nn.py 197.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#   Copyright (c ) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
16
#
D
dzhwinter 已提交
17 18 19
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
20
#
D
dzhwinter 已提交
21
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
22
#
D
dzhwinter 已提交
23 24 25 26 27
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
28
"""
29
All layers just related to the neural network.
Y
Yu Yang 已提交
30 31 32 33 34
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
35
from ..param_attr import ParamAttr
36 37 38
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
Y
yuyang18 已提交
39
import random
F
fengjiayi 已提交
40
from .. import unique_name
41
from functools import reduce
Y
Yu Yang 已提交
42 43

__all__ = [
Y
ying 已提交
44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
47
    'dynamic_lstmp',
G
guosheng 已提交
48
    'dynamic_gru',
Y
ying 已提交
49 50 51 52 53 54 55 56 57
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
58
    'conv3d',
Y
ying 已提交
59
    'sequence_pool',
60 61
    'sequence_softmax',
    'softmax',
Y
ying 已提交
62
    'pool2d',
Y
yuyang18 已提交
63
    'pool3d',
Y
ying 已提交
64 65 66
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
67
    'conv3d_transpose',
Y
ying 已提交
68 69 70 71 72 73
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
74
    'reduce_prod',
Y
ying 已提交
75 76 77 78
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
79 80
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
81 82
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
83
    'topk',
Y
ying 已提交
84 85
    'warpctc',
    'sequence_reshape',
86
    'transpose',
87
    'im2sequence',
88
    'nce',
W
weixing02 已提交
89
    'hsigmoid',
Q
Qiao Longfei 已提交
90
    'beam_search',
91
    'row_conv',
92
    'multiplex',
G
guosheng 已提交
93
    'layer_norm',
94 95
    'softmax_with_cross_entropy',
    'smooth_l1',
96
    'one_hot',
Y
Yu Yang 已提交
97
    'autoincreased_step_counter',
C
caoying03 已提交
98
    'reshape',
Y
yangyaming 已提交
99
    'lod_reset',
D
dragonwarrior 已提交
100
    'lrn',
G
guosheng 已提交
101
    'pad',
102
    'label_smooth',
103
    'roi_pool',
W
whs 已提交
104
    'dice_loss',
F
fengjiayi 已提交
105 106
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
107
    'resize_bilinear',
W
whs 已提交
108
    'gather',
109
    'random_crop',
Y
yuyang18 已提交
110 111 112
    'mean_iou',
    'relu',
    'log',
113
    'crop',
114
    'rank_loss',
115
    'flatten',
Y
Yu Yang 已提交
116 117 118 119 120 121 122 123
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
124
       use_mkldnn=False,
Y
Yu Yang 已提交
125
       act=None,
J
Jacek Czaja 已提交
126
       is_test=False,
127
       name=None):
Y
Yu Yang 已提交
128
    """
129
    **Fully Connected Layer**
Y
Yu Yang 已提交
130

131 132 133 134 135 136 137 138
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
139
    to the output as well.
C
caoying03 已提交
140

C
caoying03 已提交
141
    This process can be formulated as follows:
142 143 144

    .. math::

145
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
146 147 148

    In the above equation:

C
caoying03 已提交
149 150 151 152
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
153
    * :math:`Act`: The activation function.
C
caoying03 已提交
154
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
155 156

    Args:
R
ranqiu 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
172 173
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
174
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
175
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
176 177
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
178
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
179

180
    Returns:
F
fengjiayi 已提交
181
        Variable: The transformation result.
182 183

    Raises:
C
caoying03 已提交
184
        ValueError: If rank of the input tensor is less than 2.
185 186 187 188

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
189
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
190
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
191
    """
C
caoying03 已提交
192

C
caoying03 已提交
193
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
194 195 196 197

    dtype = helper.input_dtype()

    mul_results = []
198 199
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
200 201 202
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
203

Y
Yu Yang 已提交
204
        w = helper.create_parameter(
205 206
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
207
        helper.append_op(
208 209 210
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
211
            outputs={"Out": tmp},
M
mozga-intel 已提交
212 213
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
214 215 216 217
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
218
    else:
219 220
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
221 222 223 224
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
225 226 227 228
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
229 230


