nn.py 248.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
111
    'margin_rank_loss',
X
Xin Pan 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
Y
Yu Yang 已提交
155 156 157 158 159 160 161 162 163
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
164
       is_test=False,
165
       name=None):
Y
Yu Yang 已提交
166
    """
167
    **Fully Connected Layer**
Y
Yu Yang 已提交
168

169 170 171 172 173 174 175 176
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
177
    to the output as well.
C
caoying03 已提交
178

C
caoying03 已提交
179
    This process can be formulated as follows:
180 181 182

    .. math::

183
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
184 185 186

    In the above equation:

C
caoying03 已提交
187 188 189 190
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
191
    * :math:`Act`: The activation function.
C
caoying03 已提交
192
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
193 194

    Args:
R
ranqiu 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
210 211
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
212
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
213
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
214
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
215

216
    Returns:
F
fengjiayi 已提交
217
        Variable: The transformation result.
218 219

    Raises:
C
caoying03 已提交
220
        ValueError: If rank of the input tensor is less than 2.
221 222 223 224

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
225
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
226
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
227
    """
C
caoying03 已提交
228

C
caoying03 已提交
229
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
230 231 232 233

    dtype = helper.input_dtype()

    mul_results = []
234 235
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
236 237 238
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
239

Y
Yu Yang 已提交
240
        w = helper.create_parameter(
241 242
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
243
        helper.append_op(
244 245 246
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
247
            outputs={"Out": tmp},
M
mozga-intel 已提交
248 249
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
250 251 252 253
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
254
    else:
255 256
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
257 258 259
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
260
            attrs={"use_mkldnn": False})
261 262 263 264
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
265 266


267 268 269
def embedding(input,
              size,
              is_sparse=False,
270
              is_distributed=False,
271 272 273
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
274
    """
275 276
    **Embedding Layer**

277
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
278 279
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
280 281 282

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
283 284

    Args:
285 286 287 288 289
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
290
        is_distributed(bool): Whether to run lookup table from remote parameter server.
291 292
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
293
            with zeros whenever lookup encounters it in :attr:`input`. If
294
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
295 296
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
297
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
298

299 300 301
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
302

303 304
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
305

C
chengduoZH 已提交
306
          dict_size = len(dataset.ids)
307
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
308
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
309 310 311 312 313 314
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
315 316
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
317 318 319 320 321
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
322 323 324 325 326
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
327 328 329
    return tmp


Y
yi.wu 已提交
330
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
331 332
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
333 334
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
335 336 337 338 339 340 341
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
342 343
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
344
    """
Y
yi.wu 已提交
345
    ${comment}
Y
Yibing Liu 已提交
346 347

    Args:
Y
yi.wu 已提交
348 349
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
350 351 352 353 354 355 356
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

357
        param_attr(ParamAttr|None): The parameter attribute for the learnable
358
                               hidden-hidden weights.
Y
Yibing Liu 已提交
359 360 361

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
362 363
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
364
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
365 366 367
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
368

369
                              1. `use_peepholes = False`
Y
yi.wu 已提交
370 371
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
372
                              2. `use_peepholes = True`
Y
yi.wu 已提交
373
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
374
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
375
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
376 377 378 379 380 381 382 383
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
384 385

    Returns:
Y
Yibing Liu 已提交
386 387
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
388

Y
Yibing Liu 已提交
389
    Examples:
Y
Yibing Liu 已提交
390 391
        .. code-block:: python

Y
Yibing Liu 已提交
392 393
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
394
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
395 396
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
397
    """
398

Y
Yu Yang 已提交
399
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
400
    size = size // 4
Y
Yu Yang 已提交
401 402 403 404 405 406 407 408 409 410 411 412
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
413 414 415 416 417 418 419 420 421 422
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
423 424 425

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
426
        inputs=inputs,
Y
Yu Yang 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
443 444 445 446 447 448 449 450 451 452 453
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
454 455
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
456 457 458
    """
    **Dynamic LSTMP Layer**

459 460 461 462 463 464
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
465 466 467 468 469

    The formula is as follows:

    .. math::

470
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
471

472
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
473

474
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
475

476
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
477

478
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
479

480
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
481

482
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
483

Y
Yibing Liu 已提交
484 485 486 487 488 489
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
490
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
491
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
492
          bias vector).
Y
Yibing Liu 已提交
493 494 495
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
496
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
497
    * :math:`h`: The hidden state.
498
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
499 500
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
501
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
502
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
503
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
504 505
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
506 507 508 509

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
510

Y
Yibing Liu 已提交
511 512 513 514 515 516 517 518 519 520 521 522
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
523
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
524 525
                               hidden-hidden weight and projection weight.

526 527
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
528 529
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
530 531
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
532 533
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
534 535 536 537 538 539
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
540
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
541 542 543
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
544
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
545 546 547 548 549 550 551 552 553
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
554
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
555 556
                              default "tanh".
        proj_activation(str): The activation for projection output.
557
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
558 559
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
560 561
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
562 563

    Returns:
564 565 566 567
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
568 569

    Examples:
570

Y
Yibing Liu 已提交
571 572
        .. code-block:: python

573 574 575 576
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
577
            hidden_dim, proj_dim = 512, 256
578
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
579
                                     act=None, bias_attr=None)
580 581 582
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
583 584 585 586
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
587
    """
588

Y
Yibing Liu 已提交
589
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
590
    size = size // 4
Y
Yibing Liu 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
635 636 637 638 639 640 641 642 643
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
644
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
645

646
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
647
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
648

G
guosheng 已提交
649 650 651 652 653 654 655 656 657
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
658

G
guosheng 已提交
659
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
660

G
guosheng 已提交
661
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
662 663
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
664 665 666 667
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
668
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
669 670

    Args:
671 672
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
673
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
674
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
675 676
            is the hidden size.
        size(int): The dimension of the gru cell.
677
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
678 679
            hidden-hidden weight matrix. Note:

680
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
681
              :math:`D` is the hidden size.
682
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
683
              The first part are weights of the update gate and reset gate with
684
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
685
              candidate hidden state with shape :math:`(D \\times D)`.
686
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
687
            hidden-hidden bias.
688
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
689 690 691
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
692
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
693
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
694 695 696 697
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
698 699

    Returns:
G
guosheng 已提交
700
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
701
            and sequence length is the same with the input.
702

G
guosheng 已提交
703
    Examples:
704

G
guosheng 已提交
705 706
        .. code-block:: python

707 708 709 710
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
711
            hidden_dim = 512
712
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
713 714 715 716 717 718 719 720 721 722
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
723
    batch_size = input.shape[0]
G
guosheng 已提交
724 725 726
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
727 728 729
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
753 754 755
def gru_unit(input,
             hidden,
             size,
756 757
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
758
             activation='tanh',
759
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
760
    """
761
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
762

763 764
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
765

766
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
767

768
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
769

770
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
771 772

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
773 774 775
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
776 777
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

778 779
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
780 781 782
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
783 784 785 786 787

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
788 789
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
790 791 792 793
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
794

795 796 797 798 799 800
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
801

802
             # assuming we have x_t_data and prev_hidden of size=10
803
             x_t = fluid.layers.fc(input=x_t_data, size=30)
804 805
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
806 807 808 809 810 811 812 813 814 815 816 817

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
818
    size = size // 3
Y
Yu Yang 已提交
819 820

    # create weight
821 822
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
823

824 825 826 827
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
828
    # create bias
829
    if helper.bias_attr:
Y
Yu Yang 已提交
830 831 832
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
833
        inputs['Bias'] = bias
Y
Yu Yang 已提交
834 835 836

    helper.append_op(
        type='gru_unit',
837
        inputs=inputs,
Y
Yu Yang 已提交
838 839 840 841 842 843
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
844 845
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
846 847 848 849 850
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
851
@templatedoc()
852
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
853 854 855 856 857 858 859
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
860
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
861 862 863 864
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
865 866 867
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
868 869

    """
Y
Yu Yang 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
895
@templatedoc()
896
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
897 898 899 900 901
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
902

