Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
7c6f2350
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
“41c308f40a813403b94f3a3446aba2e5cc6bd6b4”上不存在“arch/arm/mach-exynos/Kconfig”
提交
7c6f2350
编写于
7月 03, 2019
作者:
Z
zhoukunsheng
提交者:
Tao Luo
7月 03, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support Tensor input for edit_distance op (#18162)
上级
85f5e9e2
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
200 addition
and
74 deletion
+200
-74
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/operators/edit_distance_op.cc
paddle/fluid/operators/edit_distance_op.cc
+39
-12
paddle/fluid/operators/edit_distance_op.cu
paddle/fluid/operators/edit_distance_op.cu
+37
-14
paddle/fluid/operators/edit_distance_op.h
paddle/fluid/operators/edit_distance_op.h
+33
-10
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+35
-29
python/paddle/fluid/tests/unittests/test_edit_distance_op.py
python/paddle/fluid/tests/unittests/test_edit_distance_op.py
+55
-8
未找到文件。
paddle/fluid/API.spec
浏览文件 @
7c6f2350
...
@@ -139,7 +139,7 @@ paddle.fluid.layers.sequence_slice (ArgSpec(args=['input', 'offset', 'length', '
...
@@ -139,7 +139,7 @@ paddle.fluid.layers.sequence_slice (ArgSpec(args=['input', 'offset', 'length', '
paddle.fluid.layers.dropout (ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed', 'name', 'dropout_implementation'], varargs=None, keywords=None, defaults=(False, None, None, 'downgrade_in_infer')), ('document', '558d13133596209190df9a624264f28f'))
paddle.fluid.layers.dropout (ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed', 'name', 'dropout_implementation'], varargs=None, keywords=None, defaults=(False, None, None, 'downgrade_in_infer')), ('document', '558d13133596209190df9a624264f28f'))
paddle.fluid.layers.split (ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None)), ('document', '78cf3a7323d1a7697658242e13f63759'))
paddle.fluid.layers.split (ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None)), ('document', '78cf3a7323d1a7697658242e13f63759'))
paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2bc3a59efa9d52b628a6255422d9f0e8'))
paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2bc3a59efa9d52b628a6255422d9f0e8'))
paddle.fluid.layers.edit_distance (ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens'
], varargs=None, keywords=None, defaults=(True, None)), ('document', 'f2c252aa2f83f8e503ffaf79668eaa28
'))
paddle.fluid.layers.edit_distance (ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens'
, 'input_length', 'label_length'], varargs=None, keywords=None, defaults=(True, None, None, None)), ('document', '77cbfb28cd2fc589f589c7013c5086cd
'))
paddle.fluid.layers.l2_normalize (ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None)), ('document', 'c1df110ea65998984f564c5c10abc54a'))
paddle.fluid.layers.l2_normalize (ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None)), ('document', 'c1df110ea65998984f564c5c10abc54a'))
paddle.fluid.layers.matmul (ArgSpec(args=['x', 'y', 'transpose_x', 'transpose_y', 'alpha', 'name'], varargs=None, keywords=None, defaults=(False, False, 1.0, None)), ('document', 'fa2081f6e731bb9de7cd535ca07f523a'))
paddle.fluid.layers.matmul (ArgSpec(args=['x', 'y', 'transpose_x', 'transpose_y', 'alpha', 'name'], varargs=None, keywords=None, defaults=(False, False, 1.0, None)), ('document', 'fa2081f6e731bb9de7cd535ca07f523a'))
paddle.fluid.layers.topk (ArgSpec(args=['input', 'k', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e50940f3ce5a08cc477b72f517491bf3'))
paddle.fluid.layers.topk (ArgSpec(args=['input', 'k', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e50940f3ce5a08cc477b72f517491bf3'))
...
...
paddle/fluid/operators/edit_distance_op.cc
浏览文件 @
7c6f2350
...
@@ -29,12 +29,30 @@ class EditDistanceOp : public framework::OperatorWithKernel {
...
@@ -29,12 +29,30 @@ class EditDistanceOp : public framework::OperatorWithKernel {
"Output(SequenceNum) shouldn't be null."
);
"Output(SequenceNum) shouldn't be null."