231 232 233
def embedding(input,
              size,
              is_sparse=False,
234
              is_distributed=False,
235 236 237
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
238
    """
239 240
    **Embedding Layer**

241
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
242 243
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
244 245 246

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
247 248

    Args:
249 250 251 252 253
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
254
        is_distributed(bool): Whether to run lookup table from remote parameter server.
255 256
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
257
            with zeros whenever lookup encounters it in :attr:`input`. If
258
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
259 260
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
261
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
262

263 264 265
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
266

267 268
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
269

C
chengduoZH 已提交
270
          dict_size = len(dataset.ids)
271
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
272
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
273 274 275 276 277 278
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
279 280
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
281 282 283 284 285
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
286 287 288 289 290
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
291 292 293
    return tmp


Y
yi.wu 已提交
294
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
295 296
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
297 298
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
299 300 301 302 303 304 305
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
306 307
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
308
    """
Y
yi.wu 已提交
309
    ${comment}
Y
Yibing Liu 已提交
310 311

    Args:
Y
yi.wu 已提交
312 313
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
314 315 316 317 318 319 320
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

321
        param_attr(ParamAttr|None): The parameter attribute for the learnable
322
                               hidden-hidden weights.
Y
Yibing Liu 已提交
323 324 325

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
326 327
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
328
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
329 330 331
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
332

333
                              1. `use_peepholes = False`
Y
yi.wu 已提交
334 335
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
336
                              2. `use_peepholes = True`
Y
yi.wu 已提交
337
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
338
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
339
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
340 341 342 343 344 345 346 347
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
348 349

    Returns:
Y
Yibing Liu 已提交
350 351
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
352

Y
Yibing Liu 已提交
353
    Examples:
Y
Yibing Liu 已提交
354 355
        .. code-block:: python

Y
Yibing Liu 已提交
356 357
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
358
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
359 360
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
361
    """
362

Y
Yu Yang 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
377 378 379 380 381 382 383 384 385 386
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
387 388 389

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
390
        inputs=inputs,
Y
Yu Yang 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
407 408 409 410 411 412 413 414 415 416 417
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
418 419
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
420 421 422
    """
    **Dynamic LSTMP Layer**

423 424 425 426 427 428
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
429 430 431 432 433

    The formula is as follows:

    .. math::

434
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
435

436
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
437

438
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
439

440
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
441

442
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
443

444
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
445

446
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
447

Y
Yibing Liu 已提交
448 449 450 451 452 453
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
454
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
455
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
456
          bias vector).
Y
Yibing Liu 已提交
457 458 459
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
460
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
461
    * :math:`h`: The hidden state.
462
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
463 464
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
465
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
466
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
467
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
468 469
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
470 471 472 473

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
474

Y
Yibing Liu 已提交
475 476 477 478 479 480 481 482 483 484 485 486
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
487
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
488 489
                               hidden-hidden weight and projection weight.

490 491
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
492 493
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
494 495
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
496 497
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
498 499 500 501 502 503
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
504
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
505 506 507
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
508
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
509 510 511 512 513 514 515 516 517
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
518
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
519 520
                              default "tanh".
        proj_activation(str): The activation for projection output.
521
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
522 523
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
524 525
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
526 527

    Returns:
528 529 530 531
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
532 533

    Examples:
534

Y
Yibing Liu 已提交
535 536
        .. code-block:: python

537 538 539 540
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
541
            hidden_dim, proj_dim = 512, 256
542
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
543
                                     act=None, bias_attr=None)
544 545 546
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
547 548 549 550
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
551
    """
552

Y
Yibing Liu 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
599 600 601 602 603 604 605 606 607
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
608
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
609

610
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
611
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
612

G
guosheng 已提交
613 614 615 616 617 618 619 620 621
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
622

G
guosheng 已提交
623
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
624

G
guosheng 已提交
625
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
626 627
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
628 629 630 631
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
632
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
633 634