Y
yuyang18 已提交
903
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
904

Y
yuyang18 已提交
905 906 907
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
908
        Variable: ${viterbi_path_comment}
909

Y
yi.wu 已提交
910 911 912 913 914
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
915
    """
Y
Yu Yang 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
929
@templatedoc()
F
fengjiayi 已提交
930
def cos_sim(X, Y):
Y
Yu Yang 已提交
931
    """
Y
yi.wu 已提交
932 933 934
    ${comment}

    Args:
935 936
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
937

Y
yi.wu 已提交
938
    Returns:
939
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
940
    """
F
fengjiayi 已提交
941
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
942 943 944 945 946 947 948 949 950 951 952 953 954
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


955
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
956 957 958 959 960
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
961
    training. The dropout operator randomly sets (according to the given dropout
962 963 964 965
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
966 967
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
968 969 970 971 972 973 974
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
975 976

    Returns:
977
        Variable: A tensor variable is the shape with `x`.
978 979

    Examples:
980

981 982
        .. code-block:: python

983 984
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
985 986
    """

F
fengjiayi 已提交
987
    helper = LayerHelper('dropout', **locals())
988 989
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
990 991 992 993

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

994 995 996 997 998
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
999 1000 1001 1002 1003 1004
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
1005 1006 1007
    return out


1008
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1009
    """
Y
Yibing Liu 已提交
1010 1011
    **Cross Entropy Layer**

1012 1013 1014
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1015 1016

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1017
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1018

Y
Yibing Liu 已提交
1019
        .. math::
Y
yangyaming 已提交
1020

Y
Yibing Liu 已提交
1021 1022 1023
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1024 1025
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1026 1027 1028 1029 1030

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1031
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1032 1033 1034
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1035 1036
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1037
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1038

Y
Yibing Liu 已提交
1039
    Args:
Y
yangyaming 已提交
1040
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1041 1042 1043 1044
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1045
        label (Variable|list): the ground truth which is a 2-D tensor. When
1046 1047 1048 1049
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1050
        soft_label (bool): a flag indicating whether to
1051
                                           interpretate the given labels as soft
1052
                                           labels. Default: `False`.
M
minqiyang 已提交
1053 1054
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1055
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1056 1057 1058 1059 1060

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1061 1062 1063 1064 1065
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1066 1067 1068 1069 1070 1071

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1072
    """
F
fengjiayi 已提交
1073
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1074 1075 1076 1077 1078 1079
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1080 1081
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1082 1083 1084
    return out


F
fengjiayi 已提交
1085
def square_error_cost(input, label):
Y
Yu Yang 已提交
1086
    """
1087 1088
    **Square error cost layer**

1089 1090
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1105 1106
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1107 1108

    Returns:
G
guosheng 已提交
1109
        Variable: The tensor variable storing the element-wise squared error \
1110
                  difference of input and label.
1111 1112 1113 1114 1115 1116 1117 1118

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1119
    """
F
fengjiayi 已提交
1120
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1130 1131
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1132 1133 1134
    return square_out


Y
yi.wu 已提交
1135
@templatedoc()
Y
Yu Yang 已提交
1136 1137 1138 1139
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1140
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1141
    """
Y
yi.wu 已提交
1142
    **Chunk Evaluator**
Y
yi.wu 已提交
1143

Y
yangyaming 已提交
1144
    This function computes and outputs the precision, recall and
1145
    F1-score of chunk detection.
Y
yi.wu 已提交
1146

Y
yi.wu 已提交
1147 1148 1149 1150 1151 1152 1153 1154
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1155

Y
yi.wu 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1181

Y
yi.wu 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1206
    Args:
1207 1208 1209 1210 1211
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1212

Y
yi.wu 已提交
1213
    Returns:
Y
update  
yi.wu 已提交
1214 1215 1216
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1217

Y
yi.wu 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1230
    """
F
fengjiayi 已提交
1231
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1232 1233 1234 1235 1236

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1237 1238 1239
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1240 1241 1242 1243 1244 1245 1246 1247

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1248 1249 1250 1251
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1252 1253 1254
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1255 1256
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1257
        })
1258 1259
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1260 1261


1262
@templatedoc()
Y
Yu Yang 已提交
1263 1264 1265 1266 1267 1268 1269
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1270
                  act=None):
Y
Yu Yang 已提交
1271 1272 1273 1274
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1285

1286 1287
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1306
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1307 1308 1309 1310 1311 1312
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1313
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1314 1315 1316
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1317
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1336
        library is installed. Default: False
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1360
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1361
    """
1362
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1363
    has the same shape as the input.
Q
qiaolongfei 已提交
1364

1365 1366 1367 1368 1369 1370
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1371
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1372 1373 1374 1375 1376 1377 1378

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1379
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1414 1415 1416
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1417 1418
           stride=1,
           padding=0,
1419
           dilation=1,
Y
Yu Yang 已提交
1420 1421 1422
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1423
           use_cudnn=True,
1424 1425
           act=None,
           name=None):
Y
Yu Yang 已提交
1426
    """
C
chengduoZH 已提交
1427
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1428 1429
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1430
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1431 1432 1433 1434 1435 1436 1437
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1438 1439 1440
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1441

1442
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1443

C
chengduoZH 已提交
1444 1445
    .. math::

C
refine  
chengduoZH 已提交
1446
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1447

T
tensor-tang 已提交
1448
    Where:
C
chengduoZH 已提交
1449

1450 1451 1452 1453 1454
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1455
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1456 1457 1458

    Example:

1459 1460
        - Input:

W
weixing02 已提交
1461
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1462

W
weixing02 已提交
1463
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1464

1465
        - Output:
T
tensor-tang 已提交
1466

W
weixing02 已提交
1467
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1468

C
chengduoZH 已提交
1469
        Where
1470 1471

        .. math::
C
chengduoZH 已提交
1472

W
weixing02 已提交
1473 1474
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1475 1476

    Args:
1477
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1478
        num_filters(int): The number of filter. It is as same as the output
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1504 1505

    Returns:
G
guosheng 已提交
1506
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1507 1508
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1509
    Raises:
1510 1511
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1512

C
chengduoZH 已提交
1513 1514 1515
    Examples:
        .. code-block:: python

1516 1517
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1518 1519 1520
    """

    num_channels = input.shape[1]
1521 1522

    l_type = 'conv2d'
X
xzl 已提交
1523 1524
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1525
        l_type = 'depthwise_conv2d'
1526 1527 1528 1529

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1530 1531 1532 1533 1534
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1535
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1536

C
chengduoZH 已提交
1537 1538 1539
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1540
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1541

C
chengduoZH 已提交
1542 1543
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1544 1545

    input_shape = input.shape
M
minqiyang 已提交
1546
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1561
        type=l_type,
Y
Yu Yang 已提交
1562 1563 1564 1565 1566
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1567 1568 1569
        attrs={
            'strides': stride,
            'paddings': padding,
1570
            'dilations': dilation,
C
chengduoZH 已提交
1571
            'groups': groups,
1572
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1573
            'use_mkldnn': False
C
chengduoZH 已提交
1574
        })
Y
Yu Yang 已提交
1575 1576 1577 1578 1579 1580

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1598 1599 1600 1601 1602 1603
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1613 1614
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1615 1616 1617
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1618
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1644
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1645 1646
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1647
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1648 1649
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1650
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1651 1652
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1653
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1679 1680
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1695
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1733
            'use_mkldnn': False
C
chengduoZH 已提交
1734 1735
        })

1736
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1737 1738 1739 1740

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1741
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1742
    """
Y
yangyaming 已提交
1743 1744 1745
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1757
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1758 1759 1760 1761 1762
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1763
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1764 1765 1766 1767 1768 1769 1770

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1771 1772
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1773

L
Luo Tao 已提交
1774 1775
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1776
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1777 1778 1779 1780 1781 1782 1783 1784
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1785

Y
yangyaming 已提交
1786
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1787 1788 1789 1790 1791
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1792 1793
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1794
    """
F
fengjiayi 已提交
1795
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1807 1808 1809 1810 1811
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1812 1813 1814
    return pool_out


