nn.py 409.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
178
    'space_to_depth',
W
whs 已提交
179
    'affine_grid',
S
sneaxiy 已提交
180
    'sequence_reverse',
181
    'affine_channel',
B
barrierye 已提交
182
    'similarity_focus',
M
minqiyang 已提交
183
    'hash',
D
dengkaipeng 已提交
184
    'grid_sampler',
G
gmcather 已提交
185 186
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
187
    'bilinear_tensor_product',
C
chengduo 已提交
188 189
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
190
    'lstm',
S
shippingwang 已提交
191
    'shuffle_channel',
192
    'temporal_shift',
S
sneaxiy 已提交
193
    'py_func',
194
    'psroi_pool',
H
heqiaozhi 已提交
195
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
196
    'huber_loss',
D
dengkaipeng 已提交
197
    'kldiv_loss',
Z
zhaozhehao 已提交
198
    'tree_conv',
C
ceci3 已提交
199
    'npair_loss',
R
ruri 已提交
200
    'pixel_shuffle',
201
    'fsp_matrix',
H
heqiaozhi 已提交
202
    'continuous_value_model',
Z
zhoukunsheng 已提交
203
    'where',
Z
zhoukunsheng 已提交
204
    'sign',
Y
Yu Yang 已提交
205 206
]

J
jerrywgz 已提交
207 208
kIgnoreIndex = -100

Y
Yu Yang 已提交
209 210 211 212 213 214 215

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
216
       is_test=False,
217
       name=None):
Y
Yu Yang 已提交
218
    """
219
    **Fully Connected Layer**
Y
Yu Yang 已提交
220

221
    This function creates a fully connected layer in the network. It can take
222
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
223
    Args in detail). It creates a variable called weights for each input tensor,
224 225 226 227
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
228
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
229 230
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
231

232
    When the input is single tensor:
C
caoying03 已提交
233

234 235 236 237 238
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
239 240 241

    .. math::

242
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
243 244 245

    In the above equation:

246 247 248
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
249
    * :math:`b`: The bias parameter created by this layer (if needed).
250
    * :math:`Act`: The activation function.
C
caoying03 已提交
251
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
271
    Args:
R
ranqiu 已提交
272 273 274 275 276 277 278 279 280 281
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
282
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
283 284 285 286
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
287 288
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
289
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
290
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
291
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
292

293
    Returns:
F
fengjiayi 已提交
294
        Variable: The transformation result.
295 296

    Raises:
C
caoying03 已提交
297
        ValueError: If rank of the input tensor is less than 2.
298 299 300 301

    Examples:
        .. code-block:: python

302
          # when input is single tensor
F
fengjiayi 已提交
303
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
304
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
305 306 307 308 309

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
310
    """
C
caoying03 已提交
311
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
312 313 314 315

    dtype = helper.input_dtype()

    mul_results = []
316 317
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
318 319 320
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
321

Y
Yu Yang 已提交
322
        w = helper.create_parameter(
323
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
324
        tmp = helper.create_variable_for_type_inference(dtype)
325
        helper.append_op(
326 327 328
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
329
            outputs={"Out": tmp},
M
mozga-intel 已提交
330 331
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
332 333 334 335
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
336
    else:
X
Xin Pan 已提交
337
        pre_bias = helper.create_variable_for_type_inference(dtype)
338
        helper.append_op(
339 340 341
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
342
            attrs={"use_mkldnn": False})
343 344 345 346
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
347 348


349 350 351
def embedding(input,
              size,
              is_sparse=False,
352
              is_distributed=False,
353 354 355
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
356
    """
357 358
    **Embedding Layer**

359
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
360 361
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
362 363 364

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
365 366

    Args:
367 368 369 370 371
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
372
        is_distributed(bool): Whether to run lookup table from remote parameter server.
373 374
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
375
            with zeros whenever lookup encounters it in :attr:`input`. If
376
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
377 378
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
379
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
380

381 382 383
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
384

385 386
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
387

C
chengduoZH 已提交
388
          dict_size = len(dataset.ids)
389
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
390
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
391 392 393
    """

    helper = LayerHelper('embedding', **locals())
394
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
395 396
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
397 398
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
399
    tmp = helper.create_variable_for_type_inference(dtype)
400 401
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
402 403 404 405 406
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
407 408 409
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
410
            'remote_prefetch': remote_prefetch,
411 412
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
413 414 415
    return tmp


W
wopeizl 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
432

W
wopeizl 已提交
433 434 435 436 437 438 439 440 441 442 443
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
444

W
wopeizl 已提交
445 446 447 448
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
449

W
wopeizl 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
493
    assert in_dygraph_mode(
494
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
538 539


P
phlrain 已提交
540 541 542 543 544 545
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
546
         dropout_prob=0.0,
P
phlrain 已提交
547 548 549 550 551
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
552
    """
P
phlrain 已提交
553
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
554 555

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
556
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
557 558
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
559
    .. math::
M
minqiyang 已提交
560 561 562 563 564 565 566

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
567
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
568 569 570 571

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
572 573

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
574 575 576 577 578 579
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
580 581 582
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
583
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
584

M
minqiyang 已提交
585
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
586 587 588 589 590
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
591
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
592 593 594 595 596
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
597
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
598 599
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
600 601
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
602 603 604 605 606 607
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
608
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
609

L
liuhongyu 已提交
610 611

    Returns:
M
minqiyang 已提交
612 613
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
614
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
615

H
haowang101779990 已提交
616 617 618 619
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
620
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
621 622
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
623
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
639
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
640 641 642 643 644 645
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
646 647 648
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
708 709 710 711 712 713 714 715 716 717
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
718
                  proj_activation='tanh',
719
                  dtype='float32',
X
xuezhong 已提交
720 721 722 723 724
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
725 726 727
    """
    **Dynamic LSTMP Layer**

728 729 730 731 732 733
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
734 735 736 737 738

    The formula is as follows:

    .. math::

739
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
740

741
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
742

743
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
744

745
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
746

747
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
748

749
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
750

751
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
752

Y
Yibing Liu 已提交
753 754 755 756 757 758
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
759
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
760
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
761
          bias vector).
Y
Yibing Liu 已提交
762 763 764
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
765
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
766
    * :math:`h`: The hidden state.
767
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
768 769
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
770
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
771
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
772
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
773 774
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
775 776 777 778

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
779

Y
Yibing Liu 已提交
780 781 782 783 784 785 786 787 788 789 790 791
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
792
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
793 794
                               hidden-hidden weight and projection weight.

795 796
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
797 798
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
799 800
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
801
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
802 803 804 805 806

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
807
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
808 809 810 811 812 813
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
814
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
815 816 817
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
818
                                - The shape is (1 x 7D).
C
chengduo 已提交
819 820 821 822 823

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
824 825 826 827 828 829 830 831 832
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
833
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
834 835
                              default "tanh".
        proj_activation(str): The activation for projection output.
836
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
837
                              default "tanh".
Y
Yibing Liu 已提交
838
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
839 840
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
841 842 843 844 845 846 847 848 849 850 851
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
852 853

    Returns:
854 855 856 857
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
858 859

    Examples:
860

Y
Yibing Liu 已提交
861 862
        .. code-block:: python

863 864 865 866
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
867
            hidden_dim, proj_dim = 512, 256
868
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
869
                                     act=None, bias_attr=None)
870 871 872
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
873 874 875 876
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
877
    """
878

L
lujun 已提交
879
    assert in_dygraph_mode(
880 881
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
882
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
883
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
884
    size = size // 4
Y
Yibing Liu 已提交
885 886 887 888 889 890 891 892 893 894
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
895 896 897 898 899 900
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
916

X
xuezhong 已提交
917 918 919 920 921
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
922 923
    helper.append_op(
        type='lstmp',
924
        inputs=inputs,
Y
Yibing Liu 已提交
925 926 927 928 929 930 931 932 933
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
934 935
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
936 937 938 939 940 941 942 943 944
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
945 946 947 948 949 950 951
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
952 953
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
954
    """
955
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
956

957 958 959
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
960

G
guosheng 已提交
961 962 963 964 965 966 967 968 969
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
970

G
guosheng 已提交
971
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
972

Q
Qiao Longfei 已提交
973 974 975

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
976 977 978 979 980 981 982 983 984 985 986 987
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
988
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
989 990
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
991 992 993 994
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
995
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
996 997

    Args:
998 999
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1000
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1001
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1002 1003
            is the hidden size.
        size(int): The dimension of the gru cell.
1004
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1005 1006
            hidden-hidden weight matrix. Note:

1007
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1008
              :math:`D` is the hidden size.
1009
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1010
              The first part are weights of the update gate and reset gate with
1011
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1012
              candidate hidden state with shape :math:`(D \\times D)`.
1013 1014 1015 1016 1017

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1018
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1019
            the bias in the update gate, reset gate and candidate calculations.
1020 1021 1022
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1023 1024
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1025
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1026 1027 1028
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1029
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1030
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1031 1032 1033 1034
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1035 1036

    Returns:
G
guosheng 已提交
1037
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1038
            and sequence length is the same with the input.
1039

G
guosheng 已提交
1040
    Examples:
1041

G
guosheng 已提交
1042 1043
        .. code-block:: python

1044 1045 1046 1047
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1048
            hidden_dim = 512
1049
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1050
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1051 1052
    """

L
lujun 已提交
1053
    assert in_dygraph_mode(
1054 1055
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1056 1057 1058 1059 1060 1061 1062
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1063
    batch_size = input.shape[0]
G
guosheng 已提交
1064
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1065
    if h_0:
G
guosheng 已提交
1066
        assert h_0.shape == (
Y
Yancey 已提交
1067 1068 1069
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1070

X
Xin Pan 已提交
1071 1072 1073 1074
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1088 1089
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1090 1091 1092 1093
        })
    return hidden


Y
Yu Yang 已提交
1094 1095 1096
def gru_unit(input,
             hidden,
             size,
1097 1098
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1099
             activation='tanh',
Q
Qiao Longfei 已提交
1100 1101
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1102
    """
1103 1104 1105
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1106
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1107
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1108

1109 1110
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1111

1112
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1113

1114
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1131 1132

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1133 1134 1135
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1136 1137
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1138 1139
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1140 1141 1142
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1143 1144 1145

    Args:
        input (Variable): The fc transformed input value of current step.
1146
        hidden (Variable): The hidden value of gru unit from previous step.
1147
        size (integer): The input dimension value.
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1162
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1163
            the bias in the update gate, reset gate and candidate calculations.
1164 1165 1166
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1167 1168
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1169 1170 1171 1172
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1173

1174 1175 1176 1177 1178 1179
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1180

1181
             # assuming we have x_t_data and prev_hidden of size=10
1182
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1183 1184
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1197
    size = size // 3
Y
Yu Yang 已提交
1198 1199

    # create weight
1200 1201
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1202

X
Xin Pan 已提交
1203 1204 1205
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1206
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1207
    # create bias
1208
    if helper.bias_attr:
Y
Yu Yang 已提交
1209 1210 1211
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1212
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1213 1214 1215

    helper.append_op(
        type='gru_unit',
1216
        inputs=inputs,
Y
Yu Yang 已提交
1217 1218 1219 1220 1221 1222
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1223 1224
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1225 1226 1227 1228 1229
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1230
@templatedoc()
1231
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1232 1233 1234 1235 1236 1237 1238
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1239
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1240 1241 1242 1243
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1244 1245 1246
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1247 1248

    """
Y
Yu Yang 已提交
1249 1250 1251 1252 1253 1254
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1255 1256 1257 1258 1259 1260 1261 1262
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1278 1279 1280 1281
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1282

W
wopeizl 已提交
1283 1284
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1285

W
wopeizl 已提交
1286
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1287

W
wopeizl 已提交
1288
        label(${label_type}): ${label_comment}
1289

W
wopeizl 已提交
1290 1291
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1292

W
wopeizl 已提交
1293 1294
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1295

Y
Yibing Liu 已提交
1296 1297 1298 1299 1300 1301 1302
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1303 1304 1305 1306 1307 1308 1309 1310
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1311
                "Transition": transition,
W
wopeizl 已提交
1312 1313
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1314

W
wopeizl 已提交
1315
    return viterbi_path
Y
Yu Yang 已提交
1316 1317


Y
yi.wu 已提交
1318
@templatedoc()
F
fengjiayi 已提交
1319
def cos_sim(X, Y):
Y
Yu Yang 已提交
1320
    """
Y
yi.wu 已提交
1321 1322 1323
    ${comment}

    Args:
1324 1325
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1326

Y
yi.wu 已提交
1327
    Returns:
1328
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1329 1330 1331 1332 1333 1334 1335

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1336
    """
F
fengjiayi 已提交
1337
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1338 1339 1340
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1351 1352 1353 1354 1355
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1356
            dropout_implementation="downgrade_in_infer"):
1357 1358 1359 1360 1361
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1362
    training. The dropout operator randomly sets (according to the given dropout
1363 1364 1365
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1366 1367
    dropout op can be removed from the program to make the program more efficient.

1368
    Args:
1369 1370
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1371 1372 1373 1374 1375 1376 1377
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1378 1379
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1380
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1381 1382

                                           - train: out = input * mask
C
ceci3 已提交
1383
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1384 1385 1386

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1387
                                        2. upscale_in_train, upscale the outcome at training time
1388

H
haowang101779990 已提交
1389 1390
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1391

H
haowang101779990 已提交
1392 1393
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1394

M
minqiyang 已提交
1395

1396
    Returns:
1397
        Variable: A tensor variable is the shape with `x`.
1398 1399

    Examples:
1400

1401 1402
        .. code-block:: python

1403 1404
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1405 1406
    """

F
fengjiayi 已提交
1407
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1408 1409
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1410
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1411 1412 1413 1414

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1415 1416 1417 1418 1419
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1420 1421 1422 1423
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1424 1425
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1426
        })
1427 1428 1429
    return out


J
jerrywgz 已提交
1430
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1431
    """
Y
Yibing Liu 已提交
1432 1433
    **Cross Entropy Layer**

1434 1435 1436
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1437 1438

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1439
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1440

Y
Yibing Liu 已提交
1441
        .. math::
Y
yangyaming 已提交
1442

Y
Yibing Liu 已提交
1443 1444 1445
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1446 1447
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1448 1449 1450 1451 1452

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1453
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1454 1455 1456
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1457 1458
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1459
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1460

Y
Yibing Liu 已提交
1461
    Args:
Y
yangyaming 已提交
1462
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1463 1464 1465 1466
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1467
        label (Variable|list): the ground truth which is a 2-D tensor. When
1468 1469 1470 1471
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1472
        soft_label (bool): a flag indicating whether to
1473
                                           interpretate the given labels as soft
1474
                                           labels. Default: `False`.
M
minqiyang 已提交
1475 1476
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1477
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1478 1479 1480 1481 1482

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1483 1484 1485
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1486

H
haowang101779990 已提交
1487 1488
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1489

H
haowang101779990 已提交
1490 1491
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1492 1493 1494 1495

    Examples:
        .. code-block:: python

L
lvmengsi 已提交
1496 1497 1498 1499
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1500
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1501
    """
S
sneaxiy 已提交
1502 1503
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1504
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1505
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1506 1507 1508 1509 1510
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1511 1512
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1513 1514 1515
    return out


S
sneaxiy 已提交
1516 1517 1518 1519
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1520
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1521 1522 1523 1524 1525
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1526
                 'MatchX': [match_x],
S
sneaxiy 已提交
1527 1528 1529 1530 1531
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1532
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1533 1534 1535
    """
    Bayesian Personalized Ranking Loss Operator.