    Args:
635 636
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
637
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
638
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
639 640
            is the hidden size.
        size(int): The dimension of the gru cell.
641
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
642 643
            hidden-hidden weight matrix. Note:

644
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
645
              :math:`D` is the hidden size.
646
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
647
              The first part are weights of the update gate and reset gate with
648
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
649
              candidate hidden state with shape :math:`(D \\times D)`.
650
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
651
            hidden-hidden bias.
652
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
653 654 655
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
656
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
657
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
658 659 660 661
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
662 663

    Returns:
G
guosheng 已提交
664
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
665
            and sequence length is the same with the input.
666

G
guosheng 已提交
667
    Examples:
668

G
guosheng 已提交
669 670
        .. code-block:: python

671 672 673 674
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
675
            hidden_dim = 512
676
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
677 678 679 680 681 682 683 684 685 686
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
687
    batch_size = input.shape[0]
G
guosheng 已提交
688 689 690
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
691 692 693
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
717 718 719
def gru_unit(input,
             hidden,
             size,
720 721
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
722
             activation='tanh',
723
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
724
    """
725
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
726

727 728
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
729

730
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
731

732
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
733

734
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
735 736

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
737 738 739
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
740 741
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

742 743
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
744 745 746
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
747 748 749 750 751

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
752 753
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
754 755 756 757
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
758

759 760 761 762 763 764
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
765

766
             # assuming we have x_t_data and prev_hidden of size=10
767
             x_t = fluid.layers.fc(input=x_t_data, size=30)
768 769
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
785 786
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
787

788 789 790 791
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
792
    # create bias
793
    if helper.bias_attr:
Y
Yu Yang 已提交
794 795 796
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
797
        inputs['Bias'] = bias
Y
Yu Yang 已提交
798 799 800

    helper.append_op(
        type='gru_unit',
801
        inputs=inputs,
Y
Yu Yang 已提交
802 803 804 805 806 807
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
808 809
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
810 811 812 813 814
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
815
@templatedoc()
816
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
817 818 819 820 821 822 823
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
824
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
825 826 827 828
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
829 830 831
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
832 833

    """
Y
Yu Yang 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
859
@templatedoc()
860
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
861 862 863 864 865
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
866

Y
yuyang18 已提交
867
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
868

Y
yuyang18 已提交
869 870 871
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
872
        Variable: ${viterbi_path_comment}
873

Y
yi.wu 已提交
874 875 876 877 878
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
879
    """
Y
Yu Yang 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
893
@templatedoc()
F
fengjiayi 已提交
894
def cos_sim(X, Y):
Y
Yu Yang 已提交
895
    """
Y
yi.wu 已提交
896 897 898
    ${comment}

    Args:
899 900
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
901

Y
yi.wu 已提交
902
    Returns:
903
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
904
    """
F
fengjiayi 已提交
905
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


919
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
920 921 922 923 924
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
925
    training. The dropout operator randomly sets (according to the given dropout
926 927 928 929
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
930 931
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
932 933 934 935 936 937 938
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
939 940

    Returns:
941
        Variable: A tensor variable is the shape with `x`.
942 943

    Examples:
944

945 946
        .. code-block:: python

947 948
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
949 950
    """

F
fengjiayi 已提交
951
    helper = LayerHelper('dropout', **locals())
952 953
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
954 955 956 957

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

958 959 960 961 962
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
963 964 965 966 967 968
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
969 970 971
    return out


F
fengjiayi 已提交
972
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
973
    """
Y
Yibing Liu 已提交
974 975
    **Cross Entropy Layer**

976 977 978
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
979 980

    1) One-hot cross-entropy:
F
fengjiayi 已提交
981
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
982

Y
Yibing Liu 已提交
983
        .. math::
Y
yangyaming 已提交
984

Y
Yibing Liu 已提交
985 986 987
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
988 989
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
990 991 992 993 994

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
995
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
996 997 998
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
999 1000
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1001
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1002