C
add doc  
chengduoZH 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1840
def sequence_first_step(input):
L
Luo Tao 已提交
1841
    """
L
Luo Tao 已提交
1842
    This function gets the first step of sequence.
L
Luo Tao 已提交
1843 1844 1845 1846

    .. code-block:: text

       x is a 1-level LoDTensor:
1847
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1848 1849 1850 1851 1852
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1853
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1854
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1855

L
Luo Tao 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1865

Y
yangyaming 已提交
1866
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1867 1868 1869
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1870 1871 1872
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1873
def sequence_last_step(input):
L
Luo Tao 已提交
1874
    """
L
Luo Tao 已提交
1875
    This function gets the last step of sequence.
L
Luo Tao 已提交
1876 1877 1878 1879

    .. code-block:: text

       x is a 1-level LoDTensor:
1880
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1881 1882 1883 1884 1885
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1886
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1887
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1888

L
Luo Tao 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1898

Y
yangyaming 已提交
1899
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1900 1901 1902
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1903 1904 1905
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1906
@templatedoc()
Y
Yu Yang 已提交
1907
def pool2d(input,
C
chengduoZH 已提交
1908 1909
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1910 1911
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1912
           global_pooling=False,
C
chengduoZH 已提交
1913
           use_cudnn=True,
1914
           ceil_mode=False,
C
caoying03 已提交
1915
           name=None):
Y
Yu Yang 已提交
1916
    """
F
fengjiayi 已提交
1917
    ${comment}
1918 1919

    Args:
1920 1921 1922
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1923
                          feature, and W is the width of the feature.
1924
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1925
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1926
        pool_type: ${pooling_type_comment}
1927 1928
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1929 1930 1931
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
1932
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1933 1934
                        layer will be named automatically.

1935
    Returns:
F
fengjiayi 已提交
1936
        Variable: The pooling result.
F
fengjiayi 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1950 1951 1952 1953
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1954
                            global_pooling=False)
Y
Yu Yang 已提交
1955 1956 1957 1958 1959
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1960

C
chengduoZH 已提交
1961 1962 1963 1964 1965
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1966 1967 1968 1969
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1970 1971
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1972

C
Add doc  
chengduoZH 已提交
1973
    l_type = 'pool2d'
1974 1975

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1976 1977 1978 1979
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
1991
            "use_mkldnn": False
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2008
    pooling configurations mentioned in input parameters.
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2021

2022
    Returns:
2023
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2024 2025 2026 2027 2028
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2029

C
chengduoZH 已提交
2030 2031 2032 2033 2034
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2035 2036 2037
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2038

C
chengduoZH 已提交
2039 2040
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2041

2042 2043
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2044 2045 2046 2047
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2048
        type=l_type,
Y
Yu Yang 已提交
2049 2050 2051 2052 2053 2054 2055
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2056
            "paddings": pool_padding,
2057
            "use_cudnn": use_cudnn,
2058
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2059
            "use_mkldnn": False
Y
Yu Yang 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2072
               data_layout='NCHW',
Y
Yang Yang 已提交
2073
               in_place=False,
2074 2075
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2076
               moving_variance_name=None,
2077 2078
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2079
    """
Q
qiaolongfei 已提交
2080 2081 2082 2083
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2084

Q
qiaolongfei 已提交
2085
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2086

Q
qiaolongfei 已提交
2087 2088
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2089 2090 2091
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2104 2105

    Args:
Q
qiaolongfei 已提交
2106
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2107 2108 2109 2110
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2111 2112 2113
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2114
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2115 2116 2117 2118
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2119
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2120
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2121 2122

    Returns:
Q
qiaolongfei 已提交
2123
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2124 2125 2126 2127 2128 2129 2130

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2154
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2155

2156 2157
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2158 2159 2160
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2161
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2162
        shape=param_shape,
2163 2164 2165 2166 2167 2168 2169
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2170
            trainable=False,
W
wanghaoshuang 已提交
2171
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2172
        shape=param_shape,
2173 2174
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2175 2176 2177 2178 2179 2180

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2181 2182
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2183

2184
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2202 2203 2204 2205
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2206
            "use_mkldnn": False,
2207
            "fuse_with_relu": fuse_with_relu
2208
        })
Y
Yu Yang 已提交
2209 2210 2211 2212

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2213
@templatedoc()
G
guosheng 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2224
    ${comment}
G
guosheng 已提交
2225 2226 2227

    The formula is as follows:

Y
yuyang18 已提交
2228
    ..  math::
G
guosheng 已提交
2229 2230 2231 2232 2233 2234 2235

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2236 2237 2238 2239 2240 2241 2242 2243
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2244

G
guosheng 已提交
2245 2246
    Args:
        input(Variable): The input tensor variable.
2247
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2248
            normalization.
2249
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2250
            normalization.
2251
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2252
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2253
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2254 2255 2256 2257 2258 2259
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2260
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2261 2262

    Returns:
Y
yuyang18 已提交
2263
        ${y_comment}
G
guosheng 已提交
2264 2265 2266

    Examples:

Y
yuyang18 已提交
2267 2268 2269
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2285
    if shift:
G
guosheng 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2310 2311 2312 2313
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2314 2315 2316
                     padding=0,
                     stride=1,
                     dilation=1,
2317
                     groups=None,
C
caoying03 已提交
2318
                     param_attr=None,
2319
                     bias_attr=None,
C
chengduoZH 已提交
2320
                     use_cudnn=True,
2321
                     act=None,
C
caoying03 已提交
2322
                     name=None):
Y
Yu Yang 已提交
2323
    """
2324 2325 2326 2327 2328 2329 2330 2331
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2332 2333
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2334 2335 2336
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2337 2338 2339 2340 2341

    For each input :math:`X`, the equation is:

    .. math::

2342
        Out = \sigma (W \\ast X + b)
2343

2344
    Where:
2345 2346 2347

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2348 2349 2350 2351
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2352

2353 2354 2355 2356
    Example:

        - Input:

2357
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2358

2359
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2360 2361 2362

        - Output:

2363
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2364 2365

        Where
Y
Yu Yang 已提交
2366

2367 2368
        .. math::

2369 2370 2371 2372
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2373 2374

    Args:
2375 2376 2377 2378
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2379 2380 2381 2382
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2410 2411

    Returns:
2412
        Variable: The tensor variable storing the convolution transpose result.
2413 2414

    Raises:
2415 2416
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2417 2418 2419 2420

    Examples:
       .. code-block:: python

2421 2422
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2423
    """
2424 2425 2426 2427 2428 2429 2430 2431 2432

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2433 2434 2435
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2436 2437 2438
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2439

C
chengduoZH 已提交
2440 2441
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2442

Y
Yu Yang 已提交
2443 2444 2445 2446 2447
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2448

Y
Yu Yang 已提交
2449 2450
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2451

C
chengduoZH 已提交
2452
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2453
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2454
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2455
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2456
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2457 2458 2459
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2460 2461 2462 2463 2464 2465 2466
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2467
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2468
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2469 2470 2471
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2472
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2473
    helper.append_op(
2474
        type=op_type,
Y
Yu Yang 已提交
2475 2476
        inputs={'Input': [input],
                'Filter': [img_filter]},
2477
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2478
        attrs={
2479
            'output_size': output_size,
2480 2481 2482 2483 2484
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2485 2486
        })

2487 2488 2489
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2490 2491


2492
def conv3d_transpose(input,
Y
Yu Yang 已提交
2493 2494 2495
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2496 2497 2498
                     padding=0,
                     stride=1,
                     dilation=1,
2499
                     groups=None,
C
caoying03 已提交
2500
                     param_attr=None,
2501
                     bias_attr=None,
C
chengduoZH 已提交
2502
                     use_cudnn=True,
2503
                     act=None,
C
caoying03 已提交
2504
                     name=None):
Y
Yu Yang 已提交
2505
    """
2506
    **Convlution3D transpose layer**
2507