);
auto
hyp_dims
=
ctx
->
GetInputDim
(
"Hyps"
);
auto
hyp_dims
=
ctx
->
GetInputDim
(
"Hyps"
);
auto
ref_dims
=
ctx
->
GetInputDim
(
"Refs"
);
auto
ref_dims
=
ctx
->
GetInputDim
(
"Refs"
);
PADDLE_ENFORCE
(
hyp_dims
.
size
()
==
2
&&
hyp_dims
[
1
]
==
1
,
"Input(Hyps) must be a 2-D LoDTensor with the 2nd dimension "
if
(
ctx
->
HasInput
(
"HypsLength"
)
&&
ctx
->
HasInput
(
"RefsLength"
))
{
"equal to 1."
);
auto
hyp_length_dims
=
ctx
->
GetInputDim
(
"HypsLength"
);
PADDLE_ENFORCE
(
ref_dims
.
size
()
==
2
&&
ref_dims
[
1
]
==
1
,
auto
ref_length_dims
=
ctx
->
GetInputDim
(
"RefsLength"
);
"Input(Refs) must be a 2-D LoDTensor with the 2nd dimension "
"equal to 1."
);
PADDLE_ENFORCE
(
hyp_dims
.
size
()
==
2
&&
ref_dims
.
size
()
==
2
&&
hyp_dims
[
0
]
==
ref_dims
[
0
],
"Input(Hyps) and Input(Refs) must be 2-D Tensors with "
"identical first dimension"
);
PADDLE_ENFORCE
(
hyp_length_dims
[
0
]
==
ref_length_dims
[
0
]
&&
hyp_length_dims
[
0
]
==
hyp_dims
[
0
],
"Input(HypsLength), Input(RefsLength) and Input(Hyps) "
"should have identical first dimension"
);
}
else
{
PADDLE_ENFORCE
(
hyp_dims
.
size
()
==
2
&&
hyp_dims
[
1
]
==
1
,
"Input(Hyps) must be a 2-D LoDTensor with the 2nd dimension "
"equal to 1."
);
PADDLE_ENFORCE
(
ref_dims
.
size
()
==
2
&&
ref_dims
[
1
]
==
1
,
"Input(Refs) must be a 2-D LoDTensor with the 2nd dimension "
"equal to 1."
);
}
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"Refs"
));
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"Refs"
));
ctx
->
SetOutputDim
(
"SequenceNum"
,
{
1
});
ctx
->
SetOutputDim
(
"SequenceNum"
,
{
1
});
}
}
...
@@ -51,11 +69,21 @@ class EditDistanceOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -51,11 +69,21 @@ class EditDistanceOpMaker : public framework::OpProtoAndCheckerMaker {
public:
public:
void
Make
()
override
{
void
Make
()
override
{
AddInput
(
"Hyps"
,
AddInput
(
"Hyps"
,
"(2-D LoDTensor<int64_t>, 2nd dim. equal to 1) "
"2-D Tensor<int64_t>, or 2-D LoDTensor<int64_t> with last "
"dimension being 1. "
"The indices for hypothesis strings."
);
"The indices for hypothesis strings."
);
AddInput
(
"Refs"
,
AddInput
(
"Refs"
,
"(2-D LoDTensor<int64_t>, 2nd dim. equal to 1) "
"2-D Tensor<int64_t>, or 2-D LoDTensor<int64_t> with last "
"dimension being 1. "
"The indices for reference strings."
);
"The indices for reference strings."
);
AddInput
(
"HypsLength"
,
"1-D Tensor<int64_t>. "
"Sequence length for hyps when hyps is a tensor"
)
.
AsDispensable
();
AddInput
(
"RefsLength"
,
"1-D Tensor<int64_t>. "
"Sequence length for refs when refs is a tensor"
)
.
AsDispensable
();
AddOutput
(
"SequenceNum"
,
"The sequence count of current batch"
);
AddOutput
(
"SequenceNum"
,
"The sequence count of current batch"
);
AddAttr
<
bool
>
(
"normalized"
,
AddAttr
<
bool
>
(
"normalized"
,
"(bool, default false) Indicated whether to normalize "
"(bool, default false) Indicated whether to normalize "
...
@@ -78,12 +106,11 @@ insertion:
...
