nn.py 373.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
90
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
91 92 93 94 95
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
96
    'group_norm',
X
Xin Pan 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
110
    'roi_align',
X
Xin Pan 已提交
111 112 113 114
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
115
    'resize_nearest',
X
Xin Pan 已提交
116 117 118 119 120 121
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
122
    'selu',
X
Xin Pan 已提交
123 124 125
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
126
    'margin_rank_loss',
X
Xin Pan 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
170
    'space_to_depth',
W
whs 已提交
171
    'affine_grid',
S
sneaxiy 已提交
172
    'sequence_reverse',
173
    'affine_channel',
B
barrierye 已提交
174
    'similarity_focus',
M
minqiyang 已提交
175
    'hash',
D
dengkaipeng 已提交
176
    'grid_sampler',
G
gmcather 已提交
177 178
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
179
    'bilinear_tensor_product',
C
chengduo 已提交
180 181
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
182
    'lstm',
S
shippingwang 已提交
183
    'shuffle_channel',
S
sneaxiy 已提交
184
    'py_func',
185
    'psroi_pool',
H
heqiaozhi 已提交
186
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
187
    'huber_loss',
Z
zhaozhehao 已提交
188
    'tree_conv',
Y
Yu Yang 已提交
189 190
]

J
jerrywgz 已提交
191 192
kIgnoreIndex = -100

Y
Yu Yang 已提交
193 194 195 196 197 198 199

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
200
       is_test=False,
201
       name=None):
Y
Yu Yang 已提交
202
    """
203
    **Fully Connected Layer**
Y
Yu Yang 已提交
204

205 206 207 208 209 210 211 212
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
213
    to the output as well.
C
caoying03 已提交
214

C
caoying03 已提交
215
    This process can be formulated as follows:
216 217 218

    .. math::

219
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
220 221 222

    In the above equation:

C
caoying03 已提交
223 224 225 226
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
227
    * :math:`Act`: The activation function.
C
caoying03 已提交
228
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
229 230

    Args:
R
ranqiu 已提交
231 232 233 234 235 236 237 238 239 240
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
241
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
242 243 244 245
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
246 247
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
248
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
249
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
250
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
251

252
    Returns:
F
fengjiayi 已提交
253
        Variable: The transformation result.
254 255

    Raises:
C
caoying03 已提交
256
        ValueError: If rank of the input tensor is less than 2.
257 258 259 260

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
261
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
262
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
263
    """
C
caoying03 已提交
264

C
caoying03 已提交
265
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
266 267 268 269

    dtype = helper.input_dtype()

    mul_results = []
270 271
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
272 273 274
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
275

Y
Yu Yang 已提交
276
        w = helper.create_parameter(
277
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
278
        tmp = helper.create_variable_for_type_inference(dtype)
279
        helper.append_op(
280 281 282
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
283
            outputs={"Out": tmp},
M
mozga-intel 已提交
284 285
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
286 287 288 289
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
290
    else:
X
Xin Pan 已提交
291
        pre_bias = helper.create_variable_for_type_inference(dtype)
292
        helper.append_op(
293 294 295
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
296
            attrs={"use_mkldnn": False})
297 298 299 300
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
301 302


303 304 305
def embedding(input,
              size,
              is_sparse=False,
306
              is_distributed=False,
307 308 309
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
310
    """
311 312
    **Embedding Layer**

313
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
314 315
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
316 317 318

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
319 320

    Args:
321 322 323 324 325
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
326
        is_distributed(bool): Whether to run lookup table from remote parameter server.
327 328
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
329
            with zeros whenever lookup encounters it in :attr:`input`. If
330
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
331 332
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
333
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
334

335 336 337
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
338

339 340
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
341

C
chengduoZH 已提交
342
          dict_size = len(dataset.ids)
343
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
344
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
345 346 347
    """

    helper = LayerHelper('embedding', **locals())
348
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
349 350
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
351 352
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
353
    tmp = helper.create_variable_for_type_inference(dtype)
354 355
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
356 357 358 359 360
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
361 362 363
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
364
            'remote_prefetch': remote_prefetch,
365 366
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
367 368 369
    return tmp


W
wopeizl 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
386

W
wopeizl 已提交
387 388 389 390 391 392 393 394 395 396 397
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
398

W
wopeizl 已提交
399 400 401 402
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
403

W
wopeizl 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
490 491


P
phlrain 已提交
492 493 494 495 496 497
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
498
         dropout_prob=0.0,
P
phlrain 已提交
499 500 501 502 503
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
504
    """
P
phlrain 已提交
505
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
506 507

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
508
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
509 510
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
511
    .. math::
M
minqiyang 已提交
512 513 514 515 516 517 518

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
519
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
520 521 522 523

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
524 525

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
526 527 528 529 530 531
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
532 533 534
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
535
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
536

M
minqiyang 已提交
537
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
538 539 540 541 542
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
543
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
544 545 546 547 548
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
549
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
550 551
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
552 553
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
554 555 556 557 558 559
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
560
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
561

L
liuhongyu 已提交
562 563

    Returns:
M
minqiyang 已提交
564 565
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
566
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
567

H
haowang101779990 已提交
568 569 570 571
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
572
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
573 574
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
575
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
591
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
592 593 594 595 596 597
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
598 599 600
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
660 661 662 663 664 665 666 667 668 669 670
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
671 672
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
673 674 675
    """
    **Dynamic LSTMP Layer**

676 677 678 679 680 681
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
682 683 684 685 686

    The formula is as follows:

    .. math::

687
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
688

689
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
690

691
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
692

693
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
694

695
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
696

697
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
698

699
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
700

Y
Yibing Liu 已提交
701 702 703 704 705 706
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
707
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
708
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
709
          bias vector).
Y
Yibing Liu 已提交
710 711 712
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
713
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
714
    * :math:`h`: The hidden state.
715
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
716 717
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
718
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
719
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
720
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
721 722
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
723 724 725 726

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
727

Y
Yibing Liu 已提交
728 729 730 731 732 733 734 735 736 737 738 739
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
740
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
741 742
                               hidden-hidden weight and projection weight.

743 744
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
745 746
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
747 748
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
749
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
750 751 752 753 754

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
755
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
756 757 758 759 760 761
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
762
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
763 764 765
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
766
                                - The shape is (1 x 7D).
C
chengduo 已提交
767 768 769 770 771

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
772 773 774 775 776 777 778 779 780
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
781
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
782 783
                              default "tanh".
        proj_activation(str): The activation for projection output.
784
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
785 786
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
787 788
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
789 790

    Returns:
791 792 793 794
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
795 796

    Examples:
797

Y
Yibing Liu 已提交
798 799
        .. code-block:: python

800 801 802 803
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
804
            hidden_dim, proj_dim = 512, 256
805
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
806
                                     act=None, bias_attr=None)
807 808 809
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
810 811 812 813
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
814
    """
815

C
chengduo 已提交
816
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
817
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
818
    size = size // 4
Y
Yibing Liu 已提交
819 820 821 822 823 824 825 826 827 828
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
829 830 831 832 833 834
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
863 864 865 866 867 868 869
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
870 871
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
872
    """
873
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
874

875 876 877
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
878

G
guosheng 已提交
879 880 881 882 883 884 885 886 887
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
888

G
guosheng 已提交
889
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
890

Q
Qiao Longfei 已提交
891 892 893

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
894 895 896 897 898 899 900 901 902 903 904 905
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
906
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
907 908
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
909 910 911 912
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
913
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
914 915

    Args:
916 917
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
918
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
919
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
920 921
            is the hidden size.
        size(int): The dimension of the gru cell.
922
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
923 924
            hidden-hidden weight matrix. Note:

925
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
926
              :math:`D` is the hidden size.
927
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
928
              The first part are weights of the update gate and reset gate with
929
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
930
              candidate hidden state with shape :math:`(D \\times D)`.
931 932 933 934 935

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
936
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
937
            the bias in the update gate, reset gate and candidate calculations.
938 939 940
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
941 942
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
943
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
944 945 946
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
947
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
948
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
949 950 951 952
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
953 954

    Returns:
G
guosheng 已提交
955
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
956
            and sequence length is the same with the input.
957

G
guosheng 已提交
958
    Examples:
959

G
guosheng 已提交
960 961
        .. code-block:: python

962 963 964 965
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
966
            hidden_dim = 512
967
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
968
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
969 970 971 972 973 974 975 976 977
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
978
    batch_size = input.shape[0]
G
guosheng 已提交
979
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
980
    if h_0:
G
guosheng 已提交
981
        assert h_0.shape == (
Y
Yancey 已提交
982 983 984
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
985

X
Xin Pan 已提交
986 987 988 989
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1003 1004
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1005 1006 1007 1008
        })
    return hidden


Y
Yu Yang 已提交
1009 1010 1011
def gru_unit(input,
             hidden,
             size,
1012 1013
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1014
             activation='tanh',
Q
Qiao Longfei 已提交
1015 1016
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1017
    """
1018 1019 1020
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1021
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1022
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1023

1024 1025
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1026

1027
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1028

1029
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1046 1047

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1048 1049 1050
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1051 1052
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1053 1054
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1055 1056 1057
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1058 1059 1060

    Args:
        input (Variable): The fc transformed input value of current step.
1061
        hidden (Variable): The hidden value of gru unit from previous step.
1062
        size (integer): The input dimension value.
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1077
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1078
            the bias in the update gate, reset gate and candidate calculations.
1079 1080 1081
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1082 1083
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1084 1085 1086 1087
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1088

1089 1090 1091 1092 1093 1094
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1095

1096
             # assuming we have x_t_data and prev_hidden of size=10
1097
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1098 1099
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1112
    size = size // 3
Y
Yu Yang 已提交
1113 1114

    # create weight
1115 1116
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1117

X
Xin Pan 已提交
1118 1119 1120
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1121
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1122
    # create bias
1123
    if helper.bias_attr:
Y
Yu Yang 已提交
1124 1125 1126
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1127
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1128 1129 1130

    helper.append_op(
        type='gru_unit',
1131
        inputs=inputs,
Y
Yu Yang 已提交
1132 1133 1134 1135 1136 1137
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1138 1139
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1140 1141 1142 1143 1144
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1145
@templatedoc()
1146
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1147 1148 1149 1150 1151 1152 1153
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1154
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1155 1156 1157 1158
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1159 1160 1161
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1162 1163

    """
Y
Yu Yang 已提交
1164 1165 1166 1167 1168 1169
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1170 1171 1172 1173 1174 1175 1176 1177
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1193 1194 1195 1196
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1197

W
wopeizl 已提交
1198 1199
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1200

W
wopeizl 已提交
1201
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1202

W
wopeizl 已提交
1203
        label(${label_type}): ${label_comment}
1204

W
wopeizl 已提交
1205 1206
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1207

W
wopeizl 已提交
1208 1209
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1210

W
wopeizl 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1221
                "Transition": transition,
W
wopeizl 已提交
1222 1223
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1224

W
wopeizl 已提交
1225
    return viterbi_path
Y
Yu Yang 已提交
1226 1227


Y
yi.wu 已提交
1228
@templatedoc()
F
fengjiayi 已提交
1229
def cos_sim(X, Y):
Y
Yu Yang 已提交
1230
    """
Y
yi.wu 已提交
1231 1232 1233
    ${comment}

    Args:
1234 1235
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1236

Y
yi.wu 已提交
1237
    Returns:
1238
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1239
    """
F
fengjiayi 已提交
1240
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1241 1242 1243
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1254 1255 1256 1257 1258
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1259
            dropout_implementation="downgrade_in_infer"):
1260 1261 1262 1263 1264
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1265
    training. The dropout operator randomly sets (according to the given dropout
1266 1267 1268
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1269 1270
    dropout op can be removed from the program to make the program more efficient.