2508
    The convolution3D transpose layer calculates the output based on the input,
2509
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2510 2511 2512 2513 2514 2515
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2516 2517 2518
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2519 2520 2521 2522 2523

    For each input :math:`X`, the equation is:

    .. math::

2524
        Out = \sigma (W \\ast X + b)
2525 2526 2527

    In the above equation:

2528 2529
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2530 2531 2532 2533
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2534

2535 2536 2537 2538
    Example:

        - Input:

2539
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2540

2541
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2542 2543 2544

        - Output:

2545
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2546 2547

        Where
Y
Yu Yang 已提交
2548

2549 2550
        .. math::

2551 2552 2553
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2554 2555

    Args:
2556
        input(Variable): The input image with [N, C, D, H, W] format.
2557 2558 2559
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2560
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2561 2562
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2563
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2564 2565 2566
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2567 2568
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2569
        stride(int|tuple): The stride size. If stride is a tuple, it must
2570 2571
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2572
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2573 2574 2575
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2576 2577 2578 2579 2580
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2581 2582 2583
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2584 2585 2586 2587 2588
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2589 2590

    Returns:
2591
        Variable: The tensor variable storing the convolution transpose result.
2592 2593

    Raises:
2594 2595
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2596 2597 2598 2599

    Examples:
       .. code-block:: python

2600 2601
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2602
    """
2603 2604
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2605
    if not isinstance(input, Variable):
2606
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2607 2608
    input_channel = input.shape[1]

2609 2610 2611
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2612

C
chengduoZH 已提交
2613 2614 2615
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2616 2617 2618 2619 2620 2621
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2622 2623 2624
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2625

2626
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2627
                         padding[0] - 1) // dilation[0] + 1
2628
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2629
                         padding[1] - 1) // dilation[1] + 1
2630
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2631
                         padding[2] - 1) // dilation[2] + 1
2632
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2633
    else:
2634 2635
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2636

2637
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2638
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2639 2640 2641
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2642
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2643
    helper.append_op(
2644
        type=l_type,
Y
Yu Yang 已提交
2645 2646
        inputs={'Input': [input],
                'Filter': [img_filter]},
2647
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2648 2649 2650 2651
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2652
            'groups': groups,
C
chengduoZH 已提交
2653 2654
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2655

2656 2657
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2658
    return out
Y
yangyaming 已提交
2659 2660


Y
yangyaming 已提交
2661
def sequence_expand(x, y, ref_level=-1, name=None):
2662
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2663 2664 2665 2666
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2667 2668 2669 2670 2671

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2672
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2673
                x.data = [[a], [b], [c], [d]]
2674 2675 2676
                x.dims = [4, 1]

            y is a LoDTensor:
2677 2678
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2679

Y
yangyaming 已提交
2680
            ref_level: 0
2681

Y
yangyaming 已提交
2682
            then output is a 1-level LoDTensor:
2683
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2684
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2685 2686 2687 2688
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2689
                x.data = [[a], [b], [c]]
2690 2691 2692
                x.dims = [3, 1]

            y is a LoDTensor:
2693
                y.lod = [[2, 0, 3]]
2694

Y
yangyaming 已提交
2695
            ref_level: -1
2696

Y
yangyaming 已提交
2697 2698 2699
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2700 2701 2702
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2703 2704
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2705
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2706
                        will be named automatically.
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2717
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2718
    """
Y
yangyaming 已提交
2719
    helper = LayerHelper('sequence_expand', input=x, **locals())
2720 2721 2722
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2723 2724 2725 2726 2727
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2728
    return tmp
2729 2730


C
chengduo 已提交
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2796
@templatedoc()
2797
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2798 2799 2800 2801 2802
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2803 2804 2805
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2806
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2807 2808 2809 2810
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
2811 2812 2813
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
2814

F
fengjiayi 已提交
2815
    Returns:
M
minqiyang 已提交
2816
        Variable: The padded sequence batch and the original lengths before
2817
                  padding. All sequences has the same length.
M
minqiyang 已提交
2818

F
fengjiayi 已提交
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2833 2834 2835 2836 2837
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2838 2839 2840 2841 2842 2843
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2844 2845
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2846
        attrs={'padded_length': maxlen})
2847
    return out, length
F
fengjiayi 已提交
2848 2849


2850
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
2851
    """
2852
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867

    This layer removes the padding data in the input sequences and convert 
    them into sequences with actual length as output, identitied by lod 
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
		      [11.0, 12.0, 13.0, 14.0, 15.0]], 
     
	in which there are 3 sequences padded to length 5, and the acutal length 
2868
	specified by input Variable **length**:
Y
Yibing Liu 已提交
2869 2870 2871 2872 2873 2874

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
2875
	    out.lod = [[2, 3, 4]]      
Y
Yibing Liu 已提交
2876 2877 2878 2879 2880 2881

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
2882 2883
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


2910 2911 2912 2913 2914 2915 2916 2917 2918
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2919 2920
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2921 2922 2923

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2924 2925

    This layer does the search in beams for one time step. Specifically, it
2926 2927 2928 2929 2930 2931
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2932

2933 2934 2935 2936 2937 2938 2939 2940
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2941

2942
    Args:
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2968

2969
    Returns:
2970 2971
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2972 2973 2974 2975

    Examples:
        .. code-block:: python

2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3004
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3022 3023 3024 3025 3026 3027 3028
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3029

3030 3031 3032 3033 3034 3035 3036 3037 3038
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3039

3040 3041 3042 3043 3044 3045
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3046

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3072 3073 3074 3075
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3076
              param_attr=None,
C
caoying03 已提交
3077 3078
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3079 3080 3081 3082
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3083
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3084

3085
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3086

3087
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3088

3089
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3090 3091 3092

            h_t & = o_t tanh(c_t)

3093 3094 3095 3096 3097 3098
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3099 3100 3101

        .. math::

3102
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3103 3104 3105 3106 3107 3108 3109 3110

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3111
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3112 3113

    Args:
Y
yangyaming 已提交
3114 3115 3116 3117 3118 3119
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3120
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3121 3122
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3123 3124
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3125 3126
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3127 3128

    Returns:
Y
yangyaming 已提交
3129
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3130 3131

    Raises:
3132 3133 3134 3135
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3136 3137 3138 3139 3140 3141

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3142
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3143
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3144
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3161
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3162 3163 3164 3165
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3166 3167
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3168 3169 3170
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3171
    size = cell_t_prev.shape[1]
3172
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3173 3174
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3175
                param_attr=param_attr,
3176
                bias_attr=bias_attr)
Y
yangyaming 已提交
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3189
    return h, c
G
guosheng 已提交
3190 3191


C
caoying03 已提交
3192
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3193
    """
Y
yangyaming 已提交
3194
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3195 3196 3197

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3198
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3199 3200
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3201 3202
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3203
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3204
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3205
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3206 3207
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3208 3209 3210

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3211

G
guosheng 已提交
3212 3213 3214 3215 3216 3217
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3218
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3219 3220 3221 3222
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3223 3224 3225 3226

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3227
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3228 3229 3230
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3231 3232 3233
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3234 3235
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3236 3237 3238 3239 3240
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3241
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3242 3243 3244 3245
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3246 3247


C
caoying03 已提交
3248
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3249
    """
Y
Yibing Liu 已提交
3250
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3251 3252 3253

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3254 3255 3256
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3257
            must be in the range :math:`[-rank(input), rank(input))`. If
3258
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3259
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3260 3261
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3262
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3263
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3264
                       will be named automatically.
G
guosheng 已提交
3265 3266

    Returns:
Y
Yibing Liu 已提交
3267
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3268

G
guosheng 已提交
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3279 3280
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3281 3282 3283 3284 3285 3286 3287

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3288 3289 3290
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3291 3292
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3293 3294 3295 3296 3297
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3298
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3299 3300 3301 3302
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3303 3304


C
caoying03 已提交
3305
def reduce_max(input, dim=None, keep_dim=False, name=None):
3306
    """
Y
yangyaming 已提交
3307
    Computes the maximum of tensor elements over the given dimension.
3308 3309 3310