@@ -78,12 +106,11 @@ insertion:
"kitten" -> "sitten" -> "sittin" -> "sitting"
"kitten" -> "sitten" -> "sittin" -> "sitting"
Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with the total
Input(Hyps) is a 2-D Tensor or a 2-D LoDTensor consisting of all the hypothesis strings.
number denoted by `batch_size`, and the separation is specified by the LoD information.
And the `batch_size` reference strings are arranged in order in the same way in the
And the `batch_size` reference strings are arranged in order in the same way in the
LoDTensor
Input(Refs).
Input(Refs).
Output(Out) contains the `batch_size` results and each stands for the edit stance
Output(Out) contains the `batch_size` results and each stands for the edit
di
stance
for a pair of strings respectively. If Attr(normalized) is true, the edit distance
for a pair of strings respectively. If Attr(normalized) is true, the edit distance
will be divided by the length of reference string.
will be divided by the length of reference string.
)DOC"
);
)DOC"
);
...
...
paddle/fluid/operators/edit_distance_op.cu
浏览文件 @
7c6f2350
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include <algorithm>
#include <algorithm>
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/edit_distance_op.h"
#include "paddle/fluid/operators/edit_distance_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/math_function.h"
...
@@ -76,20 +77,43 @@ class EditDistanceGPUKernel : public framework::OpKernel<T> {
...
@@ -76,20 +77,43 @@ class EditDistanceGPUKernel : public framework::OpKernel<T> {
auto
*
x2_t
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Refs"
);
auto
*
x2_t
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Refs"
);
auto
*
sequence_num
=
ctx
.
Output
<
framework
::
Tensor
>
(
"SequenceNum"
);
auto
*
sequence_num
=
ctx
.
Output
<
framework
::
Tensor
>
(
"SequenceNum"
);
sequence_num
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
sequence_num
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
auto
batch_size
=
x1_t
->
dims
()[
0
];
auto
normalized
=
ctx
.
Attr
<
bool
>
(
"normalized"
);
auto
normalized
=
ctx
.
Attr
<
bool
>
(
"normalized"
);
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
ctx
.
device_context
())
.
stream
();
.
stream
();
auto
hyp_lod
=
x1_t
->
lod
()[
0
];
framework
::
Vector
<
size_t
>
hyp_lod
(
batch_size
+
1
);
auto
ref_lod
=
x2_t
->
lod
()[
0
];
framework
::
Vector
<
size_t
>
ref_lod
(
batch_size
+
1
);
PADDLE_ENFORCE
(
hyp_lod
.
size
()
==
ref_lod
.
size
(),
bool
use_length
=
ctx
.
HasInput
(
"HypsLength"
);
"Input(Hyps) and Input(Refs) must have the same batch size."
);
for
(
size_t
i
=
1
;
i
<
ref_lod
.
size
();
++
i
)
{
if
(
use_length
)
{
PADDLE_ENFORCE
(
ref_lod
[
i
]
>
ref_lod
[
i
-
1
],
// build lod when using padding
"Reference string %d is empty."
,
i
);
auto
*
hyp_length
=
ctx
.
Input
<
framework
::
Tensor
>
(
"HypsLength"
);
auto
*
ref_length
=
ctx
.
Input
<
framework
::
Tensor
>
(
"RefsLength"
);
framework
::
Tensor
hyp_length_cpu
;
framework
::
Tensor
ref_length_cpu
;
framework
::
TensorCopy
(
*
hyp_length
,
platform
::
CPUPlace
(),
&
hyp_length_cpu
);
framework
::
TensorCopy
(
*
ref_length
,
platform
::
CPUPlace
(),
&
ref_length_cpu
);
for
(
auto
i
=
0
;
i
<
batch_size
;
i
++
)
{
hyp_lod
[
i
+
1
]
=
hyp_lod
[
i
]
+
hyp_length_cpu
.
data
<
int64_t
>
()[
i
];
ref_lod
[
i
+
1
]
=
ref_lod
[
i
]
+
ref_length_cpu
.
data
<
int64_t
>
()[
i
];
}
}
else
{
hyp_lod
=
x1_t
->
lod
()[
0
];
ref_lod
=
x2_t
->
lod
()[
0
];
}
if
(
normalized
)
{
for
(
size_t
i
=
1
;
i
<
ref_lod
.
size
();
++
i
)
{
PADDLE_ENFORCE
(
ref_lod
[
i
]
>
ref_lod
[
i
-
1
],
"Reference string %d is empty."