1536
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1537 1538 1539 1540 1541 1542
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1543 1544 1545 1546 1547 1548
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1549 1550
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1551 1552 1553
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1554 1555 1556
    Examples:
        .. code-block:: python

1557
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1558
    """
1559 1560 1561 1562 1563 1564

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1565
                'Label': [label]},
1566 1567 1568 1569
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1570
def square_error_cost(input, label):
Y
Yu Yang 已提交
1571
    """
1572 1573
    **Square error cost layer**

1574 1575
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1576

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1590 1591
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1592 1593

    Returns:
G
guosheng 已提交
1594
        Variable: The tensor variable storing the element-wise squared error \
1595
                  difference of input and label.
1596 1597 1598 1599

    Examples:
        .. code-block:: python

R
ruri 已提交
1600 1601 1602
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1603

Y
Yu Yang 已提交
1604
    """
F
fengjiayi 已提交
1605
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1606
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1607 1608 1609 1610 1611 1612
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1613
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1614
    helper.append_op(
F
fengjiayi 已提交
1615 1616
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1617 1618 1619
    return square_out


Y
yi.wu 已提交
1620
@templatedoc()
Y
Yu Yang 已提交
1621 1622 1623 1624
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1625
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1626
    """
Y
yi.wu 已提交
1627
    **Chunk Evaluator**
Y
yi.wu 已提交
1628

Y
yangyaming 已提交
1629
    This function computes and outputs the precision, recall and
1630
    F1-score of chunk detection.
Y
yi.wu 已提交
1631

M
minqiyang 已提交
1632
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1633
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1634 1635 1636 1637 1638 1639

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1640

Y
yi.wu 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1666

Y
yi.wu 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1691
    Args:
1692 1693 1694 1695 1696
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1697

Y
yi.wu 已提交
1698
    Returns:
Y
update  
yi.wu 已提交
1699 1700 1701
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1702

Y
yi.wu 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1715
    """
F
fengjiayi 已提交
1716
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1717 1718

    # prepare output
X
Xin Pan 已提交
1719 1720 1721 1722 1723 1724 1725
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1726 1727 1728 1729 1730 1731 1732 1733

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1734 1735 1736 1737
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1738 1739 1740
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1741 1742
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1743
        })
1744 1745
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1746 1747


1748
@templatedoc()
Y
Yu Yang 已提交
1749 1750 1751 1752 1753 1754 1755
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1756 1757
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1758 1759 1760 1761
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1762 1763 1764 1765 1766 1767 1768

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1782

1783 1784
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1785 1786
    """

L
lujun 已提交
1787
    assert not in_dygraph_mode(), (
1788
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1789 1790 1791 1792 1793
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1794
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1805
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1806 1807 1808 1809 1810 1811
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1812
def sequence_softmax(input, use_cudnn=False, name=None):
1813 1814 1815
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1816
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1833 1834 1835
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1836

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1848
    assert not in_dygraph_mode(), (
1849
        "sequence layer is not supported in dygraph mode yet.")
1850 1851
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1852
    softmax_out = helper.create_variable_for_type_inference(dtype)
1853 1854 1855 1856 1857 1858 1859 1860
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1861
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1862
    """
1863
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1864
    has the same shape as the input.
Q
qiaolongfei 已提交
1865

D
dengkaipeng 已提交
1866
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1867
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1868
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1869 1870 1871
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1872
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1873
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1874 1875 1876 1877 1878 1879 1880

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1881
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1882 1883 1884 1885 1886 1887 1888 1889

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1890 1891
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1892 1893
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1894 1895 1896
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1906
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1907
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1908 1909
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1910 1911

    """
1912 1913
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1914
    softmax_out = helper.create_variable_for_type_inference(dtype)
1915 1916 1917 1918
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1919 1920
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1921 1922 1923
    return softmax_out


Y
Yu Yang 已提交
1924 1925 1926
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1927 1928
           stride=1,
           padding=0,
1929
           dilation=1,
Y
Yu Yang 已提交
1930 1931 1932
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1933
           use_cudnn=True,
1934 1935
           act=None,
           name=None):
Y
Yu Yang 已提交
1936
    """
C
chengduoZH 已提交
1937
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1938 1939
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1940
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1941 1942 1943 1944 1945 1946 1947
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1948 1949 1950
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1951

1952
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1953

C
chengduoZH 已提交
1954 1955
    .. math::

C
refine  
chengduoZH 已提交
1956
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1957

T
tensor-tang 已提交
1958
    Where:
C
chengduoZH 已提交
1959

1960 1961 1962 1963 1964
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1965
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1966 1967 1968

    Example:

1969 1970
        - Input:

W
weixing02 已提交
1971
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1972

W
weixing02 已提交
1973
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1974

1975
        - Output:
T
tensor-tang 已提交
1976

W
weixing02 已提交
1977
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1978

C
chengduoZH 已提交
1979
        Where
1980 1981

        .. math::
C
chengduoZH 已提交
1982

W
weixing02 已提交
1983 1984
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1985 1986

    Args:
1987
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1988
        num_filters(int): The number of filter. It is as same as the output
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2006 2007 2008 2009 2010
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2011
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2012 2013 2014 2015 2016
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2017 2018
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2019 2020
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2021
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2022
            will be named automatically. Default: None
C
chengduoZH 已提交
2023 2024

    Returns:
G
guosheng 已提交
2025
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2026 2027
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2028
    Raises:
2029 2030
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2031

C
chengduoZH 已提交
2032 2033 2034
    Examples:
        .. code-block:: python

2035 2036
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2037 2038 2039
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2040
    assert param_attr is not False, "param_attr should not be False here."
2041
    l_type = 'conv2d'
X
xzl 已提交
2042 2043
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2044
        l_type = 'depthwise_conv2d'
2045 2046 2047 2048

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2049 2050 2051 2052 2053
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2054
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2055

C
chengduoZH 已提交
2056 2057 2058
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2059
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2060

C
chengduoZH 已提交
2061 2062
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2063 2064

    input_shape = input.shape
M
minqiyang 已提交
2065
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2066 2067

    def _get_default_param_initializer():
C
chengduo 已提交
2068 2069
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2070 2071 2072 2073 2074 2075 2076 2077
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2078
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2079

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2094
    helper.append_op(
2095
        type=l_type,
Y
Yu Yang 已提交
2096 2097 2098 2099 2100
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2101 2102 2103
        attrs={
            'strides': stride,
            'paddings': padding,
2104
            'dilations': dilation,
C
chengduoZH 已提交
2105
            'groups': groups,
2106
            'use_cudnn': use_cudnn,
2107
            'use_mkldnn': False,
2108
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2109
        })
Y
Yu Yang 已提交
2110 2111 2112 2113 2114 2115

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2133 2134 2135 2136 2137 2138
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2148 2149
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2150 2151 2152
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2153
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2179
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2180 2181
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2182
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2183 2184
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2185
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2186 2187
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2188
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2189 2190 2191 2192 2193 2194
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2205 2206
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2207 2208
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2209
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2210
            will be named automatically. Default: None.
C
chengduoZH 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2223 2224
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2225 2226 2227
    """

    l_type = 'conv3d'
C
chengduo 已提交
2228
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2239
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2253 2254 2255
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2256 2257 2258 2259 2260 2261 2262 2263
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2264
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2279
            'use_mkldnn': False
C
chengduoZH 已提交
2280 2281
        })

2282
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2283 2284 2285 2286

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2287
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2288
    """
Y
yangyaming 已提交
2289 2290 2291
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2303
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2304 2305 2306 2307 2308
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2309
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2310 2311 2312 2313 2314 2315 2316

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2317 2318
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2319

L
Luo Tao 已提交
2320 2321
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2322
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2323
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2324
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2325 2326 2327 2328 2329 2330 2331

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2332

Y
yangyaming 已提交
2333
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2334 2335 2336 2337 2338
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2339 2340
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2341
    """
L
lujun 已提交
2342
    assert not in_dygraph_mode(), (
2343
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2344
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2345
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2346 2347
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2348 2349 2350 2351 2352 2353

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2354 2355
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2356

Y
yangyaming 已提交
2357 2358 2359 2360 2361
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2362 2363 2364
    return pool_out


C
add doc  
chengduoZH 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
L
lujun 已提交
2383
    assert not in_dygraph_mode(), (
2384
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2385
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2386
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2387 2388 2389 2390 2391
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2392
def sequence_first_step(input):
L
Luo Tao 已提交
2393
    """
L
Luo Tao 已提交
2394
    This function gets the first step of sequence.
L
Luo Tao 已提交
2395 2396 2397 2398

    .. code-block:: text

       x is a 1-level LoDTensor:
2399
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2400 2401 2402 2403 2404
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2405
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2406
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2407

L
Luo Tao 已提交
2408 2409 2410 2411 2412 2413 2414 2415 2416
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2417

Y
yangyaming 已提交
2418
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2419 2420 2421
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2422 2423 2424
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2425
def sequence_last_step(input):
L
Luo Tao 已提交
2426
    """
L
Luo Tao 已提交
2427
    This function gets the last step of sequence.
L
Luo Tao 已提交
2428 2429 2430 2431

    .. code-block:: text

       x is a 1-level LoDTensor:
2432
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2433 2434 2435 2436 2437
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2438
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2439
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2440

L
Luo Tao 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2450

Y
yangyaming 已提交
2451
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2452 2453 2454
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2455 2456 2457
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2458 2459 2460 2461
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2462
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2463 2464 2465 2466 2467
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2468

H
haowang101779990 已提交
2469
              - Case:
Y
Yibing Liu 已提交
2470

2471
            Given the input Variable **input**:
2472

2473 2474 2475
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2476

2477
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2478

2479
            the output Variable will be
2480

2481 2482 2483
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2484

M
minqiyang 已提交
2485
    Note:
H
haowang101779990 已提交
2486
          The first dimension size of **input**, **offset** and **length**
2487
          should be equal. The **offset** should start from 0.
2488

Y
Yibing Liu 已提交
2489
    Args:
2490
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2491
                         sequences.
Y
Yibing Liu 已提交
2492 2493 2494 2495 2496 2497
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2498
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2509
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2510 2511
                                                   length=length)
    """
L
lujun 已提交
2512
    assert not in_dygraph_mode(), (
2513
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2514 2515
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2516
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2531
@templatedoc()
Y
Yu Yang 已提交
2532
def pool2d(input,
C
chengduoZH 已提交
2533 2534
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2535 2536
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2537
           global_pooling=False,
C
chengduoZH 已提交
2538
           use_cudnn=True,
2539
           ceil_mode=False,
2540 2541
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2542
    """
F
fengjiayi 已提交
2543
    ${comment}
2544 2545

    Args:
2546 2547 2548
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2549
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2550
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2551 2552
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2553
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2554 2555 2556 2557 2558 2559
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2560 2561 2562
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2563
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2564
                        layer will be named automatically.
2565
        exclusive (bool): Whether to exclude padding points in average pooling
2566
                          mode, default is true
F
fengjiayi 已提交
2567

2568
    Returns:
F
fengjiayi 已提交
2569
        Variable: The pooling result.
F
fengjiayi 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2582
          pool2d = fluid.layers.pool2d(
2583 2584 2585 2586
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2587
                            global_pooling=False)
Y
Yu Yang 已提交
2588 2589 2590 2591 2592
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2593

C
chengduoZH 已提交
2594 2595 2596 2597 2598
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2599 2600 2601 2602
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2603 2604
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2605

C
Add doc  
chengduoZH 已提交
2606
    l_type = 'pool2d'
2607 2608

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2609
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2610
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2611 2612

    helper.append_op(
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2624 2625
            "use_mkldnn": False,
            "exclusive": exclusive,
2626 2627 2628 2629 2630
        })

    return pool_out


D
dengkaipeng 已提交
2631
@templatedoc()
2632 2633 2634 2635 2636 2637 2638 2639
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2640 2641
           name=None,
           exclusive=True):
2642
    """
2643
    ${comment}
2644 2645

    Args:
D
dengkaipeng 已提交
2646 2647 2648 2649 2650
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2651 2652 2653 2654 2655
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2656 2657 2658 2659 2660 2661 2662
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2663
        exclusive (bool): Whether to exclude padding points in average pooling
2664
                          mode, default is true
2665

2666
    Returns:
2667
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2681 2682 2683 2684 2685
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2686

C
chengduoZH 已提交
2687 2688 2689 2690 2691
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2692 2693 2694
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2695

C
chengduoZH 已提交
2696 2697
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2698

2699 2700
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2701
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2702
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2703 2704

    helper.append_op(
2705
        type=l_type,
Y
Yu Yang 已提交
2706 2707 2708 2709 2710 2711 2712
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2713
            "paddings": pool_padding,
2714
            "use_cudnn": use_cudnn,
2715
            "ceil_mode": ceil_mode,
2716 2717
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2718 2719 2720 2721 2722
        })

    return pool_out


2723 2724 2725 2726 2727 2728 2729
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2730 2731 2732 2733 2734 2735 2736
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2737

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2751 2752 2753 2754 2755 2756 2757 2758 2759