1271
    Args:
1272 1273
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1274 1275 1276 1277 1278 1279 1280
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1281 1282
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1283
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1284 1285 1286 1287 1288 1289

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1290
                                        2. upscale_in_train, upscale the outcome at training time
1291

H
haowang101779990 已提交
1292 1293
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1294

H
haowang101779990 已提交
1295 1296
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1297

M
minqiyang 已提交
1298

1299
    Returns:
1300
        Variable: A tensor variable is the shape with `x`.
1301 1302

    Examples:
1303

1304 1305
        .. code-block:: python

1306 1307
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1308 1309
    """

F
fengjiayi 已提交
1310
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1311 1312 1313
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1314 1315 1316 1317

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1318 1319 1320 1321 1322
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1323 1324 1325 1326
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1327 1328
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1329
        })
1330 1331 1332
    return out


J
jerrywgz 已提交
1333
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1334
    """
Y
Yibing Liu 已提交
1335 1336
    **Cross Entropy Layer**

1337 1338 1339
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1340 1341

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1342
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1343

Y
Yibing Liu 已提交
1344
        .. math::
Y
yangyaming 已提交
1345

Y
Yibing Liu 已提交
1346 1347 1348
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1349 1350
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1351 1352 1353 1354 1355

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1356
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1357 1358 1359
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1360 1361
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1362
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1363

Y
Yibing Liu 已提交
1364
    Args:
Y
yangyaming 已提交
1365
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1366 1367 1368 1369
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1370
        label (Variable|list): the ground truth which is a 2-D tensor. When
1371 1372 1373 1374
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1375
        soft_label (bool): a flag indicating whether to
1376
                                           interpretate the given labels as soft
1377
                                           labels. Default: `False`.
M
minqiyang 已提交
1378 1379
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1380
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1381 1382 1383 1384 1385

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1386 1387 1388
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1389

H
haowang101779990 已提交
1390 1391
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1392

H
haowang101779990 已提交
1393 1394
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1395 1396 1397 1398 1399 1400

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1401
    """
F
fengjiayi 已提交
1402
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1403
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1404 1405 1406 1407 1408
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1409 1410
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1411 1412 1413
    return out


F
frankwhzhang 已提交
1414
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1415 1416 1417
    """
    Bayesian Personalized Ranking Loss Operator.

1418
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1419 1420 1421 1422 1423 1424
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1425 1426 1427 1428 1429 1430
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1431 1432
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1433 1434 1435
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1436 1437 1438
    Examples:
        .. code-block:: python

1439
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1440
    """
1441 1442 1443 1444 1445 1446

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1447
                'Label': [label]},
1448 1449 1450 1451
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1452
def square_error_cost(input, label):
Y
Yu Yang 已提交
1453
    """
1454 1455
    **Square error cost layer**

1456 1457
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1472 1473
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1474 1475

    Returns:
G
guosheng 已提交
1476
        Variable: The tensor variable storing the element-wise squared error \
1477
                  difference of input and label.
1478 1479 1480 1481 1482 1483 1484 1485

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1486
    """
F
fengjiayi 已提交
1487
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1488
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1489 1490 1491 1492 1493 1494
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1495
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1496
    helper.append_op(
F
fengjiayi 已提交
1497 1498
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1499 1500 1501
    return square_out


Y
yi.wu 已提交
1502
@templatedoc()
Y
Yu Yang 已提交
1503 1504 1505 1506
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1507
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1508
    """
Y
yi.wu 已提交
1509
    **Chunk Evaluator**
Y
yi.wu 已提交
1510

Y
yangyaming 已提交
1511
    This function computes and outputs the precision, recall and
1512
    F1-score of chunk detection.
Y
yi.wu 已提交
1513

M
minqiyang 已提交
1514
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1515
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1516 1517 1518 1519 1520 1521

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1522

Y
yi.wu 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1548

Y
yi.wu 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1573
    Args:
1574 1575 1576 1577 1578
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1579

Y
yi.wu 已提交
1580
    Returns:
Y
update  
yi.wu 已提交
1581 1582 1583
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1584

Y
yi.wu 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1597
    """
F
fengjiayi 已提交
1598
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1599 1600

    # prepare output
X
Xin Pan 已提交
1601 1602 1603 1604 1605 1606 1607
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1608 1609 1610 1611 1612 1613 1614 1615

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1616 1617 1618 1619
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1620 1621 1622
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1623 1624
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1625
        })
1626 1627
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1628 1629


1630
@templatedoc()
Y
Yu Yang 已提交
1631 1632 1633 1634 1635 1636 1637
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1638 1639
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1640 1641 1642 1643
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1644 1645 1646 1647 1648 1649 1650

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1664

1665 1666
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1667 1668 1669 1670 1671 1672 1673
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1674
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1685
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1686 1687 1688 1689 1690 1691
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1692
def sequence_softmax(input, use_cudnn=False, name=None):
1693 1694 1695
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1696
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1713 1714 1715
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1716

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1728 1729
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1730
    softmax_out = helper.create_variable_for_type_inference(dtype)
1731 1732 1733 1734 1735 1736 1737 1738
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1739
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1740
    """
1741
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1742
    has the same shape as the input.
Q
qiaolongfei 已提交
1743

1744 1745 1746 1747 1748 1749
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1750
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1751 1752 1753 1754 1755 1756 1757

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1758
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1759 1760 1761 1762 1763 1764 1765 1766

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1767 1768 1769
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1782 1783
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1784
    softmax_out = helper.create_variable_for_type_inference(dtype)
1785 1786 1787 1788 1789 1790 1791 1792
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1793 1794 1795
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1796 1797
           stride=1,
           padding=0,
1798
           dilation=1,
Y
Yu Yang 已提交
1799 1800 1801
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1802
           use_cudnn=True,
1803 1804
           act=None,
           name=None):
Y
Yu Yang 已提交
1805
    """
C
chengduoZH 已提交
1806
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1807 1808
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1809
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1810 1811 1812 1813 1814 1815 1816
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1817 1818 1819
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1820

1821
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1822

C
chengduoZH 已提交
1823 1824
    .. math::

C
refine  
chengduoZH 已提交
1825
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1826

T
tensor-tang 已提交
1827
    Where:
C
chengduoZH 已提交
1828

1829 1830 1831 1832 1833
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1834
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1835 1836 1837

    Example:

1838 1839
        - Input:

W
weixing02 已提交
1840
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1841

W
weixing02 已提交
1842
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1843

1844
        - Output:
T
tensor-tang 已提交
1845

W
weixing02 已提交
1846
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1847

C
chengduoZH 已提交
1848
        Where
1849 1850

        .. math::
C
chengduoZH 已提交
1851

W
weixing02 已提交
1852 1853
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1854 1855

    Args:
1856
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1857
        num_filters(int): The number of filter. It is as same as the output
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1875 1876 1877 1878 1879
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1880
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1881 1882 1883 1884 1885
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1886 1887
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1888 1889
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1890
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1891
            will be named automatically. Default: None
C
chengduoZH 已提交
1892 1893

    Returns:
G
guosheng 已提交
1894
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1895 1896
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1897
    Raises:
1898 1899
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1900

C
chengduoZH 已提交
1901 1902 1903
    Examples:
        .. code-block:: python

1904 1905
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1906 1907 1908
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1909
    assert param_attr is not False, "param_attr should not be False here."
1910
    l_type = 'conv2d'
X
xzl 已提交
1911 1912
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1913
        l_type = 'depthwise_conv2d'
1914 1915 1916 1917

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1918 1919 1920 1921 1922
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1923
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1924

C
chengduoZH 已提交
1925 1926 1927
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1928
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1929

C
chengduoZH 已提交
1930 1931
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1932 1933

    input_shape = input.shape
M
minqiyang 已提交
1934
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1935 1936

    def _get_default_param_initializer():
C
chengduo 已提交
1937 1938
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1939 1940 1941 1942 1943 1944 1945 1946
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1947
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1948

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1963
    helper.append_op(
1964
        type=l_type,
Y
Yu Yang 已提交
1965 1966 1967 1968 1969
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1970 1971 1972
        attrs={
            'strides': stride,
            'paddings': padding,
1973
            'dilations': dilation,
C
chengduoZH 已提交
1974
            'groups': groups,
1975
            'use_cudnn': use_cudnn,
1976
            'use_mkldnn': False,
1977
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
1978
        })
Y
Yu Yang 已提交
1979 1980 1981 1982 1983 1984

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2002 2003 2004 2005 2006 2007
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2017 2018
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2019 2020 2021
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2022
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2048
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2049 2050
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2051
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2052 2053
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2054
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2055 2056
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2057
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2058 2059 2060 2061 2062 2063
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2074 2075
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2076 2077
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2078
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2079
            will be named automatically. Default: None.
C
chengduoZH 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2092 2093
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2094 2095 2096
    """

    l_type = 'conv3d'
C
chengduo 已提交
2097
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2108
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2122 2123 2124
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2125 2126 2127 2128 2129 2130 2131 2132
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2133
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2148
            'use_mkldnn': False
C
chengduoZH 已提交
2149 2150
        })

2151
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2152 2153 2154 2155

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2156
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2157
    """
Y
yangyaming 已提交
2158 2159 2160
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2172
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2173 2174 2175 2176 2177
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2178
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2179 2180 2181 2182 2183 2184 2185

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2186 2187
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2188

L
Luo Tao 已提交
2189 2190
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2191
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2192
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2193
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2194 2195 2196 2197 2198 2199 2200

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2201

Y
yangyaming 已提交
2202
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2203 2204 2205 2206 2207
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2208 2209
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2210
    """
F
fengjiayi 已提交
2211
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2212
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2213 2214
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2215 2216 2217 2218 2219 2220

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2221 2222
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2223

Y
yangyaming 已提交
2224 2225 2226 2227 2228
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2229 2230 2231
    return pool_out


C
add doc  
chengduoZH 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2251
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2252 2253 2254 2255 2256
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2257
def sequence_first_step(input):
L
Luo Tao 已提交
2258
    """
L
Luo Tao 已提交
2259
    This function gets the first step of sequence.
L
Luo Tao 已提交
2260 2261 2262 2263

    .. code-block:: text

       x is a 1-level LoDTensor:
2264
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2265 2266 2267 2268 2269
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2270
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2271
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2272

L
Luo Tao 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2282

Y
yangyaming 已提交
2283
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2284 2285 2286
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2287 2288 2289
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2290
def sequence_last_step(input):
L
Luo Tao 已提交
2291
    """
L
Luo Tao 已提交
2292
    This function gets the last step of sequence.
L
Luo Tao 已提交
2293 2294 2295 2296

    .. code-block:: text

       x is a 1-level LoDTensor:
2297
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2298 2299 2300 2301 2302
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2303
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2304
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2305

L
Luo Tao 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2315

Y
yangyaming 已提交
2316
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2317 2318 2319
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2320 2321 2322
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2323 2324 2325 2326
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2327
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2328 2329 2330 2331 2332
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2333

H
haowang101779990 已提交
2334
              - Case:
Y
Yibing Liu 已提交
2335

2336
            Given the input Variable **input**:
2337

2338 2339 2340
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2341

2342
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2343

2344
            the output Variable will be
2345

2346 2347 2348
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2349

M
minqiyang 已提交
2350
    Note:
H
haowang101779990 已提交
2351
          The first dimension size of **input**, **offset** and **length**
2352
          should be equal. The **offset** should start from 0.
2353

Y
Yibing Liu 已提交
2354
    Args:
2355
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2356
                         sequences.
Y
Yibing Liu 已提交
2357 2358 2359 2360 2361 2362
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2363
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2374
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2375 2376 2377 2378
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2379
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2394
@templatedoc()
Y
Yu Yang 已提交
2395
def pool2d(input,
C
chengduoZH 已提交
2396 2397
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2398 2399
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2400
           global_pooling=False,
C
chengduoZH 已提交
2401
           use_cudnn=True,
2402
           ceil_mode=False,
2403 2404
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2405
    """
F
fengjiayi 已提交
2406
    ${comment}
2407 2408

    Args:
2409 2410 2411
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2412
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2413
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2414 2415
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2416
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2417 2418 2419 2420 2421 2422
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2423 2424 2425
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2426
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2427
                        layer will be named automatically.
2428
        exclusive (bool): Whether to exclude padding points in average pooling
2429
                          mode, default is true
F
fengjiayi 已提交
2430

2431
    Returns:
F
fengjiayi 已提交
2432
        Variable: The pooling result.
F
fengjiayi 已提交
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2446 2447 2448 2449
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2450
                            global_pooling=False)
Y
Yu Yang 已提交
2451 2452 2453 2454 2455
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2456

C
chengduoZH 已提交
2457 2458 2459 2460 2461
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2462 2463 2464 2465
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2466 2467
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2468

C
Add doc  
chengduoZH 已提交
2469
    l_type = 'pool2d'
2470 2471

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2472
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2473
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2474 2475

    helper.append_op(
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2487 2488
            "use_mkldnn": False,
            "exclusive": exclusive,
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2502 2503
           name=None,
           exclusive=True):
2504 2505
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2506
    pooling configurations mentioned in input parameters.
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2519
        exclusive (bool): Whether to exclude padding points in average pooling
2520
                          mode, default is true
2521

2522
    Returns:
2523
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2524 2525 2526 2527 2528
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2529

C
chengduoZH 已提交
2530 2531 2532 2533 2534
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2535 2536 2537
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2538

C
chengduoZH 已提交
2539 2540
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2541