Y
Yibing Liu 已提交
1003
    Args:
Y
yangyaming 已提交
1004
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1005 1006 1007 1008
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1009
        label (Variable|list): the ground truth which is a 2-D tensor. When
1010 1011 1012 1013
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1014
        soft_label (bool): a flag indicating whether to
1015 1016
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
1017 1018 1019 1020 1021

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1022 1023 1024 1025 1026
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1027 1028 1029 1030 1031 1032

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1033
    """
F
fengjiayi 已提交
1034
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1035 1036 1037 1038 1039 1040
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1041
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1042 1043 1044
    return out


F
fengjiayi 已提交
1045
def square_error_cost(input, label):
Y
Yu Yang 已提交
1046
    """
1047 1048
    **Square error cost layer**

1049 1050
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1051

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1065 1066
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1067 1068

    Returns:
G
guosheng 已提交
1069
        Variable: The tensor variable storing the element-wise squared error \
1070
                  difference of input and label.
1071 1072 1073 1074 1075 1076 1077 1078

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1079
    """
F
fengjiayi 已提交
1080
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1090 1091
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1092 1093 1094
    return square_out


Y
yi.wu 已提交
1095
@templatedoc()
Y
Yu Yang 已提交
1096 1097 1098 1099
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1100
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1101
    """
Y
yi.wu 已提交
1102
    **Chunk Evaluator**
Y
yi.wu 已提交
1103

Y
yangyaming 已提交
1104
    This function computes and outputs the precision, recall and
1105
    F1-score of chunk detection.
Y
yi.wu 已提交
1106

Y
yi.wu 已提交
1107 1108 1109 1110 1111 1112 1113 1114
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1115

Y
yi.wu 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1141

Y
yi.wu 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1166
    Args:
1167 1168 1169 1170 1171
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1172

Y
yi.wu 已提交
1173
    Returns:
Y
update  
yi.wu 已提交
1174 1175 1176
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1177

Y
yi.wu 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1190
    """
F
fengjiayi 已提交
1191
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1192 1193 1194 1195 1196

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1197 1198 1199
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1200 1201 1202 1203 1204 1205 1206 1207

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1208 1209 1210 1211
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1212 1213 1214
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1215 1216
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1217
        })
1218 1219
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1220 1221


1222
@templatedoc()
Y
Yu Yang 已提交
1223 1224 1225 1226 1227 1228 1229
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1230
                  act=None):
Y
Yu Yang 已提交
1231 1232 1233 1234
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1245

1246 1247
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1273
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1274 1275 1276
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1277
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1297

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1320
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1321
    """
F
fengjiayi 已提交
1322 1323
    The input of the softmax operator is a tensor of any rank. The output tensor 
    has the same shape as the input.
Q
qiaolongfei 已提交
1324

F
fengjiayi 已提交
1325 1326 1327 1328 1329 1330 1331
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's 
    second dimension(row length) is as same as the last dimension of the input 
    tensor, and the first dimension(column length) is the product of all other 
    dimensions of the input tensor. For each row of the matrix, the softmax operator 
    squashes the K-dimensional(K is the width of the matrix, which is also the size 
    of the input tensor's last dimension) vector of arbitrary real values to a 
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1332 1333 1334 1335 1336 1337 1338

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1339
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1374 1375 1376
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1377 1378
           stride=1,
           padding=0,
1379
           dilation=1,
Y
Yu Yang 已提交
1380 1381 1382
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1383
           use_cudnn=True,
1384
           use_mkldnn=False,
1385 1386
           act=None,
           name=None):
Y
Yu Yang 已提交
1387
    """
C
chengduoZH 已提交
1388
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1389 1390
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1391
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1392 1393 1394 1395 1396 1397 1398
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1399 1400 1401
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1402

1403
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1404

C
chengduoZH 已提交
1405 1406
    .. math::

C
refine  
chengduoZH 已提交
1407
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1408

T
tensor-tang 已提交
1409
    Where:
C
chengduoZH 已提交
1410

1411 1412 1413 1414 1415
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1416
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1417 1418 1419

