Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
3380737c
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3380737c
编写于
6月 15, 2018
作者:
Y
yi.wu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update by comment
上级
a83b792a
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
133 addition
and
47 deletion
+133
-47
paddle/fluid/operators/chunk_eval_op.cc
paddle/fluid/operators/chunk_eval_op.cc
+33
-34
paddle/fluid/operators/cos_sim_op.cc
paddle/fluid/operators/cos_sim_op.cc
+2
-2
paddle/fluid/operators/detection/iou_similarity_op.cc
paddle/fluid/operators/detection/iou_similarity_op.cc
+2
-2
paddle/fluid/operators/roi_pool_op.cc
paddle/fluid/operators/roi_pool_op.cc
+1
-1
paddle/fluid/operators/scale_op.cc
paddle/fluid/operators/scale_op.cc
+3
-4
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+2
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+90
-4
未找到文件。
paddle/fluid/operators/chunk_eval_op.cc
浏览文件 @
3380737c
...
...
@@ -91,32 +91,31 @@ class ChunkEvalOpMaker : public framework::OpProtoAndCheckerMaker {
"(int64_t). The number of chunks both in Inference and Label on the "
"given mini-batch."
);
AddAttr
<
int
>
(
"num_chunk_types"
,
"
(int). The number of chunk type. See below
for details."
);
AddAttr
<
std
::
string
>
(
"chunk_scheme"
,
"(string, default IOB). The labeling scheme indicating
"
"how to encode the chunks. Must be IOB, IOE, IOBES or plain. See below
"
"for details."
)
"
The number of chunk type. See the description
for details."
);
AddAttr
<
std
::
string
>
(
"chunk_scheme"
,
"The labeling scheme indicating "
"how to encode the chunks. Must be IOB, IOE, IOBES or
"
"plain. See the description
"
"for details."
)
.
SetDefault
(
"IOB"
);
AddAttr
<
std
::
vector
<
int
>>
(
"excluded_chunk_types"
,
"
(list<int>)
A list including chunk type ids "
"A list including chunk type ids "
"indicating chunk types that are not counted. "
"See
below
for details."
)
"See
the description
for details."
)
.
SetDefault
(
std
::
vector
<
int
>
{});
AddComment
(
R"DOC(
For some basics of chunking, please refer to
‘Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>’
.
'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'
.
CheckEvalOp computes the precision, recall, and F1-score of chunk detection,
ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
Here is a NER example of labeling for these tagging schemes:
Li Ming works at Agricultural Bank of China in Beijing.
IO:
I-PER I-PER O O I-ORG I-ORG I-ORG I-ORG O I-LOC
IOB:
B-PER I-PER O O B-ORG I-ORG I-ORG I-ORG O B-LOC
IOE:
I-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O E-LOC
IOBES:
B-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O S-LOC
Li Ming works at Agricultural Bank of China in Beijing.
IO
I-PER I-PER O O I-ORG I-ORG I-ORG I-ORG O I-LOC
IOB
B-PER I-PER O O B-ORG I-ORG I-ORG I-ORG O B-LOC
IOE
I-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O E-LOC
IOBES
B-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O S-LOC
There are three chunk types(named entity types) including PER(person), ORG(organization)
and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.
...
...
@@ -124,31 +123,31 @@ and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chun
Since the calculations actually use label ids rather than labels, extra attention
should be paid when mapping labels to ids to make CheckEvalOp work. The key point
is that the listed equations are satisfied by ids.
tag_type = label % num_tag_type
chunk_type = label / num_tag_type
tag_type = label % num_tag_type
chunk_type = label / num_tag_type
where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
is the num of chunk types, and `tag_type` get its value from the following table.