2542 2543
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2544
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2545
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2546 2547

    helper.append_op(
2548
        type=l_type,
Y
Yu Yang 已提交
2549 2550 2551 2552 2553 2554 2555
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2556
            "paddings": pool_padding,
2557
            "use_cudnn": use_cudnn,
2558
            "ceil_mode": ceil_mode,
2559 2560
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2561 2562 2563 2564 2565
        })

    return pool_out


2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2599
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2600
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2601
          # of input data into m * n grids averagely and performs poolings in each
2602 2603
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2604
          #
2605 2606 2607 2608 2609 2610 2611 2612
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2613 2614
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2615
          pool_out = fluid.layers.adaptive_pool2d(
2616 2617
                            input=data,
                            pool_size=[3, 3],
2618
                            pool_type='avg')
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2629
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2655
    return (pool_out, mask) if require_index else pool_out
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2691 2692
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2693
          # of input data into l * m * n grids averagely and performs poolings in each
2694 2695
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2696
          #
2697 2698 2699 2700 2701 2702 2703 2704 2705
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2706
          #                 output[:, :, i, j, k] =
2707 2708
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2709 2710
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2711
          pool_out, mask = fluid.layers.adaptive_pool3d(
2712 2713
                            input=data,
                            pool_size=[3, 3],
2714
                            pool_type='avg')
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2725
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2751
    return (pool_out, mask) if require_index else pool_out
2752 2753


Y
Yu Yang 已提交
2754 2755 2756 2757 2758 2759 2760
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2761
               data_layout='NCHW',
Y
Yang Yang 已提交
2762
               in_place=False,
2763 2764
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2765
               moving_variance_name=None,
2766
               do_model_average_for_mean_and_var=False,
2767 2768
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2769
    """
Q
qiaolongfei 已提交
2770 2771 2772 2773
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2774

Q
qiaolongfei 已提交
2775
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2776

Q
qiaolongfei 已提交
2777 2778
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2779 2780 2781
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2794

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2808
    Args:
Q
qiaolongfei 已提交
2809
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2810 2811 2812 2813
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2814 2815 2816 2817 2818 2819 2820 2821
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2822
        data_layout(string, default NCHW): NCHW|NHWC
2823
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2824 2825 2826 2827
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2828
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2829
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2830 2831 2832 2833 2834
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2835 2836

    Returns:
Q
qiaolongfei 已提交
2837
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2838 2839 2840 2841 2842 2843 2844

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2845
    """
C
chengduo 已提交
2846
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2847 2848 2849
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2850 2851 2852 2853
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2871 2872 2873
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2874 2875

    bias = helper.create_parameter(
2876
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2877 2878
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
M
minqiyang 已提交
2879
        bias.stop_gradient = True
Y
Yu Yang 已提交
2880

2881 2882
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2883 2884 2885
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2886
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2887
        shape=param_shape,
W
Wu Yi 已提交
2888
        dtype=dtype)
2889 2890 2891 2892 2893 2894
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2895
            trainable=False,
W
wanghaoshuang 已提交
2896
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2897
        shape=param_shape,
W
Wu Yi 已提交
2898
        dtype=dtype)
2899
    variance.stop_gradient = True
Y
Yu Yang 已提交
2900 2901 2902 2903 2904 2905

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2906 2907 2908 2909
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2910

X
Xin Pan 已提交
2911 2912
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2930 2931 2932 2933
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2934
            "data_layout": data_layout,
X
Xin Pan 已提交
2935
            "use_mkldnn": False,
2936 2937
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2938
        })
Y
Yu Yang 已提交
2939 2940 2941 2942

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              use_mkldnn=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
        attrs={"epsilon": epsilon,
               "use_mkldnn": use_mkldnn})

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3070
@templatedoc()
G
guosheng 已提交
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3081
    ${comment}
G
guosheng 已提交
3082 3083 3084

    The formula is as follows:

Y
yuyang18 已提交
3085
    ..  math::
G
guosheng 已提交
3086 3087 3088 3089 3090 3091 3092

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3093 3094 3095 3096 3097 3098 3099 3100
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3101

G
guosheng 已提交
3102 3103
    Args:
        input(Variable): The input tensor variable.
3104
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3105
            normalization. Default True.
3106
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3107 3108
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3109
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3110
            Default 1.
3111
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3112
            division by zero. Default 1e-05.
G
guosheng 已提交
3113
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3114 3115
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3116 3117
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3118
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3119 3120
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3121
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3122
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3123
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3124 3125 3126
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3127 3128

    Returns:
Y
yuyang18 已提交
3129
        ${y_comment}
G
guosheng 已提交
3130 3131 3132

    Examples:

Y
yuyang18 已提交
3133 3134 3135
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3151
    if shift:
G
guosheng 已提交
3152 3153 3154 3155 3156 3157
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3158 3159 3160 3161 3162
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3190
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3238 3239
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
Dun 已提交
3240
    group_norm_out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3256 3257 3258 3259
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3260 3261 3262
                     padding=0,
                     stride=1,
                     dilation=1,
3263
                     groups=None,
C
caoying03 已提交
3264
                     param_attr=None,
3265
                     bias_attr=None,
C
chengduoZH 已提交
3266
                     use_cudnn=True,
3267
                     act=None,
C
caoying03 已提交
3268
                     name=None):
Y
Yu Yang 已提交
3269
    """
3270 3271 3272 3273 3274 3275 3276 3277
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3278 3279
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3280 3281 3282
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3283 3284 3285 3286 3287

    For each input :math:`X`, the equation is:

    .. math::

3288
        Out = \sigma (W \\ast X + b)
3289

3290
    Where:
3291 3292 3293

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3294 3295 3296 3297
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3298

3299 3300 3301 3302
    Example:

        - Input:

3303
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3304

3305
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3306 3307 3308

        - Output:

3309
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3310 3311

        Where
Y
Yu Yang 已提交
3312

3313 3314
        .. math::

3315 3316
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3317 3318
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3319 3320

    Args:
3321 3322 3323 3324
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3325 3326 3327 3328
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3357
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3358 3359 3360
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3361
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3362
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3363 3364

    Returns:
3365
        Variable: The tensor variable storing the convolution transpose result.
3366 3367

    Raises:
3368 3369
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3370 3371 3372 3373

    Examples:
       .. code-block:: python

3374 3375
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3376
    """
C
chengduo 已提交
3377
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3378 3379 3380 3381 3382 3383 3384 3385
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3386 3387 3388
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3389 3390 3391
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3392

C
chengduoZH 已提交
3393 3394
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3395

Y
Yu Yang 已提交
3396 3397 3398 3399 3400
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3401

Y
Yu Yang 已提交
3402 3403
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3404

C
chengduoZH 已提交
3405
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3406
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3407
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3408
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3409
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3410 3411 3412
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3413

3414 3415 3416 3417 3418 3419 3420
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3421
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3422
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3423

Y
Yu Yang 已提交
3424 3425 3426
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3427
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3428
    helper.append_op(
3429
        type=op_type,
Y
Yu Yang 已提交
3430 3431
        inputs={'Input': [input],
                'Filter': [img_filter]},
3432
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3433
        attrs={
3434
            'output_size': output_size,
3435 3436 3437 3438 3439
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3440 3441
        })

3442 3443 3444
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3445 3446


3447
def conv3d_transpose(input,
Y
Yu Yang 已提交
3448 3449 3450
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3451 3452 3453
                     padding=0,
                     stride=1,
                     dilation=1,
3454
                     groups=None,
C
caoying03 已提交
3455
                     param_attr=None,
3456
                     bias_attr=None,
C
chengduoZH 已提交
3457
                     use_cudnn=True,
3458
                     act=None,
C
caoying03 已提交
3459
                     name=None):
Y
Yu Yang 已提交
3460
    """
3461
    **Convlution3D transpose layer**
3462

3463
    The convolution3D transpose layer calculates the output based on the input,
3464
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3465 3466 3467 3468 3469 3470
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3471 3472 3473
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3474 3475 3476 3477 3478

    For each input :math:`X`, the equation is:

    .. math::

3479
        Out = \sigma (W \\ast X + b)
3480 3481 3482

    In the above equation:

3483 3484
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3485 3486 3487 3488
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3489

3490 3491 3492 3493
    Example:

        - Input:

3494
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3495

3496
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3497 3498 3499

        - Output:

3500
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3501 3502

        Where
Y
Yu Yang 已提交
3503

3504 3505
        .. math::

3506 3507 3508
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3509 3510

    Args:
3511
        input(Variable): The input image with [N, C, D, H, W] format.
3512 3513 3514
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3515
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3516 3517
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3518
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3519 3520 3521
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3522 3523
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3524
        stride(int|tuple): The stride size. If stride is a tuple, it must
3525 3526
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3527
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3528 3529 3530
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3531 3532 3533 3534 3535
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3536 3537 3538 3539 3540 3541 3542 3543 3544
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3545 3546
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3547 3548
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3549 3550
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3551 3552

    Returns:
3553
        Variable: The tensor variable storing the convolution transpose result.
3554 3555

    Raises:
3556 3557
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3558 3559 3560 3561

    Examples:
       .. code-block:: python

3562 3563
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3564
    """
C
chengduo 已提交
3565
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3566 3567
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3568
    if not isinstance(input, Variable):
3569
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3570 3571
    input_channel = input.shape[1]

3572 3573 3574
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3575

C
chengduoZH 已提交
3576 3577 3578
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3579 3580 3581 3582 3583 3584
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3585 3586 3587
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3588

3589
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3590
                         padding[0] - 1) // dilation[0] + 1
3591
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3592
                         padding[1] - 1) // dilation[1] + 1
3593
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3594
                         padding[2] - 1) // dilation[2] + 1
3595
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3596
    else:
3597 3598
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3599

3600
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3601
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3602 3603 3604
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3605
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3606
    helper.append_op(
3607
        type=l_type,
Y
Yu Yang 已提交
3608 3609
        inputs={'Input': [input],
                'Filter': [img_filter]},
3610
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3611 3612 3613 3614
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3615
            'groups': groups,
C
chengduoZH 已提交
3616 3617
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3618

3619 3620
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3621
    return out
Y
yangyaming 已提交
3622 3623


Y
yangyaming 已提交
3624
def sequence_expand(x, y, ref_level=-1, name=None):
3625
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3626 3627 3628 3629
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3630 3631 3632 3633 3634

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3635
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3636
                x.data = [[a], [b], [c], [d]]
3637 3638 3639
                x.dims = [4, 1]

            y is a LoDTensor:
3640 3641
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3642

Y
yangyaming 已提交
3643
            ref_level: 0
3644

Y
yangyaming 已提交
3645
            then output is a 1-level LoDTensor:
3646
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3647
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3648 3649 3650 3651
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3652
                x.data = [[a], [b], [c]]
3653 3654 3655
                x.dims = [3, 1]

            y is a LoDTensor:
3656
                y.lod = [[2, 0, 3]]
3657

Y
yangyaming 已提交
3658
            ref_level: -1
3659

Y
yangyaming 已提交
3660 3661 3662
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3663 3664 3665
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3666 3667
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3668
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3669
                        will be named automatically.
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3680
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3681
    """
Y
yangyaming 已提交
3682
    helper = LayerHelper('sequence_expand', input=x, **locals())
3683
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3684
    tmp = helper.create_variable_for_type_inference(dtype)
3685
    helper.append_op(
Y
yangyaming 已提交
3686 3687 3688 3689 3690
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3691
    return tmp
3692 3693


C
chengduo 已提交
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3750
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3751 3752 3753 3754 3755 3756 3757 3758
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3759
@templatedoc()
3760
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3761 3762 3763 3764 3765
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3766 3767 3768
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3769
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3770 3771 3772 3773
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3774 3775 3776
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3777

F
fengjiayi 已提交
3778
    Returns:
M
minqiyang 已提交
3779
        Variable: The padded sequence batch and the original lengths before
3780
                  padding. All sequences has the same length.
M
minqiyang 已提交
3781

F
fengjiayi 已提交
3782 3783 3784 3785 3786 3787 3788
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3789
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3790
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3791 3792 3793 3794 3795
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3796 3797
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3798 3799 3800 3801

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3802 3803 3804 3805 3806 3807
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3808 3809
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3810
        attrs={'padded_length': maxlen})
3811
    return out, length
F
fengjiayi 已提交
3812 3813


3814
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3815
    """
3816
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3817

3818 3819
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3820 3821 3822 3823 3824 3825 3826 3827 3828
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3829 3830 3831
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3832
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3833 3834 3835 3836 3837 3838

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3839
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3840 3841 3842 3843 3844 3845

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3846 3847
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3862
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3874 3875 3876 3877 3878 3879 3880
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
3881
                is_accumulated=True,
3882 3883
                name=None,
                return_parent_idx=False):
3884
    """
3885 3886
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3887 3888 3889