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2760 2761
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2776
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2777
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2778
          # of input data into m * n grids averagely and performs poolings in each
2779 2780
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2781
          #
2782 2783 2784 2785 2786 2787 2788 2789
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2790 2791
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2792
          pool_out = fluid.layers.adaptive_pool2d(
2793 2794
                            input=data,
                            pool_size=[3, 3],
2795
                            pool_type='avg')
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2806
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2832
    return (pool_out, mask) if require_index else pool_out
2833 2834 2835 2836 2837 2838 2839 2840 2841


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2842 2843 2844 2845 2846 2847 2848
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2849

2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2867 2868 2869

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2870 2871 2872
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2873
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2874
            it must contain three integers, (Depth, Height, Width).
2875
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2876 2877
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2892 2893
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2894
          # of input data into l * m * n grids averagely and performs poolings in each
2895 2896
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2897
          #
2898 2899 2900 2901 2902 2903 2904 2905 2906
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2907
          #                 output[:, :, i, j, k] =
2908 2909
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2910 2911
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2912
          pool_out, mask = fluid.layers.adaptive_pool3d(
2913
                            input=data,
D
dengkaipeng 已提交
2914
                            pool_size=[3, 3, 3],
2915
                            pool_type='avg')
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2926
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2952
    return (pool_out, mask) if require_index else pool_out
2953 2954


Y
Yu Yang 已提交
2955 2956 2957 2958 2959 2960 2961
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2962
               data_layout='NCHW',
Y
Yang Yang 已提交
2963
               in_place=False,
2964 2965
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2966
               moving_variance_name=None,
2967
               do_model_average_for_mean_and_var=False,
2968 2969
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2970
    """
Q
qiaolongfei 已提交
2971 2972 2973 2974
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2975

Q
qiaolongfei 已提交
2976
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2977

Q
qiaolongfei 已提交
2978 2979
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2980 2981 2982
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2995

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3009
    Args:
Q
qingqing01 已提交
3010
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3011
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3012 3013 3014 3015 3016 3017 3018 3019 3020
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3021 3022 3023 3024 3025 3026 3027 3028
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3029
        data_layout(string, default NCHW): NCHW|NHWC
3030
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3031 3032 3033 3034
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3035
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3036
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3037 3038 3039 3040 3041
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3042 3043

    Returns:
Q
qiaolongfei 已提交
3044
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3045 3046 3047 3048 3049

    Examples:

        .. code-block:: python

L
lvmengsi 已提交
3050
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3051 3052
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3053
    """
C
chengduo 已提交
3054
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3055 3056 3057
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3058 3059 3060 3061
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3080
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3081

3082 3083
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3084 3085 3086
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3087
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3088
        shape=param_shape,
W
Wu Yi 已提交
3089
        dtype=dtype)
3090 3091 3092 3093 3094 3095
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3096
            trainable=False,
W
wanghaoshuang 已提交
3097
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3098
        shape=param_shape,
W
Wu Yi 已提交
3099
        dtype=dtype)
3100
    variance.stop_gradient = True
Y
Yu Yang 已提交
3101 3102 3103 3104 3105 3106

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3107 3108 3109 3110
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3111

X
Xin Pan 已提交
3112 3113
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3131 3132 3133 3134
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3135
            "data_layout": data_layout,
X
Xin Pan 已提交
3136
            "use_mkldnn": False,
3137 3138
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3139
        })
Y
Yu Yang 已提交
3140 3141 3142 3143

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3263
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3264 3265 3266 3267

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3268
@templatedoc()
G
guosheng 已提交
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3279
    ${comment}
G
guosheng 已提交
3280 3281 3282

    The formula is as follows:

Y
yuyang18 已提交
3283
    ..  math::
G
guosheng 已提交
3284 3285 3286 3287 3288 3289 3290

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3291 3292 3293 3294 3295 3296 3297 3298
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3299

G
guosheng 已提交
3300 3301
    Args:
        input(Variable): The input tensor variable.
3302
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3303
            normalization. Default True.
3304
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3305 3306
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3307
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3308
            Default 1.
3309
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3310
            division by zero. Default 1e-05.
G
guosheng 已提交
3311
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3312 3313
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3314 3315
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3316
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3317 3318
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3319
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3320
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3321
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3322 3323 3324
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3325 3326

    Returns:
Y
yuyang18 已提交
3327
        ${y_comment}
G
guosheng 已提交
3328 3329 3330

    Examples:

Y
yuyang18 已提交
3331 3332 3333
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3334
    """
L
lujun 已提交
3335
    assert in_dygraph_mode(
L
lujun 已提交
3336
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3351
    if shift:
G
guosheng 已提交
3352 3353 3354 3355 3356 3357
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3358 3359 3360 3361 3362
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3390
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3438 3439
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3457
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3458 3459 3460
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3461
    This layer calculates the spectral normalization value of weight parameters of
3462
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3463
    Parameters. Calculations are showed as follows.
3464

D
dengkaipeng 已提交
3465 3466 3467
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3468
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3481
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3482 3483 3484 3485

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3486

D
dengkaipeng 已提交
3487
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3488 3489
                

D
dengkaipeng 已提交
3490 3491 3492 3493
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3494 3495 3496
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3497 3498 3499
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3500
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3501 3502 3503 3504 3505 3506 3507 3508

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3509
    dtype = weight.dtype
D
dengkaipeng 已提交
3510 3511 3512

    # create intput and parameters
    inputs = {'Weight': weight}
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3531 3532

    # create output
3533
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3534 3535

    helper.append_op(
3536
        type="spectral_norm",
D
Dun 已提交
3537
        inputs=inputs,
3538 3539 3540 3541 3542 3543
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3544

3545
    return out
D
Dun 已提交
3546 3547


Y
Yu Yang 已提交
3548 3549 3550 3551
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3552 3553 3554
                     padding=0,
                     stride=1,
                     dilation=1,
3555
                     groups=None,
C
caoying03 已提交
3556
                     param_attr=None,
3557
                     bias_attr=None,
C
chengduoZH 已提交
3558
                     use_cudnn=True,
3559
                     act=None,
C
caoying03 已提交
3560
                     name=None):
Y
Yu Yang 已提交
3561
    """
3562 3563 3564 3565 3566 3567 3568 3569
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3570 3571
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3572 3573 3574
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3575 3576 3577 3578 3579

    For each input :math:`X`, the equation is:

    .. math::

3580
        Out = \sigma (W \\ast X + b)
3581

3582
    Where:
3583 3584 3585

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3586 3587 3588 3589
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3590

3591 3592 3593 3594
    Example:

        - Input:

3595
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3596

3597
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3598 3599 3600

        - Output:

3601
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3602 3603

        Where
Y
Yu Yang 已提交
3604

3605 3606
        .. math::

3607 3608
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3609 3610
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3611 3612

    Args:
3613 3614 3615 3616
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3617 3618 3619 3620
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3649
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3650 3651 3652
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3653
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3654
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3655 3656

    Returns:
3657
        Variable: The tensor variable storing the convolution transpose result.
3658 3659

    Raises:
3660 3661
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3662 3663 3664 3665

    Examples:
       .. code-block:: python

3666 3667
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3668
    """
C
chengduo 已提交
3669
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3670 3671 3672 3673 3674 3675 3676 3677
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3678 3679 3680
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3681 3682 3683
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3684

C
chengduoZH 已提交
3685 3686
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3687

Y
Yu Yang 已提交
3688 3689 3690 3691 3692
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3693

Y
Yu Yang 已提交
3694 3695
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3696

C
chengduoZH 已提交
3697
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3698
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3699
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3700
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3701
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3702 3703 3704
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3705

3706 3707 3708 3709 3710 3711 3712
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3713
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3714
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3715

Y
Yu Yang 已提交
3716 3717 3718
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3719
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3720
    helper.append_op(
3721
        type=op_type,
Y
Yu Yang 已提交
3722 3723
        inputs={'Input': [input],
                'Filter': [img_filter]},
3724
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3725
        attrs={
3726
            'output_size': output_size,
3727 3728 3729 3730 3731
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3732 3733
        })

3734 3735 3736
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3737 3738


3739
def conv3d_transpose(input,
Y
Yu Yang 已提交
3740 3741 3742
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3743 3744 3745
                     padding=0,
                     stride=1,
                     dilation=1,
3746
                     groups=None,
C
caoying03 已提交
3747
                     param_attr=None,
3748
                     bias_attr=None,
C
chengduoZH 已提交
3749
                     use_cudnn=True,
3750
                     act=None,
C
caoying03 已提交
3751
                     name=None):
Y
Yu Yang 已提交
3752
    """
3753
    **Convlution3D transpose layer**
3754

3755
    The convolution3D transpose layer calculates the output based on the input,
3756
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3757 3758 3759 3760 3761 3762
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3763 3764 3765
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3766 3767 3768 3769 3770

    For each input :math:`X`, the equation is:

    .. math::

3771
        Out = \sigma (W \\ast X + b)
3772 3773 3774

    In the above equation:

3775 3776
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3777 3778 3779 3780
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3781

3782 3783 3784 3785
    Example:

        - Input:

3786
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3787

3788
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3789 3790 3791

        - Output:

3792
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3793 3794

        Where
Y
Yu Yang 已提交
3795

3796 3797
        .. math::

3798 3799 3800
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3801 3802

    Args:
3803
        input(Variable): The input image with [N, C, D, H, W] format.
3804 3805 3806
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3807
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3808 3809
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3810
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3811 3812 3813
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3814 3815
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3816
        stride(int|tuple): The stride size. If stride is a tuple, it must
3817 3818
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3819
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3820 3821 3822
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3823 3824 3825 3826 3827
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3828 3829 3830 3831 3832 3833 3834 3835 3836
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3837 3838
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3839 3840
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3841 3842
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3843 3844

    Returns:
3845
        Variable: The tensor variable storing the convolution transpose result.
3846 3847

    Raises:
3848 3849
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3850 3851 3852 3853

    Examples:
       .. code-block:: python

3854 3855
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3856
    """
C
chengduo 已提交
3857
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3858 3859
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3860
    if not isinstance(input, Variable):
3861
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3862 3863
    input_channel = input.shape[1]

3864 3865 3866
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3867

C
chengduoZH 已提交
3868 3869 3870
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3871 3872 3873 3874 3875 3876
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3877 3878 3879
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3880

3881
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3882
                         padding[0] - 1) // dilation[0] + 1
3883
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3884
                         padding[1] - 1) // dilation[1] + 1
3885
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3886
                         padding[2] - 1) // dilation[2] + 1
3887
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3888
    else:
3889 3890
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3891

3892
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3893
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3894 3895 3896
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3897
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3898
    helper.append_op(
3899
        type=l_type,
Y
Yu Yang 已提交
3900 3901
        inputs={'Input': [input],
                'Filter': [img_filter]},
3902
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3903 3904 3905 3906
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3907
            'groups': groups,
C
chengduoZH 已提交
3908 3909
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3910

3911 3912
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3913
    return out
Y
yangyaming 已提交
3914 3915


Y
yangyaming 已提交
3916
def sequence_expand(x, y, ref_level=-1, name=None):
3917
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3918 3919 3920 3921
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3922 3923 3924 3925 3926

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3927
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3928
                x.data = [[a], [b], [c], [d]]
3929 3930 3931
                x.dims = [4, 1]

            y is a LoDTensor:
3932 3933
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3934

Y
yangyaming 已提交
3935
            ref_level: 0
3936

Y
yangyaming 已提交
3937
            then output is a 1-level LoDTensor:
3938
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3939
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3940 3941 3942 3943
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3944
                x.data = [[a], [b], [c]]
3945 3946 3947
                x.dims = [3, 1]

            y is a LoDTensor:
3948
                y.lod = [[2, 0, 3]]
3949

Y
yangyaming 已提交
3950
            ref_level: -1
3951

Y
yangyaming 已提交
3952 3953 3954
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3955 3956 3957
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3958 3959
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3960
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3961
                        will be named automatically.
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3972
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3973
    """
L
lujun 已提交
3974
    assert not in_dygraph_mode(), (
3975
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
3976
    helper = LayerHelper('sequence_expand', input=x, **locals())
3977
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3978
    tmp = helper.create_variable_for_type_inference(dtype)
3979
    helper.append_op(
Y
yangyaming 已提交
3980 3981 3982 3983 3984
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3985
    return tmp
3986 3987


C
chengduo 已提交
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4042
    assert not in_dygraph_mode(), (
4043
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4044 4045
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4046
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4047 4048 4049 4050 4051 4052 4053 4054
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4055
@templatedoc()
4056
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4057 4058 4059 4060 4061
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4062 4063 4064
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4065
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4066 4067 4068 4069
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4070 4071 4072
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4073

F
fengjiayi 已提交
4074
    Returns:
M
minqiyang 已提交
4075
        Variable: The padded sequence batch and the original lengths before
4076
                  padding. All sequences has the same length.
M
minqiyang 已提交
4077

F
fengjiayi 已提交
4078 4079 4080 4081 4082 4083 4084
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4085
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4086
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4087 4088 4089
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4090
    assert not in_dygraph_mode(), (
4091
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4092 4093
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4094 4095
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4096 4097 4098 4099

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4100 4101 4102 4103 4104 4105
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4106 4107
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4108
        attrs={'padded_length': maxlen})
4109
    return out, length
F
fengjiayi 已提交
4110 4111


4112
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4113
    """
4114
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4115

4116 4117
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4118 4119 4120 4121 4122 4123 4124 4125 4126
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4127 4128 4129
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4130
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4131 4132 4133 4134 4135 4136

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4137
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4138 4139 4140 4141 4142 4143

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4144 4145
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4158
    assert not in_dygraph_mode(), (
4159
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4160 4161
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4162
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4174 4175 4176 4177 4178 4179 4180
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4181
                is_accumulated=True,
4182 4183
                name=None,
                return_parent_idx=False):
4184
    """
4185 4186
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4187 4188 4189

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4190 4191

    This layer does the search in beams for one time step. Specifically, it
4192 4193 4194
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4206 4207 4208 4209

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4210

4211
    Args:
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4235 4236
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4237 4238
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4239 4240 4241 4242
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4243

4244
    Returns:
4245 4246 4247 4248
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4249 4250 4251 4252

    Examples:
        .. code-block:: python

4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4270
    helper = LayerHelper('beam_search', **locals())
4271 4272 4273 4274 4275 4276
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4277