Scheme Begin Inside End Single
plain 0 - - -
IOB 0 1 - -
IOE - 0 1 -
IOBES 0 1 2 3
Scheme Begin Inside End Single
plain 0 - - -
IOB 0 1 - -
IOE - 0 1 -
IOBES 0 1 2 3
Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
PER and LOC. To satisfy the above equations, the label map can be like this:
B-ORG 0
I-ORG 1
B-PER 2
I-PER 3
B-LOC 4
I-LOC 5
O 6
B-ORG 0
I-ORG 1
B-PER 2
I-PER 3
B-LOC 4
I-LOC 5
O 6
It
’
s not hard to verify the equations noting that the num of chunk types
It
'
s not hard to verify the equations noting that the num of chunk types
is 3 and the num of tag types in IOB scheme is 2. For example, the label
id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
I-LOC is 2, which consistent with the results from the equations.
...
...
paddle/fluid/operators/cos_sim_op.cc
浏览文件 @
3380737c
...
...
@@ -76,9 +76,9 @@ class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
.
AsIntermediate
();
AddComment
(
R"DOC(
Cosine Similarity Operator.
**Cosine Similarity Operator**
$Out =
X^T * Y / (\sqrt{X^T * X} * \sqrt{Y^T * Y})
$
$Out =
\frac{X^T * Y}{(\sqrt{X^T * X} * \sqrt{Y^T * Y})}
$
The input X and Y must have the same shape, except that the 1st dimension
of input Y could be just 1 (different from input X), which will be
...
...
paddle/fluid/operators/detection/iou_similarity_op.cc
浏览文件 @
3380737c
...
...
@@ -68,7 +68,7 @@ class IOUSimilarityOpMaker : public framework::OpProtoAndCheckerMaker {
"representing pairwise iou scores."
);
AddComment
(
R"DOC(
IOU Similarity Operator.
**IOU Similarity Operator**
Computes intersection-over-union (IOU) between two box lists.
Box list 'X' should be a LoDTensor and 'Y' is a common Tensor,
...
...
@@ -77,7 +77,7 @@ Given two boxes A and B, the calculation of IOU is as follows:
$$
IOU(A, B) =
\
frac{area(A\cap B)}{area(A)+area(B)-area(A
\cap B)}
\
\frac{area(A\\cap B)}{area(A)+area(B)-area(A\
\cap B)}
$$
)DOC"
);
...
...
paddle/fluid/operators/roi_pool_op.cc
浏览文件 @
3380737c
...
...
@@ -139,7 +139,7 @@ class ROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
"The pooled output width."
)
.
SetDefault
(
1
);
AddComment
(
R"DOC(
ROIPool operator
**ROIPool Operator**
Region of interest pooling (also known as RoI pooling) is to perform
is to perform max pooling on inputs of nonuniform sizes to obtain
...
...
paddle/fluid/operators/scale_op.cc
浏览文件 @
3380737c
...
...
@@ -41,14 +41,13 @@ class ScaleOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"(Tensor) Input tensor of scale operator."
);
AddOutput
(
"Out"
,
"(Tensor) Output tensor of scale operator."
);
AddComment
(
R"DOC(
Scale operator
**Scale operator**
Multiply the input tensor with a float scalar to scale the input tensor.
$$Out = scale*X$$
)DOC"
);
AddAttr
<
float
>
(
"scale"
,
"(float, default 1.0)"
"The scaling factor of the scale operator."
)
AddAttr
<
float
>
(
"scale"
,
"The scaling factor of the scale operator."
)
.
SetDefault
(
1.0
);
}
};
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
3380737c
...
...
@@ -109,6 +109,8 @@ class BlockGuardServ(BlockGuard):
class
ListenAndServ
(
object
):
"""
***ListenAndServ Layer***
ListenAndServ is used to create a rpc server bind and listen
on specific TCP port, this server will run the sub-block when
received variables from clients.
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
3380737c
...
...
@@ -825,6 +825,12 @@ def crf_decoding(input, param_attr, label=None):
Returns:
Variable: ${viterbi_path_comment}
Examples:
.. code-block:: python
crf_decode = layers.crf_decoding(
input=hidden, param_attr=ParamAttr(name="crfw"))
"""
helper
=
LayerHelper
(
'crf_decoding'
,
**
locals
())
transition
=
helper
.
get_parameter
(
param_attr
.
name
)
...