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3890 3891

    This layer does the search in beams for one time step. Specifically, it
3892 3893 3894
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
3906 3907 3908 3909

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3910

3911
    Args:
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
3935 3936
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
3937 3938
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
3939 3940 3941 3942
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
3943

3944
    Returns:
3945 3946 3947 3948
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
3949 3950 3951 3952

    Examples:
        .. code-block:: python

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3970
    helper = LayerHelper('beam_search', **locals())
3971 3972 3973 3974 3975 3976
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
3977

X
Xin Pan 已提交
3978 3979 3980
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
3981 3982 3983 3984 3985
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
3986 3987 3988

    helper.append_op(
        type='beam_search',
3989
        inputs=inputs,
Q
Qiao Longfei 已提交
3990 3991 3992
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
3993
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
3994 3995 3996 3997 3998 3999
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4000
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4001
        })
4002 4003 4004 4005
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4006 4007


4008 4009 4010 4011 4012 4013 4014
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4015

4016 4017 4018 4019 4020 4021 4022 4023 4024
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4025

4026 4027 4028 4029 4030 4031
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4032

4033 4034
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4035

4036 4037 4038 4039 4040 4041
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4042 4043
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4059 4060 4061 4062
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4063
              param_attr=None,
C
caoying03 已提交
4064 4065
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4066 4067 4068 4069
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4070
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4071

4072
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4073

4074
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4075

4076
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4077 4078 4079

            h_t & = o_t tanh(c_t)

4080 4081 4082 4083 4084 4085
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4086 4087 4088

        .. math::

4089
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4090 4091 4092 4093 4094 4095 4096 4097

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4098
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4099 4100

    Args:
Y
yangyaming 已提交
4101 4102 4103 4104 4105 4106
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4107
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4120 4121
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4122 4123

    Returns:
Y
yangyaming 已提交
4124
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4125 4126

    Raises:
4127 4128 4129 4130
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4131 4132 4133 4134 4135 4136

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4137
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4138
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4139
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4156
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4157 4158 4159 4160
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4161 4162
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4163 4164 4165
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4166
    size = cell_t_prev.shape[1]
4167
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4168 4169
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4170
                param_attr=param_attr,
4171
                bias_attr=bias_attr)
Y
yangyaming 已提交
4172
    dtype = x_t.dtype
X
Xin Pan 已提交
4173 4174
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4175 4176 4177 4178 4179 4180 4181 4182 4183

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4184
    return h, c
G
guosheng 已提交
4185 4186


C
caoying03 已提交
4187
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4188
    """
Y
yangyaming 已提交
4189
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4190 4191 4192

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4193
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4194 4195
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4196 4197
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4198
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4199
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4200
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4201 4202
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4203 4204 4205

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4206

G
guosheng 已提交
4207 4208 4209 4210 4211 4212
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4213
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4214 4215 4216 4217
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4218 4219 4220 4221

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4222
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4223 4224 4225
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4226 4227
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4228
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4229 4230
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4231 4232 4233 4234 4235
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4236
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4237 4238 4239 4240
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4241 4242


C
caoying03 已提交
4243
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4244
    """
Y
Yibing Liu 已提交
4245
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4246 4247 4248

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4249 4250 4251
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4252
            must be in the range :math:`[-rank(input), rank(input))`. If
4253
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4254
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4255 4256
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4257
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4258
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4259
                       will be named automatically.
G
guosheng 已提交
4260 4261

    Returns:
Y
Yibing Liu 已提交
4262
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4263

G
guosheng 已提交
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4274 4275
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4276 4277 4278 4279 4280 4281 4282

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4283 4284
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4285
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4286 4287
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4288 4289 4290 4291 4292
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4293
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4294 4295 4296 4297
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4298 4299


C
caoying03 已提交
4300
def reduce_max(input, dim=None, keep_dim=False, name=None):
4301
    """
Y
yangyaming 已提交
4302
    Computes the maximum of tensor elements over the given dimension.
4303 4304 4305

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4306
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4307 4308 4309
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4310
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4311 4312
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4313
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4314 4315
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4316 4317 4318

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4319

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4331 4332 4333 4334 4335 4336 4337

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4338 4339
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4340
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4341 4342
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4343 4344 4345 4346 4347
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4348
            'dim': dim if dim != None else [0],
4349 4350 4351 4352 4353 4354
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4355
def reduce_min(input, dim=None, keep_dim=False, name=None):
4356
    """
Y
yangyaming 已提交
4357
    Computes the minimum of tensor elements over the given dimension.
4358 4359 4360

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4361
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4362 4363 4364
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4365
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4366 4367
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4368
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4369 4370
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4371 4372 4373

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4374

4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4386 4387 4388 4389 4390 4391 4392

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4393 4394
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4395
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4396 4397
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4398 4399 4400 4401 4402
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4403
            'dim': dim if dim != None else [0],
4404 4405 4406 4407
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4408 4409


4410 4411 4412 4413 4414 4415
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4416
        dim (list|int|None): The dimensions along which the product is performed. If
4417 4418
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4419 4420
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4421 4422 4423
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4424
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4425
            layer will be named automatically.
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4440
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4441
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4442 4443 4444 4445 4446 4447 4448

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4449 4450
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4451
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4452 4453
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4454 4455 4456 4457 4458
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4459
            'dim': dim if dim != None else [0],
4460 4461 4462 4463 4464 4465
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4466
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4467
    """
C
caoying03 已提交
4468
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4469 4470 4471

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4472 4473 4474 4475 4476
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4477
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4478
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4479
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4480 4481
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4482 4483

    Returns:
D
dzhwinter 已提交
4484
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4494 4495
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4511
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4525 4526 4527 4528 4529 4530 4531 4532 4533


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4534
    .. math::
4535 4536

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4537 4538 4539 4540 4541

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4542
        x(Variable|list): The input tensor to l2_normalize layer.
4543
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4544 4545
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4546
        epsilon(float): The epsilon value is used to avoid division by zero, \
4547
            the defalut value is 1e-10.
4548
        name(str|None): A name for this layer(optional). If set None, the layer \
4549
            will be named automatically.
C
caoying03 已提交
4550 4551

    Returns:
4552
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4553 4554

    Examples:
4555

C
caoying03 已提交
4556 4557
        .. code-block:: python

4558 4559 4560 4561
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4562 4563
    """

F
fengjiayi 已提交
4564 4565
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4566 4567
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4568 4569
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4570
    helper.append_op(
4571 4572 4573 4574
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4575
        attrs={
4576 4577
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4578 4579
        })
    return out
4580 4581


S
sneaxiy 已提交
4582
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4583
    """
Y
ying 已提交
4584 4585 4586 4587
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4588

C
chengduoZH 已提交
4589
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4590
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4591

4592 4593 4594 4595 4596
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4597
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4598

C
chengduoZH 已提交
4599
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4600
      performs in the following way.
G
guosheng 已提交
4601

4602
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4603
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4604
        last two dimensions and a batched matrix multiply supporting broadcast
4605
        applies on the two tensors.
G
guosheng 已提交
4606

Y
ying 已提交
4607 4608
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4609
    removed after matrix multiplication.
G
guosheng 已提交
4610 4611 4612

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4613 4614 4615
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4616
        alpha (float): The scale of output. Default 1.0.
4617
        name(str|None): A name for this layer(optional). If set None, the layer
4618
            will be named automatically.
G
guosheng 已提交
4619 4620

    Returns:
4621
        Variable: The product Tensor variable.
G
guosheng 已提交
4622

G
guosheng 已提交
4623 4624 4625
    Examples:
        .. code-block:: python

4626
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4627 4628
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4629

4630 4631
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4632

4633 4634
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4635

4636 4637
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4638 4639 4640 4641

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4642 4643
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4644

Y
ying 已提交
4645
            # x: [M], y: [N]
4646
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4647
    """
Y
ying 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4660
            y_shape = y_shape + [1]
Y
ying 已提交
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4677
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4678
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4679
    helper.append_op(
4680 4681 4682 4683
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4684 4685 4686
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4687
            'alpha': float(alpha),
S
sneaxiy 已提交
4688
        })
4689
    return out
4690 4691


4692
def topk(input, k, name=None):
Q
qingqing01 已提交
4693 4694 4695 4696
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4697
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4698 4699 4700 4701 4702 4703
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4725 4726 4727
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4728
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4729
                 of input.
4730
        name(str|None): A name for this layer(optional). If set None, the layer
4731
                       will be named automatically.
F
fengjiayi 已提交
4732
                       Default: None
Q
qingqing01 已提交
4733 4734

    Returns:
4735 4736 4737
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4738
        within the last dimension of input.
Q
qingqing01 已提交
4739

F
fengjiayi 已提交
4740 4741
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4742 4743 4744 4745 4746 4747 4748

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4749 4750
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4751 4752 4753 4754 4755 4756
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4757 4758
    helper.append_op(
        type="top_k",
W
whs 已提交
4759
        inputs=inputs,
Q
qingqing01 已提交
4760 4761
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4762
        attrs=attrs)
Q
qingqing01 已提交
4763 4764 4765 4766 4767
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4768
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4769
    """
Y
ying 已提交
4770 4771 4772 4773 4774 4775 4776 4777 4778
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4779

Y
ying 已提交
4780
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4781

4782
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4783 4784
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4785
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4786

4787
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4788 4789
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4790

4791 4792 4793
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4794
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4795
                          the length of reference string.
4796
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4797
                                     calculating edit distance.
4798
        name (str): The name of this layer. It is optional.
4799

W
wanghaoshuang 已提交
4800
    Returns:
W
wanghaoshuang 已提交
4801
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4802 4803 4804 4805

    Examples:
        .. code-block:: python

T
tink2123 已提交
4806 4807
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4808
            cost = fluid.layers.edit_distance(input=x,label=y)
4809
    """
4810
    helper = LayerHelper("edit_distance", **locals())
4811

4812
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4813
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4814 4815
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4816 4817 4818 4819 4820

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4821
            attrs={"tokens": ignored_tokens})
4822 4823 4824 4825 4826
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4827
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4828
            attrs={"tokens": ignored_tokens})
4829 4830
        label = erased_label

4831
    # edit distance op
X
Xin Pan 已提交
4832 4833
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4834 4835 4836 4837
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4838 4839
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4840 4841
        attrs={"normalized": normalized})

4842
    return edit_distance_out, sequence_num
4843 4844 4845 4846 4847


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4848

Y
ying 已提交
4849 4850 4851 4852
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4870
        input.lod = [[4, 4]]
M
minqiyang 已提交
4871

W
whs 已提交
4872
        Computation:
4873

W
whs 已提交
4874 4875 4876 4877 4878 4879
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4880 4881 4882 4883 4884

        output.data = [[2],
                       [1],
                       [3]]

4885
        output.lod = [[2, 1]]
4886

W
whs 已提交
4887

4888 4889
    Args:

Y
ying 已提交
4890 4891 4892 4893 4894 4895 4896 4897 4898
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4899
        name (str): The name of this layer. It is optional.
4900 4901

    Returns:
H
haowang101779990 已提交
4902 4903 4904
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
4905
                  LoD [[]] and dims [1, 1].
4906 4907 4908 4909 4910

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4911

4912
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4913
    """
4914
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4915
    _, topk_indices = topk(input, k=1)
4916 4917

    # ctc align op
X
Xin Pan 已提交
4918
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4919 4920 4921
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4922
        outputs={"Output": [ctc_out]},
4923 4924
        attrs={"merge_repeated": True,
               "blank": blank})
4925
    return ctc_out
4926 4927


W
Wu Yi 已提交
4928
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4929
    """
4930 4931
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4932
    to compute Connectionist Temporal Classification (CTC) loss.
4933 4934
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4935 4936 4937
    input tensor.