X
Xin Pan 已提交
4278 4279 4280
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4281 4282 4283 4284 4285
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4286 4287 4288

    helper.append_op(
        type='beam_search',
4289
        inputs=inputs,
Q
Qiao Longfei 已提交
4290 4291 4292
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4293
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4294 4295 4296 4297 4298 4299
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4300
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4301
        })
4302 4303 4304 4305
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4306 4307


4308 4309 4310 4311 4312 4313 4314
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4315

4316 4317 4318 4319 4320 4321 4322 4323 4324
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4325

4326 4327 4328 4329 4330 4331
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4332

4333 4334
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4335

4336 4337 4338 4339 4340 4341
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4342 4343
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4359 4360 4361 4362
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4363
              param_attr=None,
C
caoying03 已提交
4364 4365
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4366 4367 4368 4369
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4370
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4371

4372
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4373

4374
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4375

4376
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4377 4378 4379

            h_t & = o_t tanh(c_t)

4380 4381 4382 4383 4384 4385
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4386 4387 4388

        .. math::

4389
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4390 4391 4392 4393 4394 4395 4396 4397

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4398
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4399 4400

    Args:
Y
yangyaming 已提交
4401 4402 4403 4404 4405 4406
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4407
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4420 4421
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4422 4423

    Returns:
Y
yangyaming 已提交
4424
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4425 4426

    Raises:
4427 4428 4429 4430
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4431 4432 4433 4434 4435 4436

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4437
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4438
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4439
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4456
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4457 4458 4459 4460
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4461 4462
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4463 4464 4465
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4466
    size = cell_t_prev.shape[1]
4467
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4468 4469
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4470
                param_attr=param_attr,
4471
                bias_attr=bias_attr)
Y
yangyaming 已提交
4472
    dtype = x_t.dtype
X
Xin Pan 已提交
4473 4474
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4475 4476 4477 4478 4479 4480 4481 4482 4483

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4484
    return h, c
G
guosheng 已提交
4485 4486


C
caoying03 已提交
4487
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4488
    """
Y
yangyaming 已提交
4489
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4490 4491 4492

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4493
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4494 4495
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4496 4497
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4498
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4499
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4500
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4501 4502
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4503 4504 4505

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4506

G
guosheng 已提交
4507 4508 4509 4510 4511 4512
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4513
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4514 4515 4516 4517
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4518 4519 4520 4521

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4522
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4523 4524 4525
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4526 4527
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4528
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4529 4530
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4531 4532 4533 4534 4535
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4536
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4537 4538 4539 4540
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4541 4542


C
caoying03 已提交
4543
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4544
    """
Y
Yibing Liu 已提交
4545
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4546 4547 4548

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4549 4550 4551
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4552
            must be in the range :math:`[-rank(input), rank(input))`. If
4553
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4554
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4555 4556
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4557
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4558
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4559
                       will be named automatically.
G
guosheng 已提交
4560 4561

    Returns:
Y
Yibing Liu 已提交
4562
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4563

G
guosheng 已提交
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4574 4575
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4576 4577 4578 4579 4580 4581 4582

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4583 4584
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4585
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4586 4587
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4588 4589 4590 4591 4592
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4593
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4594 4595 4596 4597
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4598 4599


C
caoying03 已提交
4600
def reduce_max(input, dim=None, keep_dim=False, name=None):
4601
    """
Y
yangyaming 已提交
4602
    Computes the maximum of tensor elements over the given dimension.
4603 4604 4605

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4606
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4607 4608 4609
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4610
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4611 4612
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4613
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4614 4615
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4616 4617 4618

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4619

4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4631 4632 4633 4634 4635 4636 4637

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4638 4639
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4640
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4641 4642
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4643 4644 4645 4646 4647
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4648
            'dim': dim if dim != None else [0],
4649 4650 4651 4652 4653 4654
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4655
def reduce_min(input, dim=None, keep_dim=False, name=None):
4656
    """
Y
yangyaming 已提交
4657
    Computes the minimum of tensor elements over the given dimension.
4658 4659 4660

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4661
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4662 4663 4664
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4665
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4666 4667
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4668
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4669 4670
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4671 4672 4673

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4674

4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4686 4687 4688 4689 4690 4691 4692

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4693 4694
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4695
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4696 4697
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4698 4699 4700 4701 4702
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4703
            'dim': dim if dim != None else [0],
4704 4705 4706 4707
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4708 4709


4710 4711 4712 4713 4714 4715
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4716
        dim (list|int|None): The dimensions along which the product is performed. If
4717 4718
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4719 4720
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4721 4722 4723
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4724
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4725
            layer will be named automatically.
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4740
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4741
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4742 4743 4744 4745 4746 4747 4748

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4749 4750
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4751
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4752 4753
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4754 4755 4756 4757 4758
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4759
            'dim': dim if dim != None else [0],
4760 4761 4762 4763 4764 4765
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4766 4767
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4768
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4788
        
Z
zhoukunsheng 已提交
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4818
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4838

Z
zhoukunsheng 已提交
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4861 4862 4863 4864 4865
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4866
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4867
    """
C
caoying03 已提交
4868
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4869 4870 4871

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4872 4873 4874 4875 4876
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4877
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4878
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4879
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4880 4881
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4882 4883

    Returns:
D
dzhwinter 已提交
4884
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4885 4886 4887 4888 4889 4890 4891 4892 4893

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4894 4895
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
4907
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
4908 4909 4910
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4911
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4925 4926 4927 4928 4929 4930 4931 4932 4933


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4934
    .. math::
4935 4936

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4937 4938 4939 4940 4941

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4942
        x(Variable|list): The input tensor to l2_normalize layer.
4943
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4944 4945
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4946
        epsilon(float): The epsilon value is used to avoid division by zero, \
4947
            the defalut value is 1e-12.
4948
        name(str|None): A name for this layer(optional). If set None, the layer \
4949
            will be named automatically.
C
caoying03 已提交
4950 4951

    Returns:
4952
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4953 4954

    Examples:
4955

C
caoying03 已提交
4956 4957
        .. code-block:: python

4958 4959 4960 4961
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4962 4963
    """

F
fengjiayi 已提交
4964 4965
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4966 4967
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4968 4969
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4970
    helper.append_op(
4971 4972 4973 4974
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4975
        attrs={
4976 4977
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4978 4979
        })
    return out
4980 4981


S
sneaxiy 已提交
4982
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4983
    """
Y
ying 已提交
4984 4985 4986 4987
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4988

C
chengduoZH 已提交
4989
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4990
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4991

4992 4993 4994 4995 4996
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4997
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4998

C
chengduoZH 已提交
4999
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5000
      performs in the following way.
G
guosheng 已提交
5001

5002
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5003
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5004
        last two dimensions and a batched matrix multiply supporting broadcast
5005
        applies on the two tensors.
G
guosheng 已提交
5006

Y
ying 已提交
5007 5008
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5009
    removed after matrix multiplication.
G
guosheng 已提交
5010 5011 5012

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5013 5014 5015
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5016
        alpha (float): The scale of output. Default 1.0.
5017
        name(str|None): A name for this layer(optional). If set None, the layer
5018
            will be named automatically.
G
guosheng 已提交
5019 5020

    Returns:
5021
        Variable: The product Tensor variable.
G
guosheng 已提交
5022

G
guosheng 已提交
5023 5024 5025
    Examples:
        .. code-block:: python

5026
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5027 5028
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5029

5030 5031
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5032

5033 5034
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5035

5036 5037
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5038 5039 5040 5041

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

5042 5043
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
5044

Y
ying 已提交
5045
            # x: [M], y: [N]
5046
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
5047
    """
Y
ying 已提交
5048 5049 5050 5051 5052 5053 5054

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5055
            y_shape = y_shape + [1]
Y
ying 已提交
5056 5057 5058 5059 5060 5061 5062

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5063 5064
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5065

C
chengduo 已提交
5066
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5067
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5068 5069 5070
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5071
                if dim_x != y_shape[i]:
C
chengduo 已提交
5072 5073
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5074 5075 5076

    __check_input(x, y)

5077
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5078
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5079
    helper.append_op(
5080 5081 5082 5083
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5084 5085 5086
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5087
            'alpha': float(alpha),
S
sneaxiy 已提交
5088
        })
5089
    return out
5090 5091


5092
def topk(input, k, name=None):
Q
qingqing01 已提交
5093 5094 5095 5096
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5097
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5098 5099 5100 5101 5102 5103
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5125 5126 5127
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5128
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5129
                 of input.
5130
        name(str|None): A name for this layer(optional). If set None, the layer
5131
                       will be named automatically.
F
fengjiayi 已提交
5132
                       Default: None
Q
qingqing01 已提交
5133 5134

    Returns:
5135 5136 5137
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5138
        within the last dimension of input.
Q
qingqing01 已提交
5139

F
fengjiayi 已提交
5140 5141
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5142 5143 5144 5145 5146 5147 5148

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5149 5150
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5151 5152 5153 5154 5155 5156
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5157 5158
    helper.append_op(
        type="top_k",
W
whs 已提交
5159
        inputs=inputs,
Q
qingqing01 已提交
5160 5161
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5162
        attrs=attrs)
Q
qingqing01 已提交
5163 5164 5165 5166 5167
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5168
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5169
    """
Y
ying 已提交
5170 5171 5172 5173 5174 5175 5176 5177 5178
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5179

Y
ying 已提交
5180
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5181

5182
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5183 5184
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5185
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5186

5187
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5188 5189
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5190

5191 5192 5193
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5194
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5195
                          the length of reference string.
5196
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5197
                                     calculating edit distance.
5198
        name (str): The name of this layer. It is optional.
5199

W
wanghaoshuang 已提交
5200
    Returns:
W
wanghaoshuang 已提交
5201
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5202 5203 5204 5205

    Examples:
        .. code-block:: python

T
tink2123 已提交
5206 5207
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5208
            cost = fluid.layers.edit_distance(input=x,label=y)
5209
    """
5210
    helper = LayerHelper("edit_distance", **locals())
5211

5212
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5213
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5214 5215
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5216 5217 5218 5219 5220

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5221
            attrs={"tokens": ignored_tokens})
5222 5223 5224 5225 5226
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5227
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5228
            attrs={"tokens": ignored_tokens})
5229 5230
        label = erased_label

5231
    # edit distance op
X
Xin Pan 已提交
5232 5233
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5234 5235 5236 5237
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5238 5239
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5240 5241
        attrs={"normalized": normalized})

5242
    return edit_distance_out, sequence_num
5243 5244 5245 5246 5247


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5248

Y
ying 已提交
5249 5250 5251 5252
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5270
        input.lod = [[4, 4]]
M
minqiyang 已提交
5271

W
whs 已提交
5272
        Computation:
5273

W
whs 已提交
5274 5275 5276 5277 5278 5279
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5280 5281 5282 5283 5284

        output.data = [[2],
                       [1],
                       [3]]

5285
        output.lod = [[2, 1]]
5286

W
whs 已提交
5287

5288 5289
    Args:

Y
ying 已提交
5290 5291 5292 5293 5294 5295 5296 5297 5298
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5299
        name (str): The name of this layer. It is optional.
5300 5301

    Returns:
H
haowang101779990 已提交
5302 5303 5304
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5305
                  LoD [[]] and dims [1, 1].
5306 5307 5308 5309

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5310
            import paddle.fluid as fluid
5311 5312
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5313
    """
5314
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5315
    _, topk_indices = topk(input, k=1)
5316 5317

    # ctc align op
X
Xin Pan 已提交
5318
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5319 5320 5321
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5322
        outputs={"Output": [ctc_out]},
5323 5324
        attrs={"merge_repeated": True,
               "blank": blank})
5325
    return ctc_out
5326 5327


W
Wu Yi 已提交
5328
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5329
    """
5330 5331
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5332
    to compute Connectionist Temporal Classification (CTC) loss.
5333 5334
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5335 5336 5337
    input tensor.

    Args:
5338
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5339 5340 5341 5342
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5343
       label (Variable): The ground truth of variable-length sequence,
5344 5345 5346
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5347 5348
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5349 5350 5351
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5352
         follewed by a mean_op.
W
Wu Yi 已提交
5353
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5354 5355

    Returns:
5356 5357
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5358 5359

    Examples:
5360

W
wanghaoshuang 已提交
5361
        .. code-block:: python
5362

5363 5364 5365
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5366 5367

    """
F
fengjiayi 已提交
5368
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5369 5370
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5371 5372 5373 5374 5375 5376
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5377 5378 5379 5380 5381
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5382
    return loss_out
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5398 5399 5400
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5401 5402 5403 5404 5405
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5406

5407
            out.lod  = [[0, 1, 3]]
5408 5409 5410 5411

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5412 5413 5414 5415 5416 5417 5418
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5419 5420 5421

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5422 5423

    Returns:
5424

5425 5426 5427 5428 5429
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5430
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5431
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5432
    """
L
lujun 已提交
5433
    assert not in_dygraph_mode(), (
5434
        "sequence layer is not supported in dygraph mode yet.")
5435
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5436
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5437 5438 5439 5440 5441 5442
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5443 5444


5445 5446 5447 5448
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5449 5450 5451 5452 5453 5454
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5455
        num_neg_samples=None,
5456 5457 5458
        name=None,
        sampler="uniform",
        custom_dist=None,
5459 5460
        seed=0,
        is_sparse=False):
5461 5462 5463 5464 5465 5466 5467
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5468 5469
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5470
            sample is 1.0.
C
chengduo 已提交
5471 5472 5473 5474 5475 5476 5477 5478 5479
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5480
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5481 5482
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5483 5484 5485
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5486
        custom_dist (float[]): A float[] with size=num_total_classes.
5487 5488 5489 5490
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5491
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5492

5493
    Returns:
Y
Yibing Liu 已提交
5494 5495 5496 5497 5498 5499
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5500
	    import numpy as np
Y
Yibing Liu 已提交
5501

Y
Yibing Liu 已提交
5502 5503 5504 5505 5506 5507 5508 5509
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5510

Y
Yibing Liu 已提交
5511 5512 5513 5514
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5515

Y
Yibing Liu 已提交
5516 5517 5518
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5519

Y
Yibing Liu 已提交
5520 5521 5522 5523
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5524

