhong 已提交
8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542
            a 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. The 
            data type is float32 or float64. Given as [[x1, y1, x2, y2], ...], 
            (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
            right coordinates. 
        pooled_height (int32, optional): ${pooled_height_comment} Default: 1
        pooled_width (int32, optional): ${pooled_width_comment} Default: 1
        spatial_scale (float32, optional): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(int32, optional): ${sampling_ratio_comment} Default: -1
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
8543 8544

    Returns:
W
wangguanzhong 已提交
8545 8546 8547 8548 8549
        Variable:

        Output: ${out_comment}.


J
jerrywgz 已提交
8550 8551 8552
    Examples:
        .. code-block:: python

8553
            import paddle.fluid as fluid
J
jerrywgz 已提交
8554 8555 8556 8557
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
8558 8559 8560
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
8561 8562 8563 8564 8565 8566
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8567
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
8608 8609
        .. code-block:: python

S
SunGaofeng 已提交
8610 8611 8612
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
8613
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
8614
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
8615 8616
    """
    label = one_hot(label, depth=input.shape[-1])
8617
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
8618 8619 8620 8621 8622 8623
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
8624 8625


8626 8627 8628 8629
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
8630
                 resample='BILINEAR',
8631 8632
                 actual_shape=None,
                 align_corners=True,
8633 8634
                 align_mode=1,
                 data_format='NCHW'):
8635
    """
Q
qiaolongfei 已提交
8636
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
8637

8638 8639 8640 8641
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w) 
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape 
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels), 
    and the resizing only applies on the three dimensions(depth, hight and width).
8642

8643
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
8644 8645
    future and only use :attr:`out_shape` instead.

8646
    Supporting resample methods:
Q
update  
qiaolongfei 已提交
8647

8648
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
8649

K
Kaipeng Deng 已提交
8650 8651
        'TRILINEAR' : Trilinear interpolation

8652
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
8653

8654 8655 8656 8657 8658 8659 8660 8661 8662 8663
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
8664 8665 8666 8667 8668
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tink2123 已提交
8669
    Align_corners and align_mode are optinal parameters,the calculation method 
8670 8671 8672 8673
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
8674
    .. code-block:: text
8675

T
Tink_Y 已提交
8676
        For scale:
8677
          
T
Tink_Y 已提交
8678
            if align_corners = True && out_size > 1 :
8679

T
Tink_Y 已提交
8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
8691

T
Tink_Y 已提交
8692 8693
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8694

T
Tink_Y 已提交
8695 8696
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
8697

T
Tink_Y 已提交
8698 8699
          else:
              align_corners = True
8700

T
Tink_Y 已提交
8701 8702
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8703

T
Tink_Y 已提交
8704 8705
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8706

T
Tink_Y 已提交
8707 8708 8709 8710 8711 8712 8713 8714 8715 8716
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
8717

T
Tink_Y 已提交
8718 8719 8720 8721
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8722

T
Tink_Y 已提交
8723 8724
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
8725

K
Kaipeng Deng 已提交
8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
8748 8749 8750 8751 8752 8753
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
8754 8755 8756
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

8757 8758


8759
    Args:
8760 8761
        input (Variable): 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
8762
        out_shape(list|tuple|Variable|None): Output shape of image resize
8763 8764 8765 8766
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor and is
             (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If 
             a list, each element can be an integer or a Tensor Variable of shape: [1].
             If a Tensor Variable, its dimensions size should be a 1.
8767 8768 8769
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
8770
             Default: None.
8771 8772
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
8773 8774
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
8775 8776 8777
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8778
                                :attr:`out_shape` and :attr:`scale` specifying
8779 8780
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8781 8782 8783 8784 8785 8786
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
8787
                                Default: None
8788 8789 8790 8791
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
8792
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
8793
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
8794 8795 8796 8797 8798 8799
                            src_idx = scale*dst_index.
        data_format(str, optional): NCHW(num_batches, channels, height, width) or 
                                    NHWC(num_batches, height, width, channels) for 4-D Tensor,
                                    NCDHW(num_batches, channels, depth, height, width) or 
                                    NDHWC(num_batches, depth, height, width, channels) for 5-D Tensor.
                                    Default: 'NCHW'.
8800 8801

    Returns:
8802 8803
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
8804

8805 8806 8807
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
8808 8809 8810 8811
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
8812
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
8813 8814
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
8815
        ValueError: scale should be greater than zero.
8816 8817
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
8818
        ValueError: data_format can only be 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
8819

8820 8821 8822
    Examples:
        .. code-block:: python

8823
            import paddle.fluid as fluid
8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849
            input = fluid.layers.data(name="input", shape=[3, 6, 9], dtype="float32")
            # input.shape = [-1, 3, 6, 9], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
            # out0.shape = [-1, 3, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.image_resize(input, out_shape=[12, dim1], resample="NEAREST")
            # out1.shape = [-1, 3, 12, -1]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.image_resize(input, out_shape=shape_tensor, resample="NEAREST")
            # out2.shape = [-1, 3, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.image_resize(input, out_shape=[4, 4], resample="NEAREST", actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.image_resize(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1]

8850
    """
8851 8852
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
8853
        'TRILINEAR': 'trilinear',
8854 8855
        'NEAREST': 'nearest',
    }
8856 8857
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
8858 8859
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
8860
    resample_type = resample_methods[resample]
8861

K
Kaipeng Deng 已提交
8862 8863 8864 8865 8866
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

8867 8868 8869 8870 8871
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

8872
    if out_shape is None and scale is None:
8873
        raise ValueError("One of out_shape and scale must not be None.")
8874
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
8875
    dtype = helper.input_dtype()
8876

8877 8878 8879 8880 8881 8882 8883 8884 8885
    if len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

8886 8887 8888
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

8889 8890 8891 8892 8893
    if data_format == 'NCHW' or data_format == 'NCDHW':
        data_layout = 'NCHW'
    if data_format == 'NHWC' or data_format == 'NDHWC':
        data_layout = 'NHWC'

8894
    inputs = {"X": input}
D
dengkaipeng 已提交
8895
    attrs = {
8896 8897 8898
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
8899 8900
        "interp_method": resample_type,
        "align_corners": align_corners,
8901 8902
        "align_mode": align_mode,
        "data_layout": data_layout
D
dengkaipeng 已提交
8903 8904
    }

8905
    if out_shape is not None:
8906
        if isinstance(out_shape, Variable):
8907
            out_shape.stop_gradient = True
8908
            inputs['OutSize'] = out_shape
8909 8910
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
8911 8912
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

K
Kaipeng Deng 已提交
8941 8942 8943 8944
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
8945 8946 8947 8948 8949 8950 8951
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
8952 8953 8954 8955
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
8956 8957 8958 8959 8960 8961 8962 8963 8964
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
8965

8966
    else:
8967 8968 8969 8970 8971 8972 8973
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        if isinstance(scale, float):
            if scale <= 0:
                raise ValueError("scale should be greater than zero.")
            attrs['scale'] = float(scale)
8974

8975
    if isinstance(actual_shape, Variable):
8976 8977 8978 8979 8980
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
8981 8982 8983 8984
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
8985
    out = helper.create_variable_for_type_inference(dtype)
8986
    helper.append_op(
8987
        type='{}_interp'.format(resample_type),
8988
        inputs=inputs,
8989
        outputs={"Out": out},
D
dengkaipeng 已提交
8990
        attrs=attrs)
8991
    return out
F
stash  
fengjiayi 已提交
8992 8993


8994
@templatedoc(op_type="bilinear_interp")
8995 8996 8997 8998
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
8999 9000
                    actual_shape=None,
                    align_corners=True,
9001 9002
                    align_mode=1,
                    data_format='NCHW'):
9003
    """
9004 9005
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
9006 9007
    in priority order.

9008 9009 9010
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in 
    the future and only use :attr:`out_shape` instead.

9011 9012 9013 9014
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
9015 9016
    again in the other direction.

9017
    For details of bilinear interpolation, please refer to Wikipedia:
9018
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
9019

T
tink2123 已提交
9020
    Align_corners and align_mode are optinal parameters,the calculation 
9021 9022 9023 9024
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
9025
    .. code-block:: text
9026

T
Tink_Y 已提交
9027
        For scale:
9028
          
T
Tink_Y 已提交
9029
            if align_corners = True && out_size > 1 :
9030

T
Tink_Y 已提交
9031 9032 9033 9034
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
9035
              scale_factor = float(in_size/out_size)
9036

T
Tink_Y 已提交
9037 9038 9039 9040 9041 9042 9043 9044 9045 9046
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
9047

T
Tink_Y 已提交
9048
          else:
T
tink2123 已提交
9049

T
Tink_Y 已提交
9050 9051 9052 9053
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
9054

Y
yuyang18 已提交
9055
    Args:
9056 9057
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
9058
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
9059
            layer, the shape is (out_h, out_w).Default: None. If a list, each 
9060 9061
            element can be an integer or a Tensor Variable with shape: [1]. If a 
            Tensor Variable, its dimension size should be 1.
9062
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
9063
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
9064
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
9065
             Default: None.
Y
yuyang18 已提交
9066
        name(str|None): The output variable name.
9067 9068 9069
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
9070
                                :attr:`out_shape` and :attr:`scale` specifying
9071 9072
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
9073 9074 9075 9076 9077 9078
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
9079
                                Default: None
9080 9081
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
9082 9083
        data_format(str, optional): NCHW(num_batches, channels, height, width) or 
                                    NHWC(num_batches, height, width, channels). Default: 'NCHW'.
Y
yuyang18 已提交
9084 9085

    Returns:
9086 9087
        A 4-D Tensor in shape of (num_batches, channels, out_h, out_w) or
        (num_batches, out_h, out_w, channels).
9088 9089 9090 9091

    Examples:
        .. code-block:: python

9092
            import paddle.fluid as fluid
9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117
            input = fluid.layers.data(name="input", shape=[3, 6, 9], dtype="float32")
            # input.shape = [-1, 3, 6, 9], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
            # out0.shape = [-1, 3, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.resize_bilinear(input, out_shape=[12, dim1])
            # out1.shape = [-1, 3, 12, -1]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.resize_bilinear(input, out_shape=shape_tensor)
            # out2.shape = [-1, 3, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.resize_bilinear(input, out_shape=[4, 4], actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.resize_bilinear(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1]
9118 9119
    """

9120
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
9121
                        align_corners, align_mode, data_format)
9122 9123


K
Kaipeng Deng 已提交
9124 9125 9126 9127 9128 9129 9130
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
9131 9132
                     align_mode=1,
                     data_format='NCDHW'):
K
Kaipeng Deng 已提交
9133 9134 9135 9136 9137
    """
    Resize input by performing trilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

9138 9139 9140
    **Warning:** the parameter :attr:`actual_shape` will be deprecated 
    in the future and only use :attr:`out_shape` instead.