...
@@ -1043,9 +1049,70 @@ def chunk_eval(input,
num_chunk_types
,
excluded_chunk_types
=
None
):
"""
***Chunk Evaluator***
This function computes and outputs the precision, recall and
F1-score of chunk detection.
For some basics of chunking, please refer to
'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.
ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
Here is a NER example of labeling for these tagging schemes:
.. code-block:: python
====== ====== ====== ===== == ============ ===== ===== ===== == =========
Li Ming works at Agricultural Bank of China in Beijing.
====== ====== ====== ===== == ============ ===== ===== ===== == =========
IO I-PER I-PER O O I-ORG I-ORG I-ORG I-ORG O I-LOC
IOB B-PER I-PER O O B-ORG I-ORG I-ORG I-ORG O B-LOC
IOE I-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O E-LOC
IOBES B-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O S-LOC
====== ====== ====== ===== == ============ ===== ===== ===== == =========
There are three chunk types(named entity types) including PER(person), ORG(organization)
and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.
Since the calculations actually use label ids rather than labels, extra attention
should be paid when mapping labels to ids to make CheckEvalOp work. The key point
is that the listed equations are satisfied by ids.
.. code-block:: python
tag_type = label % num_tag_type
chunk_type = label / num_tag_type
where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
is the num of chunk types, and `tag_type` get its value from the following table.
.. code-block:: python
Scheme Begin Inside End Single
plain 0 - - -
IOB 0 1 - -
IOE - 0 1 -
IOBES 0 1 2 3
Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
PER and LOC. To satisfy the above equations, the label map can be like this:
.. code-block:: python
B-ORG 0
I-ORG 1
B-PER 2
I-PER 3
B-LOC 4
I-LOC 5
O 6
It's not hard to verify the equations noting that the num of chunk types
is 3 and the num of tag types in IOB scheme is 2. For example, the label
id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
I-LOC is 2, which consistent with the results from the equations.
Args:
input (Variable): prediction output of the network.
label (Variable): label of the test data set.
...
...
@@ -1057,6 +1124,19 @@ def chunk_eval(input,
tuple: tuple containing: precision, recall, f1_score,
num_infer_chunks, num_label_chunks,
num_correct_chunks
Examples:
.. code-block:: python
crf = fluid.layers.linear_chain_crf(
input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
crf_decode = fluid.layers.crf_decoding(
input=hidden, param_attr=ParamAttr(name="crfw"))
fluid.layers.chunk_eval(
input=crf_decode,
label=label,
chunk_scheme="IOB",
num_chunk_types=(label_dict_len - 1) / 2)
"""
helper
=
LayerHelper
(
"chunk_eval"
,
**
locals
())
...
...
@@ -1803,7 +1883,7 @@ def conv2d_transpose(input,
act
=
None
,
name
=
None
):
"""
**
Convlution2D transpose layer
**
**
*Convlution2D Transpose Layer**
**
The convolution2D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input(Input) and output(Output)
...
...
@@ -1832,13 +1912,13 @@ def conv2d_transpose(input,
- Input:
Input shape:
$(N, C_{in}, H_{in}, W_{in})$
Input shape:
:math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape:
$(C_{in}, C_{out}, H_f, W_f)$
Filter shape:
:math:`(C_{in}, C_{out}, H_f, W_f)`
- Output:
Output shape:
$(N, C_{out}, H_{out}, W_{out})$
Output shape:
:math:`(N, C_{out}, H_{out}, W_{out})`
Where
...
...
@@ -3513,6 +3593,12 @@ def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Returns:
Variable: The global run counter.
Examples:
.. code-block:: python
global_step = fluid.layers.autoincreased_step_counter(
counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
"""
helper
=
LayerHelper
(
'global_step_counter'
)
if
counter_name
is
None
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录