    Args:
4938
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4939 4940 4941 4942
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4943
       label (Variable): The ground truth of variable-length sequence,
4944 4945 4946
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4947 4948
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4949 4950 4951
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4952
         follewed by a mean_op.
W
Wu Yi 已提交
4953
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4954 4955

    Returns:
4956 4957
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4958 4959

    Examples:
4960

W
wanghaoshuang 已提交
4961
        .. code-block:: python
4962

4963 4964 4965
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4966 4967

    """
F
fengjiayi 已提交
4968
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4969 4970
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4971 4972 4973 4974 4975 4976
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4977 4978 4979 4980 4981
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4982
    return loss_out
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4998 4999 5000
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5001 5002 5003 5004 5005
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5006

5007
            out.lod  = [[0, 1, 3]]
5008 5009 5010 5011

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5012 5013 5014 5015 5016 5017 5018
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5019 5020 5021

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5022 5023

    Returns:
5024

5025 5026 5027 5028 5029
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5030
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5031
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5032 5033
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5034
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5035 5036 5037 5038 5039 5040
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5041 5042


5043 5044 5045 5046
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5047 5048 5049 5050 5051 5052
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5053
        num_neg_samples=None,
5054 5055 5056
        name=None,
        sampler="uniform",
        custom_dist=None,
5057 5058
        seed=0,
        is_sparse=False):
5059 5060 5061 5062 5063 5064 5065
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5066 5067
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5068
            sample is 1.0.
C
chengduo 已提交
5069 5070 5071 5072 5073 5074 5075 5076 5077
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5078
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5079 5080
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5081 5082 5083
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5084
        custom_dist (float[]): A float[] with size=num_total_classes.
5085 5086 5087 5088
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5089
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5090

5091
    Returns:
Y
Yibing Liu 已提交
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5119 5120 5121 5122 5123 5124 5125 5126 5127

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5128

5129
    """
Y
Yang Yu 已提交
5130 5131 5132
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5133 5134

    dim = input.shape[1]
Y
Yang Yu 已提交
5135 5136 5137 5138 5139 5140
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5141
    inputs = {}
C
chengduo 已提交
5142 5143 5144 5145 5146 5147 5148
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5149 5150 5151
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5152

5153 5154 5155 5156
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5157 5158 5159 5160 5161 5162 5163

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5164 5165 5166 5167 5168 5169 5170 5171 5172
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5173
            if normal_prob - 1.0 > 0:
5174
                bigs.append((i, normal_prob))
5175
            elif 1.0 - normal_prob > 0:
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5191
            if big_left - 1.0 > 0:
5192
                bigs.append((big_idx, big_left))
5193
            elif 1.0 - big_left > 0:
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5223 5224 5225 5226
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5227 5228 5229 5230 5231
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5232 5233 5234 5235
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5236

Y
Yang Yu 已提交
5237 5238
    attrs = {
        'num_total_classes': int(num_total_classes),
5239 5240
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5241
        'sampler': sampler,
5242 5243
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5244
    }
Y
Yang Yu 已提交
5245 5246 5247

    helper.append_op(
        type='nce',
C
chengduo 已提交
5248
        inputs=inputs,
Y
Yang Yu 已提交
5249 5250 5251 5252 5253 5254
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5255
    return cost / (num_neg_samples + 1)
5256 5257


C
chengduo 已提交
5258 5259
def hsigmoid(input,
             label,
5260
             num_classes,
C
chengduo 已提交
5261 5262
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5263
             name=None,
5264 5265 5266
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5267
             is_sparse=False):
W
weixing02 已提交
5268 5269
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5270
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5271
    complete binary tree, or you can use is_custom to pass your own tree to
5272
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5273 5274 5275 5276 5277 5278
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5279
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5280
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5281

5282 5283
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5284 5285 5286 5287
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5288
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5289
       related to the same batch of inputs.
5290

W
weixing02 已提交
5291
    Args:
M
minqiyang 已提交
5292
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5293 5294 5295 5296
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5297 5298
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5299
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5311
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5312
            it should be in leaf -> root order
M
minqiyang 已提交
5313 5314 5315
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5316
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5317
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5318
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5319
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5320
             of W and input will be sparse.
W
weixing02 已提交
5321 5322

    Returns:
J
JiabinYang 已提交
5323
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5324 5325 5326 5327 5328

    Examples:

        .. code-block:: python

G
guosheng 已提交
5329 5330 5331
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5332 5333 5334 5335
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5336 5337
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5338
    dim = input.shape[1]
5339
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5340 5341 5342
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5343 5344 5345 5346
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5347 5348
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5349 5350 5351
    else:
        pass

J
JiabinYang 已提交
5352
    weights = None
5353 5354 5355 5356
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5357
    if not is_custom:
J
JiabinYang 已提交
5358 5359 5360 5361 5362 5363 5364 5365
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5366
            shape=[num_classes, dim],
J
JiabinYang 已提交
5367 5368
            is_bias=False,
            dtype=input.dtype)
5369 5370 5371
    inputs = {
        "X": input,
        "W": weights,
5372
        "PathTable": path_table,
5373
        "PathCode": path_code,
5374 5375
        "Label": label
    }
W
weixing02 已提交
5376
    if helper.bias_attr:
5377
        if not is_custom:
J
JiabinYang 已提交
5378 5379
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5380
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5381 5382 5383 5384 5385 5386
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5387
                shape=[num_classes, 1],
J
JiabinYang 已提交
5388 5389 5390
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5391 5392
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5393
        inputs=inputs,
W
weixing02 已提交
5394
        outputs={"Out": out,
5395 5396 5397 5398 5399 5400 5401
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5402 5403 5404
    return out


Y
fix ci.  
ying 已提交
5405
def transpose(x, perm, name=None):
Y
ying 已提交
5406 5407 5408 5409 5410 5411 5412
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5413 5414 5415
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5416 5417 5418 5419 5420 5421 5422

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5423
            # use append_batch_size=False to avoid prepending extra
5424
            # batch size in shape
5425
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5426
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5427
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5428 5429
    """

Y
fix ci.  
ying 已提交
5430
    if len(perm) != len(x.shape):
Y
ying 已提交
5431 5432 5433
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5434 5435 5436 5437 5438 5439
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5440 5441

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5442 5443
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5444
    helper.append_op(
5445
        type='transpose2',
Y
fix ci.  
ying 已提交
5446
        inputs={'X': [x]},
5447 5448
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5449 5450
        attrs={'axis': perm})
    return out
5451 5452


5453 5454 5455 5456 5457 5458 5459
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5460
    """
5461 5462 5463 5464 5465 5466 5467
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5496 5497 5498 5499 5500 5501 5502 5503 5504
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5505 5506 5507
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5508 5509 5510 5511 5512
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5540 5541 5542
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5555
            output.dims = {8, 8}
5556

5557
            output.lod = [[4, 4]]
5558

T
Tink_Y 已提交
5559
    Examples:
5560 5561 5562

        .. code-block:: python

5563 5564
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5565 5566

    """
W
wanghaoshuang 已提交
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5577 5578 5579 5580 5581 5582 5583
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5584
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5585
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5586
    helper.append_op(
5587
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5588
    return out
5589 5590


Y
yuyang18 已提交
5591
@templatedoc()
5592
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5593 5594
    """
    ${comment}
5595 5596

    Args:
Y
yuyang18 已提交
5597
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5598 5599
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5600 5601 5602 5603 5604
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5605
        ${out_comment}.
5606 5607

    Examples:
Y
yuyang18 已提交
5608 5609 5610 5611
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5612 5613 5614 5615 5616 5617
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5618
    out = helper.create_variable_for_type_inference(dtype)
5619 5620 5621 5622 5623
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5624
    return helper.append_activation(out)
5625 5626


Y
yuyang18 已提交
5627
@templatedoc()
5628 5629
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5630 5631 5632 5633 5634 5635 5636
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5637 5638

    Args:
Y
yuyang18 已提交
5639 5640
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5641 5642

    Returns:
Y
yuyang18 已提交
5643
        ${out_comment}.
5644 5645
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5646 5647 5648 5649 5650

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5651
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5652 5653 5654 5655 5656 5657
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5658 5659


5660 5661 5662
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5663
                               ignore_index=kIgnoreIndex,
5664 5665
                               numeric_stable_mode=False,
                               return_softmax=False):
5666 5667
    """
    **Softmax With Cross Entropy Operator.**
5668

5669 5670 5671 5672
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5673

5674 5675 5676
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5677

5678 5679 5680
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5681

5682
    The equation is as follows:
5683

5684
    1) Hard label (one-hot label, so every sample has exactly one class)
5685

5686 5687 5688 5689
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5690

5691 5692 5693
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5694

5695 5696 5697 5698
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5699 5700 5701
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5702

H
haowang101779990 已提交
5703
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5704

H
haowang101779990 已提交
5705
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5706

H
haowang101779990 已提交
5707
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5708 5709 5710

    and then cross entropy loss is calculated by softmax and label.

5711 5712 5713 5714 5715 5716 5717 5718
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5719 5720
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5721
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5722 5723 5724
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5725 5726 5727
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5728
                                    stable algorithm. Default: False
5729
        return_softmax (bool): A flag indicating whether to return the softmax
5730
                               along with the cross entropy loss. Default: False
5731

5732
    Returns:
H
haowang101779990 已提交
5733 5734 5735 5736 5737
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5738 5739 5740 5741 5742 5743 5744

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5745 5746
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5747 5748
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5749 5750
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5751 5752 5753 5754 5755 5756
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5757 5758 5759 5760 5761
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5762 5763 5764 5765

    if return_softmax:
        return loss, softmax

5766 5767 5768
    return loss


5769 5770 5771
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
5772
                                       num_true=1,
5773
                                       remove_accidental_hits=True,
X
xuezhong 已提交
5774 5775 5776
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
5777
                                       seed=0):
X
xuezhong 已提交
5778 5779 5780 5781 5782
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
5783
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
5784 5785 5786 5787 5788 5789 5790 5791
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
5792
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
5793 5794 5795 5796 5797 5798 5799 5800
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
5801
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
5813
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
5814 5815 5816 5817 5818
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
5819
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
5820
            logits.
X
xuezhong 已提交
5821 5822 5823 5824 5825
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
5826 5827 5828
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
5854
            'Labels': label,
X
xuezhong 已提交
5855 5856 5857 5858 5859 5860
            'CustomSamples': custom_samples,
            'CustomProbabilities': custom_probabilities
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
5861
            'SampledLabels': sampled_label,
X
xuezhong 已提交
5862 5863 5864
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
5865
            'use_customized_samples': use_customized_samples,
5866
            'uniq': True,
X
xuezhong 已提交
5867 5868 5869 5870
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
5871 5872
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
5873 5874
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
5875 5876 5877 5878 5879
        inputs={'Logits': sampled_logits,
                'Label': sampled_label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
5880
            'soft_label': False,
X
xuezhong 已提交
5881 5882 5883
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
5884
    return loss / num_true
X
xuezhong 已提交
5885 5886


5887 5888
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5889 5890
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5891
    For each instance, it computes the smooth L1 loss element by element first
5892
    and then sums all the losses. So the shape of ouput Variable is
5893
    [batch_size, 1].
5894

5895 5896
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5897
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5898
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5899
            L1 loss op with same shape as :attr:`x`.
5900
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5901 5902
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5903
            by this tensor element by element.
5904
        outside_weight (Variable|None): A tensor with rank at least 2. This
5905 5906
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5907
            element by element.
5908
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5909 5910
           scalar with default value 1.0.

5911
    Returns:
5912
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5913 5914 5915 5916 5917

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5918 5919
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5920
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5921
            out = fluid.layers.smooth_l1(x=fc, y=label)
5922
    """
5923

5924
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5925 5926
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5939 5940 5941 5942


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5943
    This layer creates the one-hot representations for input indices.
5944 5945

    Args:
Y
Yibing Liu 已提交
5946 5947
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5948 5949

    Returns:
Y
Yibing Liu 已提交
5950
        Variable: The one-hot representations of input.
5951 5952

    Examples:
C
caoying03 已提交
5953
        .. code-block:: python
5954

Y
Yibing Liu 已提交
5955 5956
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5957 5958
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5959
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5960 5961 5962 5963 5964 5965
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5966 5967


Y
Yu Yang 已提交
5968
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5969
    """
Y
yi.wu 已提交
5970 5971 5972
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5973 5974 5975 5976 5977 5978

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5979 5980
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5981 5982 5983 5984 5985 5986

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5987 5988
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5989 5990
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5991 5992 5993 5994 5995
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5996
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5997
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5998 5999
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6000
            outputs={'Out': [counter]},
M
minqiyang 已提交
6001 6002
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6003 6004 6005
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6006 6007


6008
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6009
    """
C
caoying03 已提交
6010 6011
    Gives a new shape to the input Tensor without changing its data.