K
Kaipeng Deng 已提交
9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

    Align_corners and align_mode are optinal parameters,the calculation 
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
9169

K
Kaipeng Deng 已提交
9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

    Args:
9189 9190
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
K
Kaipeng Deng 已提交
9191
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
9192
            layer, the shape is (out_d, out_h, out_w). Default: None. If a list, 
9193 9194
            each element can be  an integer or a Tensor Variable with shape: [1]. If 
            a Tensor Variable, its dimension size should be 1.
9195
        scale(float|Variable|None): The multiplier for the input depth, height or width.
K
Kaipeng Deng 已提交
9196 9197 9198 9199 9200 9201 9202 9203 9204 9205
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.
        name(str|None): The output variable name.
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
9206 9207 9208 9209 9210 9211
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
K
Kaipeng Deng 已提交
9212 9213 9214
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
9215 9216 9217
        data_format(str, optional): NCDHW(num_batches, channels, depth, height, width) or 
                                    NDHWC(num_batches, depth, height, width, channels).
                                    Default: 'NCDHW'.
K
Kaipeng Deng 已提交
9218 9219

    Returns:
9220 9221
        A 5-D Tensor in shape of (num_batches, channels, out_d, out_h, out_w) or 
        (num_batches, out_d, out_h, out_w, channels).
K
Kaipeng Deng 已提交
9222 9223 9224 9225 9226

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251
            input = fluid.layers.data(name="input", shape=[3, 6, 9, 11], dtype="float32")
            # input.shape = [-1, 3, 6, 9, 11], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.resize_trilinear(input, out_shape=[12, 12, 12])
            # out0.shape = [-1, 3, 12, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.resize_trilinear(input, out_shape=[12, dim1, 4])
            # out1.shape = [-1, 3, 12, -1, 4]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="shape_tensor", shape=[3], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.resize_trilinear(input, out_shape=shape_tensor)
            # out2.shape = [-1, 3, -1, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[3], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.resize_trilinear(input, out_shape=[4, 4, 8], actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4, 8]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.resize_trilinear(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1, -1]
K
Kaipeng Deng 已提交
9252 9253 9254
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
9255
                        actual_shape, align_corners, align_mode, data_format)
K
Kaipeng Deng 已提交
9256 9257


9258
@templatedoc(op_type="nearest_interp")
9259 9260 9261 9262
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
9263
                   actual_shape=None,
9264 9265
                   align_corners=True,
                   data_format='NCHW'):
9266
    """
9267
    Resize input by performing nearest neighbor interpolation in both the
9268 9269
    height direction and the width direction based on given output shape 
    which is specified by actual_shape, out_shape and scale in priority order.
9270

9271 9272 9273
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

9274 9275
    Example:

T
Tink_Y 已提交
9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
          
        Nearest neighbor interpolation:
9288
          
T
Tink_Y 已提交
9289 9290
          if:
              align_corners = False
9291

T
Tink_Y 已提交
9292 9293
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
9294

T
Tink_Y 已提交
9295 9296
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
9297

T
Tink_Y 已提交
9298 9299
          else:
              align_corners = True
9300

T
Tink_Y 已提交
9301 9302
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
9303

T
Tink_Y 已提交
9304 9305
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
9306 9307


9308
    For details of nearest neighbor interpolation, please refer to Wikipedia:
9309
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
9310 9311

    Args:
9312 9313
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
9314
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
9315 9316 9317 9318
            layer, the shape is (out_h, out_w). Default: None. If a list, each 
            element can be integer or a tensor Variable with shape: [1]. If a 
            tensor Variable, its dimension size should be 1.
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
9319
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
9320
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
9321
             Default: None.
Y
yuyang18 已提交
9322
        name(str|None): The output variable name.
9323 9324 9325
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
9326
                                :attr:`out_shape` and :attr:`scale` specifying
9327 9328
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
9329 9330 9331 9332 9333 9334
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
9335
                                Default: None
9336
        align_corners(bool): ${align_corners_comment}
9337 9338 9339
        data_format(str, optional): NCHW(num_batches, channels, height, width) or 
                                    NHWC(num_batches, height, width, channels).
                                    Default: 'NCHW'.
Y
yuyang18 已提交
9340 9341

    Returns:
9342 9343
        A 4-D Tensor in shape of (num_batches, channels, out_h, out_w) or 
        (num_batches, out_h, out_w, channels).
9344 9345 9346 9347

    Examples:
        .. code-block:: python

9348
            import paddle.fluid as fluid
9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373
            input = fluid.layers.data(name="input", shape=[3, 6, 9], dtype="float32")
            # input.shape = [-1, 3, 6, 9], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.resize_nearest(input, out_shape=[12, 12])
            # out0.shape = [-1, 3, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.resize_nearest(input, out_shape=[12, dim1])
            # out1.shape = [-1, 3, 12, -1]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="resize_shape", shape=[2], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.resize_nearest(input, out_shape=shape_tensor)
            # out2.shape = [-1, 3, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.resize_nearest(input, out_shape=[4, 4], actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.resize_nearest(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1]
9374 9375
    """

9376 9377 9378 9379 9380 9381 9382 9383 9384 9385
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format)
9386 9387 9388 9389


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
9390 9391 9392
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
9393 9394 9395 9396 9397 9398 9399
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
9400
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
9401

9402
    Returns:
Q
update  
qiaolongfei 已提交
9403
        Variable: The output is a 4-D tensor of the shape
9404
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
9405 9406 9407 9408

    Examples:
        .. code-block:: python

9409
            import paddle.fluid as fluid
R
ruri 已提交
9410 9411
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
9412 9413 9414 9415 9416 9417 9418 9419 9420 9421
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
9422 9423 9424
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
9425 9426 9427
    return image_resize(input=input, out_shape=out_shape, resample=resample)


9428
def gather(input, index, overwrite=True):
W
whs 已提交
9429
    """
Q
qiaolongfei 已提交
9430 9431
    **Gather Layer**

9432
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
9433 9434 9435 9436
    of X indexed by `index` and concatenate them together.

    .. math::

9437
        Out = X[Index]
W
whs 已提交
9438 9439 9440 9441 9442 9443 9444


    .. code-block:: text


                Given:

9445 9446
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
9447 9448 9449 9450 9451 9452 9453 9454 9455 9456
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
9457
        input (Variable): The source input with rank>=1.
W
whs 已提交
9458
        index (Variable): The index input with rank=1.
9459 9460 9461 9462 9463 9464
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
9465 9466 9467 9468 9469

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
9470

W
whs 已提交
9471 9472
        .. code-block:: python

9473
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9474 9475
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
9476 9477 9478 9479
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
9480
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9481 9482 9483 9484
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
9485 9486
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
9487 9488 9489
    return out


9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
9542 9543 9544
        input (Variable): The source input. Its dtype should be int32, int64, float32, float64.
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank.
                          Its dtype should be int32, int64.
9545
        name (str|None): A name for this layer(optional). If set None, the
9546
                         layer will be named automatically.
9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[2, 2], dtype='int32')
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


9576
def scatter(input, index, updates, name=None, overwrite=True):
9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
9594 9595 9596 9597
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
9598 9599 9600 9601 9602 9603 9604 9605

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

9606 9607 9608 9609 9610
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
9611

9612
            output = fluid.layers.scatter(input, index, updates)
9613 9614 9615
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
9616
    out = helper.create_variable_for_type_inference(dtype)
9617 9618 9619 9620 9621
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
9622
        attrs={'overwrite': overwrite},
9623 9624 9625 9626
        outputs={"Out": out})
    return out


9627 9628 9629 9630 9631
def scatter_nd_add(ref, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
9632 9633 9634
    or slice in a Variable. 

    :attr:`ref` is a Tensor with rank :math:`R` 
9635 9636 9637 9638
    and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` 
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` 
    is a Tensor with rank :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
9639

9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670
    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`ref` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text
        
        Given:

        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:
             
            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:
             
            output = [[67, 19], [-16, -27]]

    Args:
9671
        ref (Variable): The ref input. Its dtype should be int32, int64, float32, float64.
9672 9673
        index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
                          Its dtype should be int32 or int64 as it is used as indexes.
9674 9675 9676
        updates (Variable): The updated value of scatter_nd_add op, and it must have the same dtype
                            as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:].
        name (str|None): The output variable name. If set None, the layer will be named automatically.
9677 9678

    Returns:
9679
        output (Variable): The output is a tensor with the same shape and dtype as ref.
9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            ref = fluid.layers.data(name='ref', shape=[3, 5, 9, 10], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3, 2], dtype='int32', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 9, 10], dtype='float32', append_batch_size=False)

            output = fluid.layers.scatter_nd_add(ref, index, updates)
    """
    if ref.dtype != updates.dtype:
        raise ValueError("ref and updates must have same data type.")

    helper = LayerHelper('scatter_nd_add', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="scatter_nd_add",
        inputs={"X": ref,
                "Index": index,
                "Updates": updates},
        outputs={"Out": output})
    return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according 
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the 
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` 
    is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . 
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated. 
    Because of the numerical approximation issues, the different order of repeated elements 
    in :attr:`index` may cause different results. The specific calculation method can be 
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
9728
        updates (Variable): The updated value of scatter_nd op. Its dtype should be int32, int64, float32, float64.
9729 9730
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
9731
        name (str|None): The output variable name. If set None, the layer will be named automatically.
9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750

    Returns:
        output (Variable): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            index = fluid.layers.data(name='index', shape=[3, 2], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 9, 10], dtype='float32', append_batch_size=False)
            shape = [3, 5, 9, 10]

            output = fluid.layers.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)


Q
Qingsheng Li 已提交
9751 9752 9753 9754 9755 9756 9757 9758 9759
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
9760

Q
Qingsheng Li 已提交
9761
    Given the following input:
H
haowang101779990 已提交
9762

Q
Qingsheng Li 已提交
9763
    .. code-block:: text
H
haowang101779990 已提交
9764

Q
Qingsheng Li 已提交
9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
9777

Q
Qingsheng Li 已提交
9778
    .. code-block:: text
H
haowang101779990 已提交
9779

Q
Qingsheng Li 已提交
9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
9795
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
9796 9797 9798 9799

    Examples:

        .. code-block:: python
9800
	
9801
            import paddle.fluid as fluid
9802
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
9803

9804 9805 9806
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
9807 9808 9809
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
9810
    assert not in_dygraph_mode(), (
9811
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
9812 9813
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
9814
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
9815 9816 9817 9818 9819 9820 9821 9822 9823
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
9837

9838
    Examples:
9839
        >>> import paddle.fluid as fluid
9840 9841
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
9842
    """
F
stash  
fengjiayi 已提交
9843
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
9844
    dtype = x.dtype
X
Xin Pan 已提交
9845
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
9846
    if seed is None:
9847
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
9848
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
9849
    if isinstance(seed, int):
F
fengjiayi 已提交
9850 9851 9852 9853 9854
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
9855 9856 9857 9858
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
9859
        inputs={"X": x,
F
stash  
fengjiayi 已提交
9860 9861
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
9862 9863
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
9864
    return out
W
whs 已提交
9865 9866


9867
def log(x, name=None):
W
wanghaoshuang 已提交
9868 9869 9870 9871 9872
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

9873
        Out = \\ln(x)
W
wanghaoshuang 已提交
9874 9875

    Args:
9876
        x (Variable): Input tensor.
9877 9878
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
9879 9880 9881 9882 9883 9884 9885 9886

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

9887
            import paddle.fluid as fluid
9888
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
9889
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
9890 9891
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
9892
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9893
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
9894
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
9895 9896 9897
    return out


9898
def relu(x, name=None):
W
wanghaoshuang 已提交
9899 9900
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
9901
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
9902 9903 9904 9905
    the tensor elementwise.