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3311
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3312 3313 3314
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3315
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3316 3317
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3318
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3319 3320
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3321 3322 3323

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3324

3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3336 3337 3338 3339 3340 3341 3342

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3343 3344 3345
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3346 3347
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3348 3349 3350 3351 3352
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3353
            'dim': dim if dim != None else [0],
3354 3355 3356 3357 3358 3359
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3360
def reduce_min(input, dim=None, keep_dim=False, name=None):
3361
    """
Y
yangyaming 已提交
3362
    Computes the minimum of tensor elements over the given dimension.
3363 3364 3365

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3366
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3367 3368 3369
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3370
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3371 3372
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3373
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3374 3375
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3376 3377 3378

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3379

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3391 3392 3393 3394 3395 3396 3397

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3398 3399 3400
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3401 3402
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3403 3404 3405 3406 3407
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3408
            'dim': dim if dim != None else [0],
3409 3410 3411 3412
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3413 3414


3415 3416 3417 3418 3419 3420
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3421
        dim (list|int|None): The dimensions along which the product is performed. If
3422 3423
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3424 3425
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3426 3427 3428
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3429
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3430
            layer will be named automatically.
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3445
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3446
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3447 3448 3449 3450 3451 3452 3453

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3454 3455 3456
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3457 3458
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3459 3460 3461 3462 3463
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3464
            'dim': dim if dim != None else [0],
3465 3466 3467 3468 3469 3470
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3471
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3472
    """
C
caoying03 已提交
3473
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3474 3475 3476

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3477 3478 3479 3480 3481
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3482
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3483
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3484
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3485 3486
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3487 3488

    Returns:
D
dzhwinter 已提交
3489
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3490 3491 3492 3493 3494 3495 3496 3497 3498

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3499 3500
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3530 3531 3532 3533 3534 3535 3536 3537 3538


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3539
    .. math::
3540 3541

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3542 3543 3544 3545 3546

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3547
        x(Variable|list): The input tensor to l2_normalize layer.
3548
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3549 3550
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3551
        epsilon(float): The epsilon value is used to avoid division by zero, \
3552
            the defalut value is 1e-10.
3553
        name(str|None): A name for this layer(optional). If set None, the layer \
3554
            will be named automatically.
C
caoying03 已提交
3555 3556

    Returns:
3557
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3558 3559

    Examples:
3560

C
caoying03 已提交
3561 3562
        .. code-block:: python

3563 3564 3565 3566
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3567 3568
    """

F
fengjiayi 已提交
3569 3570
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3571 3572
    helper = LayerHelper("l2_normalize", **locals())

3573 3574
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3575
    helper.append_op(
3576 3577 3578 3579
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3580
        attrs={
3581 3582
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3583 3584
        })
    return out
3585 3586


S
sneaxiy 已提交
3587
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3588
    """
Y
ying 已提交
3589 3590 3591 3592
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3593

C
chengduoZH 已提交
3594
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3595
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3596

3597 3598 3599 3600 3601
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3602
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3603

C
chengduoZH 已提交
3604
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3605
      performs in the following way.
G
guosheng 已提交
3606

3607
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3608
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3609
        last two dimensions and a batched matrix multiply supporting broadcast
3610
        applies on the two tensors.
G
guosheng 已提交
3611

Y
ying 已提交
3612 3613
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3614
    removed after matrix multiplication.
G
guosheng 已提交
3615 3616 3617

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3618 3619 3620
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3621
        alpha (float): The scale of output. Default 1.0.
3622
        name(str|None): A name for this layer(optional). If set None, the layer
3623
            will be named automatically.
G
guosheng 已提交
3624 3625

    Returns:
3626
        Variable: The product Tensor variable.
G
guosheng 已提交
3627

G
guosheng 已提交
3628 3629 3630
    Examples:
        .. code-block:: python

3631
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3632 3633
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3634

3635 3636
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3637

3638 3639
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3640

3641 3642
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3643 3644 3645 3646

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3647 3648
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3649

Y
ying 已提交
3650
            # x: [M], y: [N]
3651
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3652
    """
Y
ying 已提交
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3665
            y_shape = y_shape + [1]
Y
ying 已提交
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3682
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3683
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3684
    helper.append_op(
3685 3686 3687 3688
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3689 3690 3691
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3692
            'alpha': float(alpha),
S
sneaxiy 已提交
3693
        })
3694
    return out
3695 3696


3697
def topk(input, k, name=None):
Q
qingqing01 已提交
3698 3699 3700 3701
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3702
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3703 3704 3705 3706 3707 3708
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3730 3731 3732
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3733
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3734
                 of input.
3735
        name(str|None): A name for this layer(optional). If set None, the layer
3736
                       will be named automatically.
F
fengjiayi 已提交
3737
                       Default: None
Q
qingqing01 已提交
3738 3739

    Returns:
3740 3741 3742
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3743
        within the last dimension of input.
Q
qingqing01 已提交
3744

F
fengjiayi 已提交
3745 3746
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3767
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3768
    """
Y
ying 已提交
3769 3770 3771 3772 3773 3774 3775 3776 3777
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3778

Y
ying 已提交
3779
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3780

3781
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3782 3783
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3784
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3785

3786
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3787 3788
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3789

3790 3791 3792
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3793
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3794
                          the length of reference string.
3795
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3796
                                     calculating edit distance.
3797
        name (str): The name of this layer. It is optional.
3798

W
wanghaoshuang 已提交
3799
    Returns:
W
wanghaoshuang 已提交
3800
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3801 3802 3803 3804 3805

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3806
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3807
            cost = fluid.layers.edit_distance(input=x,label=y)
3808
    """
3809
    helper = LayerHelper("edit_distance", **locals())
3810

3811
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3812
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3813 3814 3815 3816 3817 3818 3819
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3820
            attrs={"tokens": ignored_tokens})
3821 3822 3823 3824 3825
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3826
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3827
            attrs={"tokens": ignored_tokens})
3828 3829
        label = erased_label

3830 3831
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3832
    sequence_num = helper.create_tmp_variable(dtype="int64")
3833 3834 3835 3836
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3837 3838
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3839 3840
        attrs={"normalized": normalized})

3841
    return edit_distance_out, sequence_num
3842 3843 3844 3845 3846


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3847

Y
ying 已提交
3848 3849 3850 3851
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3869
        input.lod = [[4, 4]]
3870 3871 3872 3873 3874 3875 3876

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3877
        output.lod = [[2, 1]]
3878 3879 3880

    Args:

Y
ying 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3890
        name (str): The name of this layer. It is optional.
3891 3892

    Returns:
3893
        Variable: CTC greedy decode result. If all the sequences in result were
3894
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3895 3896 3897 3898 3899

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3900

3901
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3902
    """
3903
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3904
    _, topk_indices = topk(input, k=1)
3905 3906 3907 3908 3909 3910

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3911
        outputs={"Output": [ctc_out]},
3912 3913
        attrs={"merge_repeated": True,
               "blank": blank})
3914
    return ctc_out
3915 3916


F
fengjiayi 已提交
3917
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3918
    """
3919 3920
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3921
    to compute Connectionist Temporal Classification (CTC) loss.
3922 3923
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3924 3925 3926
    input tensor.