6012 6013 6014 6015 6016
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6017

6018
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6019

6020 6021 6022 6023
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6024
    2. 0 means the actual dimension value is going to be copied from the
6025 6026 6027 6028
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6029 6030

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6031
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6032
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6033

6034
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6035 6036
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6037 6038
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6039
    dimensions.
C
caoying03 已提交
6040

6041
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6042 6043 6044 6045
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6046 6047

    Args:
6048
        x(variable): The input tensor.
C
caoying03 已提交
6049 6050
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6051 6052 6053 6054 6055
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6056 6057
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6058 6059 6060
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6061
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6062
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6063

6064
    Returns:
G
guosheng 已提交
6065 6066 6067 6068
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6069

X
Xin Pan 已提交
6070 6071 6072
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6073 6074
    Examples:
        .. code-block:: python
G
guosheng 已提交
6075

6076
            data = fluid.layers.data(
6077
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6078
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6079
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6080 6081 6082
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6083
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6084 6085 6086 6087 6088
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6089

6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6105
    helper = LayerHelper("reshape2", **locals())
6106 6107
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6108
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6109
    helper.append_op(
6110
        type="reshape2",
X
Xin Pan 已提交
6111
        inputs=inputs,
D
dzhwinter 已提交
6112
        attrs={"shape": shape},
6113 6114
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6115

D
dzhwinter 已提交
6116
    return helper.append_activation(out)
6117

6118

6119
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6120
    """
M
minqiyang 已提交
6121 6122 6123
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6124
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6125

H
haowang101779990 已提交
6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6147

Y
Yibing Liu 已提交
6148
    Args:
6149
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6150
        axes (list): List of integers, indicating the dimensions to be squeezed.
6151
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6152 6153 6154 6155 6156 6157 6158 6159

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6160
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6161 6162
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6163 6164
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6165
    helper.append_op(
6166
        type="squeeze2",
6167
        inputs={"X": input},
Y
Yibing Liu 已提交
6168
        attrs={"axes": axes},
6169 6170
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6171

6172 6173 6174
    return out


6175
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6176
    """
M
minqiyang 已提交
6177 6178 6179
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6180

M
minqiyang 已提交
6181
    For example:
H
haowang101779990 已提交
6182 6183 6184

    .. code-block:: text

M
minqiyang 已提交
6185
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6186
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6187

Y
Yibing Liu 已提交
6188
    Args:
6189
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6190
        axes (list): List of integers, indicating the dimensions to be inserted.
6191
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6192 6193 6194 6195 6196 6197 6198 6199

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6200
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6201 6202
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6203 6204
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6205
    helper.append_op(
6206
        type="unsqueeze2",
6207
        inputs={"X": input},
Y
Yibing Liu 已提交
6208
        attrs={"axes": axes},
6209 6210
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6211

6212 6213
    return out

6214

Y
yangyaming 已提交
6215
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6216
    """
Y
Yibing Liu 已提交
6217
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6218 6219 6220 6221
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6222
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6223 6224 6225 6226 6227 6228

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6229
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6230 6231 6232
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6233
            target_lod: [4, 2]
Y
yangyaming 已提交
6234 6235

            then we get a 1-level LoDTensor:
6236
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6237 6238 6239 6240 6241 6242
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6243
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6244 6245 6246 6247
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6248
                y.data = [[2, 4]]
Y
yangyaming 已提交
6249 6250 6251
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6252
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6253 6254 6255 6256 6257 6258
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6259
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6260 6261 6262 6263
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6264
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6265 6266 6267 6268
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6269
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6270 6271 6272 6273 6274
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6275
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6276
                           from :attr:`y`.
Y
yangyaming 已提交
6277
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6278
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6279 6280

    Returns:
Y
Yibing Liu 已提交
6281
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6282 6283

    Raises:
Y
Yibing Liu 已提交
6284
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6285 6286 6287 6288 6289 6290 6291 6292 6293

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6294
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6320
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6349 6350
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6363 6364 6365
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6379 6380 6381 6382


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6383
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6384
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6385

G
guosheng 已提交
6386 6387 6388 6389
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6412
                         The length of :attr:paddings must be
G
guosheng 已提交
6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6423

G
guosheng 已提交
6424 6425 6426 6427 6428 6429
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6430
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6431 6432 6433 6434 6435 6436 6437
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6438 6439


C
chengduo 已提交
6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6471 6472
		And
            pad_value = -1,
C
chengduo 已提交
6473

T
Tink_Y 已提交
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6509
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6510 6511 6512 6513 6514 6515 6516 6517 6518
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6519 6520 6521 6522 6523 6524 6525
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6526 6527
    called label-smoothing regularization (LSR).

6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6551
                              be :math:`(1, class\_num)`.
6552 6553
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6554
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6574
    smooth_label = helper.create_variable_for_type_inference(dtype)
6575 6576 6577 6578 6579 6580 6581
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6582 6583


W
wopeizl 已提交
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6620 6621


J
jerrywgz 已提交
6622 6623 6624 6625 6626 6627
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6628 6629
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6646 6647 6648
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6649 6650 6651 6652 6653 6654
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6655
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6696 6697
        .. code-block:: python

W
whs 已提交
6698 6699 6700 6701
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6702
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6703 6704 6705 6706 6707 6708
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6709 6710


6711 6712 6713 6714
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6715
                 resample='BILINEAR',
6716 6717
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6718
                 align_mode=1):
6719
    """
Q
qiaolongfei 已提交
6720
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6721

6722
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6723 6724 6725
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6726

6727
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6728

6729
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6730

6731 6732 6733 6734 6735 6736 6737 6738 6739 6740
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6741
    Align_corners and align_mode are optinal parameters,the calculation method 
6742 6743 6744 6745
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
6746
      For scale:
6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
6759
      if:
6760 6761 6762 6763 6764 6765 6766 6767
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
6768
      else:
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})

      Bilinear interpolation:

T
tink2123 已提交
6779
      if:
6780 6781 6782 6783 6784 6785 6786 6787 6788
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
6789
      else:
6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804
       
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



6805
    Args:
6806
        input (Variable): The input tensor of image resize layer,
6807 6808
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6809
        out_shape(list|tuple|Variable|None): Output shape of image resize
6810 6811
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6812
        scale(float|None): The multiplier for the input height or width.
6813 6814 6815
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6816 6817
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6818
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6819
                       currently.
6820
                       Default: 'BILINEAR'
6821 6822 6823
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6824
                                :attr:`out_shape` and :attr:`scale` specifying
6825 6826 6827 6828 6829 6830 6831
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6832 6833
                                constructing stage.
                                Default: None
6834 6835 6836 6837
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6838
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6839 6840
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
6841 6842

    Returns:
Q
update  
qiaolongfei 已提交
6843 6844
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6845

6846 6847 6848
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6849
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6850 6851 6852
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
6853 6854
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
6855

6856 6857 6858
    Examples:
        .. code-block:: python

6859
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6860
    """
6861 6862 6863 6864
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6865 6866
    if resample not in resample_methods:
        raise ValueError(
6867
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6868
        )
6869
    resample_type = resample_methods[resample]
6870 6871 6872 6873 6874 6875

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

6876
    if out_shape is None and scale is None:
6877
        raise ValueError("One of out_shape and scale must not be None.")
6878
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6879
    dtype = helper.input_dtype()
6880 6881 6882 6883

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6884 6885 6886
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6887
    if out_shape is not None:
6888 6889 6890 6891
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6892
            inputs['OutSize'] = out_shape
6893 6894 6895 6896 6897 6898 6899 6900
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6901 6902 6903 6904
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6905 6906 6907 6908 6909
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6910
    out = helper.create_variable_for_type_inference(dtype)
6911
    helper.append_op(
6912
        type='{}_interp'.format(resample_type),
6913
        inputs=inputs,
6914
        outputs={"Out": out},
6915 6916 6917 6918 6919 6920 6921
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
6922
    return out
F
stash  
fengjiayi 已提交
6923 6924


6925
@templatedoc(op_type="bilinear_interp")
6926 6927 6928 6929
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
6930 6931
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
6932
                    align_mode=1):
6933
    """
6934 6935
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6936 6937
    in priority order.

6938 6939 6940 6941
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6942 6943
    again in the other direction.

6944
    For details of bilinear interpolation, please refer to Wikipedia:
6945
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6946

T
tink2123 已提交
6947
    Align_corners and align_mode are optinal parameters,the calculation 
6948 6949 6950
    method of interpolation can be selected by them.


T
tink2123 已提交
6951
    Align_corners and align_mode are optinal parameters,the calculation method 
6952 6953 6954 6955
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
6956
      For scale:
6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)     

    Bilinear interpolation:

T
tink2123 已提交
6968
      if:
6969 6970 6971 6972 6973 6974 6975 6976 6977
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
6978 6979
      else:

6980 6981 6982 6983 6984 6985 6986 6987
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}



Y
yuyang18 已提交
6988 6989 6990 6991
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6992

Y
yuyang18 已提交
6993 6994 6995 6996 6997
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6998 6999 7000
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7001
                                :attr:`out_shape` and :attr:`scale` specifying
7002 7003 7004 7005 7006 7007 7008
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7009 7010
                                constructing stage.
                                Default: None
7011 7012
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7013 7014 7015

    Returns:
        ${out_comment}.
7016 7017 7018 7019 7020

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7021 7022
    """

7023 7024
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7025 7026


7027
@templatedoc(op_type="nearest_interp")
7028 7029 7030 7031
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7032 7033
                   actual_shape=None,
                   align_corners=True):
7034
    """
7035
    Resize input by performing nearest neighbor interpolation in both the
7036 7037
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
7038 7039
    out_shape and scale in priority order.

7040 7041
    Example:

T
tink2123 已提交
7042
      For scale:
7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
7055
      if:
7056 7057 7058 7059 7060 7061 7062 7063
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
7064
      else:
7065 7066 7067 7068 7069 7070 7071 7072 7073
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})


7074
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7075
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7076 7077 7078 7079 7080

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7081

Y
yuyang18 已提交
7082 7083 7084 7085 7086
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7087 7088 7089
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7090
                                :attr:`out_shape` and :attr:`scale` specifying
7091 7092 7093 7094 7095 7096 7097
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7098 7099
                                constructing stage.
                                Default: None
7100
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7101 7102 7103

    Returns:
        ${out_comment}.
7104 7105 7106 7107 7108

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7109 7110
    """

7111 7112
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7113 7114 7115 7116


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7117 7118 7119
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7120 7121 7122 7123 7124 7125 7126
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7127
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7128

7129
    Returns:
Q
update  
qiaolongfei 已提交
7130
        Variable: The output is a 4-D tensor of the shape
7131
        (num_batches, channls, out_h, out_w).
7132 7133 7134 7135 7136 7137 7138 7139 7140 7141
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7142 7143 7144
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7145 7146 7147
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7148 7149
def gather(input, index):
    """
Q
qiaolongfei 已提交
7150 7151
    **Gather Layer**

7152
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7153 7154 7155 7156
    of X indexed by `index` and concatenate them together.

    .. math::

7157
        Out = X[Index]
W
whs 已提交
7158 7159 7160 7161 7162 7163 7164


    .. code-block:: text


                Given:

7165 7166
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7177
        input (Variable): The source input with rank>=1.
W
whs 已提交
7178 7179 7180 7181 7182 7183
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7184

W
whs 已提交
7185 7186 7187 7188 7189 7190
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7191
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7192 7193 7194 7195 7196 7197 7198 7199
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7231
    out = helper.create_variable_for_type_inference(dtype)
7232 7233 7234 7235 7236 7237 7238 7239 7240
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7241 7242 7243 7244 7245 7246 7247 7248 7249
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7250

Q
Qingsheng Li 已提交
7251
    Given the following input:
H
haowang101779990 已提交
7252

Q
Qingsheng Li 已提交
7253
    .. code-block:: text
H
haowang101779990 已提交
7254

Q
Qingsheng Li 已提交
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7267

Q
Qingsheng Li 已提交
7268
    .. code-block:: text
H
haowang101779990 已提交
7269

Q
Qingsheng Li 已提交
7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7285
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7286 7287 7288 7289 7290 7291 7292 7293 7294 7295

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7296
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7297 7298 7299 7300 7301 7302 7303 7304 7305
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7319

7320 7321 7322
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7323
    """
F
stash  
fengjiayi 已提交
7324
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7325
    dtype = x.dtype
X
Xin Pan 已提交
7326
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7327
    if seed is None:
7328
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7329
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7330
    if isinstance(seed, int):
F
fengjiayi 已提交
7331 7332 7333 7334 7335
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7336 7337 7338 7339
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7340
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7341 7342
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7343 7344
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7345
    return out
W
whs 已提交
7346 7347


7348
def log(x, name=None):
W
wanghaoshuang 已提交
7349 7350 7351 7352 7353
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7354
        Out = \\ln(x)
W
wanghaoshuang 已提交
7355 7356

    Args:
7357
        x (Variable): Input tensor.
7358 7359
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7360 7361 7362 7363 7364 7365 7366 7367

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7368
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7369 7370
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7371
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7372
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7373
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7374 7375 7376
    return out


7377
def relu(x, name=None):
W
wanghaoshuang 已提交
7378 7379
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7380
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7381 7382 7383 7384
    the tensor elementwise.