,
i
);
}
}
}
const
size_t
num_strs
=
hyp_lod
.
size
()
-
1
;
const
size_t
num_strs
=
hyp_lod
.
size
()
-
1
;
...
@@ -108,10 +132,6 @@ class EditDistanceGPUKernel : public framework::OpKernel<T> {
...
@@ -108,10 +132,6 @@ class EditDistanceGPUKernel : public framework::OpKernel<T> {
if
(
m
==
0
||
n
==
0
)
{
if
(
m
==
0
||
n
==
0
)
{
distance
=
std
::
max
(
m
,
n
);
distance
=
std
::
max
(
m
,
n
);
if
(
normalized
)
{
if
(
normalized
)
{
PADDLE_ENFORCE
(
n
>
0
,
"The reference string (#%d) cannot be empty "
"when Attr(normalized) is enabled."
,
n
);
distance
=
distance
/
n
;
distance
=
distance
/
n
;
}
}
memory
::
Copy
(
boost
::
get
<
Place
>
(
ctx
.
GetPlace
()),
out
+
num
,
memory
::
Copy
(
boost
::
get
<
Place
>
(
ctx
.
GetPlace
()),
out
+
num
,
...
@@ -121,14 +141,17 @@ class EditDistanceGPUKernel : public framework::OpKernel<T> {
...
@@ -121,14 +141,17 @@ class EditDistanceGPUKernel : public framework::OpKernel<T> {
dist_t
.
Resize
({
m
+
1
,
n
+
1
});
dist_t
.
Resize
({
m
+
1
,
n
+
1
});
dist_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dist_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dist
=
dist_t
.
data
<
T
>
();
auto
dist
=
dist_t
.
data
<
T
>
();
auto
x1
=
x1_t
->
data
<
int64_t
>
()
+
hyp_lod
[
num
];
auto
hyp_offset
=
use_length
?
num
*
x1_t
->
dims
()[
1
]
:
hyp_lod
[
num
];
auto
x2
=
x2_t
->
data
<
int64_t
>
()
+
ref_lod
[
num
];
auto
ref_offset
=
use_length
?
num
*
x2_t
->
dims
()[
1
]
:
ref_lod
[
num
];
auto
x1
=
x1_t
->
data
<
int64_t
>
()
+
hyp_offset
;
auto
x2
=
x2_t
->
data
<
int64_t
>
()
+
ref_offset
;
FillFirstColumn
<
T
><<<
1
+
m
/
PADDLE_CUDA_NUM_THREADS
,
FillFirstColumn
<
T
><<<
1
+
m
/
PADDLE_CUDA_NUM_THREADS
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
dist
,
m
,
n
);
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
dist
,
m
,
n
);
FillFirstRow
<
T
><<<
1
+
n
/
PADDLE_CUDA_NUM_THREADS
,
FillFirstRow
<
T
><<<
1
+
n
/
PADDLE_CUDA_NUM_THREADS
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
dist
,
n
);
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
dist
,
n
);
// Compute the elements of distance matrix in the anti-diagonal diretion
// Compute the elements of distance matrix in the anti-diagonal diretion
for
(
int64_t
slice
=
2
;
slice
<
m
+
n
+
1
;
++
slice
)
{
for
(
int64_t
slice
=
2
;
slice
<
m
+
n
+
1
;
++
slice
)
{
int
z_m
=
slice
<
m
+
1
?
0
:
slice
-
m
;
int
z_m
=
slice
<
m
+
1
?
0
:
slice
-
m
;
...
...
paddle/fluid/operators/edit_distance_op.h
浏览文件 @
7c6f2350
...
@@ -15,6 +15,7 @@ limitations under the License. */
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#pragma once
#include <algorithm>
#include <algorithm>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -29,17 +30,37 @@ class EditDistanceKernel : public framework::OpKernel<T> {
...