    Args:
3927
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3928 3929 3930 3931
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3932
       label (Variable): The ground truth of variable-length sequence,
3933 3934 3935
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3936 3937
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3938 3939 3940
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3941
         follewed by a mean_op.
W
wanghaoshuang 已提交
3942 3943

    Returns:
3944 3945
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3946 3947

    Examples:
3948

W
wanghaoshuang 已提交
3949
        .. code-block:: python
3950

3951 3952 3953
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3954 3955

    """
F
fengjiayi 已提交
3956
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3983 3984 3985
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3986 3987 3988 3989 3990
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3991

3992
            out.lod  = [[0, 1, 3]]
3993 3994 3995 3996

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3997 3998 3999 4000 4001 4002 4003
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4004 4005 4006

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4007 4008

    Returns:
4009

4010 4011 4012 4013 4014
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4015
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4016
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4017 4018 4019 4020 4021 4022 4023 4024 4025
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4026 4027


4028 4029 4030 4031
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4032 4033 4034 4035 4036 4037 4038
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
4039 4040 4041 4042 4043 4044 4045
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4046 4047
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4048
            sample is 1.0.
4049 4050 4051
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
4052

4053
    Returns:
Y
Yibing Liu 已提交
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4081
    """
Y
Yang Yu 已提交
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4101 4102 4103 4104 4105 4106 4107 4108 4109
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4126
    return cost / (num_neg_samples + 1)
4127 4128


G
guosheng 已提交
4129
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4130 4131
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4132
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4133 4134 4135 4136 4137 4138 4139 4140 4141
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4142

W
weixing02 已提交
4143
    Args:
M
minqiyang 已提交
4144
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4145 4146 4147 4148 4149
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4150 4151
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4152
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4153 4154
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4155 4156 4157 4158 4159 4160 4161 4162

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4163 4164 4165
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4166 4167 4168 4169 4170 4171 4172 4173
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4174
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4175 4176 4177 4178 4179
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4180 4181 4182 4183 4184 4185 4186 4187
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4188 4189
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4190
        inputs=inputs,
W
weixing02 已提交
4191 4192 4193 4194 4195 4196
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4197
def transpose(x, perm, name=None):
Y
ying 已提交
4198 4199 4200 4201 4202 4203 4204
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4205 4206 4207
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4208 4209 4210 4211 4212 4213 4214 4215

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4216
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4217 4218
    """

Y
fix ci.  
ying 已提交
4219
    if len(perm) != len(x.shape):
Y
ying 已提交
4220 4221 4222
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4223 4224 4225 4226 4227 4228
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4229 4230

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4231
    out = helper.create_tmp_variable(x.dtype)
4232
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4233
    helper.append_op(
4234
        type='transpose2',
Y
fix ci.  
ying 已提交
4235
        inputs={'X': [x]},
4236 4237
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4238 4239
        attrs={'axis': perm})
    return out
4240 4241


4242 4243 4244 4245 4246 4247 4248
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4249
    """
4250 4251 4252 4253 4254 4255 4256
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4285 4286 4287 4288 4289 4290 4291 4292 4293
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4294 4295 4296
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4297 4298 4299 4300 4301
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4329 4330 4331
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4344
            output.dims = {8, 8}
4345

4346
            output.lod = [[4, 4]]
4347

D
dzhwinter 已提交
4348
     Examples:
4349 4350 4351

        .. code-block:: python

4352 4353
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4354 4355

    """
W
wanghaoshuang 已提交
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4366 4367 4368 4369 4370 4371 4372
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4373
    helper = LayerHelper('im2sequence', **locals())
4374 4375
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4376
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4377
    return out
4378 4379


Y
yuyang18 已提交
4380
@templatedoc()
4381
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4382 4383
    """
    ${comment}
4384 4385

    Args:
Y
yuyang18 已提交
4386
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4387 4388
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4389 4390 4391 4392 4393
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4394
        ${out_comment}.
4395 4396

    Examples:
Y
yuyang18 已提交
4397 4398 4399 4400
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4413
    return helper.append_activation(out)
4414 4415


Y
yuyang18 已提交
4416
@templatedoc()
4417 4418
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4419 4420 4421 4422 4423 4424 4425
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4426 4427

    Args:
Y
yuyang18 已提交
4428 4429
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4430 4431

    Returns:
Y
yuyang18 已提交
4432
        ${out_comment}.
4433 4434
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4435 4436 4437 4438 4439 4440

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4441 4442 4443 4444 4445 4446
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4447 4448


4449 4450 4451 4452
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4453 4454
    """
    **Softmax With Cross Entropy Operator.**
4455

4456 4457 4458 4459
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4460

4461 4462 4463
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4464

4465 4466 4467
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4468

4469
    The equation is as follows:
4470

4471
    1) Hard label (one-hot label, so every sample has exactly one class)
4472

4473 4474 4475 4476
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4477

4478 4479 4480
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4481

4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4494 4495
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4496 4497
                            if soft_label is set to False. Default: -100

4498 4499 4500 4501 4502 4503 4504 4505 4506
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4507 4508
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4519 4520
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4521 4522 4523 4524 4525
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4526 4527
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4528
    For each instance, it computes the smooth L1 loss element by element first
4529
    and then sums all the losses. So the shape of ouput Variable is
4530
    [batch_size, 1].
4531

4532 4533
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4534
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4535
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4536
            L1 loss op with same shape as :attr:`x`.
4537
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4538 4539
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4540
            by this tensor element by element.
4541
        outside_weight (Variable|None): A tensor with rank at least 2. This
4542 4543
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4544
            element by element.
4545
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4546 4547
           scalar with default value 1.0.

4548
    Returns:
4549
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4550 4551 4552 4553 4554

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4555 4556
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4557
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4558
            out = fluid.layers.smooth_l1(x=fc, y=label)
4559
    """
4560

4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4576 4577 4578 4579


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4580
    This layer creates the one-hot representations for input indices.
4581 4582

    Args:
Y
Yibing Liu 已提交
4583 4584
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4585 4586

    Returns:
Y
Yibing Liu 已提交
4587
        Variable: The one-hot representations of input.
4588 4589

    Examples:
C
caoying03 已提交
4590
        .. code-block:: python
4591

Y
Yibing Liu 已提交
4592 4593
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4594 4595 4596 4597 4598 4599 4600 4601 4602
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4603 4604


Y
Yu Yang 已提交
4605
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4606
    """
Y
yi.wu 已提交
4607 4608 4609
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4610 4611 4612 4613 4614 4615

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4616 4617
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4618 4619 4620 4621 4622 4623

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4624 4625
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4626 4627
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4628 4629 4630 4631 4632
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4633
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4634
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4635 4636
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4637 4638
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4639 4640 4641
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4642 4643


4644
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4645
    """
C
caoying03 已提交
4646 4647
    Gives a new shape to the input Tensor without changing its data.

4648 4649 4650 4651 4652
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4653

4654
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4655

4656 4657 4658 4659
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4660
    2. 0 means the actual dimension value is going to be copied from the
4661 4662 4663 4664
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4665 4666

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4667
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4668
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4669

4670
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4671 4672
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4673 4674
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4675
    dimensions.
C
caoying03 已提交
4676

4677
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4678 4679 4680 4681
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4682 4683

    Args:
4684
        x(variable): The input tensor.
C
caoying03 已提交
4685 4686
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4687 4688 4689 4690 4691
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4692
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4693 4694 4695 4696
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4697
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4698

4699 4700
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4701

X
Xin Pan 已提交
4702 4703 4704
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4705 4706
    Examples:
        .. code-block:: python
G
guosheng 已提交
4707

4708
            data = fluid.layers.data(
4709
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4710
            reshaped = fluid.layers.reshape(
4711
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4712 4713 4714
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4715
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4716 4717 4718 4719 4720
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4721

4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4737
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4738
    out = helper.create_tmp_variable(dtype=x.dtype)
4739
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4740
    helper.append_op(
4741
        type="reshape2",
X
Xin Pan 已提交
4742
        inputs=inputs,
D
dzhwinter 已提交
4743
        attrs={"shape": shape},
4744 4745
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4746

D
dzhwinter 已提交
4747
    return helper.append_activation(out)
4748

4749

4750
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4751
    """
M
minqiyang 已提交
4752 4753 4754
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4755
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4756

Y
Yibing Liu 已提交
4757 4758
    Examples:
    Case 1:
M
minqiyang 已提交
4759
      Given
Y
Yibing Liu 已提交
4760 4761 4762 4763 4764 4765 4766 4767
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4768
        and
Y
Yibing Liu 已提交
4769 4770 4771
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4772

Y
Yibing Liu 已提交
4773
    Args:
4774
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4775
        axes (list): List of integers, indicating the dimensions to be squeezed.
4776
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4777 4778 4779 4780 4781 4782 4783 4784