    Example:

1420 1421
        - Input:

W
weixing02 已提交
1422
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1423

W
weixing02 已提交
1424
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1425

1426
        - Output:
T
tensor-tang 已提交
1427

W
weixing02 已提交
1428
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1429

C
chengduoZH 已提交
1430
        Where
1431 1432

        .. math::
C
chengduoZH 已提交
1433

W
weixing02 已提交
1434 1435
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1436 1437

    Args:
1438
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1439
        num_filters(int): The number of filter. It is as same as the output
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1462 1463
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1464 1465 1466
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1467 1468

    Returns:
G
guosheng 已提交
1469
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1470 1471
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1472
    Raises:
1473 1474
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1475

C
chengduoZH 已提交
1476 1477 1478
    Examples:
        .. code-block:: python

1479 1480
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1481 1482 1483
    """

    num_channels = input.shape[1]
1484 1485

    l_type = 'conv2d'
X
xzl 已提交
1486 1487
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1488
        l_type = 'depthwise_conv2d'
1489 1490 1491 1492

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1493 1494 1495 1496 1497 1498 1499
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1500 1501 1502
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1503
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1504

C
chengduoZH 已提交
1505 1506
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1524
        type=l_type,
Y
Yu Yang 已提交
1525 1526 1527 1528 1529
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1530 1531 1532
        attrs={
            'strides': stride,
            'paddings': padding,
1533
            'dilations': dilation,
C
chengduoZH 已提交
1534
            'groups': groups,
1535 1536
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1537
        })
Y
Yu Yang 已提交
1538 1539 1540 1541 1542 1543

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1562 1563 1564 1565 1566 1567
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1577 1578
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1579 1580 1581
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1582
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1608
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1609 1610
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1611
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1612 1613
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1614
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1615 1616
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1617
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1644 1645
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1701
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1702 1703 1704 1705

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1706
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1707
    """
Y
yangyaming 已提交
1708 1709 1710
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1722
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1723 1724 1725 1726 1727
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1728
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1729 1730 1731 1732 1733 1734 1735

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1736 1737
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1738

L
Luo Tao 已提交
1739 1740
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1741
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1742 1743 1744 1745 1746 1747 1748 1749
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1750

Y
yangyaming 已提交
1751
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1752 1753 1754 1755 1756
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1757 1758
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1759
    """
F
fengjiayi 已提交
1760
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1772 1773 1774 1775 1776
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1777 1778 1779
    return pool_out


F
fengjiayi 已提交
1780
def sequence_first_step(input):
L
Luo Tao 已提交
1781
    """
L
Luo Tao 已提交
1782
    This function gets the first step of sequence.
L
Luo Tao 已提交
1783 1784 1785 1786

    .. code-block:: text

       x is a 1-level LoDTensor:
1787
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1788 1789 1790 1791 1792
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1793
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1794
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1795

L
Luo Tao 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1805

Y
yangyaming 已提交
1806
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1807 1808 1809
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1810 1811 1812
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1813
def sequence_last_step(input):
L
Luo Tao 已提交
1814
    """
L
Luo Tao 已提交
1815
    This function gets the last step of sequence.
L
Luo Tao 已提交
1816 1817 1818 1819

    .. code-block:: text

       x is a 1-level LoDTensor:
1820
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1821 1822 1823 1824 1825
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1826
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1827
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1828

L
Luo Tao 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1838

Y
yangyaming 已提交
1839
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1840 1841 1842
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1843 1844 1845
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1846
@templatedoc()
Y
Yu Yang 已提交
1847
def pool2d(input,
C
chengduoZH 已提交
1848 1849
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1850 1851
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1852
           global_pooling=False,
C
chengduoZH 已提交
1853
           use_cudnn=True,
1854
           ceil_mode=False,
1855
           use_mkldnn=False,
C
caoying03 已提交
1856
           name=None):
Y
Yu Yang 已提交
1857
    """
F
fengjiayi 已提交
1858
    ${comment}
1859 1860

    Args:
1861 1862 1863
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1864
                          feature, and W is the width of the feature.
1865
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1866
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1867
        pool_type: ${pooling_type_comment}
1868 1869
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1870 1871 1872 1873
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1874
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1875 1876
                        layer will be named automatically.