@@ -29,17 +30,37 @@ class EditDistanceKernel : public framework::OpKernel<T> {
auto
*
x2_t
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Refs"
);
auto
*
x2_t
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Refs"
);
auto
*
sequence_num
=
ctx
.
Output
<
framework
::
Tensor
>
(
"SequenceNum"
);
auto
*
sequence_num
=
ctx
.
Output
<
framework
::
Tensor
>
(
"SequenceNum"
);
int64_t
*
seq_num_data
=
sequence_num
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
int64_t
*
seq_num_data
=
sequence_num
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
auto
batch_size
=
x1_t
->
dims
()[
0
];
auto
normalized
=
ctx
.
Attr
<
bool
>
(
"normalized"
);
auto
normalized
=
ctx
.
Attr
<
bool
>
(
"normalized"
);
auto
hyp_lod
=
x1_t
->
lod
()[
0
];
framework
::
Vector
<
size_t
>
hyp_lod
(
batch_size
+
1
);
auto
ref_lod
=
x2_t
->
lod
()[
0
];
framework
::
Vector
<
size_t
>
ref_lod
(
batch_size
+
1
);
PADDLE_ENFORCE
(
hyp_lod
.
size
()
==
ref_lod
.
size
(),
bool
use_length
=
ctx
.
HasInput
(
"HypsLength"
);
"Input(Hyps) and Input(Refs) must have the same batch size."
);
for
(
size_t
i
=
1
;
i
<
ref_lod
.
size
();
++
i
)
{
if
(
use_length
)
{
PADDLE_ENFORCE
(
ref_lod
[
i
]
>
ref_lod
[
i
-
1
],
// build lod when using padding
"Reference string %d is empty."
,
i
);
auto
hyp_length_ptr
=
ctx
.
Input
<
framework
::
Tensor
>
(
"HypsLength"
)
->
data
<
int64_t
>
();
auto
ref_length_ptr
=
ctx
.
Input
<
framework
::
Tensor
>
(
"RefsLength"
)
->
data
<
int64_t
>
();
for
(
auto
i
=
0
;
i
<
batch_size
;
i
++
)
{
hyp_lod
[
i
+
1
]
=
hyp_lod
[
i
]
+
hyp_length_ptr
[
i
];
ref_lod
[
i
+
1
]
=
ref_lod
[
i
]
+
ref_length_ptr
[
i
];
}
}
else
{
hyp_lod
=
x1_t
->
lod
()[
0
];
ref_lod
=
x2_t
->
lod
()[
0
];
}
if
(
normalized
)
{
for
(
size_t
i
=
1
;
i
<
ref_lod
.
size
();
++
i
)
{
PADDLE_ENFORCE
(
ref_lod
[
i
]
>
ref_lod
[
i
-
1
],
"Reference string %d is empty."
,
i
);
}
}
}
auto
num_strs
=
hyp_lod
.
size
()
-
1
;
auto
num_strs
=
hyp_lod
.
size
()
-
1
;
*
seq_num_data
=
static_cast
<
int64_t
>
(
num_strs
);
*
seq_num_data
=
static_cast
<
int64_t
>
(
num_strs
);
...
@@ -62,8 +83,10 @@ class EditDistanceKernel : public framework::OpKernel<T> {
...
@@ -62,8 +83,10 @@ class EditDistanceKernel : public framework::OpKernel<T> {
dist_t
.
Resize
({
m
+
1
,
n
+
1
});
dist_t
.
Resize
({
m
+
1
,
n
+
1
});
dist_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dist_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dist
=
dist_t
.
data
<
T
>
();
auto
dist
=
dist_t
.
data
<
T
>
();
auto
x1
=
x1_t
->
data
<
int64_t
>
()
+
hyp_lod
[
num
];
auto
hyp_offset
=
use_length
?
num
*
x1_t
->
dims
()[
1
]
:
hyp_lod
[
num
];
auto
x2
=
x2_t
->
data
<
int64_t
>
()
+
ref_lod
[
num
];
auto
ref_offset
=
use_length
?
num
*
x2_t
->
dims
()[
1
]
:
ref_lod
[
num
];
auto
x1
=
x1_t
->
data
<
int64_t
>
()
+
hyp_offset
;
auto
x2
=
x2_t
->
data
<
int64_t
>
()
+
ref_offset
;
for
(
int64_t
i
=
0
;
i
<
m
+
1
;
++
i
)
{
for
(
int64_t
i
=
0
;
i
<
m
+
1
;
++
i
)
{
dist
[
i
*
(
n
+
1
)]
=
i
;
dist
[
i
*
(
n
+
1
)]
=
i
;
}
}
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
7c6f2350
...