    .. math::

9906
        Out = \\max(0, x)
W
wanghaoshuang 已提交
9907 9908

    Args:
9909
        x (Variable): The input tensor.
9910 9911
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
9912 9913 9914 9915 9916 9917 9918 9919

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

9920
            import paddle.fluid as fluid
9921
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
9922
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
9923 9924
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
9925
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9926
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
9927 9928
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
9929
    return out
9930 9931


C
chengduo 已提交
9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
9956 9957 9958 9959 9960 9961
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
9977 9978 9979
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
9980 9981 9982 9983
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
9984
    .. math::
9985

H
haowang101779990 已提交
9986
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
9987

9988
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
9989 9990 9991 9992 9993
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
9994
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
9995
                           Its shape should be the same as input.
9996
        num_classes (int): The possible number of labels.
W
whs 已提交
9997 9998

    Returns:
M
minqiyang 已提交
9999 10000
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
10001
                     Three variables:
M
minqiyang 已提交
10002

H
haowang101779990 已提交
10003 10004 10005
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
10006 10007 10008 10009

    Examples:

        .. code-block:: python
10010

B
Bai Yifan 已提交
10011
            import paddle.fluid as fluid
10012 10013 10014 10015
            iou_shape = [32, 32]
            num_classes = 5
            predict = fluid.layers.data(name='predict', shape=iou_shape)
            label = fluid.layers.data(name='label', shape=iou_shape)
B
Bai Yifan 已提交
10016
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
10017
                                                          num_classes)
W
whs 已提交
10018 10019 10020
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
10021 10022 10023
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
10024 10025
    helper.append_op(
        type="mean_iou",
W
whs 已提交
10026 10027
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
10028
        outputs={
W
whs 已提交
10029 10030 10031
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
10032 10033 10034
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
10035 10036 10037 10038 10039 10040


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

10041 10042 10043 10044 10045
    **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
    Instructions for updating: Use `fluid.layers.crop_tensor
    <https://www.paddlepaddle.org.cn/documentation/docs/en/api/layers/nn.html#crop_tensor>`_
    instead.

10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076
    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
10077
            by `shape`, which can be a Variable or a list/tuple of integer.
10078 10079
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
10080
            iteration. If a list/tuple of integer, it's length must be the same
10081
            as the rank of `x`
S
SunGaofeng 已提交
10082
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
10083
            offsets at each dimension. It can be a Variable or a list/tuple
S
SunGaofeng 已提交
10084
            of integers. If a tensor Variable, it's rank must be the same as `x`.
10085
            This way is suitable for the case that the offsets may be changed
10086
            each iteration. If a list/tuple of integer, it's length must be the
10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
10102
            import paddle.fluid as fluid
10103 10104 10105 10106 10107 10108
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
10109
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
10110 10111 10112 10113 10114

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
10115
            isinstance(shape, Variable)):
10116 10117 10118 10119 10120
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
10121
    out = helper.create_variable_for_type_inference(x.dtype)
10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
10139 10140


10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322
def crop_tensor(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X =  [[[0, 1, 2, 3]
                       [0, 5, 6, 7]
                       [0, 0, 0, 0]],

                      [[0, 3, 4, 5]
                       [0, 6, 7, 8]
                       [0, 0, 0, 0]]].
            and
                shape = [2, 2, 3],
                offsets = [0, 0, 1],
            output is:
                Out = [[[1, 2, 3]
                        [5, 6, 7]],

                        [[3, 4, 5]
                         [6, 7, 8]]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list|tuple of integer): The output shape is specified
            by `shape`. It can be a 1-D tensor Variable or a list/tuple. If a 
            1-D tensor Variable, it's rank must be the same as `x`. If a 
            list/tuple, it's length must be the same as the rank of `x`. Each 
            element of list can be an integer or a tensor Variable of shape: [1].
            If Variable contained, it is suitable for the case that the shape may 
            be changed each iteration. Only the first element of list/tuple can be 
            set to -1, it means that the first dimension of the output is the same 
            as the input.
        offsets (Variable|list|tuple of integer|None): Specifies the cropping
            offsets at each dimension. It can be a 1-D tensor Variable or a list/tuple.
            If a 1-D tensor Variable, it's rank must be the same as `x`. If a list/tuple, 
            it's length must be the same as the rank of `x`. Each element of list can be
            an integer or a tensor Variable of shape: [1]. If Variable contained, it is 
            suitable for the case that the offsets may be changed each iteration. If None, 
            the offsets are 0 at each dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.
        ValueError: If offsets is not None and not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.

            # shape is a 1-D tensor variable
            crop_shape = fluid.layers.data(name="crop_shape", shape=[3], dtype="int32", append_batch_size=False)
            crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
            # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.

            # or shape is a list in which each element is a constant
            crop1 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3])
            # crop1.shape = [-1, 2, 3]

            # or shape is a list in which each element is a constant or variable
            y = fluid.layers.data(name="y", shape=[3, 8, 8], dtype="float32")
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            crop2 = fluid.layers.crop_tensor(y, shape=[-1, 3, dim1, 4])
            # crop2.shape = [-1, 3, -1, 4]

            # offsets is a 1-D tensor variable
            crop_offsets = fluid.layers.data(name="crop_offsets", shape=[3], dtype="int32", append_batch_size=False)
            crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
            # crop3.shape = [-1, 2, 3]

            # offsets is a list in which each element is a constant or variable
            offsets_var =  fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
            # crop4.shape = [-1, 2, 3]

    """
    helper = LayerHelper('crop_tensor', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
            isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    if not (isinstance(offsets, list) or isinstance(offsets, tuple) or \
            isinstance(offsets, Variable)):
        raise ValueError("The offsets should be a list, tuple or Variable.")

    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def contain_var(input_list):
        for ele in input_list:
            if isinstance(ele, Variable):
                return True
        return False

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
    elif contain_var(offsets):
        new_offsets_tensor = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                assert dim >= 0, ("offsets should be greater or equal to zero.")
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
        ipts['OffsetsTensor'] = new_offsets_tensor
    else:
        attrs['offsets'] = offsets

    unk_dim_idx = -1
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_idx, dim_size in enumerate(shape):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(-1)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one element in shape can be unknown.")
                    assert dim_idx == 0, (
                        "Only the first element in shape can be -1.")
                    unk_dim_idx = dim_idx
                else:
                    assert dim_size > 0, (
                        "Each dimension size given in shape must be greater than zero."
                    )
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        attrs['shape'] = shape

    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
10340

W
whs 已提交
10341
              out_shape = [2, 3, 5, 5]
10342

W
whs 已提交
10343
          Step 1:
10344

W
whs 已提交
10345 10346 10347
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
10348

W
whs 已提交
10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
10394
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
10395
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
10408

S
SunGaofeng 已提交
10409
            import paddle.fluid as fluid
W
whs 已提交
10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
10421
            isinstance(out_shape, Variable)):
W
whs 已提交
10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


10443 10444
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
10445

10446 10447
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
10448
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
10449 10450 10451
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
10452

10453 10454
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
10455

H
haowang101779990 已提交
10456 10457
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
10458 10459
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
10460

H
haowang101779990 已提交
10461 10462 10463 10464 10465 10466 10467 10468
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
10469 10470 10471

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

10489
            import paddle.fluid as fluid
10490 10491 10492
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
10507
    out = helper.create_variable_for_type_inference("float32")
10508 10509 10510 10511 10512 10513 10514 10515

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
10516 10517


M
minqiyang 已提交
10518 10519
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
10520
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
10521
    which compares left score and right score passed in.
M
minqiyang 已提交
10522
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
10523 10524 10525

    .. math::

H
haowang101779990 已提交
10526
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
10527 10528

    Args:
M
minqiyang 已提交
10529
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
10530 10531
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
10532
       margin (float): Indicates the given margin.
M
minqiyang 已提交
10533 10534
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
10535

M
minqiyang 已提交
10536
    Returns:
M
minqiyang 已提交
10537
       Variable: The ranking loss.
H
haowang101779990 已提交
10538

M
minqiyang 已提交
10539
    Raises:
M
minqiyang 已提交
10540
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
10541

M
minqiyang 已提交
10542
    Examples:
H
haowang101779990 已提交
10543

M
minqiyang 已提交
10544
        .. code-block:: python
H
haowang101779990 已提交
10545

10546
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
10547 10548 10549
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
10550 10551
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
10552
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
10553 10554 10555 10556 10557 10558
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
10559 10560
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
10584
        .. code-block:: text
W
whs 已提交
10585

T
Tink_Y 已提交
10586
	      Given that X is a channel of image from input:
M
minqiyang 已提交
10587

T
Tink_Y 已提交
10588 10589
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
10590

T
Tink_Y 已提交
10591
	      Case 0:
M
minqiyang 已提交
10592

T
Tink_Y 已提交
10593 10594 10595
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
10596

T
Tink_Y 已提交
10597 10598 10599
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
10600

T
Tink_Y 已提交
10601
	      Case 1:
M
minqiyang 已提交
10602

T
Tink_Y 已提交
10603 10604
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
10605

T
Tink_Y 已提交
10606 10607 10608
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
10609

T
Tink_Y 已提交
10610
	      Case 2:
M
minqiyang 已提交
10611

T
Tink_Y 已提交
10612 10613
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
10614

T
Tink_Y 已提交
10615 10616 10617
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
10618 10619


W
whs 已提交
10620 10621
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
10622
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
10640 10641 10642 10643 10644
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
10645 10646 10647
    """

    helper = LayerHelper('pad2d', **locals())
10648 10649 10650 10651

    assert mode in ['reflect', 'edge', 'constant'
                    ], "mode should be one of constant, reflect, edge."