Y
Yibing Liu 已提交
5525 5526 5527 5528 5529 5530 5531 5532
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5533
    """
Y
Yang Yu 已提交
5534 5535 5536
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5537 5538

    dim = input.shape[1]
Y
Yang Yu 已提交
5539 5540 5541 5542 5543 5544
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5545
    inputs = {}
C
chengduo 已提交
5546 5547 5548 5549 5550 5551 5552
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5553 5554 5555
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5556

5557 5558 5559 5560
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5561 5562 5563 5564 5565 5566 5567

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5568 5569
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5570
        custom_dist_len = num_total_classes
5571 5572 5573 5574 5575 5576
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5577
            if normal_prob - 1.0 > 0:
5578
                bigs.append((i, normal_prob))
5579
            elif 1.0 - normal_prob > 0:
5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5595
            if big_left - 1.0 > 0:
5596
                bigs.append((big_idx, big_left))
5597
            elif 1.0 - big_left > 0:
5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5627 5628 5629 5630
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5631 5632 5633 5634 5635
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5636 5637 5638 5639
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5640

Y
Yang Yu 已提交
5641 5642
    attrs = {
        'num_total_classes': int(num_total_classes),
5643 5644
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5645
        'sampler': sampler,
5646 5647
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5648
    }
Y
Yang Yu 已提交
5649 5650 5651

    helper.append_op(
        type='nce',
C
chengduo 已提交
5652
        inputs=inputs,
Y
Yang Yu 已提交
5653 5654 5655 5656 5657 5658
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5659
    return cost / (num_neg_samples + 1)
5660 5661


C
chengduo 已提交
5662 5663
def hsigmoid(input,
             label,
5664
             num_classes,
C
chengduo 已提交
5665 5666
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5667
             name=None,
5668 5669 5670
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5671
             is_sparse=False):
W
weixing02 已提交
5672 5673
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5674
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5675
    complete binary tree, or you can use is_custom to pass your own tree to
5676
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5677 5678 5679 5680 5681 5682
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5683
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5684
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5685

5686 5687
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5688 5689 5690 5691
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5692
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5693
       related to the same batch of inputs.
5694

W
weixing02 已提交
5695
    Args:
M
minqiyang 已提交
5696
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5697 5698 5699 5700
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5701 5702
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5703
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5715
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5716
            it should be in leaf -> root order
M
minqiyang 已提交
5717 5718 5719
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5720
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5721
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5722
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5723
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5724
             of W and input will be sparse.
W
weixing02 已提交
5725 5726

    Returns:
J
JiabinYang 已提交
5727
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5728 5729 5730 5731 5732

    Examples:

        .. code-block:: python

G
guosheng 已提交
5733 5734 5735
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5736 5737 5738 5739
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5740 5741
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5742
    dim = input.shape[1]
5743
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5744 5745 5746
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5747 5748 5749 5750 5751 5752 5753 5754 5755
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5756
    if (is_custom) and (path_code is None):
5757
        raise ValueError("path_code should not be None with custom tree")
5758
    elif (is_custom) and (path_table is None):
5759
        raise ValueError("path_table should not be None with custom tree")
5760
    elif (is_custom) and (num_classes is None):
5761
        raise ValueError("num_classes should not be None with custom tree")
5762 5763 5764
    else:
        pass

J
JiabinYang 已提交
5765
    weights = None
5766 5767 5768 5769
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5770
    if not is_custom:
J
JiabinYang 已提交
5771 5772 5773 5774 5775 5776 5777 5778
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5779
            shape=[num_classes, dim],
J
JiabinYang 已提交
5780 5781
            is_bias=False,
            dtype=input.dtype)
5782 5783 5784
    inputs = {
        "X": input,
        "W": weights,
5785
        "PathTable": path_table,
5786
        "PathCode": path_code,
5787 5788
        "Label": label
    }
W
weixing02 已提交
5789
    if helper.bias_attr:
5790
        if not is_custom:
J
JiabinYang 已提交
5791 5792
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5793
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5794 5795 5796 5797 5798 5799
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5800
                shape=[num_classes, 1],
J
JiabinYang 已提交
5801 5802 5803
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5804 5805
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5806
        inputs=inputs,
W
weixing02 已提交
5807
        outputs={"Out": out,
5808 5809 5810 5811 5812 5813 5814
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5815 5816 5817
    return out


Y
fix ci.  
ying 已提交
5818
def transpose(x, perm, name=None):
Y
ying 已提交
5819 5820 5821 5822 5823 5824 5825
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5826 5827 5828
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5829 5830 5831 5832 5833 5834 5835

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5836
            # use append_batch_size=False to avoid prepending extra
5837
            # batch size in shape
5838
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5839
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5840
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5841 5842
    """

Y
fix ci.  
ying 已提交
5843
    if len(perm) != len(x.shape):
Y
ying 已提交
5844 5845 5846
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5847 5848 5849 5850 5851 5852
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5853 5854

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5855 5856
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5857
    helper.append_op(
5858
        type='transpose2',
Y
fix ci.  
ying 已提交
5859
        inputs={'X': [x]},
5860 5861
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5862 5863
        attrs={'axis': perm})
    return out
5864 5865


5866 5867 5868 5869 5870 5871 5872
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5873
    """
5874 5875 5876 5877 5878 5879 5880
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5881 5882 5883 5884 5885 5886 5887 5888 5889 5890

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5909 5910 5911 5912 5913 5914 5915 5916 5917
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5918 5919 5920
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5921 5922 5923 5924 5925
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5953 5954 5955
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5968
            output.dims = {8, 8}
5969

5970
            output.lod = [[4, 4]]
5971

T
Tink_Y 已提交
5972
    Examples:
5973 5974 5975

        .. code-block:: python

5976 5977
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5978 5979

    """
L
lujun 已提交
5980
    assert not in_dygraph_mode(), (
5981
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5982 5983 5984 5985 5986 5987 5988 5989 5990 5991

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5992 5993 5994 5995 5996 5997 5998
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5999
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6000
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6001
    helper.append_op(
6002
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6003
    return out
6004 6005


Y
yuyang18 已提交
6006
@templatedoc()
6007
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6008 6009
    """
    ${comment}
6010 6011

    Args:
Y
yuyang18 已提交
6012
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6013 6014
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6015 6016 6017 6018 6019
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6020
        ${out_comment}.
6021 6022

    Examples:
Y
yuyang18 已提交
6023 6024 6025 6026
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6027 6028 6029 6030 6031 6032
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6033
    out = helper.create_variable_for_type_inference(dtype)
6034 6035 6036 6037 6038
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6039
    return helper.append_activation(out)
6040 6041


Y
yuyang18 已提交
6042
@templatedoc()
6043 6044
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6045 6046
    ${comment}

L
lujun 已提交
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6090 6091

    Args:
Y
yuyang18 已提交
6092 6093
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6094 6095

    Returns:
Y
yuyang18 已提交
6096
        ${out_comment}.
6097 6098
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6099 6100 6101 6102 6103

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6104
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6105 6106 6107 6108 6109 6110
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6111 6112


6113 6114 6115
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6116
                               ignore_index=kIgnoreIndex,
6117
                               numeric_stable_mode=True,
6118 6119
                               return_softmax=False,
                               axis=-1):
6120 6121
    """
    **Softmax With Cross Entropy Operator.**
6122

6123
    Cross entropy loss with softmax is used as the output layer extensively. This
6124 6125 6126
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6127

6128 6129 6130
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6131

6132 6133 6134 6135
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6136

6137
    The equation is as follows:
6138

6139
    1) Hard label (one-hot label, so every sample has exactly one class)
6140

6141 6142 6143 6144
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6145

6146 6147 6148
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6149

6150 6151 6152 6153
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6154 6155
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6156 6157

    .. math::
6158

H
haowang101779990 已提交
6159
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6160

H
haowang101779990 已提交
6161
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6162

H
haowang101779990 已提交
6163
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6164 6165 6166

    and then cross entropy loss is calculated by softmax and label.

6167
    Args:
6168 6169 6170 6171 6172 6173
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6174
        soft_label (bool): A flag to indicate whether to interpretate the given
6175
            labels as soft labels. Default False.
M
minqiyang 已提交
6176 6177
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6178 6179
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6180 6181
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6182 6183 6184 6185
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6186
                                    Note that the speed may be slower when use
6187
                                    stable algorithm. Default: True
6188
        return_softmax (bool): A flag indicating whether to return the softmax
6189
                               along with the cross entropy loss. Default: False
6190 6191 6192
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6193

6194
    Returns:
H
haowang101779990 已提交
6195 6196
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6197 6198 6199 6200
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6201 6202 6203 6204 6205 6206 6207

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6208 6209
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6210 6211
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6212 6213
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6214 6215 6216 6217 6218 6219
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6220 6221 6222
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6223 6224
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6225
        })
6226 6227 6228 6229

    if return_softmax:
        return loss, softmax

6230 6231 6232
    return loss


6233 6234 6235
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6236
                                       num_true=1,
6237
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6238 6239 6240
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6241
                                       seed=0):
X
xuezhong 已提交
6242 6243 6244 6245 6246
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6247
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6248 6249 6250 6251 6252 6253 6254 6255
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6256
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6257 6258 6259 6260 6261 6262 6263 6264
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6265
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6277
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6278 6279 6280 6281 6282
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6283
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6284
            logits.
X
xuezhong 已提交
6285 6286 6287 6288 6289
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6290 6291 6292
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6313 6314
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6315 6316
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6317 6318 6319 6320 6321

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6322
            'Labels': label,
X
xuezhong 已提交
6323 6324
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6325 6326 6327 6328
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6329
            'SampledLabels': sampled_label,
6330 6331 6332
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6333 6334
        },
        attrs={
X
xuezhong 已提交
6335
            'use_customized_samples': use_customized_samples,
6336
            'uniq': True,
X
xuezhong 已提交
6337 6338 6339 6340
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6341 6342
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6343 6344 6345 6346 6347 6348
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6349 6350
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6351
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6352
                'Label': sampled_softlabel},
X
xuezhong 已提交
6353 6354 6355
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6356
            'soft_label': True,
X
xuezhong 已提交
6357 6358 6359
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6360
    return loss / num_true
X
xuezhong 已提交
6361 6362


6363 6364
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6365 6366
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6367
    For each instance, it computes the smooth L1 loss element by element first
6368
    and then sums all the losses. So the shape of ouput Variable is
6369
    [batch_size, 1].
6370

6371 6372
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6373
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6374
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6375
            L1 loss op with same shape as :attr:`x`.
6376
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6377 6378
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6379
            by this tensor element by element.
6380
        outside_weight (Variable|None): A tensor with rank at least 2. This
6381 6382
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6383
            element by element.
6384
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6385 6386
           scalar with default value 1.0.

6387
    Returns:
6388
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6389 6390 6391 6392 6393

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6394 6395
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6396
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6397
            out = fluid.layers.smooth_l1(x=fc, y=label)
6398
    """
6399

6400
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6401 6402
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6413
        attrs={'sigma': sigma if sigma is not None else 1.0})
6414
    return loss
6415 6416 6417 6418


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6419
    This layer creates the one-hot representations for input indices.
6420 6421

    Args:
Y
Yibing Liu 已提交
6422 6423
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6424 6425

    Returns:
Y
Yibing Liu 已提交
6426
        Variable: The one-hot representations of input.
6427 6428

    Examples:
C
caoying03 已提交
6429
        .. code-block:: python
6430

Y
Yibing Liu 已提交
6431 6432
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6433 6434
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6435
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6436 6437 6438 6439
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6440 6441
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6442
    return one_hot_out
Y
Yu Yang 已提交
6443 6444


Y
Yu Yang 已提交
6445
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6446
    """
Y
yi.wu 已提交
6447 6448 6449
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6450 6451 6452 6453 6454 6455

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6456 6457
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6458 6459 6460 6461 6462

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6463
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6464 6465
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6466 6467
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6468 6469 6470 6471 6472
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6473
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6474
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6475 6476
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6477
            outputs={'Out': [counter]},
M
minqiyang 已提交
6478 6479
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6480 6481 6482
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6483 6484


6485
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6486
    """
C
caoying03 已提交
6487 6488
    Gives a new shape to the input Tensor without changing its data.

6489 6490 6491 6492 6493
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6494

6495
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6496

6497 6498 6499 6500
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6501
    2. 0 means the actual dimension value is going to be copied from the
6502 6503 6504 6505
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6506 6507

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6508
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6509
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6510

6511
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6512 6513
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6514 6515
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6516
    dimensions.
C
caoying03 已提交
6517

6518
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6519 6520 6521 6522
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6523 6524

    Args:
6525
        x(variable): The input tensor.
C
caoying03 已提交
6526 6527
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6528 6529 6530 6531 6532
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6533 6534
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6535 6536 6537
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6538
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6539
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6540

6541
    Returns:
G
guosheng 已提交
6542 6543 6544 6545
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6546

X
Xin Pan 已提交
6547 6548 6549
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6550 6551
    Examples:
        .. code-block:: python
G
guosheng 已提交
6552

6553
            data = fluid.layers.data(
6554
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6555
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6556
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6557 6558 6559
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6560
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6561 6562 6563 6564 6565
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6566

6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6582
    helper = LayerHelper("reshape2", **locals())
6583 6584
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6585
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6586
    helper.append_op(
6587
        type="reshape2",
X
Xin Pan 已提交
6588
        inputs=inputs,
D
dzhwinter 已提交
6589
        attrs={"shape": shape},
6590 6591
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6592

D
dzhwinter 已提交
6593
    return helper.append_activation(out)
6594

6595

6596
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6597
    """
M
minqiyang 已提交
6598 6599 6600
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6601
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6602

H
haowang101779990 已提交
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6624

Y
Yibing Liu 已提交
6625
    Args:
6626
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6627
        axes (list): List of integers, indicating the dimensions to be squeezed.
6628
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6629 6630 6631 6632 6633 6634 6635 6636

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6637
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6638
    """
L
lujun 已提交
6639
    assert not in_dygraph_mode(), (
L
lujun 已提交
6640
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6641
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6642 6643
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6644
    helper.append_op(
6645
        type="squeeze2",
6646
        inputs={"X": input},
Y
Yibing Liu 已提交
6647
        attrs={"axes": axes},
6648 6649
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6650

6651 6652 6653
    return out


6654
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6655
    """
M
minqiyang 已提交
6656 6657 6658
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6659

M
minqiyang 已提交
6660
    For example:
H
haowang101779990 已提交
6661 6662 6663

    .. code-block:: text

M
minqiyang 已提交
6664
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6665
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6666