@@ -5353,7 +5353,12 @@ def topk(input, k, name=None):
...
@@ -5353,7 +5353,12 @@ def topk(input, k, name=None):
return
values
,
indices
return
values
,
indices
def
edit_distance
(
input
,
label
,
normalized
=
True
,
ignored_tokens
=
None
):
def
edit_distance
(
input
,
label
,
normalized
=
True
,
ignored_tokens
=
None
,
input_length
=
None
,
label_length
=
None
):
"""
"""
Edit distance operator computes the edit distances between a batch of
Edit distance operator computes the edit distances between a batch of
hypothesis strings and their references. Edit distance, also called
hypothesis strings and their references. Edit distance, also called
...
@@ -5367,52 +5372,49 @@ def edit_distance(input, label, normalized=True, ignored_tokens=None):
...
@@ -5367,52 +5372,49 @@ def edit_distance(input, label, normalized=True, ignored_tokens=None):
"kitten" -> "sitten" -> "sittin" -> "sitting"
"kitten" -> "sitten" -> "sittin" -> "sitting"
The input is a LoDTensor consisting of all the hypothesis strings with
The input is a LoDTensor
/Tensor
consisting of all the hypothesis strings with
the total number denoted by `batch_size`, and the separation is specified
the total number denoted by `batch_size`, and the separation is specified
by the LoD information. And the `batch_size` reference strings are arranged
by the LoD information
or input_length
. And the `batch_size` reference strings are arranged
in order in the same way
in the input LoDTensor
.
in order in the same way
as `input`
.
The output contains the `batch_size` results and each stands for the edit
The output contains the `batch_size` results and each stands for the edit
distance for a pair of strings respectively. If Attr(normalized) is true,
distance for a pair of strings respectively. If Attr(normalized) is true,
the edit distance will be divided by the length of reference string.
the edit distance will be divided by the length of reference string.
Args:
Args:
input(Variable): The indices for hypothesis strings.
input(Variable): The indices for hypothesis strings
, it should have rank 2 and dtype int64
.
label(Variable): The indices for reference strings.
label(Variable): The indices for reference strings
, it should have rank 2 and dtype int64
.
normalized(bool, default True): Indicated whether to normalize the edit distance by
normalized(bool, default True): Indicated whether to normalize the edit distance by
the length of reference string.
the length of reference string.
ignored_tokens(list<int>, default None): Tokens that should be removed before
ignored_tokens(list<int>, default None): Tokens that should be removed before
calculating edit distance.
calculating edit distance.
name (str): The name of this layer. It is optional.
input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
Returns:
Returns:
Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
edit_distance_out(Variable): edit distance result in shape [batch_size, 1].
\n
sequence_num(Variable): sequence number in shape [].
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[1], dtype='int64')
y = fluid.layers.data(name='y', shape=[1], dtype='int64')
cost, _ = fluid.layers.edit_distance(input=x, label=y)
cpu = fluid.core.CPUPlace()
# using LoDTensor
exe = fluid.Executor(cpu)
x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
exe.run(fluid.default_startup_program())
y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
import numpy
# using Tensor
x_ = numpy.random.randint(5, size=(2, 1)).astype('int64')
x_seq_len = 5
y_ = numpy.random.randint(5, size=(2, 1)).astype('int64')
y_seq_len = 6
x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
print(x_)
y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
print(y_)
x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
x = fluid.create_lod_tensor(x_, [[2]], cpu)
distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
y = fluid.create_lod_tensor(y_, [[2]], cpu)
outs = exe.run(feed={'x':x, 'y':y}, fetch_list=[cost.name])
print(outs)
"""
"""
helper
=
LayerHelper
(
"edit_distance"
,
**
locals
())
helper
=
LayerHelper
(
"edit_distance"
,
**
locals
())
...