W
whs 已提交
10652
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
10653
    out = helper.create_variable_for_type_inference(dtype)
10654 10655 10656 10657 10658 10659 10660 10661 10662
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
10663
    helper.append_op(
10664
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
10665 10666 10667 10668

    return out


10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10681 10682 10683 10684 10685

    Examples:

        .. code-block:: python

10686
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10687 10688
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
10689 10690
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
10691
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10712 10713 10714 10715 10716

    Examples:

        .. code-block:: python

10717
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10718 10719
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
10720 10721
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
10722
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
10737
        factor(float|Variable|1.0): The exponential factor of Pow.
10738 10739 10740 10741 10742
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10743 10744 10745 10746 10747

    Examples:

        .. code-block:: python

10748
            import paddle.fluid as fluid
10749

Z
ZhenWang 已提交
10750
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
10751 10752 10753 10754 10755 10756 10757

            # example 1: argument factor is float
            y_1 = fluid.layers.pow(x, factor=2.0)

            # example 2: argument factor is Variable
            factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
            y_2 = fluid.layers.pow(x, factor=factor_tensor)
10758 10759
    """
    helper = LayerHelper('pow', **locals())
10760 10761 10762 10763 10764 10765 10766 10767
    inputs = {'X': x}
    attrs = {}
    if isinstance(factor, Variable):
        factor.stop_gradient = True
        inputs['FactorTensor'] = factor
    else:
        attrs['factor'] = factor

X
Xin Pan 已提交
10768
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10769
    helper.append_op(
10770
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10787 10788 10789 10790 10791

    Examples:

        .. code-block:: python

10792
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10793
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
10794
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
10795 10796
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
10797
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10820 10821 10822 10823 10824

    Examples:

        .. code-block:: python

10825
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10826 10827
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
10828 10829
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
10830
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10852 10853 10854 10855 10856

    Examples:

        .. code-block:: python

10857
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10858 10859
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
10860 10861
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
10862
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10863 10864 10865 10866 10867 10868 10869 10870
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
10871 10872 10873 10874
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
10875 10876
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
10877

J
jerrywgz 已提交
10878 10879 10880 10881 10882 10883 10884 10885
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
10886
    Args:
W
wangguanzhong 已提交
10887 10888
        x (Variable): The input Tensor or LoDTensor with data type float32.
        mode (str): The mode for weight sharing. 
J
jerrywgz 已提交
10889
        param_attr(ParamAttr|None): The parameter attribute for the learnable
W
wangguanzhong 已提交
10890 10891 10892 10893 10894
          weight (alpha), it can be create by ParamAttr. None by default.
          For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
        name(str|None): For detailed information, please refer 
          to :ref:`api_guide_Name`. Usually name is no need to set and 
          None by default. 
J
jerrywgz 已提交
10895 10896

    Returns:
W
wangguanzhong 已提交
10897 10898 10899 10900
        Variable:

        output(Variable): The tensor or LoDTensor with the same shape as input.
        The data type is float32.
J
jerrywgz 已提交
10901 10902 10903 10904 10905

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
10906 10907 10908
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
10909
            mode = 'channel'
J
jerrywgz 已提交
10910 10911 10912
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
10924
        attr=helper.param_attr,
J
jerrywgz 已提交
10925 10926 10927 10928
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
10929
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
10930 10931 10932 10933 10934 10935 10936 10937 10938
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


10939 10940 10941 10942 10943 10944 10945 10946 10947 10948
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
10949
    Returns:
10950
        output(${out_type}): ${out_comment}
10951 10952 10953

    Examples:

10954
    .. code-block:: python
10955

10956
            import paddle.fluid as fluid
H
haowang101779990 已提交
10957 10958
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
10959 10960
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
10961
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
10980
    Returns:
10981
        output(${out_type}): ${out_comment}
10982 10983 10984 10985 10986

    Examples:

        .. code-block:: python

10987
            import paddle.fluid as fluid
H
haowang101779990 已提交
10988 10989
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
10990 10991
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
10992
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
11010
    Returns:
11011
        output(${out_type}): ${out_comment}
11012 11013 11014

    Examples:

11015 11016 11017 11018 11019
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
11020
            y = fluid.layers.soft_relu(x, threshold=20.0)
11021 11022
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
11023
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
11024 11025 11026 11027 11028 11029 11030 11031
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


11032 11033 11034 11035
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
11036

H
haowang101779990 已提交
11037
    For Example:
M
minqiyang 已提交
11038

H
haowang101779990 已提交
11039
    .. code-block:: text
11040

H
haowang101779990 已提交
11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
11062 11063 11064

    Args:
        x (Variable): A tensor of rank >= axis.
11065 11066
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
11067 11068 11069 11070 11071 11072 11073 11074
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
11075 11076 11077
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
11078 11079 11080 11081
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
11082
        ValueError: If axis is not in range [0, rank(x)].
11083 11084 11085 11086 11087

    Examples:

        .. code-block:: python

11088
            import paddle.fluid as fluid
11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
11100 11101
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
11102
    helper.append_op(
11103
        type='flatten2',
11104
        inputs={"X": x},
11105 11106
        outputs={'Out': out,
                 'XShape': x_shape},
11107 11108
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
11109 11110


C
chenweihang 已提交
11111
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
11112
    """
C
chenweihang 已提交
11113
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
11114
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
11115 11116
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
11117

H
haowang101779990 已提交
11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
11135 11136

    Args:
C
chenweihang 已提交
11137 11138 11139
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
11140 11141 11142 11143 11144 11145 11146

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

11147 11148 11149
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
11150 11151
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
11152
    assert not in_dygraph_mode(), (
11153
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
11154
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
11155 11156
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
11157 11158 11159 11160 11161 11162
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
11163
    return out
11164

11165

S
sneaxiy 已提交
11166 11167 11168 11169 11170 11171 11172 11173 11174
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
11175

S
sneaxiy 已提交
11176
    .. math::
11177

S
sneaxiy 已提交
11178 11179 11180
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
11181
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
11182 11183 11184 11185
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
11186 11187 11188
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
11189 11190
    Returns:
        Variable: The output sequence mask.
11191

11192 11193 11194
    Examples:
        .. code-block:: python
	
11195
            import paddle.fluid as fluid
11196 11197 11198 11199 11200
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
11201
    """
Q
qingqing01 已提交
11202
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
11203
    if name is None:
X
Xin Pan 已提交
11204
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
11205
    else:
X
Xin Pan 已提交
11206
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
11207

11208 11209 11210 11211 11212 11213 11214 11215
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
11216
    helper.append_op(
11217 11218 11219
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
11220
    return out
S
sneaxiy 已提交
11221 11222


X
Xin Pan 已提交
11223
def stack(x, axis=0):
S
sneaxiy 已提交
11224 11225 11226 11227
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
11228 11229 11230 11231 11232 11233 11234

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
11235
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
11236
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
11237

C
chengduozh 已提交
11238 11239
    For Example:

C
chengduozh 已提交
11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
11278
    Args:
11279
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
11280
        axis (int|None): The axis along which all inputs are stacked.
11281

S
sneaxiy 已提交
11282 11283
    Returns:
        Variable: The stacked variable.
11284

11285 11286 11287
    Examples:
        .. code-block:: python

11288
            import paddle.fluid as fluid
11289
            import paddle.fluid.layers as layers
11290 11291
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
11292 11293
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
11294 11295
    """

X
Xin Pan 已提交
11296 11297 11298 11299 11300 11301
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
11302
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
11303
    helper.append_op(
S
sneaxiy 已提交
11304 11305
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
11306

X
Xin Pan 已提交
11307
    return out
D
dzhwinter 已提交
11308 11309


J
Jiawei Wang 已提交
11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379
@templatedoc(op_type="filter_by_instag")
def filter_by_instag(ins, ins_tag, filter_tag, is_lod):
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
        attrs={'is_lod': is_lod})

    return [out, loss_weight]


D
dzhwinter 已提交
11380 11381 11382 11383 11384
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
11385

D
dzhwinter 已提交
11386 11387 11388
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
11389
    raised.
D
dzhwinter 已提交
11390 11391

    Args:
M
minqiyang 已提交
11392
        x (Variable): Input variable.
D
dzhwinter 已提交
11393 11394
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
11395

D
dzhwinter 已提交
11396 11397
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
11398

11399 11400 11401 11402 11403 11404
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
11405 11406 11407 11408 11409 11410 11411 11412 11413 11414
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
11415
    for _ in range(num):
X
Xin Pan 已提交
11416
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
11417 11418 11419 11420 11421 11422 11423 11424

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
11437

W
whs 已提交
11438 11439 11440 11441
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
11442

W
whs 已提交
11443
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
11444

W
whs 已提交
11445
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
11446

W
whs 已提交
11447 11448 11449 11450
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
11451

W
whs 已提交
11452 11453
    Args:
        x (Variable): A tensor with rank in [1, 6].
L
liym27 已提交
11454
        expand_times (list|tuple|Variable): Expand times number for each dimension.
W
whs 已提交
11455 11456 11457 11458 11459 11460 11461

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
L
liym27 已提交
11462

W
wangchaochaohu 已提交
11463
            import paddle.fluid as fluid
L
liym27 已提交
11464 11465 11466 11467 11468 11469 11470 11471 11472

            # example 1:
            data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
            expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2])

            # example 2:
            data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3)
            expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4)
            expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
W
whs 已提交
11473
    """
L
liym27 已提交
11474 11475 11476 11477 11478

    if not isinstance(expand_times, (list, tuple, Variable)):
        raise ValueError(
            "Input expand_times must be an Variable, python list or tuple.")