1877
    Returns:
F
fengjiayi 已提交
1878
        Variable: The pooling result.
F
fengjiayi 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1892 1893 1894 1895
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1896
                            global_pooling=False)
Y
Yu Yang 已提交
1897 1898 1899 1900 1901
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1902

C
chengduoZH 已提交
1903 1904 1905 1906 1907
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1908 1909 1910 1911
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1912 1913
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1914

C
Add doc  
chengduoZH 已提交
1915
    l_type = 'pool2d'
1916 1917

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1918 1919 1920 1921
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1951
    pooling configurations mentioned in input parameters.
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1965

1966
    Returns:
1967
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1968 1969 1970 1971 1972
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1973

C
chengduoZH 已提交
1974 1975 1976 1977 1978
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1979 1980 1981
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1982

C
chengduoZH 已提交
1983 1984
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1985

1986 1987
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1988 1989 1990 1991
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1992
        type=l_type,
Y
Yu Yang 已提交
1993 1994 1995 1996 1997 1998 1999
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2000
            "paddings": pool_padding,
2001
            "use_cudnn": use_cudnn,
2002 2003
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2016
               data_layout='NCHW',
Y
Yang Yang 已提交
2017
               in_place=False,
2018
               use_mkldnn=False,
2019 2020
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2021
               moving_variance_name=None,
2022 2023
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2024
    """
Q
qiaolongfei 已提交
2025 2026 2027 2028
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2029

Q
qiaolongfei 已提交
2030
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2031

Q
qiaolongfei 已提交
2032 2033
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2034 2035 2036
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2049 2050

    Args:
Q
qiaolongfei 已提交
2051
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2052 2053 2054 2055
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2056 2057 2058
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
Q
qiaolongfei 已提交
2059
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2060 2061 2062 2063 2064
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2065
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2066
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2067 2068

    Returns:
Q
qiaolongfei 已提交
2069
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2070 2071 2072 2073 2074 2075 2076

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2100
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2101

2102 2103
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2104 2105 2106
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2107
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2108
        shape=param_shape,
2109 2110 2111 2112 2113 2114 2115
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2116
            trainable=False,
W
wanghaoshuang 已提交
2117
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2118
        shape=param_shape,
2119 2120
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2121 2122 2123 2124 2125 2126

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2127 2128
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2129

Y
Yang Yang 已提交
2130
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2148 2149 2150 2151
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2152 2153
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2154
        })
Y
Yu Yang 已提交
2155 2156 2157 2158

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2159
@templatedoc()
G
guosheng 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2170
    ${comment}
G
guosheng 已提交
2171 2172 2173

    The formula is as follows:

Y
yuyang18 已提交
2174
    ..  math::
G
guosheng 已提交
2175 2176 2177 2178 2179 2180 2181

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2182 2183 2184 2185 2186 2187 2188 2189
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2190

G
guosheng 已提交
2191 2192
    Args:
        input(Variable): The input tensor variable.
2193
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2194
            normalization.
2195
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2196
            normalization.
2197
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2198
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2199
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2200 2201 2202 2203 2204 2205
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2206
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2207 2208

    Returns:
Y
yuyang18 已提交
2209
        ${y_comment}
G
guosheng 已提交
2210 2211 2212

    Examples:

Y
yuyang18 已提交
2213 2214 2215
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2231
    if shift:
G
guosheng 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2256 2257 2258 2259
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2260 2261 2262
                     padding=0,
                     stride=1,
                     dilation=1,
2263
                     groups=None,
C
caoying03 已提交
2264
                     param_attr=None,
2265
                     bias_attr=None,
C
chengduoZH 已提交
2266
                     use_cudnn=True,
2267
                     act=None,
C
caoying03 已提交
2268
                     name=None):
Y
Yu Yang 已提交
2269
    """
2270 2271 2272 2273 2274 2275 2276 2277
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2278 2279
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2280 2281 2282
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2283 2284 2285 2286 2287