Y
Yibing Liu 已提交
6667
    Args:
6668
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6669
        axes (list): List of integers, indicating the dimensions to be inserted.
6670
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6671 6672 6673 6674 6675 6676 6677 6678

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6679
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6680 6681
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6682 6683
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6684
    helper.append_op(
6685
        type="unsqueeze2",
6686
        inputs={"X": input},
Y
Yibing Liu 已提交
6687
        attrs={"axes": axes},
6688 6689
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6690

6691 6692
    return out

6693

Y
yangyaming 已提交
6694
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6695
    """
Y
Yibing Liu 已提交
6696
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6697 6698 6699 6700
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6701
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6702 6703 6704 6705 6706 6707

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6708
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6709 6710 6711
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6712
            target_lod: [4, 2]
Y
yangyaming 已提交
6713 6714

            then we get a 1-level LoDTensor:
6715
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6716 6717 6718 6719 6720 6721
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6722
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6723 6724 6725 6726
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6727
                y.data = [[2, 4]]
Y
yangyaming 已提交
6728 6729 6730
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6731
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6732 6733 6734 6735 6736 6737
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6738
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6739 6740 6741 6742
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6743
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6744 6745 6746 6747
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6748
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6749 6750 6751 6752 6753
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6754
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6755
                           from :attr:`y`.
Y
yangyaming 已提交
6756
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6757
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6758 6759

    Returns:
Y
Yibing Liu 已提交
6760
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6761 6762

    Raises:
Y
Yibing Liu 已提交
6763
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6764 6765 6766 6767 6768 6769 6770 6771 6772

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6773
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
6799
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6828 6829
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6842 6843 6844
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6858 6859 6860 6861


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6862
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6863
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6864

G
guosheng 已提交
6865 6866 6867 6868
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6891
                         The length of :attr:paddings must be
G
guosheng 已提交
6892 6893 6894 6895 6896 6897 6898 6899 6900 6901
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6902

G
guosheng 已提交
6903
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
6904 6905
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
6906 6907 6908 6909 6910
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6911
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6912 6913 6914 6915 6916 6917 6918
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6919 6920


C
chengduo 已提交
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6952 6953
		And
            pad_value = -1,
C
chengduo 已提交
6954

T
Tink_Y 已提交
6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
6985 6986 6987
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
6988 6989 6990 6991 6992
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6993
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6994 6995 6996 6997 6998 6999 7000 7001 7002
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7003 7004 7005 7006 7007 7008 7009
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7010 7011
    called label-smoothing regularization (LSR).

7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7035
                              be :math:`(1, class\_num)`.
7036 7037
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7038
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7058
    smooth_label = helper.create_variable_for_type_inference(dtype)
7059 7060 7061 7062 7063 7064 7065
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7066 7067


W
wopeizl 已提交
7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7116 7117


J
jerrywgz 已提交
7118 7119 7120 7121 7122 7123
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7124 7125
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7142 7143 7144 7145
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7146 7147 7148
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7149 7150 7151 7152 7153 7154
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7155
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7196 7197
        .. code-block:: python

S
SunGaofeng 已提交
7198 7199 7200
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7201
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7202
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7203 7204
    """
    label = one_hot(label, depth=input.shape[-1])
7205
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7206 7207 7208 7209 7210 7211
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7212 7213


7214 7215 7216 7217
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7218
                 resample='BILINEAR',
7219 7220
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7221
                 align_mode=1):
7222
    """
Q
qiaolongfei 已提交
7223
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7224

7225
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7226 7227 7228
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7229

7230
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7231

7232
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7233

7234 7235 7236 7237 7238 7239 7240 7241 7242 7243
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7244
    Align_corners and align_mode are optinal parameters,the calculation method 
7245 7246 7247 7248
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7249
    .. code-block:: text
7250

T
Tink_Y 已提交
7251
        For scale:
7252
          
T
Tink_Y 已提交
7253
            if align_corners = True && out_size > 1 :
7254

T
Tink_Y 已提交
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7266

T
Tink_Y 已提交
7267 7268
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7269

T
Tink_Y 已提交
7270 7271
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7272

T
Tink_Y 已提交
7273 7274
          else:
              align_corners = True
7275

T
Tink_Y 已提交
7276 7277
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7278

T
Tink_Y 已提交
7279 7280
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7281

T
Tink_Y 已提交
7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7292

T
Tink_Y 已提交
7293 7294 7295 7296
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7297

T
Tink_Y 已提交
7298 7299
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7300 7301 7302 7303 7304 7305 7306 7307 7308

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7309
    Args:
7310
        input (Variable): The input tensor of image resize layer,
7311 7312
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7313
        out_shape(list|tuple|Variable|None): Output shape of image resize
7314 7315
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7316
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7317
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7318
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7319
             Default: None.
7320 7321
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7322
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7323
                       currently.
7324
                       Default: 'BILINEAR'
7325 7326 7327
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7328
                                :attr:`out_shape` and :attr:`scale` specifying
7329 7330 7331 7332 7333 7334 7335
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7336 7337
                                constructing stage.
                                Default: None
7338 7339 7340 7341
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7342
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7343 7344
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7345 7346

    Returns:
Q
update  
qiaolongfei 已提交
7347 7348
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7349

7350 7351 7352
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7353
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7354 7355 7356
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7357
        ValueError: scale should be greater than zero.
7358 7359
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7360

7361 7362 7363
    Examples:
        .. code-block:: python

R
ruri 已提交
7364
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7365
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7366
    """
7367 7368 7369 7370
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7371 7372
    if resample not in resample_methods:
        raise ValueError(
7373
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7374
        )
7375
    resample_type = resample_methods[resample]
7376 7377 7378 7379 7380 7381

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7382
    if out_shape is None and scale is None:
7383
        raise ValueError("One of out_shape and scale must not be None.")
7384
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7385
    dtype = helper.input_dtype()
7386 7387 7388 7389

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7390
    inputs = {"X": input}
D
dengkaipeng 已提交
7391
    attrs = {
D
dengkaipeng 已提交
7392 7393
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7394 7395 7396 7397 7398
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7399
    if out_shape is not None:
7400 7401 7402 7403
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7404
            inputs['OutSize'] = out_shape
7405 7406
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7407 7408
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7409 7410 7411 7412 7413 7414 7415
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7416
    else:
D
dengkaipeng 已提交
7417 7418
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7419
        attrs['scale'] = float(scale)
7420

7421 7422 7423 7424 7425
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7426
    out = helper.create_variable_for_type_inference(dtype)
7427
    helper.append_op(
7428
        type='{}_interp'.format(resample_type),
7429
        inputs=inputs,
7430
        outputs={"Out": out},
D
dengkaipeng 已提交
7431
        attrs=attrs)
7432
    return out
F
stash  
fengjiayi 已提交
7433 7434


7435
@templatedoc(op_type="bilinear_interp")
7436 7437 7438 7439
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7440 7441
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7442
                    align_mode=1):
7443
    """
7444 7445
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7446 7447
    in priority order.

7448 7449 7450 7451
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7452 7453
    again in the other direction.

7454
    For details of bilinear interpolation, please refer to Wikipedia:
7455
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7456

T
tink2123 已提交
7457
    Align_corners and align_mode are optinal parameters,the calculation 
7458 7459 7460 7461
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7462
    .. code-block:: text
7463

T
Tink_Y 已提交
7464
        For scale:
7465
          
T
Tink_Y 已提交
7466
            if align_corners = True && out_size > 1 :
7467

T
Tink_Y 已提交
7468 7469 7470 7471 7472
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7473

T
Tink_Y 已提交
7474 7475 7476 7477 7478 7479 7480 7481 7482 7483
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7484 7485


T
Tink_Y 已提交
7486
          else:
T
tink2123 已提交
7487

T
Tink_Y 已提交
7488 7489
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7490

T
Tink_Y 已提交
7491 7492
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7493 7494 7495



Y
yuyang18 已提交
7496 7497 7498
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7499 7500 7501
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7502

Y
yuyang18 已提交
7503
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7504
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7505
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7506
             Default: None.
Y
yuyang18 已提交
7507 7508

        name(str|None): The output variable name.
7509 7510 7511
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7512
                                :attr:`out_shape` and :attr:`scale` specifying
7513 7514 7515 7516 7517 7518 7519
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7520 7521
                                constructing stage.
                                Default: None
7522 7523
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7524 7525 7526

    Returns:
        ${out_comment}.
7527 7528 7529 7530

    Examples:
        .. code-block:: python

R
ruri 已提交
7531
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7532
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7533 7534
    """

7535 7536
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7537 7538


7539
@templatedoc(op_type="nearest_interp")
7540 7541 7542 7543
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7544 7545
                   actual_shape=None,
                   align_corners=True):
7546
    """
7547
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7548 7549
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7550 7551
    out_shape and scale in priority order.

7552 7553
    Example:

T
Tink_Y 已提交
7554 7555 7556 7557 7558
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7559

T
Tink_Y 已提交
7560 7561 7562 7563 7564 7565 7566 7567
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7568
          
T
Tink_Y 已提交
7569 7570
          if:
              align_corners = False
7571

T
Tink_Y 已提交
7572 7573
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7574

T
Tink_Y 已提交
7575 7576
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7577

T
Tink_Y 已提交
7578 7579
          else:
              align_corners = True
7580

T
Tink_Y 已提交
7581 7582
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7583

T
Tink_Y 已提交
7584 7585
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7586 7587


7588
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7589
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7590 7591 7592 7593

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7594 7595 7596
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7597

Y
yuyang18 已提交
7598
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7599
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7600
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7601
             Default: None.
Y
yuyang18 已提交
7602 7603

        name(str|None): The output variable name.
7604 7605 7606
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7607
                                :attr:`out_shape` and :attr:`scale` specifying
7608 7609 7610 7611 7612 7613 7614
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7615 7616
                                constructing stage.
                                Default: None
7617
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7618 7619 7620

    Returns:
        ${out_comment}.
7621 7622 7623 7624

    Examples:
        .. code-block:: python

R
ruri 已提交
7625
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7626
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7627 7628
    """

7629 7630
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7631 7632 7633 7634


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7635 7636 7637
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7638 7639 7640 7641 7642 7643 7644
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7645
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7646

7647
    Returns:
Q
update  
qiaolongfei 已提交
7648
        Variable: The output is a 4-D tensor of the shape
7649
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7650 7651 7652 7653 7654 7655

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7656 7657 7658 7659 7660 7661 7662 7663 7664 7665
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7666 7667 7668
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7669 7670 7671
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7672 7673
def gather(input, index):
    """
Q
qiaolongfei 已提交
7674 7675
    **Gather Layer**

7676
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7677 7678 7679 7680
    of X indexed by `index` and concatenate them together.

    .. math::

7681
        Out = X[Index]
W
whs 已提交
7682 7683 7684 7685 7686 7687 7688


    .. code-block:: text


                Given:

7689 7690
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7691 7692 7693 7694 7695 7696 7697 7698 7699 7700
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7701
        input (Variable): The source input with rank>=1.
W
whs 已提交
7702 7703 7704 7705 7706 7707
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7708

W
whs 已提交
7709 7710
        .. code-block:: python

Y
Yibing Liu 已提交
7711 7712
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7713 7714 7715 7716
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7717
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7718 7719 7720 7721 7722 7723 7724 7725
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7757
    out = helper.create_variable_for_type_inference(dtype)
7758 7759 7760 7761 7762 7763 7764 7765 7766
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7767 7768 7769 7770 7771 7772 7773 7774 7775
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7776

Q
Qingsheng Li 已提交
7777
    Given the following input:
H
haowang101779990 已提交
7778

Q
Qingsheng Li 已提交
7779
    .. code-block:: text
H
haowang101779990 已提交
7780

Q
Qingsheng Li 已提交
7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7793

Q
Qingsheng Li 已提交
7794
    .. code-block:: text
H
haowang101779990 已提交
7795

Q
Qingsheng Li 已提交
7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7811
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7812 7813 7814 7815 7816 7817 7818 7819

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
7820
    assert not in_dygraph_mode(), (
7821
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
7822 7823
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7824
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7825 7826 7827 7828 7829 7830 7831 7832 7833
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7847

7848 7849 7850
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7851
    """
F
stash  
fengjiayi 已提交
7852
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7853
    dtype = x.dtype
X
Xin Pan 已提交
7854
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7855
    if seed is None:
7856
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7857
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7858
    if isinstance(seed, int):
F
fengjiayi 已提交
7859 7860 7861 7862 7863
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7864 7865 7866 7867
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7868
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7869 7870
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7871 7872
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7873
    return out
W
whs 已提交
7874 7875


7876
def log(x, name=None):
W
wanghaoshuang 已提交
7877 7878 7879 7880 7881
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7882
        Out = \\ln(x)
W
wanghaoshuang 已提交
7883 7884

    Args:
7885
        x (Variable): Input tensor.
7886 7887
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7888 7889 7890 7891 7892 7893 7894 7895

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7896
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7897 7898
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7899
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7900
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7901
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7902 7903 7904
    return out


7905
def relu(x, name=None):
W
wanghaoshuang 已提交
7906 7907
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7908
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7909 7910 7911 7912
    the tensor elementwise.