W
whs 已提交
11479
    helper = LayerHelper('expand', input=x, **locals())
L
liym27 已提交
11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511
    inputs = {"X": x}
    attrs = {}

    def contain_var(expand_times):
        for ele in expand_times:
            if isinstance(ele, Variable):
                return True
        return False

    def get_attr_expand_times(list_expand_times):
        attrs_expand_times = []
        for idx, times in enumerate(list_expand_times):
            if isinstance(times, Variable):
                attrs_expand_times.append(-1)
            else:
                attrs_expand_times.append(times)
                assert times > 0, (
                    "Each element given in expand_times must not be negtive.")
        return attrs_expand_times

    def get_new_expand_times_tensor(list_expand_times):
        new_expand_times_tensor = []
        for ele in list_expand_times:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                new_expand_times_tensor.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                new_expand_times_tensor.append(temp_out)
        return new_expand_times_tensor
11512 11513 11514 11515 11516

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:
L
liym27 已提交
11517 11518 11519 11520 11521 11522 11523 11524
        if isinstance(expand_times, Variable):
            expand_times.stop_gradient = True
            inputs['ExpandTimes'] = expand_times
        elif isinstance(expand_times, (list, tuple)):
            attrs['expand_times'] = get_attr_expand_times(expand_times)
            if contain_var(expand_times):
                inputs['expand_times_tensor'] = get_new_expand_times_tensor(
                    expand_times)
11525

L
liym27 已提交
11526 11527
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
11528
    helper.append_op(
11529
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
11530
    return out
S
sneaxiy 已提交
11531 11532


G
fix  
gongweibao 已提交
11533 11534 11535
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
11536
@templatedoc()
G
fix  
gongweibao 已提交
11537 11538 11539 11540 11541 11542 11543 11544 11545
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
11546
    ${comment}
G
fix  
gongweibao 已提交
11547 11548

    Args:
G
gongweibao 已提交
11549 11550 11551
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
11552
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
11553 11554 11555
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
11556 11557
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
11558
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
11559

11560 11561 11562
    Examples:
        .. code-block:: python

11563
            import paddle.fluid as fluid
11564 11565
            import paddle.fluid.layers as layers 

11566 11567
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
11568 11569 11570
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
11571
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
11588 11589


G
gongweibao 已提交
11590
@templatedoc()
X
Xin Pan 已提交
11591
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
11592
    """
G
gongweibao 已提交
11593
    ${comment}
G
fix  
gongweibao 已提交
11594 11595

    Args:
G
gongweibao 已提交
11596 11597 11598 11599
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
11600 11601 11602
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
11603
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
11604

11605 11606 11607
    Examples:
        .. code-block:: python

11608
            import paddle.fluid as fluid
J
JesseyXujin 已提交
11609
            import paddle.fluid.layers as layers
11610
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
11611 11612 11613
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
11614
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
11615 11616 11617 11618 11619 11620 11621 11622 11623 11624
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
11625
            'use_mkldnn': False
G
fix  
gongweibao 已提交
11626 11627 11628 11629 11630
        })

    return out


G
gongweibao 已提交
11631
@templatedoc()
G
fix  
gongweibao 已提交
11632
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
11633
    """
G
gongweibao 已提交
11634
    ${comment}
G
fix  
gongweibao 已提交
11635 11636

    Args:
G
gongweibao 已提交
11637 11638 11639 11640
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
11641
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
11642 11643

    Returns:
G
gongweibao 已提交
11644
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
11645

11646 11647 11648
    Examples:
        .. code-block:: python

11649
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
11650
            x = fluid.layers.data(
11651 11652 11653 11654 11655
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
11656
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
11657 11658 11659
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
11660
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
11672
@templatedoc()
G
fix  
gongweibao 已提交
11673 11674 11675 11676 11677 11678 11679 11680 11681
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
11682
    ${comment}
G
fix  
gongweibao 已提交
11683 11684

    Args:
G
gongweibao 已提交
11685 11686
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
11687
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
11688 11689 11690 11691
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
11692
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
11693 11694

    Returns:
G
gongweibao 已提交
11695
        out (Variable): ${out_comment}
11696 11697 11698 11699

    Examples:
        .. code-block:: python

11700
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
11701
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
11702

Y
Yibing Liu 已提交
11703
            out = fluid.layers.gaussian_random_batch_size_like(
11704
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
11705 11706 11707
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
11708
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
11727
@templatedoc()
X
Xin Pan 已提交
11728
def sum(x):
G
fix  
gongweibao 已提交
11729
    """
G
gongweibao 已提交
11730
    ${comment}
G
fix  
gongweibao 已提交
11731 11732

    Args:
G
gongweibao 已提交
11733
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
11734 11735

    Returns:
G
gongweibao 已提交
11736
        out (Variable): ${out_comment}
11737 11738 11739 11740

    Examples:
        .. code-block:: python

11741
            import paddle.fluid as fluid
11742 11743 11744 11745
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
11746 11747 11748
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
11749 11750
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
11751 11752 11753 11754
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
11755
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
11756 11757 11758 11759

    return out


G
gongweibao 已提交
11760
@templatedoc()
G
fix  
gongweibao 已提交
11761 11762
def slice(input, axes, starts, ends):
    """
11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
11778

11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
11796
    Args:
G
gongweibao 已提交
11797 11798
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
11799 11800
        starts (List|Variable): ${starts_comment}
        ends (List|Variable): ${ends_comment}
G
fix  
gongweibao 已提交
11801 11802

    Returns:
G
gongweibao 已提交
11803
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
11804

11805 11806 11807
    Examples:
        .. code-block:: python

11808
            import paddle.fluid as fluid
11809

11810
            input = fluid.layers.data(
11811 11812
                name="input", shape=[3, 4, 5, 6], dtype='float32')

11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
G
fix  
gongweibao 已提交
11824 11825
    """

11826 11827 11828 11829 11830 11831 11832
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

G
fix  
gongweibao 已提交
11833
    helper = LayerHelper('slice', **locals())
11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
            infer_flags = list(-1 for i in range(len(axes)))
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if not contain_var(starts):
                attrs['starts'] = starts
            else:
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
            infer_flags = list(-1 for i in range(len(axes)))
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if not contain_var(ends):
                attrs['ends'] = ends
            else:
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
11904 11905
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
11906
    helper.append_op(
11907
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
G
fix  
gongweibao 已提交
11908 11909 11910 11911

    return out


W
wangchaochaohu 已提交
11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935
@templatedoc()
def strided_slice(input, axes, starts, ends, strides):
    """
    Strided Slice OP

    The conceptualization that really helped me understand this was 
    that this function emulates the indexing behavior of numpy arrays.
    If you're familiar with numpy arrays, you'll know that you can make 
    slices via input[start1:end1:step1, start2:end2:step2, ... startN:endN:stepN]. 
    Basically, a very succinct way of writing for loops to get certain elements of the array.
    strided_slice just allows you to do this fancy indexing without the syntactic sugar. 
    The numpy (#input[start1:end1:step1, start2:end2:step2, ... startN:endN:stepN])
    example from above just becomes fluid.strided_slice(input,[0, 1, ..., N], 
    [start1, start2, ..., startN], [end1, end2, ..., endN], [strides1, strides2, ..., stridesN]),
    the axes which controls the dimension you want to slice makes it more flexible.

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
11936
                strides=[1, 1]
W
wangchaochaohu 已提交
11937
            Then:
11938
                result = [ [5, 6, 7], ]
W
wangchaochaohu 已提交
11939 11940 11941 11942 11943
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
11944 11945 11946
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
W
wangchaochaohu 已提交
11947
            Then:
11948 11949 11950 11951 11952 11953 11954 11955 11956 11957
                result = [ [2], ]
    Args:
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List|Variable): ${starts_comment}
        ends (List|Variable): ${ends_comment}

    Returns:
        out (Variable): ${out_comment}

W
wangchaochaohu 已提交
11958 11959 11960 11961 11962 11963 11964 11965
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            input = fluid.layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides=[1, 1, 1]
            sliced_1 = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides)

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.strided_slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides)
W
wangchaochaohu 已提交
11978
    """
11979 11980 11981 11982 11983 11984 11985 11986 11987 11988
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")
    if not isinstance(strides, (list, tuple, Variable)):
        raise ValueError(
            "Input strides must be an Variable, python list or tuple.")

W
wangchaochaohu 已提交
11989 11990
    helper = LayerHelper('strided_slice', **locals())

11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016
    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
W
wangchaochaohu 已提交
12017 12018 12019
            'axes': axes,
            'starts': starts,
            'ends': ends,
12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if not contain_var(starts):
                attrs['starts'] = starts
            else:
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if not contain_var(ends):
                attrs['ends'] = ends
            else:
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if not contain_var(strides):
                attrs['strides'] = strides
            else:
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
W
wangchaochaohu 已提交
12078 12079 12080 12081

    return out


G
fix  
gongweibao 已提交
12082 12083
def shape(input):
    """
C
chengduozh 已提交
12084 12085
    **Shape Layer**

C
fix doc  
chengduozh 已提交
12086
    Get the shape of the input.
G
fix  
gongweibao 已提交
12087 12088

    Args:
C
chengduozh 已提交
12089
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
12090 12091

    Returns:
C
fix doc  
chengduozh 已提交
12092
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
12093

12094 12095 12096
    Examples:
        .. code-block:: python

12097 12098 12099
            import paddle.fluid as fluid

            input = fluid.layers.data(
12100
                name="input", shape=[3, 100, 100], dtype="float32")
12101
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
12102 12103 12104
    """

    helper = LayerHelper('shape', **locals())
12105
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
12106
    helper.append_op(
G
fix  
gongweibao 已提交
12107
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
12108 12109

    return out
G
merge  
gongweibao 已提交
12110 12111


Z
zhoukunsheng 已提交
12112 12113 12114 12115
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
12116
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
12117 12118 12119 12120 12121 12122 12123 12124 12125 12126

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

12127 12128 12129 12130
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
12131 12132 12133 12134 12135 12136 12137 12138
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
12168 12169 12170 12171
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
12172
    if in_dygraph_mode():
X
Xin Pan 已提交
12173 12174 12175
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
12176 12177 12178 12179
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
12180 12181
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
12182
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
12183 12184 12185
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
12186

S
sneaxiy 已提交
12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
12198
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
12199 12200 12201 12202 12203 12204 12205 12206
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
12207
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
12208
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
12209 12210 12211

    Returns:
        out(${out_type}): ${out_comment}
12212 12213 12214 12215 12216 12217 12218 12219

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
12220 12221 12222
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
12223
    if name is None:
X
Xin Pan 已提交
12224
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
12225 12226 12227
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
12228 12229 12230 12231 12232 12233 12234 12235 12236 12237