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4785
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4786 4787
    """
    helper = LayerHelper("squeeze", **locals())
4788
    out = helper.create_tmp_variable(dtype=input.dtype)
4789
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4790
    helper.append_op(
4791
        type="squeeze2",
4792
        inputs={"X": input},
Y
Yibing Liu 已提交
4793
        attrs={"axes": axes},
4794 4795
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4796

4797 4798 4799
    return out


4800
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4801
    """
M
minqiyang 已提交
4802 4803 4804
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
4805

M
minqiyang 已提交
4806 4807
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
4808
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
4809

Y
Yibing Liu 已提交
4810
    Args:
4811
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4812
        axes (list): List of integers, indicating the dimensions to be inserted.
4813
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4814 4815 4816 4817 4818 4819 4820 4821

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4822
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4823 4824
    """
    helper = LayerHelper("unsqueeze", **locals())
4825
    out = helper.create_tmp_variable(dtype=input.dtype)
4826
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4827
    helper.append_op(
4828
        type="unsqueeze2",
4829
        inputs={"X": input},
Y
Yibing Liu 已提交
4830
        attrs={"axes": axes},
4831 4832
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4833

4834 4835
    return out

4836

Y
yangyaming 已提交
4837
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4838
    """
Y
Yibing Liu 已提交
4839
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4840 4841 4842 4843
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4844
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4845 4846 4847 4848 4849 4850

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4851
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4852 4853 4854
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4855
            target_lod: [4, 2]
Y
yangyaming 已提交
4856 4857

            then we get a 1-level LoDTensor:
4858
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4859 4860 4861 4862 4863 4864
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4865
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4866 4867 4868 4869
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4870
                y.data = [[2, 4]]
Y
yangyaming 已提交
4871 4872 4873
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4874
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4875 4876 4877 4878 4879 4880
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4881
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4882 4883 4884 4885
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4886
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4887 4888 4889 4890
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4891
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4892 4893 4894 4895 4896
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4897
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4898
                           from :attr:`y`.
Y
yangyaming 已提交
4899
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4900
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4901 4902

    Returns:
Y
Yibing Liu 已提交
4903
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4904 4905

    Raises:
Y
Yibing Liu 已提交
4906
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4942
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4971 4972
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5000 5001 5002 5003


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5004
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5005
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5006

G
guosheng 已提交
5007 5008 5009 5010
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5033
                         The length of :attr:paddings must be
G
guosheng 已提交
5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5044

G
guosheng 已提交
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5059 5060


C
chengduo 已提交
5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5141 5142 5143 5144 5145 5146 5147
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5148 5149
    called label-smoothing regularization (LSR).

5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5173
                              be :math:`(1, class\_num)`.
5174 5175
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5176
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5204 5205


Y
yi.wu 已提交
5206
@templatedoc()
5207 5208
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5209
    ${comment}
5210 5211

    Args:
Y
yi.wu 已提交
5212 5213
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5214 5215 5216
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5217 5218

    Returns:
Y
update  
yi.wu 已提交
5219
        Variable: ${out_comment}.
5220 5221

    Examples:
5222 5223
        .. code-block:: python

5224
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5270 5271
        .. code-block:: python

W
whs 已提交
5272 5273 5274 5275
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5276
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5277 5278 5279 5280 5281 5282
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5283 5284


5285 5286 5287 5288 5289
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5290
    """
Q
qiaolongfei 已提交
5291
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5292

5293
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5294 5295 5296
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5297

5298
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5299

5300
    Args:
5301
        input (Variable): The input tensor of image resize layer,
5302 5303
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5304
        out_shape(list|tuple|Variable|None): Output shape of image resize
5305 5306
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5307
        scale(float|None): The multiplier for the input height or width.
5308 5309 5310
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5311 5312
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5313 5314
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5315 5316

    Returns:
Q
update  
qiaolongfei 已提交
5317 5318
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5319

5320 5321 5322
    Examples:
        .. code-block:: python

5323
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5324
    """
5325 5326 5327 5328
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5329 5330
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5331 5332
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5333 5334 5335 5336

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5337 5338 5339
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5340
    if out_shape is not None:
B
baiyf 已提交
5341 5342 5343
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5344 5345 5346 5347 5348 5349
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5350 5351 5352 5353
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5354 5355
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5356
        type=resample_methods[resample],
5357
        inputs=inputs,
5358 5359 5360 5361
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5362 5363


Y
yuyang18 已提交
5364
@templatedoc(op_type="bilinear_interp")
5365 5366
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5367 5368 5369 5370 5371 5372
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5373

Y
yuyang18 已提交
5374 5375 5376 5377 5378 5379 5380 5381
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5382 5383 5384 5385 5386 5387 5388
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5389 5390 5391
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5392 5393 5394 5395 5396 5397 5398
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5399
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5400

5401
    Returns:
Q
update  
qiaolongfei 已提交
5402
        Variable: The output is a 4-D tensor of the shape
5403
        (num_batches, channls, out_h, out_w).
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5414 5415 5416
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5417 5418 5419
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5420 5421
def gather(input, index):
    """
Q
qiaolongfei 已提交
5422 5423
    **Gather Layer**

5424
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5425 5426 5427 5428
    of X indexed by `index` and concatenate them together.

    .. math::

5429
        Out = X[Index]
W
whs 已提交
5430 5431 5432 5433 5434 5435 5436


    .. code-block:: text


                Given:

5437 5438
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5449
        input (Variable): The source input with rank>=1.
W
whs 已提交
5450 5451 5452 5453 5454 5455
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5456

W
whs 已提交
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5586

5587 5588 5589
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5590
    """
F
stash  
fengjiayi 已提交
5591
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5592
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5593
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5594
    if seed is None:
5595
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5596
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5597
    if isinstance(seed, int):
F
fengjiayi 已提交
5598 5599 5600 5601 5602
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5603 5604 5605 5606
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5607
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5608 5609
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5610 5611
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5612
    return out
W
whs 已提交
5613 5614


5615
def log(x, name=None):
W
wanghaoshuang 已提交
5616 5617 5618 5619 5620
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5621
        Out = \\ln(x)
W
wanghaoshuang 已提交
5622 5623

    Args:
5624
        x (Variable): Input tensor.
5625 5626
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5627 5628 5629 5630 5631 5632 5633 5634

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5635
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5636 5637
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5638
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5639
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5640
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5641 5642 5643
    return out


5644
def relu(x, name=None):
W
wanghaoshuang 已提交
5645 5646
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5647
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5648 5649 5650 5651
    the tensor elementwise.

    .. math::

5652
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5653 5654

    Args:
5655
        x (Variable): The input tensor.
5656 5657
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5658 5659 5660 5661 5662 5663 5664 5665

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5666
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5667 5668
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5669
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5670
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5671
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5672
    return out
5673 5674


W
whs 已提交
5675 5676 5677
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5678 5679 5680 5681
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5682
    .. math::
5683 5684

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5685

5686
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5687 5688 5689 5690 5691
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5692
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5693
                           Its shape should be the same as input.
5694
        num_classes (int): The possible number of labels.
W
whs 已提交
5695 5696 5697 5698

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5699
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5700 5701 5702 5703

    Examples:

        .. code-block:: python
5704

W
whs 已提交
5705 5706 5707 5708 5709 5710 5711 5712 5713
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5714 5715
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5716
        outputs={
W
whs 已提交
5717 5718 5719
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5720 5721 5722
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5797
                    isinstance(shape, Variable)):
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5831

5832 5833
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5834

5835 5836 5837 5838
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5839

5840 5841 5842 5843 5844
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5845 5846 5847

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5892 5893


M
minqiyang 已提交
5894 5895
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
5896
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
5897
    which compares left score and right score passed in.
M
minqiyang 已提交
5898
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
5899 5900 5901 5902 5903 5904