@@ -5435,13 +5437,17 @@ def edit_distance(input, label, normalized=True, ignored_tokens=None):
...
@@ -5435,13 +5437,17 @@ def edit_distance(input, label, normalized=True, ignored_tokens=None):
attrs
=
{
"tokens"
:
ignored_tokens
})
attrs
=
{
"tokens"
:
ignored_tokens
})
label
=
erased_label
label
=
erased_label
this_inputs
=
{
"Hyps"
:
[
input
],
"Refs"
:
[
label
]}
if
input_length
and
label_length
:
this_inputs
[
'HypsLength'
]
=
[
input_length
]
this_inputs
[
'RefsLength'
]
=
[
label_length
]
# edit distance op
# edit distance op
edit_distance_out
=
helper
.
create_variable_for_type_inference
(
dtype
=
"int64"
)
edit_distance_out
=
helper
.
create_variable_for_type_inference
(
dtype
=
"int64"
)
sequence_num
=
helper
.
create_variable_for_type_inference
(
dtype
=
"int64"
)
sequence_num
=
helper
.
create_variable_for_type_inference
(
dtype
=
"int64"
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"edit_distance"
,
type
=
"edit_distance"
,
inputs
=
{
"Hyps"
:
[
input
],
inputs
=
this_inputs
,
"Refs"
:
[
label
]},
outputs
=
{
"Out"
:
[
edit_distance_out
],
outputs
=
{
"Out"
:
[
edit_distance_out
],
"SequenceNum"
:
[
sequence_num
]},
"SequenceNum"
:
[
sequence_num
]},
attrs
=
{
"normalized"
:
normalized
})
attrs
=
{
"normalized"
:
normalized
})
...
...
python/paddle/fluid/tests/unittests/test_edit_distance_op.py
浏览文件 @
7c6f2350
...
@@ -89,27 +89,31 @@ class TestEditDistanceOpNormalizedCase0(OpTest):
...
@@ -89,27 +89,31 @@ class TestEditDistanceOpNormalizedCase0(OpTest):
def
reset_config
(
self
):
def
reset_config
(
self
):
pass
pass
def
post_config
(
self
):
pass
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"edit_distance"
self
.
op_type
=
"edit_distance"
normalized
=
True
normalized
=
True
x1
=
np
.
array
([[
10
,
3
,
6
,
5
,
8
,
2
]]).
astype
(
"int64"
)
self
.
x1
=
np
.
array
([[
10
,
3
,
6
,
5
,
8
,
2
]]).
astype
(
"int64"
)
x2
=
np
.
array
([[
10
,
4
,
6
,
7
,
8
]]).
astype
(
"int64"
)
self
.
x2
=
np
.
array
([[
10
,
4
,
6
,
7
,
8
]]).
astype
(
"int64"
)
x1
=
np
.
transpose
(
x1
)
x2
=
np
.
transpose
(
x2
)
self
.
x1_lod
=
[
3
,
0
,
3
]
self
.
x1_lod
=
[
3
,
0
,
3
]
self
.
x2_lod
=
[
2
,
1
,
2
]
self
.
x2_lod
=
[
2
,
1
,
2
]
self
.
x1
=
np
.
transpose
(
self
.
x1
)
self
.
x2
=
np
.
transpose
(
self
.
x2
)
self
.
reset_config
()
self
.
reset_config
()
num_strs
=
len
(
self
.
x1_lod
)
num_strs
=
len
(
self
.
x1_lod
)
distance
=
np
.
zeros
((
num_strs
,
1
)).
astype
(
"float32"
)
distance
=
np
.
zeros
((
num_strs
,
1
)).
astype
(
"float32"
)
sequence_num
=
np
.
array
(
3
).
astype
(
"int64"
)
sequence_num
=
np
.
array
(
num_strs
).
astype
(
"int64"
)
x1_offset
=
0
x1_offset
=
0
x2_offset
=
0
x2_offset
=
0
for
i
in
range
(
0
,
num_strs
):
for
i
in
range
(
0
,
num_strs
):
distance
[
i
]
=
Levenshtein
(
distance
[
i
]
=
Levenshtein
(
hyp
=
x1
[
x1_offset
:(
x1_offset
+
self
.