    .. math::

7385
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7386 7387

    Args:
7388
        x (Variable): The input tensor.
7389 7390
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7391 7392 7393 7394 7395 7396 7397 7398

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7399
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7400 7401
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7402
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7403
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7404 7405
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7406
    return out
7407 7408


C
chengduo 已提交
7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7450 7451 7452
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7453 7454 7455 7456
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7457
    .. math::
7458

H
haowang101779990 已提交
7459
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7460

7461
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7462 7463 7464 7465 7466
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7467
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7468
                           Its shape should be the same as input.
7469
        num_classes (int): The possible number of labels.
W
whs 已提交
7470 7471

    Returns:
M
minqiyang 已提交
7472 7473
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7474
                     Three variables:
M
minqiyang 已提交
7475

H
haowang101779990 已提交
7476 7477 7478
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7479 7480 7481 7482

    Examples:

        .. code-block:: python
7483

W
whs 已提交
7484 7485 7486 7487
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7488 7489 7490
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7491 7492
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7493 7494
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7495
        outputs={
W
whs 已提交
7496 7497 7498
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7499 7500 7501
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7570
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7571 7572 7573 7574 7575

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7576
            isinstance(shape, Variable)):
7577 7578 7579 7580 7581
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7582
    out = helper.create_variable_for_type_inference(x.dtype)
7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7600 7601


W
whs 已提交
7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7619

W
whs 已提交
7620
              out_shape = [2, 3, 5, 5]
7621

W
whs 已提交
7622
          Step 1:
7623

W
whs 已提交
7624 7625 7626
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7627

W
whs 已提交
7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7673
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7674
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7687

W
whs 已提交
7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7699
            isinstance(out_shape, Variable)):
W
whs 已提交
7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7721 7722
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7723

7724 7725
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7726
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7727 7728 7729
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7730

7731 7732
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7733

H
haowang101779990 已提交
7734 7735
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7736 7737
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7738

H
haowang101779990 已提交
7739 7740 7741 7742 7743 7744 7745 7746
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7747 7748 7749

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7784
    out = helper.create_variable_for_type_inference("float32")
7785 7786 7787 7788 7789 7790 7791 7792

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7793 7794


M
minqiyang 已提交
7795 7796
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7797
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7798
    which compares left score and right score passed in.
M
minqiyang 已提交
7799
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7800 7801 7802

    .. math::

H
haowang101779990 已提交
7803
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7804 7805

    Args:
M
minqiyang 已提交
7806
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7807 7808
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7809
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7810 7811
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7812

M
minqiyang 已提交
7813
    Returns:
M
minqiyang 已提交
7814
       Variable: The ranking loss.
H
haowang101779990 已提交
7815

M
minqiyang 已提交
7816
    Raises:
M
minqiyang 已提交
7817
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7818

M
minqiyang 已提交
7819
    Examples:
H
haowang101779990 已提交
7820

M
minqiyang 已提交
7821
        .. code-block:: python
H
haowang101779990 已提交
7822

M
minqiyang 已提交
7823 7824 7825 7826 7827
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7828
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7829 7830 7831 7832 7833 7834
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7835 7836
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7860
        .. code-block:: text
W
whs 已提交
7861

T
Tink_Y 已提交
7862
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7863

T
Tink_Y 已提交
7864 7865
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7866

T
Tink_Y 已提交
7867
	      Case 0:
M
minqiyang 已提交
7868

T
Tink_Y 已提交
7869 7870 7871
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7872

T
Tink_Y 已提交
7873 7874 7875
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7876

T
Tink_Y 已提交
7877
	      Case 1:
M
minqiyang 已提交
7878

T
Tink_Y 已提交
7879 7880
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7881

T
Tink_Y 已提交
7882 7883 7884
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7885

T
Tink_Y 已提交
7886
	      Case 2:
M
minqiyang 已提交
7887

T
Tink_Y 已提交
7888 7889
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7890

T
Tink_Y 已提交
7891 7892 7893
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7894 7895


W
whs 已提交
7896 7897
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7898
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7922
    out = helper.create_variable_for_type_inference(dtype)
7923 7924 7925 7926 7927 7928 7929 7930 7931
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7932
    helper.append_op(
7933
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7934 7935 7936 7937

    return out


7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7950 7951 7952 7953 7954

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7955 7956
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7957 7958
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7959
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7980 7981 7982 7983 7984

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7985 7986
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7987 7988
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7989
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8010 8011 8012 8013 8014

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8015 8016
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8017 8018
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8019
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8041 8042 8043 8044 8045

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8046
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8047
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8048 8049
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8050
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8073 8074 8075 8076 8077

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8078 8079
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8080 8081
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8082
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8104 8105 8106 8107 8108

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8109 8110
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8111 8112
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8113
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8114 8115 8116 8117 8118 8119 8120 8121
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8122 8123 8124 8125
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8126 8127
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8128 8129 8130

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8131
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8132
          weight (alpha).
J
jerrywgz 已提交
8133
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8134 8135 8136
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8137
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8138
          will be named automatically.
J
jerrywgz 已提交
8139 8140 8141 8142 8143 8144 8145 8146

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8147
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8161
        attr=helper.param_attr,
J
jerrywgz 已提交
8162 8163 8164 8165
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8166
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8167 8168 8169 8170 8171 8172 8173 8174 8175
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8176 8177 8178 8179 8180 8181 8182 8183 8184 8185
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8186
    Returns:
8187
        output(${out_type}): ${out_comment}
8188 8189 8190

    Examples:

8191
    .. code-block:: python
8192

H
haowang101779990 已提交
8193 8194
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8195 8196
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8197
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8216
    Returns:
8217
        output(${out_type}): ${out_comment}
8218 8219 8220 8221 8222

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8223 8224
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8225 8226
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8227
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8245
    Returns:
8246
        output(${out_type}): ${out_comment}
8247 8248 8249 8250 8251

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8252 8253
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8254 8255
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8256
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8257 8258 8259 8260 8261 8262 8263 8264
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8265 8266 8267 8268
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8269

H
haowang101779990 已提交
8270
    For Example:
M
minqiyang 已提交
8271

H
haowang101779990 已提交
8272
    .. code-block:: text
8273

H
haowang101779990 已提交
8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8295 8296 8297

    Args:
        x (Variable): A tensor of rank >= axis.
8298 8299
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8300 8301 8302 8303 8304 8305 8306 8307
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8308 8309 8310
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8311 8312 8313 8314
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8315
        ValueError: If axis is not in range [0, rank(x)].
8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8332 8333
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8334
    helper.append_op(
8335
        type='flatten2',
8336
        inputs={"X": x},
8337 8338
        outputs={'Out': out,
                 'XShape': x_shape},
8339 8340
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8341 8342


C
chenweihang 已提交
8343
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8344
    """
C
chenweihang 已提交
8345
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8346
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8347 8348
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8349

H
haowang101779990 已提交
8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8367 8368

    Args:
C
chenweihang 已提交
8369 8370 8371
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8383 8384
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8385 8386 8387 8388 8389 8390
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8391
    return out
8392

8393

S
sneaxiy 已提交
8394 8395 8396 8397 8398 8399 8400 8401 8402
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8403

S
sneaxiy 已提交
8404
    .. math::
8405

S
sneaxiy 已提交
8406 8407 8408
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8409
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8410 8411 8412 8413
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8414 8415 8416
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8417 8418
    Returns:
        Variable: The output sequence mask.
8419

S
sneaxiy 已提交
8420 8421
    """

Q
qingqing01 已提交
8422
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8423
    if name is None:
X
Xin Pan 已提交
8424
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8425
    else:
X
Xin Pan 已提交
8426
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8427

Q
qingqing01 已提交
8428 8429 8430
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8431 8432
        outputs={'Y': out},
        attrs={
8433
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8434 8435 8436
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8437 8438


X
Xin Pan 已提交
8439
def stack(x, axis=0):
S
sneaxiy 已提交
8440 8441 8442 8443
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8444 8445 8446 8447 8448 8449 8450

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8451
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8452
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8453

C
chengduozh 已提交
8454 8455
    For Example:

C
chengduozh 已提交
8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8494
    Args:
8495
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8496
        axis (int|None): The axis along which all inputs are stacked.
8497

S
sneaxiy 已提交
8498 8499
    Returns:
        Variable: The stacked variable.
8500

S
sneaxiy 已提交
8501 8502
    """

X
Xin Pan 已提交
8503 8504 8505 8506 8507 8508
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8509
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8510
    helper.append_op(
S
sneaxiy 已提交
8511 8512
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8513

X
Xin Pan 已提交
8514
    return out
D
dzhwinter 已提交
8515 8516 8517 8518 8519 8520 8521


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8522

D
dzhwinter 已提交
8523 8524 8525
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8526
    raised.
D
dzhwinter 已提交
8527 8528

    Args:
M
minqiyang 已提交
8529
        x (Variable): Input variable.
D
dzhwinter 已提交
8530 8531
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8532

D
dzhwinter 已提交
8533 8534
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8535

D
dzhwinter 已提交
8536 8537 8538 8539 8540 8541 8542 8543 8544 8545
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8546
    for _ in range(num):
X
Xin Pan 已提交
8547
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8548 8549 8550 8551 8552 8553 8554 8555

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8568

W
whs 已提交
8569 8570 8571 8572
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8573

W
whs 已提交
8574
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8575

W
whs 已提交
8576
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8577

W
whs 已提交
8578 8579 8580 8581
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8582

W
whs 已提交
8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8599
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8600 8601 8602 8603 8604 8605
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8606 8607


G
fix  
gongweibao 已提交
8608 8609 8610
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8611
@templatedoc()
G
fix  
gongweibao 已提交
8612 8613 8614 8615 8616 8617 8618 8619 8620
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8621
    ${comment}
G
fix  
gongweibao 已提交
8622 8623

    Args:
G
gongweibao 已提交
8624 8625 8626
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8627
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8628 8629 8630
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8631 8632
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8633
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8634

8635 8636 8637 8638 8639
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8640 8641 8642
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8643
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8660 8661


G
gongweibao 已提交
8662
@templatedoc()
X
Xin Pan 已提交
8663
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8664
    """
G
gongweibao 已提交
8665
    ${comment}
G
fix  
gongweibao 已提交
8666 8667

    Args:
G
gongweibao 已提交
8668 8669 8670 8671
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8672 8673 8674
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8675
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8676

8677 8678 8679 8680
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8681 8682 8683
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8684
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8685 8686 8687 8688 8689 8690 8691 8692 8693 8694
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8695
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8696 8697 8698 8699 8700
        })

    return out


G
gongweibao 已提交
8701
@templatedoc()
G
fix  
gongweibao 已提交
8702
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8703
    """
G
gongweibao 已提交
8704
    ${comment}
G
fix  
gongweibao 已提交
8705 8706

    Args:
G
gongweibao 已提交
8707 8708 8709 8710
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8711
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8712 8713

    Returns:
G
gongweibao 已提交
8714
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8715

8716 8717 8718 8719 8720 8721 8722 8723 8724 8725
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8726 8727 8728
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8729
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8741
@templatedoc()
G
fix  
gongweibao 已提交
8742 8743 8744 8745 8746 8747 8748 8749 8750
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8751
    ${comment}
G
fix  
gongweibao 已提交
8752 8753

    Args:
G
gongweibao 已提交
8754 8755
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8756
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8757 8758 8759 8760
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8761
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8762 8763

    Returns:
G
gongweibao 已提交
8764
        out (Variable): ${out_comment}
8765 8766 8767 8768 8769 8770 8771 8772

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8773 8774 8775
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8776
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8795
@templatedoc()
X
Xin Pan 已提交
8796
def sum(x):
G
fix  
gongweibao 已提交
8797
    """
G
gongweibao 已提交
8798
    ${comment}
G
fix  
gongweibao 已提交
8799 8800

    Args:
G
gongweibao 已提交
8801
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8802 8803

    Returns:
G
gongweibao 已提交
8804
        out (Variable): ${out_comment}
8805 8806 8807 8808 8809 8810

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8811 8812 8813
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8814 8815
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8816 8817 8818 8819
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8820
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8821 8822 8823 8824

    return out


G
gongweibao 已提交
8825
@templatedoc()
G
fix  
gongweibao 已提交
8826 8827
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8828
    ${comment}
G
fix  
gongweibao 已提交
8829 8830

    Args:
G
gongweibao 已提交
8831 8832 8833 8834
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8835 8836

    Returns:
G
gongweibao 已提交
8837
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8838

8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8850 8851 8852
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8853 8854
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8866
@templatedoc()
G
fix  
gongweibao 已提交
8867 8868
def shape(input):
    """
G
gongweibao 已提交
8869
    ${comment}
G
fix  
gongweibao 已提交
8870 8871