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
5905
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
5906 5907
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
5908
       margin (float): Indicates the given margin.
M
minqiyang 已提交
5909 5910 5911
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
5912
       Variable: The ranking loss.
M
minqiyang 已提交
5913
    Raises:
M
minqiyang 已提交
5914
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
5915 5916 5917 5918 5919 5920 5921
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
5922
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
5923 5924 5925 5926 5927 5928
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
M
minqiyang 已提交
5929 5930
    out = helper.create_tmp_variable(left.dtype)
    act = helper.create_tmp_variable(left.dtype)
M
minqiyang 已提交
5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
5956

W
whs 已提交
5957 5958
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
5959

W
whs 已提交
5960
      Case 0:
M
minqiyang 已提交
5961

W
whs 已提交
5962 5963 5964
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
5965

W
whs 已提交
5966 5967 5968
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
5969

W
whs 已提交
5970
      Case 1:
M
minqiyang 已提交
5971

W
whs 已提交
5972 5973
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
5974

W
whs 已提交
5975 5976 5977
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
5978

W
whs 已提交
5979
      Case 2:
M
minqiyang 已提交
5980

W
whs 已提交
5981 5982
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
5983

W
whs 已提交
5984 5985 5986
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
5987 5988


W
whs 已提交
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6186
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6187
                        will be named automatically.
J
jerrywgz 已提交
6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6306

6307 6308 6309 6310 6311 6312 6313 6314 6315 6316
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6317 6318
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6334
        ValueError: If axis is not in range [0, rank(x)].
6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6352
    x_shape = helper.create_tmp_variable(x.dtype)
6353
    helper.append_op(
6354
        type='flatten2',
6355
        inputs={"X": x},
6356 6357
        outputs={'Out': out,
                 'XShape': x_shape},
6358 6359
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6360 6361


C
chenweihang 已提交
6362
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6363
    """
C
chenweihang 已提交
6364
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6365
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6366 6367
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6368

C
chenweihang 已提交
6369 6370 6371 6372
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6373
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6374 6375 6376 6377 6378 6379
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6380
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6381 6382 6383
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6384 6385 6386
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6398
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6399 6400 6401 6402 6403 6404
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6405
    return out
6406

6407

S
sneaxiy 已提交
6408 6409 6410 6411 6412 6413 6414 6415 6416
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6417

S
sneaxiy 已提交
6418
    .. math::
6419

S
sneaxiy 已提交
6420 6421 6422
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6423
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6424 6425 6426 6427
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6428 6429 6430
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6431 6432
    Returns:
        Variable: The output sequence mask.
6433

S
sneaxiy 已提交
6434 6435
    """

Q
qingqing01 已提交
6436
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6437 6438 6439 6440 6441
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6442 6443 6444
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6445 6446
        outputs={'Y': out},
        attrs={
6447
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6448 6449 6450
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6451 6452


X
Xin Pan 已提交
6453
def stack(x, axis=0):
S
sneaxiy 已提交
6454 6455 6456 6457
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6458 6459 6460 6461 6462 6463 6464

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6465
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6466
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6467 6468

    Args:
6469
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6470
        axis (int|None): The axis along which all inputs are stacked.
6471

S
sneaxiy 已提交
6472 6473
    Returns:
        Variable: The stacked variable.
6474

S
sneaxiy 已提交
6475 6476
    """

X
Xin Pan 已提交
6477 6478 6479 6480 6481 6482 6483 6484
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6485 6486
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6487

X
Xin Pan 已提交
6488
    return out
D
dzhwinter 已提交
6489 6490 6491 6492 6493 6494 6495


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6496

D
dzhwinter 已提交
6497 6498 6499
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6500
    raised.
D
dzhwinter 已提交
6501 6502

    Args:
M
minqiyang 已提交
6503
        x (Variable): Input variable.
D
dzhwinter 已提交
6504 6505
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6506

D
dzhwinter 已提交
6507 6508
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6509

D
dzhwinter 已提交
6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6542

W
whs 已提交
6543 6544 6545 6546
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6547

W
whs 已提交
6548
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6549

W
whs 已提交
6550
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6551

W
whs 已提交
6552 6553 6554 6555
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6556

W
whs 已提交
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6580 6581


G
fix  
gongweibao 已提交
6582 6583 6584
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6585
@templatedoc()
G
fix  
gongweibao 已提交
6586 6587 6588 6589 6590 6591 6592 6593 6594
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6595
    ${comment}
G
fix  
gongweibao 已提交
6596 6597

    Args:
G
gongweibao 已提交
6598 6599 6600
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6601
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6602 6603 6604
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6605 6606
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6607
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6629 6630


G
gongweibao 已提交
6631
@templatedoc()
X
Xin Pan 已提交
6632
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6633
    """
G
gongweibao 已提交
6634
    ${comment}
G
fix  
gongweibao 已提交
6635 6636

    Args:
G
gongweibao 已提交
6637 6638 6639 6640
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6641 6642 6643
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6644
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6660
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6661 6662 6663 6664 6665
        })

    return out


G
gongweibao 已提交
6666
@templatedoc()
G
fix  
gongweibao 已提交
6667
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6668
    """
G
gongweibao 已提交
6669
    ${comment}
G
fix  
gongweibao 已提交
6670 6671

    Args:
G
gongweibao 已提交
6672 6673 6674 6675
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6676
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6677 6678

    Returns:
G
gongweibao 已提交
6679
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6680 6681 6682 6683

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6684
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6696
@templatedoc()
G
fix  
gongweibao 已提交
6697 6698 6699 6700 6701 6702 6703 6704 6705
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6706
    ${comment}
G
fix  
gongweibao 已提交
6707 6708

    Args:
G
gongweibao 已提交
6709 6710
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6711
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6712 6713 6714 6715
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6716
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6717 6718

    Returns:
G
gongweibao 已提交
6719
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
6742
@templatedoc()
X
Xin Pan 已提交
6743
def sum(x):
G
fix  
gongweibao 已提交
6744
    """
G
gongweibao 已提交
6745
    ${comment}
G
fix  
gongweibao 已提交
6746 6747

    Args:
G
gongweibao 已提交
6748
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
6749 6750

    Returns:
G
gongweibao 已提交
6751
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6752 6753 6754
    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6755
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6756 6757 6758 6759
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
6760
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
6761 6762 6763 6764

    return out


G
gongweibao 已提交
6765
@templatedoc()
G
fix  
gongweibao 已提交
6766 6767
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
6768
    ${comment}
G
fix  
gongweibao 已提交
6769 6770

    Args:
G
gongweibao 已提交
6771 6772 6773 6774
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
6775 6776

    Returns:
G
gongweibao 已提交
6777
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6778 6779 6780 6781

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6782
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
6794
@templatedoc()
G
fix  
gongweibao 已提交
6795 6796
def shape(input):
    """
G
gongweibao 已提交
6797
    ${comment}
G
fix  
gongweibao 已提交
6798 6799

    Args:
G
gongweibao 已提交
6800
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
6801 6802

    Returns:
G
gongweibao 已提交
6803
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6804 6805 6806 6807

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
6808
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6809
    helper.append_op(
G
fix  
gongweibao 已提交
6810
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
6811 6812

    return out
G
merge  
gongweibao 已提交
6813 6814


S
sneaxiy 已提交
6815 6816 6817 6818 6819 6820 6821 6822
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
6823 6824 6825 6826 6827 6828
    name = helper.kwargs.get('name', None)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6829

S
sneaxiy 已提交
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
6841
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
6842 6843 6844 6845 6846 6847 6848 6849
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
6850
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
6851
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
6852 6853 6854 6855 6856 6857

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
6858 6859 6860 6861 6862
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
6873
    return helper.append_activation(out)
S
sneaxiy 已提交
6874 6875


X
Xin Pan 已提交
6876
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6877 6878 6879
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
6880
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6881 6882 6883
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
6884
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6885 6886 6887
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
6888
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6889 6890 6891
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
6892
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6893 6894 6895
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
6896
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6897 6898 6899
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
6900
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
6912 6913
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
6914
        ])
M
minqiyang 已提交
6915 6916


6917
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
6918 6919
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
6920 6921
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940

    if out is None:
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
6941
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
6960
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
6979
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
6998
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7135 7136
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out