x1_lod
[
i
])],
hyp
=
self
.
x1
[
x1_offset
:(
x1_offset
+
self
.
x1_lod
[
i
])],
ref
=
x2
[
x2_offset
:(
x2_offset
+
self
.
x2_lod
[
i
])])
ref
=
self
.
x2
[
x2_offset
:(
x2_offset
+
self
.
x2_lod
[
i
])])
x1_offset
+=
self
.
x1_lod
[
i
]
x1_offset
+=
self
.
x1_lod
[
i
]
x2_offset
+=
self
.
x2_lod
[
i
]
x2_offset
+=
self
.
x2_lod
[
i
]
if
normalized
is
True
:
if
normalized
is
True
:
...
@@ -117,9 +121,14 @@ class TestEditDistanceOpNormalizedCase0(OpTest):
...
@@ -117,9 +121,14 @@ class TestEditDistanceOpNormalizedCase0(OpTest):
distance
[
i
]
=
distance
[
i
]
/
len_ref
distance
[
i
]
=
distance
[
i
]
/
len_ref
self
.
attrs
=
{
'normalized'
:
normalized
}
self
.
attrs
=
{
'normalized'
:
normalized
}
self
.
inputs
=
{
'Hyps'
:
(
x1
,
[
self
.
x1_lod
]),
'Refs'
:
(
x2
,
[
self
.
x2_lod
])}
self
.
inputs
=
{
'Hyps'
:
(
self
.
x1
,
[
self
.
x1_lod
]),
'Refs'
:
(
self
.
x2
,
[
self
.
x2_lod
])
}
self
.
outputs
=
{
'Out'
:
distance
,
'SequenceNum'
:
sequence_num
}
self
.
outputs
=
{
'Out'
:
distance
,
'SequenceNum'
:
sequence_num
}
self
.
post_config
()
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
()
...
@@ -136,5 +145,43 @@ class TestEditDistanceOpNormalizedCase2(TestEditDistanceOpNormalizedCase0):
...
@@ -136,5 +145,43 @@ class TestEditDistanceOpNormalizedCase2(TestEditDistanceOpNormalizedCase0):
self
.
x2_lod
=
[
2
,
2
,
1
]
self
.
x2_lod
=
[
2
,
2
,
1
]
class
TestEditDistanceOpNormalizedTensor
(
OpTest
):
def
reset_config
(
self
):
self
.
x1
=
np
.
array
([[
10
,
3
,
0
,
0
],
[
6
,
5
,
8
,
2
]],
dtype
=
np
.
int64
)
self
.
x2
=
np
.
array
([[
10
,
4
,
0
],
[
6
,
7
,
8
]],
dtype
=
np
.
int64
)
self
.
x1_lod
=
np
.
array
([
2
,
4
],
dtype
=
np
.
int64
)
self
.
x2_lod
=
np
.
array
([
2
,
3
],
dtype
=
np
.
int64
)
def
setUp
(
self
):
self
.
op_type
=
"edit_distance"
normalized
=
True
self
.
reset_config
()
num_strs
=
len
(
self
.
x1_lod
)
distance
=
np
.
zeros
((
num_strs
,
1
)).
astype
(
"float32"
)
sequence_num
=
np
.
array
(
num_strs
).
astype
(
"int64"
)
for
i
in
range
(
0
,
num_strs
):
distance
[
i
]
=
Levenshtein
(
hyp
=
self
.
x1
[
i
][
0
:
self
.
x1_lod
[
i
]],
ref
=
self
.
x2
[
i
][
0
:
self
.
x2_lod
[
i
]])
if
normalized
is
True
:
len_ref
=
self
.
x2_lod
[
i
]
distance
[
i
]
=
distance
[
i
]
/
len_ref
self
.
attrs
=
{
'normalized'
:
normalized
}
self
.
inputs
=
{
'Hyps'
:
self
.
x1
,
'Refs'
:
self
.
x2
,
'HypsLength'
:
self
.
x1_lod
,
'RefsLength'
:
self
.
x2_lod
}
self
.
outputs
=
{
'Out'
:
distance
,
'SequenceNum'
:
sequence_num
}
def
test_check_output
(
self
):
self
.
check_output
()
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录