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
12238
    return helper.append_activation(out)
S
sneaxiy 已提交
12239 12240


X
Xin Pan 已提交
12241
def elementwise_add(x, y, axis=-1, act=None, name=None):
12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([2, 3, 4]),
                "y": np.array([1, 5, 2])
            }

        x = fluid.layers.data(name="x", shape=[3], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3], dtype='float32')
        z = fluid.layers.elementwise_add(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[3., 8., 6.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

        x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
        z = fluid.layers.elementwise_add(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
        x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
        z = fluid.layers.elementwise_add(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
S
sneaxiy 已提交
12315 12316 12317
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
12318
def elementwise_div(x, y, axis=-1, act=None, name=None):
12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([2, 3, 4]),
                "y": np.array([1, 5, 2])
            }

        x = fluid.layers.data(name="x", shape=[3], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3], dtype='float32')
        z = fluid.layers.elementwise_div(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2., 0.6, 2.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

        x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
        z = fluid.layers.elementwise_div(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
        x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
        z = fluid.layers.elementwise_div(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
S
sneaxiy 已提交
12392 12393 12394
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
12395
def elementwise_sub(x, y, axis=-1, act=None, name=None):
12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([2, 3, 4]),
                "y": np.array([1, 5, 2])
            }

        x = fluid.layers.data(name="x", shape=[3], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3], dtype='float32')
        z = fluid.layers.elementwise_sub(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1., -2., 2.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

        x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
        z = fluid.layers.elementwise_sub(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
        x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
        z = fluid.layers.elementwise_sub(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
S
sneaxiy 已提交
12469 12470 12471
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
12472
def elementwise_mul(x, y, axis=-1, act=None, name=None):
12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([2, 3, 4]),
                "y": np.array([1, 5, 2])
            }

        x = fluid.layers.data(name="x", shape=[3], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3], dtype='float32')
        z = fluid.layers.elementwise_mul(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2., 15., 8.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

        x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
        z = fluid.layers.elementwise_mul(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
        x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
        z = fluid.layers.elementwise_mul(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]
 
    """
S
sneaxiy 已提交
12546 12547 12548
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
12549
def elementwise_max(x, y, axis=-1, act=None, name=None):
12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([2, 3, 4]),
                "y": np.array([1, 5, 2])
            }

        x = fluid.layers.data(name="x", shape=[3], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3], dtype='float32')
        z = fluid.layers.elementwise_max(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 5, 4]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

        x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
        z = fluid.layers.elementwise_max(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[1., 1., 1., 1., 1.] .... [1., 1., 1., 1., 1.]]]]

    """
S
sneaxiy 已提交
12600 12601 12602
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
12603
def elementwise_min(x, y, axis=-1, act=None, name=None):
12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([2, 3, 4]),
                "y": np.array([1, 5, 2])
            }

        x = fluid.layers.data(name="x", shape=[3], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3], dtype='float32')
        z = fluid.layers.elementwise_max(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 2]

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

        x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
        z = fluid.layers.elementwise_max(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[0., 0., 0., 0., 0.] .... [0., 0., 0., 0., 0.]]]]
    """

S
sneaxiy 已提交
12653 12654 12655
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
12656
def elementwise_pow(x, y, axis=-1, act=None, name=None):
12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([2, 3, 4]),
                "y": np.array([1, 5, 2])
            }

        x = fluid.layers.data(name="x", shape=[3], dtype='float32')
        y = fluid.layers.data(name="y", shape=[3], dtype='float32')
        z = fluid.layers.elementwise_pow(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 243, 16]
    """

S
sneaxiy 已提交
12683 12684 12685
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


12686 12687 12688 12689 12690 12691 12692 12693
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
12694
for func in [
12695 12696 12697 12698
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
12699 12700
        elementwise_max,
        elementwise_pow,
12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719
        elementwise_min,
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
            "axis (int32, optional): If X.dimension != Y.dimension, \
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
            "act (string, optional): Activation applied to the output. \
            Default is None. Details: :ref:`api_guide_activations_en` ",
            "name (string, optional): Name of the output. \
            Default is None. It's used to print debug info for developers. Details: \
            :ref:`api_guide_Name` "
        ],
        skip_attrs_set={"x_data_format", "y_data_format", "axis"
                        }) + """\n""" + str(func.__doc__)

for func in [
12720 12721
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
12722 12723 12724 12725 12726
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
12727 12728
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
12729
        ])
12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
12767 12768


12769
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
12770 12771
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
12772 12773
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
12774 12775 12776

    if out is None:
        if name is None:
X
Xin Pan 已提交
12777
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
12793
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
12805 12806 12807 12808

    Examples:
        .. code-block:: python

12809
            import paddle.fluid as fluid
12810
            left = fluid.layers.data(
石晓伟 已提交
12811
                name='left', shape=[1], dtype='bool')
12812
            right = fluid.layers.data(
石晓伟 已提交
12813
                name='right', shape=[1], dtype='bool')
12814
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
12815 12816 12817 12818 12819 12820 12821
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
12822
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
12834 12835 12836 12837

    Examples:
        .. code-block:: python

12838
            import paddle.fluid as fluid
12839
            left = fluid.layers.data(
石晓伟 已提交
12840
                name='left', shape=[1], dtype='bool')
12841
            right = fluid.layers.data(
石晓伟 已提交
12842
                name='right', shape=[1], dtype='bool')
12843
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
12844 12845 12846 12847 12848 12849 12850
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
12851
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
12863 12864 12865 12866

    Examples:
        .. code-block:: python

12867
            import paddle.fluid as fluid
12868
            left = fluid.layers.data(
石晓伟 已提交
12869
                name='left', shape=[1], dtype='bool')
12870
            right = fluid.layers.data(
石晓伟 已提交
12871
                name='right', shape=[1], dtype='bool')
12872
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
12873 12874 12875 12876 12877 12878 12879
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
12880
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
12881 12882 12883 12884 12885 12886 12887 12888 12889 12890
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
12891 12892 12893 12894

    Examples:
        .. code-block:: python

12895
            import paddle.fluid as fluid
12896
            left = fluid.layers.data(
石晓伟 已提交
12897
                name='left', shape=[1], dtype='bool')
12898
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
12899 12900 12901 12902
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
12918 12919 12920 12921

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12922
            import paddle.fluid as fluid
12923 12924 12925
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
12926 12927 12928 12929 12930
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
12931 12932
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
12933 12934 12935

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
W
wangguanzhong 已提交
12955 12956 12957
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
12958 12959

    Returns:
W
wangguanzhong 已提交
12960 12961
        Variable:

12962
        out(${out_type}): ${out_comment}
12963

W
wangguanzhong 已提交
12964

12965 12966 12967
    Examples:
        .. code-block:: python

12968
            import paddle.fluid as fluid
12969 12970 12971
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
12972 12973 12974 12975 12976
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
12977 12978
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
12979 12980 12981

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
12982 12983 12984 12985 12986 12987 12988 12989

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
13003 13004 13005 13006

    Examples:
        .. code-block:: python

13007
            import paddle.fluid as fluid
13008 13009 13010
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
13011 13012 13013 13014 13015
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
13016
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
13017 13018 13019 13020 13021 13022 13023 13024 13025 13026
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
13038 13039 13040 13041

    Examples:
        .. code-block:: python

13042
            import paddle.fluid as fluid
13043 13044 13045 13046 13047
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
13086 13087 13088 13089 13090
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
13091
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
13092 13093 13094 13095 13096 13097 13098 13099 13100
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
13101 13102
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
13103 13104 13105 13106 13107 13108
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
13109 13110 13111
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
13112 13113
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
13114 13115 13116 13117 13118 13119
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
13120
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
13121
        name(basestring|None): Name of the output.
13122 13123
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
13124 13125 13126

    Returns:
        out(${out_type}): ${out_comment}
13127 13128 13129 13130

    Examples:
        .. code-block:: python

13131
            import paddle.fluid as fluid
13132 13133 13134 13135 13136 13137 13138 13139 13140 13141
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
13142 13143 13144 13145 13146
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
13147
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
13148 13149 13150 13151 13152 13153 13154 13155
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
13156 13157
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
W
wangguanzhong 已提交
13170 13171 13172
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
X
Xin Pan 已提交
13173 13174

    Returns:
W
wangguanzhong 已提交
13175 13176
        Variable:

X
Xin Pan 已提交
13177
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
13178

W
wangguanzhong 已提交
13179

J
jerrywgz 已提交
13180 13181 13182
    Examples:
        .. code-block:: python

13183
            import paddle.fluid as fluid
J
jerrywgz 已提交
13184 13185 13186 13187 13188
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
13189 13190 13191 13192
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
13193
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
13194 13195 13196 13197 13198 13199 13200 13201 13202 13203
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
13204 13205


J
JiabinYang 已提交
13206
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
13207
    """
J
JiabinYang 已提交
13208
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
13209 13210 13211

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
13212
    The attr blocksize indicates the input block size.
13213 13214

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
13215
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
13216 13217

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
13218
    (but keeping all data)
J
JiabinYang 已提交
13219

J
JiabinYang 已提交
13220
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
13221
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
13222 13223 13224 13225 13226
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
13227
    Args:
J
JiabinYang 已提交
13228
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
13229
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
13230 13231

    Returns:
J
JiabinYang 已提交
13232
        Variable: The output LoDtensor.
J
JiabinYang 已提交
13233 13234

    Raises:
J
JiabinYang 已提交
13235
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
13236 13237 13238

    Examples:
        .. code-block:: python
13239 13240 13241
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
13242 13243

            data = fluid.layers.data(
13244
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
13245
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
13246
                x=data, blocksize=2)
13247

13248
            exe = fluid.Executor(fluid.CPUPlace())
13249 13250 13251 13252
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
13253

J
JiabinYang 已提交
13254 13255
    """

J
JiabinYang 已提交
13256
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
13257

J
JiabinYang 已提交
13258 13259
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
13260 13261

    if name is None:
J
JiabinYang 已提交
13262 13263
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
13264 13265 13266 13267 13268
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
13269
        type="space_to_depth",
J
JiabinYang 已提交
13270
        inputs={"X": x},
J
JiabinYang 已提交
13271
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
13272
        outputs={"Out": out})
J
JiabinYang 已提交
13273 13274
    return out

J
JiabinYang 已提交
13275

S
sneaxiy 已提交
13276 13277
@templatedoc()
def sequence_reverse(x, name=None):
13278
    """
S
sneaxiy 已提交
13279 13280 13281 13282 13283 13284 13285 13286
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
13287 13288 13289 13290 13291 13292 13293