    Args:
G
gongweibao 已提交
8872
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8873 8874

    Returns:
G
gongweibao 已提交
8875
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8876

8877 8878 8879 8880 8881 8882
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8883 8884 8885
    """

    helper = LayerHelper('shape', **locals())
8886
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
8887
    helper.append_op(
G
fix  
gongweibao 已提交
8888
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8889 8890

    return out
G
merge  
gongweibao 已提交
8891 8892


S
sneaxiy 已提交
8893 8894 8895 8896 8897 8898 8899 8900
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8901 8902
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8903
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8904 8905 8906
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8907

S
sneaxiy 已提交
8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8919
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8920 8921 8922 8923 8924 8925 8926 8927
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8928
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8929
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8930 8931 8932 8933 8934 8935

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8936
    if name is None:
X
Xin Pan 已提交
8937
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8938 8939 8940
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8941 8942 8943 8944 8945 8946 8947 8948 8949 8950

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8951
    return helper.append_activation(out)
S
sneaxiy 已提交
8952 8953


X
Xin Pan 已提交
8954
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8955 8956 8957
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8958
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8959 8960 8961
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8962
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8963 8964 8965
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8966
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8967 8968 8969
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8970
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8971 8972 8973
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8974
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8975 8976 8977
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8978
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8990 8991
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8992
        ])
M
minqiyang 已提交
8993 8994


8995
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8996 8997
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8998 8999
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9000 9001 9002

    if out is None:
        if name is None:
X
Xin Pan 已提交
9003
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9019
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9031 9032 9033 9034 9035 9036 9037 9038 9039

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9040 9041 9042 9043 9044 9045 9046
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9047
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9059 9060 9061 9062 9063 9064 9065 9066 9067

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9068 9069 9070 9071 9072 9073 9074
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9075
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9087 9088 9089 9090 9091 9092 9093 9094 9095

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9096 9097 9098 9099 9100 9101 9102
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9103
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9104 9105 9106 9107 9108 9109 9110 9111 9112 9113
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9114 9115 9116 9117 9118 9119 9120

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9121 9122 9123 9124
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9140 9141 9142 9143 9144 9145 9146

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9147 9148 9149 9150 9151
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9152 9153 9154 9155
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9179 9180 9181 9182 9183 9184 9185

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9186 9187 9188 9189 9190
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9191 9192 9193 9194
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9195 9196 9197 9198 9199 9200 9201 9202

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9221
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9222 9223 9224 9225 9226 9227 9228 9229 9230 9231
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9274
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9275 9276 9277 9278 9279 9280 9281 9282 9283
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9284 9285
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9286 9287 9288 9289 9290 9291
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9292 9293 9294
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9295 9296
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9297 9298 9299 9300 9301 9302
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9303
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9304
        name(basestring|None): Name of the output.
9305 9306
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9307 9308 9309

    Returns:
        out(${out_type}): ${out_comment}
9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9324 9325 9326 9327 9328
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9329
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9330 9331 9332 9333 9334 9335 9336 9337
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9338 9339
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9360
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9361 9362 9363 9364 9365 9366 9367 9368 9369 9370
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9371 9372


J
JiabinYang 已提交
9373
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9374
    """
J
JiabinYang 已提交
9375
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9376 9377 9378

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9379
    The attr blocksize indicates the input block size.
9380 9381

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9382
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9383 9384

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9385
    (but keeping all data)
J
JiabinYang 已提交
9386

J
JiabinYang 已提交
9387
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9388
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9389 9390 9391 9392 9393
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9394
    Args:
J
JiabinYang 已提交
9395
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9396
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9397 9398

    Returns:
J
JiabinYang 已提交
9399
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9400 9401

    Raises:
J
JiabinYang 已提交
9402
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9403 9404 9405 9406 9407 9408

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9409
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9410
                x=data, blocksize=2)
J
JiabinYang 已提交
9411 9412
    """

J
JiabinYang 已提交
9413
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9414

J
JiabinYang 已提交
9415 9416
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9417 9418

    if name is None:
J
JiabinYang 已提交
9419 9420
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9421 9422 9423 9424 9425
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9426
        type="space_to_depth",
J
JiabinYang 已提交
9427
        inputs={"X": x},
J
JiabinYang 已提交
9428
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9429
        outputs={"Out": out})
J
JiabinYang 已提交
9430 9431
    return out

J
JiabinYang 已提交
9432

S
sneaxiy 已提交
9433 9434
@templatedoc()
def sequence_reverse(x, name=None):
9435
    """
S
sneaxiy 已提交
9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9447
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9448 9449 9450 9451 9452 9453 9454 9455 9456 9457
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9458 9459


9460 9461 9462 9463 9464 9465
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9466

9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9486
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9499 9500


B
barrierye 已提交
9501
def similarity_focus(input, axis, indexes, name=None):
9502
    """
B
barrierye 已提交
9503
    SimilarityFocus Operator
B
barrierye 已提交
9504 9505

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9506

9507 9508 9509
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9510
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9511 9512 9513 9514 9515 9516 9517
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9518
       each index.
B
barrierye 已提交
9519 9520 9521 9522
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9572
    Args:
9573
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9574
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9575
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9576
            1, 2 or 3.
B
barrierye 已提交
9577
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9578 9579

    Returns:
H
haowang101779990 已提交
9580 9581
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9582

B
barrierye 已提交
9583 9584
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9585

B
barrierye 已提交
9586
            data = fluid.layers.data(
B
barrierye 已提交
9587 9588
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9589

B
barrierye 已提交
9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9602 9603 9604 9605 9606
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9607 9608 9609 9610 9611 9612 9613
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9614 9615


M
minqiyang 已提交
9616 9617
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9618 9619
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9620 9621
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9660
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9661
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9662 9663 9664 9665 9666 9667

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9668

M
minqiyang 已提交
9669 9670 9671
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9672 9673
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9674 9675
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9676 9677 9678 9679 9680 9681 9682
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9683 9684


D
dengkaipeng 已提交
9685
@templatedoc()
9686 9687
def grid_sampler(x, grid, name=None):
    """
9688
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9689
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9690 9691 9692 9693
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9694
    interpolation value of 4 nearest corner points.
9695

H
haowang101779990 已提交
9696
    .. code-block:: text
9697

H
haowang101779990 已提交
9698 9699
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9700

H
haowang101779990 已提交
9701 9702
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9703

H
haowang101779990 已提交
9704 9705 9706
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9707

H
haowang101779990 已提交
9708 9709 9710 9711 9712 9713 9714 9715 9716
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9717

H
haowang101779990 已提交
9718 9719 9720 9721
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9722

H
haowang101779990 已提交
9723 9724 9725 9726
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9727

H
haowang101779990 已提交
9728 9729 9730 9731
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9732

H
haowang101779990 已提交
9733 9734
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9735 9736

    Args:
9737 9738 9739
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9740 9741

    Returns:
H
haowang101779990 已提交
9742
        Variable: Output of shape [N, C, H, W] data samples input X
9743 9744
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9745 9746 9747 9748 9749 9750 9751 9752
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9753

D
dengkaipeng 已提交
9754 9755 9756 9757 9758 9759 9760 9761 9762
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9763
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9764 9765
    ipts = {'X': x, 'Grid': grid}

9766
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9767 9768 9769
    return out


G
gmcather 已提交
9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
9836
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9858 9859 9860 9861
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9862
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9863 9864
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9865
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9866 9867

    .. math::
H
haowang101779990 已提交
9868 9869 9870
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9871 9872

    Where:
H
haowang101779990 已提交
9873 9874
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9889

G
gmcather 已提交
9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9906 9907 9908 9909 9910 9911 9912 9913 9914 9915


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9916
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9917

Q
Qiao Longfei 已提交
9918
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9919 9920 9921
    For example:

    .. math::
H
haowang101779990 已提交
9922
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9923

Q
Qiao Longfei 已提交
9924
    In this formula:
9925 9926
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9927
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
9928
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9929 9930 9931
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9932 9933
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9934 9935 9936
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9937
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9938
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9939
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9940 9941 9942 9943
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9944
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9945 9946 9947 9948

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9949
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9950 9951
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9952
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9953 9954 9955 9956

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9957
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9998 9999


S
shippingwang 已提交
10000
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10001 10002
    """
    **Shuffle Channel Operator**
10003

S
shippingwang 已提交
10004 10005 10006 10007 10008 10009
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10010
    
S
shippingwang 已提交
10011
    .. code-block:: text
10012

S
shippingwang 已提交
10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10041
    Args: 
S
shippingwang 已提交
10042 10043
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10044 10045

    Returns:
S
shippingwang 已提交
10046 10047
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10048 10049

    Raises:
S
shippingwang 已提交
10050
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10051 10052 10053

    Examples:
        .. code-block:: python
10054 10055

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10056
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10057 10058 10059
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10060
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10061 10062 10063 10064 10065 10066 10067 10068 10069

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10070
    return out
S
Add  
shippingwang 已提交
10071 10072


S
sneaxiy 已提交
10073
class PyFuncRegistry(object):
S
sneaxiy 已提交
10074 10075 10076
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10077
        if func is None or not callable(func):
S
sneaxiy 已提交
10078 10079 10080
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10081
        # find named args using reflection
S
sneaxiy 已提交
10082 10083 10084 10085 10086 10087 10088
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10089 10090 10091
        '''
        Why record self here?

M
minqiyang 已提交
10092 10093
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10094
           to find the registered function corresponding
M
minqiyang 已提交
10095
           to :code:`idx`.
S
sneaxiy 已提交
10096

M
minqiyang 已提交
10097 10098
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10099
           whose reference count is 1 would cause
M
minqiyang 已提交
10100
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10101 10102
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10103
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10118 10119 10120 10121 10122 10123 10124 10125 10126
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10127

S
sneaxiy 已提交
10128 10129
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10130 10131

        ret = []
S
sneaxiy 已提交
10132 10133 10134
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10135 10136
                continue

S
sneaxiy 已提交
10137 10138
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10139

S
sneaxiy 已提交
10140 10141 10142
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10143

S
sneaxiy 已提交
10144
        return tuple(ret)
S
sneaxiy 已提交
10145 10146


S
sneaxiy 已提交
10147 10148 10149 10150
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10151

S
sneaxiy 已提交
10152 10153 10154 10155 10156 10157 10158 10159
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10160
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10161

S
sneaxiy 已提交
10162 10163
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10164 10165 10166 10167
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10168
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10169
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10170 10171
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10172 10173 10174 10175 10176
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10177
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10178
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10179
                                       None means no backward. Default None.
S
sneaxiy 已提交
10180
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10181
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10182 10183
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10184
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10185 10186 10187

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10188 10189

    Examples:
M
minqiyang 已提交
10190

S
sneaxiy 已提交
10191 10192 10193 10194 10195
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10196
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10197 10198
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10199
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10200 10201 10202
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10203
        >>>
S
sneaxiy 已提交
10204 10205 10206 10207 10208
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10209
        >>>     print(x)
S
sneaxiy 已提交
10210 10211 10212 10213 10214 10215
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10216
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10217 10218
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10219 10220
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10221 10222 10223 10224 10225 10226 10227 10228
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10229
    """
S
sneaxiy 已提交
10230
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10231 10232 10233
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10234
        x = [x]
S
sneaxiy 已提交
10235 10236
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10237

S
sneaxiy 已提交
10238 10239 10240
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10241
        out_list = [out]
S
sneaxiy 已提交
10242
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10243
        out_list = out
S
sneaxiy 已提交
10244 10245 10246
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10247

S
sneaxiy 已提交
10248 10249
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10250
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10251 10252

    for each_out in out_list:
S
sneaxiy 已提交
10253 10254
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10255 10256
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10257

S
sneaxiy 已提交
10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10273 10274 10275 10276

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10277 10278
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10279 10280 10281
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10282
        })
S
sneaxiy 已提交
10283
    return out
S
sneaxiy 已提交
10284 10285 10286


# For debug usage
S
sneaxiy 已提交
10287 10288 10289 10290
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10343

M
minqiyang 已提交
10344

M
minqiyang 已提交
10345
def huber_loss(input, label, delta):
10346
    """
M
minqiyang 已提交
10347 10348 10349
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10350 10351 10352 10353

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10354
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10355 10356 10357 10358

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10359
        huber\_loss = 0.5 * (label - input) * (label - input)
10360 10361 10362 10363 10364 10365 10366


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10367
        delta (float): The parameter of huber loss, which controls
10368 10369 10370
                       the range of outliers

    Returns:
M
minqiyang 已提交
10371
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10372 10373 10374 10375 10376

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10377
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10378
    """
M
minqiyang 已提交
10379
    helper = LayerHelper('huber_loss', **locals())
10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)