    .. math::

7913
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7914 7915

    Args:
7916
        x (Variable): The input tensor.
7917 7918
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7919 7920 7921 7922 7923 7924 7925 7926

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7927
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
7928
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7929 7930
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7931
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7932
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7933 7934
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7935
    return out
7936 7937


C
chengduo 已提交
7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7979 7980 7981
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7982 7983 7984 7985
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7986
    .. math::
7987

H
haowang101779990 已提交
7988
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7989

7990
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7991 7992 7993 7994 7995
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7996
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7997
                           Its shape should be the same as input.
7998
        num_classes (int): The possible number of labels.
W
whs 已提交
7999 8000

    Returns:
M
minqiyang 已提交
8001 8002
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8003
                     Three variables:
M
minqiyang 已提交
8004

H
haowang101779990 已提交
8005 8006 8007
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8008 8009 8010 8011

    Examples:

        .. code-block:: python
8012

W
whs 已提交
8013 8014 8015 8016
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8017 8018 8019
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8020 8021
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8022 8023
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8024
        outputs={
W
whs 已提交
8025 8026 8027
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8028 8029 8030
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8073
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8074
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8075
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8093
            import paddle.fluid as fluid
8094 8095 8096 8097 8098 8099
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8100
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8101 8102 8103 8104 8105

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8106
            isinstance(shape, Variable)):
8107 8108 8109 8110 8111
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8112
    out = helper.create_variable_for_type_inference(x.dtype)
8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8130 8131


W
whs 已提交
8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8149

W
whs 已提交
8150
              out_shape = [2, 3, 5, 5]
8151

W
whs 已提交
8152
          Step 1:
8153

W
whs 已提交
8154 8155 8156
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8157

W
whs 已提交
8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8203
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8204
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8217

S
SunGaofeng 已提交
8218
            import paddle.fluid as fluid
W
whs 已提交
8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8230
            isinstance(out_shape, Variable)):
W
whs 已提交
8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8252 8253
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8254

8255 8256
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8257
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8258 8259 8260
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8261

8262 8263
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8264

H
haowang101779990 已提交
8265 8266
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8267 8268
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8269

H
haowang101779990 已提交
8270 8271 8272 8273 8274 8275 8276 8277
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8278 8279 8280

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8315
    out = helper.create_variable_for_type_inference("float32")
8316 8317 8318 8319 8320 8321 8322 8323

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8324 8325


M
minqiyang 已提交
8326 8327
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8328
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8329
    which compares left score and right score passed in.
M
minqiyang 已提交
8330
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8331 8332 8333

    .. math::

H
haowang101779990 已提交
8334
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8335 8336

    Args:
M
minqiyang 已提交
8337
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8338 8339
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8340
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8341 8342
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8343

M
minqiyang 已提交
8344
    Returns:
M
minqiyang 已提交
8345
       Variable: The ranking loss.
H
haowang101779990 已提交
8346

M
minqiyang 已提交
8347
    Raises:
M
minqiyang 已提交
8348
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8349

M
minqiyang 已提交
8350
    Examples:
H
haowang101779990 已提交
8351

M
minqiyang 已提交
8352
        .. code-block:: python
H
haowang101779990 已提交
8353

Y
Yibing Liu 已提交
8354 8355 8356
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8357 8358
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8359
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8360 8361 8362 8363 8364 8365
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8366 8367
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8391
        .. code-block:: text
W
whs 已提交
8392

T
Tink_Y 已提交
8393
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8394

T
Tink_Y 已提交
8395 8396
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8397

T
Tink_Y 已提交
8398
	      Case 0:
M
minqiyang 已提交
8399

T
Tink_Y 已提交
8400 8401 8402
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8403

T
Tink_Y 已提交
8404 8405 8406
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8407

T
Tink_Y 已提交
8408
	      Case 1:
M
minqiyang 已提交
8409

T
Tink_Y 已提交
8410 8411
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8412

T
Tink_Y 已提交
8413 8414 8415
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8416

T
Tink_Y 已提交
8417
	      Case 2:
M
minqiyang 已提交
8418

T
Tink_Y 已提交
8419 8420
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8421

T
Tink_Y 已提交
8422 8423 8424
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8425 8426


W
whs 已提交
8427 8428
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8429
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8453
    out = helper.create_variable_for_type_inference(dtype)
8454 8455 8456 8457 8458 8459 8460 8461 8462
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8463
    helper.append_op(
8464
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8465 8466 8467 8468

    return out


8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8481 8482 8483 8484 8485

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8486 8487
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8488 8489
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8490
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8511 8512 8513 8514 8515

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8516 8517
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8518 8519
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8520
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8541 8542 8543 8544 8545

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8546 8547
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8548 8549
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8550
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8572 8573 8574 8575 8576

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8577
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8578
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8579 8580
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8581
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8604 8605 8606 8607 8608

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8609 8610
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8611 8612
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8613
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8635 8636 8637 8638 8639

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8640 8641
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8642 8643
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8644
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8645 8646 8647 8648 8649 8650 8651 8652
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8653 8654 8655 8656
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8657 8658
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8659 8660 8661

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8662
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8663
          weight (alpha).
J
jerrywgz 已提交
8664
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8665 8666 8667
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8668
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8669
          will be named automatically.
J
jerrywgz 已提交
8670 8671 8672 8673 8674 8675 8676 8677

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8678
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8692
        attr=helper.param_attr,
J
jerrywgz 已提交
8693 8694 8695 8696
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8697
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8698 8699 8700 8701 8702 8703 8704 8705 8706
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8707 8708 8709 8710 8711 8712 8713 8714 8715 8716
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8717
    Returns:
8718
        output(${out_type}): ${out_comment}
8719 8720 8721

    Examples:

8722
    .. code-block:: python
8723

H
haowang101779990 已提交
8724 8725
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8726 8727
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8728
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8747
    Returns:
8748
        output(${out_type}): ${out_comment}
8749 8750 8751 8752 8753

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8754 8755
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8756 8757
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8758
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8776
    Returns:
8777
        output(${out_type}): ${out_comment}
8778 8779 8780 8781 8782

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8783 8784
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8785 8786
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8787
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8788 8789 8790 8791 8792 8793 8794 8795
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8796 8797 8798 8799
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8800

H
haowang101779990 已提交
8801
    For Example:
M
minqiyang 已提交
8802

H
haowang101779990 已提交
8803
    .. code-block:: text
8804

H
haowang101779990 已提交
8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8826 8827 8828

    Args:
        x (Variable): A tensor of rank >= axis.
8829 8830
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8831 8832 8833 8834 8835 8836 8837 8838
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8839 8840 8841
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8842 8843 8844 8845
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8846
        ValueError: If axis is not in range [0, rank(x)].
8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8863 8864
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8865
    helper.append_op(
8866
        type='flatten2',
8867
        inputs={"X": x},
8868 8869
        outputs={'Out': out,
                 'XShape': x_shape},
8870 8871
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8872 8873


C
chenweihang 已提交
8874
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8875
    """
C
chenweihang 已提交
8876
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8877
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8878 8879
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8880

H
haowang101779990 已提交
8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8898 8899

    Args:
C
chenweihang 已提交
8900 8901 8902
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8903 8904 8905 8906 8907 8908 8909 8910 8911 8912

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
8913
    assert not in_dygraph_mode(), (
8914
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
8915
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8916 8917
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8918 8919 8920 8921 8922 8923
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8924
    return out
8925

8926

S
sneaxiy 已提交
8927 8928 8929 8930 8931 8932 8933 8934 8935
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8936

S
sneaxiy 已提交
8937
    .. math::
8938

S
sneaxiy 已提交
8939 8940 8941
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8942
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8943 8944 8945 8946
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8947 8948 8949
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8950 8951
    Returns:
        Variable: The output sequence mask.
8952

S
sneaxiy 已提交
8953
    """
L
lujun 已提交
8954
    assert not in_dygraph_mode(), (
8955
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
8956

Q
qingqing01 已提交
8957
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8958
    if name is None:
X
Xin Pan 已提交
8959
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8960
    else:
X
Xin Pan 已提交
8961
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8962

Q
qingqing01 已提交
8963 8964 8965
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8966 8967
        outputs={'Y': out},
        attrs={
8968
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8969 8970 8971
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8972 8973


X
Xin Pan 已提交
8974
def stack(x, axis=0):
S
sneaxiy 已提交
8975 8976 8977 8978
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8979 8980 8981 8982 8983 8984 8985

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8986
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8987
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8988

C
chengduozh 已提交
8989 8990
    For Example:

C
chengduozh 已提交
8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9029
    Args:
9030
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9031
        axis (int|None): The axis along which all inputs are stacked.
9032

S
sneaxiy 已提交
9033 9034
    Returns:
        Variable: The stacked variable.
9035

S
sneaxiy 已提交
9036 9037
    """

X
Xin Pan 已提交
9038 9039 9040 9041 9042 9043
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9044
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9045
    helper.append_op(
S
sneaxiy 已提交
9046 9047
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9048

X
Xin Pan 已提交
9049
    return out
D
dzhwinter 已提交
9050 9051 9052 9053 9054 9055 9056


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9057

D
dzhwinter 已提交
9058 9059 9060
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9061
    raised.
D
dzhwinter 已提交
9062 9063

    Args:
M
minqiyang 已提交
9064
        x (Variable): Input variable.
D
dzhwinter 已提交
9065 9066
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9067

D
dzhwinter 已提交
9068 9069
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9070

D
dzhwinter 已提交
9071 9072 9073 9074 9075 9076 9077 9078 9079 9080
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9081
    for _ in range(num):
X
Xin Pan 已提交
9082
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9083 9084 9085 9086 9087 9088 9089 9090

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9103

W
whs 已提交
9104 9105 9106 9107
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9108

W
whs 已提交
9109
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9110

W
whs 已提交
9111
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9112

W
whs 已提交
9113 9114 9115 9116
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9117

W
whs 已提交
9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9134
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9135 9136 9137 9138 9139 9140
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
9141 9142


G
fix  
gongweibao 已提交
9143 9144 9145
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9146
@templatedoc()
G
fix  
gongweibao 已提交
9147 9148 9149 9150 9151 9152 9153 9154 9155
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9156
    ${comment}
G
fix  
gongweibao 已提交
9157 9158

    Args:
G
gongweibao 已提交
9159 9160 9161
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9162
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9163 9164 9165
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9166 9167
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9168
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9169

9170 9171 9172 9173 9174
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9175 9176 9177
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9178
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9195 9196


G
gongweibao 已提交
9197
@templatedoc()
X
Xin Pan 已提交
9198
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9199
    """
G
gongweibao 已提交
9200
    ${comment}
G
fix  
gongweibao 已提交
9201 9202

    Args:
G
gongweibao 已提交
9203 9204 9205 9206
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9207 9208 9209
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9210
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9211

9212 9213 9214 9215
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9216 9217 9218
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9219
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9220 9221 9222 9223 9224 9225 9226 9227 9228 9229
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9230
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9231 9232 9233 9234 9235
        })

    return out


G
gongweibao 已提交
9236
@templatedoc()
G
fix  
gongweibao 已提交
9237
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9238
    """
G
gongweibao 已提交
9239
    ${comment}
G
fix  
gongweibao 已提交
9240 9241

    Args:
G
gongweibao 已提交
9242 9243 9244 9245
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9246
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9247 9248

    Returns:
G
gongweibao 已提交
9249
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9250

9251 9252 9253
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9254
            x = fluid.layers.data(
9255 9256 9257 9258 9259
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9260
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9261 9262 9263
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9264
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9276
@templatedoc()
G
fix  
gongweibao 已提交
9277 9278 9279 9280 9281 9282 9283 9284 9285
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9286
    ${comment}
G
fix  
gongweibao 已提交
9287 9288

    Args:
G
gongweibao 已提交
9289 9290
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9291
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9292 9293 9294 9295
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9296
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9297 9298

    Returns:
G
gongweibao 已提交
9299
        out (Variable): ${out_comment}
9300 9301 9302 9303

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9304
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9305

Y
Yibing Liu 已提交
9306
            out = fluid.layers.gaussian_random_batch_size_like(
9307
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9308 9309 9310
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9311
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9330
@templatedoc()
X
Xin Pan 已提交
9331
def sum(x):
G
fix  
gongweibao 已提交
9332
    """
G
gongweibao 已提交
9333
    ${comment}
G
fix  
gongweibao 已提交
9334 9335

    Args:
G
gongweibao 已提交
9336
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9337 9338

    Returns:
G
gongweibao 已提交
9339
        out (Variable): ${out_comment}
9340 9341 9342 9343 9344 9345

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9346 9347 9348
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9349 9350
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9351 9352 9353 9354
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9355
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9356 9357 9358 9359

    return out


G
gongweibao 已提交
9360
@templatedoc()
G
fix  
gongweibao 已提交
9361 9362
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9363
    ${comment}
G
fix  
gongweibao 已提交
9364 9365

    Args:
G
gongweibao 已提交
9366 9367 9368 9369
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9370 9371

    Returns:
G
gongweibao 已提交
9372
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9373

9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9385 9386 9387
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9388 9389
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9403 9404
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9405
    Get the shape of the input.
G
fix  
gongweibao 已提交
9406 9407

    Args:
C
chengduozh 已提交
9408
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9409 9410

    Returns:
C
fix doc  
chengduozh 已提交
9411
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9412

9413 9414 9415 9416 9417 9418
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9419 9420 9421
    """

    helper = LayerHelper('shape', **locals())
9422
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9423
    helper.append_op(
G
fix  
gongweibao 已提交
9424
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9425 9426

    return out
G
merge  
gongweibao 已提交
9427 9428


Z
zhoukunsheng 已提交
9429 9430 9431 9432
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9433
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9455 9456 9457 9458
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9459
    if in_dygraph_mode():
X
Xin Pan 已提交
9460 9461 9462
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9463 9464 9465 9466
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9467 9468
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9469
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9470 9471 9472
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9473

S
sneaxiy 已提交
9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9485
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9486 9487 9488 9489 9490 9491 9492 9493
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9494
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9495
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9496 9497 9498 9499 9500 9501

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9502
    if name is None:
X
Xin Pan 已提交
9503
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9504 9505 9506
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9507 9508 9509 9510 9511 9512 9513 9514 9515 9516

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9517
    return helper.append_activation(out)
S
sneaxiy 已提交
9518 9519


X
Xin Pan 已提交
9520
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9521 9522 9523
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9524
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9525 9526 9527
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9528
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9529 9530 9531
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9532
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9533 9534 9535
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9536
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9537 9538 9539
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9540
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9541 9542 9543
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9544
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9545 9546 9547
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9548 9549 9550 9551 9552 9553 9554 9555
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9556
for func in [
9557 9558 9559 9560 9561 9562 9563 9564 9565
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9566 9567 9568 9569 9570
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9571 9572
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9573
        ])
M
minqiyang 已提交
9574 9575


9576
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9577 9578
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9579 9580
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9581 9582 9583

    if out is None:
        if name is None:
X
Xin Pan 已提交
9584
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9600
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9612 9613 9614 9615 9616 9617 9618 9619 9620

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9621 9622 9623 9624 9625 9626 9627
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9628
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9640 9641 9642 9643 9644 9645 9646 9647 9648

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9649 9650 9651 9652 9653 9654 9655
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9656
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9668 9669 9670 9671 9672 9673 9674 9675 9676