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
13294
    """
L
lujun 已提交
13295
    assert not in_dygraph_mode(), (
13296
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
13297 13298
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
13299
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
13300 13301 13302 13303 13304 13305 13306 13307 13308 13309
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
13310 13311


13312 13313 13314 13315 13316 13317
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
13318 13319 13320 13321 13322
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
13323

13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
13336
        act (str, default None): Activation to be applied to the output of this layer.
13337 13338 13339

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

13354 13355 13356 13357
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
13358
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
13370
    return helper.append_activation(out)
13371 13372


B
barrierye 已提交
13373
def similarity_focus(input, axis, indexes, name=None):
13374
    """
B
barrierye 已提交
13375
    SimilarityFocus Operator
B
barrierye 已提交
13376 13377

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
13378

13379 13380 13381
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
13382
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
13383 13384 13385 13386 13387 13388 13389
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
13390
       each index.
B
barrierye 已提交
13391 13392 13393 13394
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
13444
    Args:
13445
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
13446
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
13447
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
13448
            1, 2 or 3.
B
barrierye 已提交
13449
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
13450 13451

    Returns:
H
haowang101779990 已提交
13452 13453
        Variable: A tensor variable with the same shape and same type \
                  as the input.
13454

B
barrierye 已提交
13455 13456
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
13457

13458
            import paddle.fluid as fluid
B
barrierye 已提交
13459
            data = fluid.layers.data(
Y
Yibing Liu 已提交
13460 13461
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
13474 13475 13476 13477 13478
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
13479 13480 13481 13482 13483 13484 13485
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
13486 13487


M
minqiyang 已提交
13488 13489
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
13490 13491
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
13492 13493
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
13494 13495 13496 13497 13498 13499 13500 13501

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
13502
        input.data = 
13503
            [[1, 2],
13504
             [3, 4]]
M
minqiyang 已提交
13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
13518 13519
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
13520 13521 13522 13523
        ]

    Args:
        input (Variable): The input variable which is a one-hot word. The
13524
            dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
M
minqiyang 已提交
13525 13526
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
13527
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
13528
        name (str, default None): The name of this layer.
M
minqiyang 已提交
13529 13530

    Returns:
13531
       Variable: The hash result variable, which the same variable type as `input`.
M
minqiyang 已提交
13532 13533 13534

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
13535

13536 13537
            import paddle.fluid as fluid

13538 13539 13540 13541
            # titles has shape [batch, 1]
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
            # hash_r has shape [batch, 2]
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
13542 13543


13544 13545 13546 13547
            # titles has shape [batch, 1] and lod information
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            # hash_r has shape [batch, 2] and inherits lod information from titles
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
M
minqiyang 已提交
13548 13549
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
13550 13551
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
13552 13553 13554 13555 13556 13557 13558
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
13559 13560


D
dengkaipeng 已提交
13561
@templatedoc()
13562 13563
def grid_sampler(x, grid, name=None):
    """
13564
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
13565
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
13566 13567 13568 13569
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
13570
    interpolation value of 4 nearest corner points.
13571

H
haowang101779990 已提交
13572
    .. code-block:: text
13573

H
haowang101779990 已提交
13574 13575
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
13576

H
haowang101779990 已提交
13577 13578
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
13579

H
haowang101779990 已提交
13580 13581 13582
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
13583

H
haowang101779990 已提交
13584 13585 13586 13587 13588 13589 13590 13591 13592
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
13593

H
haowang101779990 已提交
13594 13595 13596 13597
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
13598

H
haowang101779990 已提交
13599 13600 13601 13602
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
13603

H
haowang101779990 已提交
13604 13605 13606 13607
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
13608

H
haowang101779990 已提交
13609 13610
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
13611 13612

    Args:
13613 13614 13615
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
13616 13617

    Returns:
H
haowang101779990 已提交
13618
        Variable: Output of shape [N, C, H, W] data samples input X
13619 13620
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
13621 13622 13623 13624
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
13625 13626 13627 13628 13629
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
13630
            out = fluid.layers.grid_sampler(x=x, grid=grid)
13631

D
dengkaipeng 已提交
13632 13633 13634 13635 13636 13637 13638 13639 13640
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

13641
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
13642 13643
    ipts = {'X': x, 'Grid': grid}

13644
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
13645 13646 13647
    return out


G
gmcather 已提交
13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

13675
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
13676 13677
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
13716
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
13717 13718 13719 13720 13721 13722 13723
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
13724 13725
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
13726

13727 13728 13729 13730 13731
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
13732
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
13733

H
heqiaozhi 已提交
13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
13747 13748 13749 13750
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
13751
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
13752 13753
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
13754
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
13755 13756

    .. math::
H
haowang101779990 已提交
13757 13758 13759
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
13760 13761

    Where:
H
haowang101779990 已提交
13762 13763
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

13777 13778 13779 13780 13781 13782 13783 13784 13785
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
13786

G
gmcather 已提交
13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
13803 13804 13805 13806 13807 13808 13809 13810 13811 13812


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
13813
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
13814

Q
Qiao Longfei 已提交
13815
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
13816 13817 13818
    For example:

    .. math::
H
haowang101779990 已提交
13819
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
13820

Q
Qiao Longfei 已提交
13821
    In this formula:
13822 13823
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
13824
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
13825
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
13826 13827 13828
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
13829 13830
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
13831 13832 13833
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
13834
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
13835
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
13836
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
13837 13838 13839 13840
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
13841
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
13842 13843 13844 13845

    Examples:
        .. code-block:: python

13846
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
13847 13848 13849
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
13850 13851
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
13852
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
13853 13854 13855 13856

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
13857
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
13888 13889 13890 13891 13892 13893 13894 13895

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
13896 13897 13898 13899 13900 13901 13902 13903 13904 13905
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
13906 13907


S
shippingwang 已提交
13908
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
13909 13910
    """
    **Shuffle Channel Operator**
13911

S
shippingwang 已提交
13912 13913 13914 13915 13916 13917
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
13918
    
S
shippingwang 已提交
13919
    .. code-block:: text
13920

S
shippingwang 已提交
13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
13949
    Args: 
S
shippingwang 已提交
13950 13951
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
13952 13953

    Returns:
S
shippingwang 已提交
13954 13955
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
13956 13957

    Raises:
S
shippingwang 已提交
13958
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
13959 13960 13961

    Examples:
        .. code-block:: python
13962

13963
            import paddle.fluid as fluid
13964
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
13965
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
13966 13967 13968
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
13969
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
13970 13971 13972 13973 13974 13975 13976 13977 13978

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
13979
    return out
S
Add  
shippingwang 已提交
13980 13981


13982
@templatedoc()
D
dengkaipeng 已提交
13983
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
13984 13985 13986 13987 13988 13989 13990 13991
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
13992
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
13993
        name (str, default None): The name of this layer.
13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

14005
            import paddle.fluid as fluid
14006
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
14007
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
14020 14021
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
14022 14023 14024
    return out


S
sneaxiy 已提交
14025
class PyFuncRegistry(object):
S
sneaxiy 已提交
14026 14027 14028
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
14029
        if func is None or not callable(func):
S
sneaxiy 已提交
14030 14031 14032
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
14033
        # find named args using reflection
S
sneaxiy 已提交
14034 14035 14036 14037 14038 14039 14040
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
14041 14042 14043
        '''
        Why record self here?

M
minqiyang 已提交
14044 14045
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
14046
           to find the registered function corresponding
M
minqiyang 已提交
14047
           to :code:`idx`.
S
sneaxiy 已提交
14048

M
minqiyang 已提交
14049 14050
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
14051
           whose reference count is 1 would cause
M
minqiyang 已提交
14052
           segmentation fault error in C++ side.
S
sneaxiy 已提交
14053 14054
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
14055
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
14070 14071 14072 14073 14074 14075 14076 14077 14078
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
14079

S
sneaxiy 已提交
14080 14081
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
14082 14083

        ret = []
S
sneaxiy 已提交
14084 14085 14086
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
14087 14088
                continue

S
sneaxiy 已提交
14089 14090
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
14091

S
sneaxiy 已提交
14092 14093 14094
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
14095

S
sneaxiy 已提交
14096
        return tuple(ret)
S
sneaxiy 已提交
14097 14098


S
sneaxiy 已提交
14099 14100 14101 14102
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
14103

S
sneaxiy 已提交
14104 14105 14106 14107 14108 14109 14110 14111
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
14112
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
14113

S
sneaxiy 已提交
14114 14115
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
14116 14117 14118 14119
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
14120
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
14121
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
14122 14123
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
14124 14125 14126 14127 14128
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
14129
            should create :code:`out` beforehand.
S
sneaxiy 已提交
14130
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
14131
                                       None means no backward. Default None.
S
sneaxiy 已提交
14132
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
14133
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
14134 14135
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
14136
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
14137 14138 14139

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
14140 14141

    Examples:
M
minqiyang 已提交
14142

S
sneaxiy 已提交
14143 14144 14145 14146 14147
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
14148
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
14149 14150
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
14151
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
14152 14153 14154
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
14155
        >>>
S
sneaxiy 已提交
14156 14157 14158 14159 14160
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
14161
        >>>     print(x)
S
sneaxiy 已提交
14162 14163 14164 14165 14166 14167
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
14168
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
14169 14170
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
14171 14172
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
14173 14174 14175 14176 14177 14178 14179 14180
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
14181
    """
S
sneaxiy 已提交
14182
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
14183 14184 14185
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
14186
        x = [x]
S
sneaxiy 已提交
14187 14188
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
14189

S
sneaxiy 已提交
14190 14191 14192
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
14193
        out_list = [out]
S
sneaxiy 已提交
14194
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
14195
        out_list = out
S
sneaxiy 已提交
14196 14197 14198
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
14199

S
sneaxiy 已提交
14200 14201
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
14202
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
14203 14204

    for each_out in out_list:
S
sneaxiy 已提交
14205 14206
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
14207 14208
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
14209

S
sneaxiy 已提交
14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
14225 14226 14227 14228

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
14229 14230
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
14231 14232 14233
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
14234
        })
S
sneaxiy 已提交
14235
    return out
S
sneaxiy 已提交
14236 14237 14238


# For debug usage
S
sneaxiy 已提交
14239 14240 14241 14242
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
14256 14257 14258 14259 14260
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
14273 14274 14275 14276
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365


@templatedoc()
def prroi_pool(input,
               rois,
               output_channels,
               spatial_scale=1.0,
               pooled_height=1,
               pooled_width=1,
               name=None):
    """
    The precise roi pooling implementation for paddle?https://arxiv.org/pdf/1807.11590.pdf

    Args:
        input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        output_channels (integer): The output's channel.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
        name (str, default None): The name of this operation.

    Returns:
        Variable(Tensor): The shape of the returned Tensor is (num_rois, output_channels, pooled_h, pooled_w), with value type float32,float16..

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.prroi_pool(x, rois, 10, 1.0, 7, 7)
    """
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='prroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
14366

M
minqiyang 已提交
14367

M
minqiyang 已提交
14368
def huber_loss(input, label, delta):
14369
    """
M
minqiyang 已提交
14370 14371 14372
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
14373 14374 14375 14376

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
14377
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
14378 14379 14380 14381

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
14382
        huber\_loss = 0.5 * (label - input) * (label - input)
14383 14384 14385 14386 14387 14388 14389


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
14390
        delta (float): The parameter of huber loss, which controls
14391 14392 14393
                       the range of outliers

    Returns:
M
minqiyang 已提交
14394
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
14395 14396 14397 14398

    Examples:
        .. code-block:: python

14399 14400 14401 14402 14403 14404 14405 14406 14407
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

14408
    """
M
minqiyang 已提交
14409
    helper = LayerHelper('huber_loss', **locals())
14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
14421 14422


D
dengkaipeng 已提交
14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

14440
            import paddle.fluid as fluid
D
dengkaipeng 已提交
14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


C
ceci3 已提交
14456
from .ops import square
C
ceci3 已提交
14457
from .control_flow import equal
C
ceci3 已提交
14458 14459


C
ceci3 已提交
14460 14461 14462
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
14463

C
ceci3 已提交
14464
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
14465 14466

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
14467
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
14468 14469 14470 14471 14472
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
14473 14474
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
14475 14476 14477 14478 14479 14480 14481

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

14482
       import paddle.fluid as fluid
C
ceci3 已提交
14483 14484 14485 14486 14487 14488 14489 14490
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
14491 14492 14493 14494 14495 14496 14497
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
14498
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
14499 14500
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
14501 14502
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
14503 14504 14505 14506
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
14507 14508 14509
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
14510 14511 14512
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
14513 14514


R
ruri 已提交
14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

14544
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
14545 14546 14547 14548 14549 14550 14551 14552 14553

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

14554
            import paddle.fluid as fluid
R
ruri 已提交
14555
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
14606 14607 14608 14609 14610 14611
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
14612 14613 14614 14615 14616 14617 14618 14619
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
14620 14621 14622 14623


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
14624

H
heqiaozhi 已提交
14625
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
14626

H
fix doc  
heqiaozhi 已提交
14627
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
14628 14629 14630
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
14631
    
H
fix doc  
heqiaozhi 已提交
14632
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
14633

H
heqiaozhi 已提交
14634
    Args:
H
fix doc  
heqiaozhi 已提交
14635 14636

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
14637 14638
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
14639
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
14640
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
14641

H
heqiaozhi 已提交
14642
    Returns:
H
fix doc  
heqiaozhi 已提交
14643 14644 14645

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
14646
    Examples:
H
fix doc  
heqiaozhi 已提交
14647

H
heqiaozhi 已提交
14648
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
14649

14650
          import paddle.fluid as fluid
H
heqiaozhi 已提交
14651 14652 14653 14654 14655 14656 14657 14658 14659 14660
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
14661

H
heqiaozhi 已提交
14662 14663 14664 14665 14666 14667 14668 14669 14670
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
14671
    return out
Z
zhoukunsheng 已提交
14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

14690
             import paddle.fluid as fluid
14691 14692 14693
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
14694
             # condition is a tensor [True, False, True]
14695 14696 14697
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
14698 14699

             # condition is a tensor [[True, False], [False, True]]
14700 14701 14702
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
14703 14704

             # condition is a tensor [False, False, False]
14705 14706 14707 14708
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
14709 14710 14711 14712 14713 14714 14715 14716 14717
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

14735 14736 14737
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
14738
          # [1, 0, -1]
14739 14740
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
14753 14754


Z
zhoukunsheng 已提交
14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845
def unique_with_counts(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index, count). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor, \
            `count` is count of unqiue element in the `x`.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
14859
                    modulated=True,
14860 14861 14862 14863 14864 14865
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
14866 14867 14868
   
    
    Deformable Convolution v2: 
14869 14870 14871 14872
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
14873 14874

    Deformable Convolution v1:
14875
    
14876 14877 14878 14879 14880 14881 14882
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, 
    which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
14908
        offset (Variable): The input coordinate offset of deformable convolution layer.
14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
14947 14948
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

14960 14961
          #deformable conv v2:
         
14962
          import paddle.fluid as fluid
14963 14964 14965 14966
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
14967 14968 14969 14970 14971 14972 14973 14974 14975
                                             num_filters=2, filter_size=3, padding=1, modulated=True)

          #deformable conv v1:

          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
                                             num_filters=2, filter_size=3, padding=1, modulated=False)
14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052
    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })
15053 15054 15055

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
15182 15183 15184 15185 15186 15187 15188
    Deformable ROI Pooling Layer
  
    Performs deformable region-of-interest pooling on inputs. As described
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after 
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
  
    The operation has three steps:
C
cjt222 已提交
15189
    
15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
  
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
     
    3. Sample several points in each bin to get average values as output.
  
  
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where 
                          N is number of ROIs, C is number of channels, which indicate the offset distance 
                          in the x and y directions, H is pooled height, and W is pooled width. 
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels 
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
                          chanels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
                                   If value is True, input dimension shoule be output dimension * pooled_height * pooled_width. Default: False.
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
15229 15230 15231 15232

    Examples:
      .. code-block:: python

15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260
        # position_sensitive=True
        import paddle.fluid as fluid
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=True)
  
        # position_sensitive=False
15261
        import paddle.fluid as fluid
C
cjt222 已提交
15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
15323 15324 15325 15326


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
15327 15328 15329 15330 15331 15332
    This function recomputes the `input` indices according to the offset of the
    shard. The length of the indices is evenly divided into N shards, and if
    the `shard_id` matches the shard with the input index inside, the index is
    recomputed on the basis of the shard offset, elsewise it is set to
    `ignore_value`. The detail is as follows:
    :: 
15333
        
15334 15335
        shard_size = (index_num + nshards - 1) // nshards
        y = x % shard_size if x // shard_size == shard_id else ignore_value
15336

15337 15338
    NOTE: If the length of indices cannot be evely divided by the shard number,
    the size of the last shard will be less than the calculated `shard_size`
15339 15340

    Examples:
15341
    ::
15342
    
15343
        Input:
15344 15345
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
15346 15347 15348
          index_num = 20
          nshards = 2
          ignore_value = -1
15349
        
15350
        if shard_id == 0, we get:
15351 15352 15353
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
15354
        if shard_id == 1, we get:
15355 15356 15357 15358
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
    Args:
15359 15360 15361 15362 15363
        - **input** (Variable): Input indices, last dimension must be 1.
        - **index_num** (scalar): An interger defining the range of the index.
        - **nshards** (scalar): The number of shards
        - **shard_id** (scalar): The index of the current shard
        - **ignore_value** (scalar): An ingeter value out of sharded index range
15364 15365

    Returns:
15366
        Variable: The sharded index of input.
15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if index_num % nshards != 0:
        raise ValueError(
            'The index_num(%d) cannot be evenly divided by nshards(%d)' %
            (index_num, nshards))
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
    ${comment}
    Args:
        x(Varaible): Input of HardSwish operator.
        threshold(float): The threshold parameter of HardSwish operator. Default:threshold=6.0
        scale(float): The scale parameter of HardSwish operator. Default:scale=6.0
        offset(float): The offset parameter of HardSwish operator. Default:offset=3.0
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_swish(x)
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out
R
ruri 已提交
15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472


def mse_loss(input, label):
    """
    **Mean square error layer**

    This layer accepts input predications and target label and returns the mean square error.

    The loss can be described as:

    .. math::
        
        Out = mean((X - Y)^2)

    In the above equation:

        * :math:`X`: Input predications, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.

    Returns:
        Variable: The tensor variable storing the mean square error difference of input and label.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
            mse = fluid.layers.mse_loss(input=y_predict, label=y)

    """
    return reduce_mean(square_error_cost(input, label))
15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589


@templatedoc()
def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
    """
    This operator initializes a variable with random values sampled from a
    uniform distribution. The random result is in set [min, max).

    Examples:
    ::
    
        Input:
          shape = [1, 2]
        
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape (list|tuple|Variable): The shape of the output tensor, the data type of the integer is int,
                                     and if the shape type is list or tuple, its elements can be an integer
                                     or a tensor with the shape [1], the data type of the tensor is int64. 
                                     If the shape type is Variable,it ia a 1D tensor, the data type of the tensor is int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the output tensor, such as float32, float64.
                                                  Default: float32.
        min (float, optional): Minimum value of uniform random, It's a closed interval. Default -1.0.
        max (float, optional): Maximun value of uniform random, It's an open interval. Default 1.0.
        seed (int, optional): Random seed used for generating samples. 0 means use a
            seed generated by the system. Note that if seed is not 0, this
            operator will always generate the same random numbers every time.
            Default 0.

    Returns: a Tensor with randomly initialized results whose data type is determined by the dtype parameter 
                and whose dimension is determined by the shape parameter.
    Return type: Variable

    Throw exception:
        TypeError: The shape type should be list or tupple or variable.
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])

            # example 2:
            # attr shape is a list which contains tensor Variable.
            dim_1 = fluid.layers.fill_constant([1],"int64",3)
            result_2 = fluid.layers.uniform_random(shape=[dim_1, 5])

            # example 3:
            # attr shape is a Variable, the data type must be int64
            var_shape = fluid.layers.data(name='var_shape',shape=[2],append_batch_size=False)
            result_3 = fluid.layers.uniform_random(var_shape)

    """
    if not (isinstance(shape, (list, tuple, Variable))):
        raise TypeError("Input shape must be a python list,Variable or tuple.")
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int64')
                fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                assert dim_size > 0, (
                    "Each dimension size given in shape must not be negtive "
                    "except one unknown dimension.")
        return attrs_shape

    helper = LayerHelper("uniform_random", **locals())
    inputs = dict()
    attrs = dict()
    if in_dygraph_mode():
        attrs = {'shape': shape}
    else:
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["ShapeTensor"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
            if contain_var(shape):
                inputs['ShapeTensorList'] = get_new_shape_tensor(shape)

    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})

    return helper.append_activation(out)