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9677 9678 9679 9680 9681 9682 9683
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9684
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9685 9686 9687 9688 9689 9690 9691 9692 9693 9694
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9695 9696 9697 9698 9699 9700 9701

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9702 9703 9704 9705
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9721 9722 9723 9724

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
9725
            import paddle.fluid as fluid
9726 9727 9728
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9729 9730 9731 9732 9733
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9734 9735 9736 9737
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9761 9762 9763 9764 9765 9766 9767

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9768 9769 9770 9771 9772
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9773 9774 9775 9776
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9777 9778 9779 9780 9781 9782 9783 9784

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9803
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9804 9805 9806 9807 9808 9809 9810 9811 9812 9813
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9856
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9857 9858 9859 9860 9861 9862 9863 9864 9865
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9866 9867
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9868 9869 9870 9871 9872 9873
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9874 9875 9876
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9877 9878
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9879 9880 9881 9882 9883 9884
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9885
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9886
        name(basestring|None): Name of the output.
9887 9888
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9889 9890 9891

    Returns:
        out(${out_type}): ${out_comment}
9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9906 9907 9908 9909 9910
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9911
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9912 9913 9914 9915 9916 9917 9918 9919
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9920 9921
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
9938 9939 9940 9941 9942 9943 9944 9945 9946

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
9947 9948 9949 9950
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9951
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9952 9953 9954 9955 9956 9957 9958 9959 9960 9961
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9962 9963


J
JiabinYang 已提交
9964
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9965
    """
J
JiabinYang 已提交
9966
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9967 9968 9969

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9970
    The attr blocksize indicates the input block size.
9971 9972

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9973
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9974 9975

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9976
    (but keeping all data)
J
JiabinYang 已提交
9977

J
JiabinYang 已提交
9978
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9979
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9980 9981 9982 9983 9984
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9985
    Args:
J
JiabinYang 已提交
9986
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9987
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9988 9989

    Returns:
J
JiabinYang 已提交
9990
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9991 9992

    Raises:
J
JiabinYang 已提交
9993
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9994 9995 9996 9997 9998

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
9999
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10000
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10001
                x=data, blocksize=2)
10002 10003 10004 10005 10006 10007

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
10008 10009
    """

J
JiabinYang 已提交
10010
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10011

J
JiabinYang 已提交
10012 10013
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10014 10015

    if name is None:
J
JiabinYang 已提交
10016 10017
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10018 10019 10020 10021 10022
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10023
        type="space_to_depth",
J
JiabinYang 已提交
10024
        inputs={"X": x},
J
JiabinYang 已提交
10025
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10026
        outputs={"Out": out})
J
JiabinYang 已提交
10027 10028
    return out

J
JiabinYang 已提交
10029

S
sneaxiy 已提交
10030 10031
@templatedoc()
def sequence_reverse(x, name=None):
10032
    """
S
sneaxiy 已提交
10033 10034 10035 10036 10037 10038 10039 10040 10041
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
L
lujun 已提交
10042
    assert not in_dygraph_mode(), (
10043
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10044 10045
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10046
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10047 10048 10049 10050 10051 10052 10053 10054 10055 10056
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10057 10058


10059 10060 10061 10062 10063 10064
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10065 10066 10067 10068 10069
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10070

10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10083
        act (str, default None): Activation to be applied to the output of this layer.
10084 10085 10086 10087 10088 10089 10090

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10091
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10103
    return helper.append_activation(out)
10104 10105


B
barrierye 已提交
10106
def similarity_focus(input, axis, indexes, name=None):
10107
    """
B
barrierye 已提交
10108
    SimilarityFocus Operator
B
barrierye 已提交
10109 10110

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10111

10112 10113 10114
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10115
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10116 10117 10118 10119 10120 10121 10122
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10123
       each index.
B
barrierye 已提交
10124 10125 10126 10127
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10177
    Args:
10178
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10179
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10180
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10181
            1, 2 or 3.
B
barrierye 已提交
10182
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10183 10184

    Returns:
H
haowang101779990 已提交
10185 10186
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10187

B
barrierye 已提交
10188 10189
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10190

B
barrierye 已提交
10191
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10192 10193
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10206 10207 10208 10209 10210
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10211 10212 10213 10214 10215 10216 10217
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10218 10219


M
minqiyang 已提交
10220 10221
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10222 10223
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10224 10225
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10264
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10265
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10266 10267 10268 10269 10270 10271

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10272

10273
           x = fluid.layers.data(name="x", shape=[1], dtype='int32', lod_level=1)
M
minqiyang 已提交
10274
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10275 10276
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10277 10278
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10279 10280 10281 10282 10283 10284 10285
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10286 10287


D
dengkaipeng 已提交
10288
@templatedoc()
10289 10290
def grid_sampler(x, grid, name=None):
    """
10291
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10292
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10293 10294 10295 10296
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10297
    interpolation value of 4 nearest corner points.
10298

H
haowang101779990 已提交
10299
    .. code-block:: text
10300

H
haowang101779990 已提交
10301 10302
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10303

H
haowang101779990 已提交
10304 10305
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10306

H
haowang101779990 已提交
10307 10308 10309
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10310

H
haowang101779990 已提交
10311 10312 10313 10314 10315 10316 10317 10318 10319
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10320

H
haowang101779990 已提交
10321 10322 10323 10324
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10325

H
haowang101779990 已提交
10326 10327 10328 10329
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10330

H
haowang101779990 已提交
10331 10332 10333 10334
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10335

H
haowang101779990 已提交
10336 10337
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10338 10339

    Args:
10340 10341 10342
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10343 10344

    Returns:
H
haowang101779990 已提交
10345
        Variable: Output of shape [N, C, H, W] data samples input X
10346 10347
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10348 10349 10350 10351 10352 10353 10354 10355
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10356

D
dengkaipeng 已提交
10357 10358 10359 10360 10361 10362 10363 10364 10365
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10366
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10367 10368
    ipts = {'X': x, 'Grid': grid}

10369
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10370 10371 10372
    return out


G
gmcather 已提交
10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10400 10401
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10440
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10441 10442 10443 10444 10445 10446 10447
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10448

H
heqiaozhi 已提交
10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10463 10464 10465 10466
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10467
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10468 10469
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10470
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10471 10472

    .. math::
H
haowang101779990 已提交
10473 10474 10475
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10476 10477

    Where:
H
haowang101779990 已提交
10478 10479
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10494

G
gmcather 已提交
10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10511 10512 10513 10514 10515 10516 10517 10518 10519 10520


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10521
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10522

Q
Qiao Longfei 已提交
10523
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10524 10525 10526
    For example:

    .. math::
H
haowang101779990 已提交
10527
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10528

Q
Qiao Longfei 已提交
10529
    In this formula:
10530 10531
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10532
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10533
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10534 10535 10536
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10537 10538
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10539 10540 10541
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10542
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10543
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10544
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10545 10546 10547 10548
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10549
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10550 10551 10552 10553

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10554 10555 10556
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10557 10558
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10559
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10560 10561 10562 10563

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10564
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10605 10606


S
shippingwang 已提交
10607
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10608 10609
    """
    **Shuffle Channel Operator**
10610

S
shippingwang 已提交
10611 10612 10613 10614 10615 10616
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10617
    
S
shippingwang 已提交
10618
    .. code-block:: text
10619

S
shippingwang 已提交
10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10648
    Args: 
S
shippingwang 已提交
10649 10650
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10651 10652

    Returns:
S
shippingwang 已提交
10653 10654
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10655 10656

    Raises:
S
shippingwang 已提交
10657
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10658 10659 10660

    Examples:
        .. code-block:: python
10661 10662

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10663
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10664 10665 10666
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10667
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10668 10669 10670 10671 10672 10673 10674 10675 10676

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10677
    return out
S
Add  
shippingwang 已提交
10678 10679


10680
@templatedoc()
D
dengkaipeng 已提交
10681
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10682 10683 10684 10685 10686 10687 10688 10689
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10690
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10691
        name (str, default None): The name of this layer.
10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10704
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10717 10718
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10719 10720 10721
    return out


S
sneaxiy 已提交
10722
class PyFuncRegistry(object):
S
sneaxiy 已提交
10723 10724 10725
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10726
        if func is None or not callable(func):
S
sneaxiy 已提交
10727 10728 10729
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10730
        # find named args using reflection
S
sneaxiy 已提交
10731 10732 10733 10734 10735 10736 10737
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10738 10739 10740
        '''
        Why record self here?

M
minqiyang 已提交
10741 10742
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10743
           to find the registered function corresponding
M
minqiyang 已提交
10744
           to :code:`idx`.
S
sneaxiy 已提交
10745

M
minqiyang 已提交
10746 10747
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10748
           whose reference count is 1 would cause
M
minqiyang 已提交
10749
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10750 10751
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10752
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10767 10768 10769 10770 10771 10772 10773 10774 10775
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10776

S
sneaxiy 已提交
10777 10778
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10779 10780

        ret = []
S
sneaxiy 已提交
10781 10782 10783
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10784 10785
                continue

S
sneaxiy 已提交
10786 10787
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10788

S
sneaxiy 已提交
10789 10790 10791
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10792

S
sneaxiy 已提交
10793
        return tuple(ret)
S
sneaxiy 已提交
10794 10795


S
sneaxiy 已提交
10796 10797 10798 10799
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10800

S
sneaxiy 已提交
10801 10802 10803 10804 10805 10806 10807 10808
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10809
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10810

S
sneaxiy 已提交
10811 10812
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10813 10814 10815 10816
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10817
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10818
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10819 10820
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10821 10822 10823 10824 10825
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10826
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10827
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10828
                                       None means no backward. Default None.
S
sneaxiy 已提交
10829
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10830
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10831 10832
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10833
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10834 10835 10836

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10837 10838

    Examples:
M
minqiyang 已提交
10839

S
sneaxiy 已提交
10840 10841 10842 10843 10844
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10845
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10846 10847
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10848
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10849 10850 10851
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10852
        >>>
S
sneaxiy 已提交
10853 10854 10855 10856 10857
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10858
        >>>     print(x)
S
sneaxiy 已提交
10859 10860 10861 10862 10863 10864
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10865
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10866 10867
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10868 10869
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10870 10871 10872 10873 10874 10875 10876 10877
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10878
    """
S
sneaxiy 已提交
10879
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10880 10881 10882
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10883
        x = [x]
S
sneaxiy 已提交
10884 10885
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10886

S
sneaxiy 已提交
10887 10888 10889
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10890
        out_list = [out]
S
sneaxiy 已提交
10891
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10892
        out_list = out
S
sneaxiy 已提交
10893 10894 10895
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10896

S
sneaxiy 已提交
10897 10898
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10899
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10900 10901

    for each_out in out_list:
S
sneaxiy 已提交
10902 10903
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10904 10905
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10906

S
sneaxiy 已提交
10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10922 10923 10924 10925

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10926 10927
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10928 10929 10930
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10931
        })
S
sneaxiy 已提交
10932
    return out
S
sneaxiy 已提交
10933 10934 10935


# For debug usage
S
sneaxiy 已提交
10936 10937 10938 10939
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
10953 10954 10955 10956 10957
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10970 10971 10972 10973
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10999

M
minqiyang 已提交
11000

M
minqiyang 已提交
11001
def huber_loss(input, label, delta):
11002
    """
M
minqiyang 已提交
11003 11004 11005
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11006 11007 11008 11009

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11010
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11011 11012 11013 11014

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11015
        huber\_loss = 0.5 * (label - input) * (label - input)
11016 11017 11018 11019 11020 11021 11022


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11023
        delta (float): The parameter of huber loss, which controls
11024 11025 11026
                       the range of outliers

    Returns:
M
minqiyang 已提交
11027
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11028 11029 11030 11031

    Examples:
        .. code-block:: python

11032 11033 11034 11035 11036 11037 11038 11039 11040
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11041
    """
M
minqiyang 已提交
11042
    helper = LayerHelper('huber_loss', **locals())
11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11054 11055


D
dengkaipeng 已提交
11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

T
Tao Luo 已提交
11118 11119 11120
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11121
          # edges must be directional
T
Tao Luo 已提交
11122 11123 11124 11125
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11126
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11127 11128
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11129
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11130
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11154 11155


C
ceci3 已提交
11156
from .ops import square
C
ceci3 已提交
11157
from .control_flow import equal
C
ceci3 已提交
11158 11159


C
ceci3 已提交
11160 11161 11162
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11163

C
ceci3 已提交
11164
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11165 11166

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11167
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11168 11169 11170 11171 11172
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11173 11174
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11175 11176 11177 11178 11179 11180 11181

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11182 11183 11184 11185 11186 11187 11188 11189
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11190 11191 11192 11193 11194 11195 11196
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11197
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11198 11199
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11200 11201
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11202 11203 11204 11205
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11206 11207 11208
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11209 11210 11211
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11212 11213


R
ruri 已提交
11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11243
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11244 11245 11246 11247 11248 11249 11250 11251 11252

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11253
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11314 11315 11316 11317


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11318

H
heqiaozhi 已提交
11319
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11320

H
fix doc  
heqiaozhi 已提交
11321
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11322 11323 11324
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11325
    
H
fix doc  
heqiaozhi 已提交
11326
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11327

H
heqiaozhi 已提交
11328
    Args:
H
fix doc  
heqiaozhi 已提交
11329 11330

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11331 11332
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11333 11334
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
                          (cvm op is a customized op, which input is a sequence has embedd_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11335

H
heqiaozhi 已提交
11336
    Returns:
H
fix doc  
heqiaozhi 已提交
11337 11338 11339

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11340
    Examples:
H
fix doc  
heqiaozhi 已提交
11341

H
heqiaozhi 已提交
11342
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11343

H
heqiaozhi 已提交
11344 11345 11346 11347 11348 11349 11350 11351 11352 11353
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11354

H
heqiaozhi 已提交
11355 11356 11357 11358 11359 11360 11361 11362 11363
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11364
    return out
Z
zhoukunsheng 已提交
11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

             # condition is a tensor [True, False, True]
             out = fluid.layers.where(condition) # [[0], [2]]

             # condition is a tensor [[True, False], [False, True]]
             out = fluid.layers.where(condition) # [[0, 0], [1, 1]]

             # condition is a tensor [False, False, False]
             out = fluid.layers.where(condition) # [[]]
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

          # [1, 0, -1]
          data = fluid.layers.sign(np.array([3, 0, -2])) 
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out