    For each input :math:`X`, the equation is:

    .. math::

2288
        Out = \sigma (W \\ast X + b)
2289

2290
    Where:
2291 2292 2293

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2294 2295 2296 2297
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2298

2299 2300 2301 2302
    Example:

        - Input:

2303
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2304

2305
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2306 2307 2308

        - Output:

2309
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2310 2311

        Where
Y
Yu Yang 已提交
2312

2313 2314 2315 2316
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2317 2318

    Args:
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2352 2353

    Returns:
2354
        Variable: The tensor variable storing the convolution transpose result.
2355 2356

    Raises:
2357 2358
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2359 2360 2361 2362

    Examples:
       .. code-block:: python

2363 2364
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2365
    """
2366 2367 2368 2369 2370 2371 2372 2373 2374

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2375 2376 2377
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2378 2379 2380
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2381

C
chengduoZH 已提交
2382 2383
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2384

Y
Yu Yang 已提交
2385 2386 2387 2388 2389
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2390

Y
Yu Yang 已提交
2391 2392
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2393

C
chengduoZH 已提交
2394 2395 2396 2397
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
2398
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2399 2400 2401
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2402

2403 2404
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2405 2406 2407
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2408
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2409
    helper.append_op(
2410
        type=op_type,
Y
Yu Yang 已提交
2411 2412
        inputs={'Input': [input],
                'Filter': [img_filter]},
2413
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2414
        attrs={
2415 2416 2417 2418 2419
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2420 2421
        })

2422 2423 2424
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2425 2426


2427
def conv3d_transpose(input,
Y
Yu Yang 已提交
2428 2429 2430
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2431 2432 2433
                     padding=0,
                     stride=1,
                     dilation=1,
2434
                     groups=None,
C
caoying03 已提交
2435
                     param_attr=None,
2436
                     bias_attr=None,
C
chengduoZH 已提交
2437
                     use_cudnn=True,
2438
                     act=None,
C
caoying03 已提交
2439
                     name=None):
Y
Yu Yang 已提交
2440
    """
2441
    **Convlution3D transpose layer**
2442

2443
    The convolution3D transpose layer calculates the output based on the input,
2444
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2445 2446 2447 2448 2449 2450
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2451 2452 2453
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2454 2455 2456 2457 2458

    For each input :math:`X`, the equation is:

    .. math::

2459
        Out = \sigma (W \\ast X + b)
2460 2461 2462

    In the above equation:

2463 2464
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2465 2466 2467 2468
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2469

2470 2471 2472 2473
    Example:

        - Input:

2474
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2475

2476
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2477 2478 2479

        - Output:

2480
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2481 2482

        Where
Y
Yu Yang 已提交
2483

2484 2485
        .. math::

2486 2487 2488
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2489 2490

    Args:
2491
        input(Variable): The input image with [N, C, D, H, W] format.
2492 2493 2494
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2495
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2496 2497
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2498
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2499 2500 2501
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2502 2503
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2504
        stride(int|tuple): The stride size. If stride is a tuple, it must
2505 2506
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2507
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2508 2509 2510
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2511 2512 2513 2514 2515
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2516 2517 2518
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2519 2520 2521 2522 2523
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2524 2525

    Returns:
2526
        Variable: The tensor variable storing the convolution transpose result.
2527 2528

    Raises:
2529 2530
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2531 2532 2533 2534

    Examples:
       .. code-block:: python

2535 2536
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2537
    """
2538 2539
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2540
    if not isinstance(input, Variable):
2541
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2542 2543
    input_channel = input.shape[1]

2544 2545 2546
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2547

C
chengduoZH 已提交
2548 2549 2550
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2551 2552 2553 2554 2555 2556
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2557 2558 2559
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2560

2561
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
C
chengduoZH 已提交
2562
                         padding[0] - 1) / dilation[0] + 1
2563
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
C
chengduoZH 已提交
2564
                         padding[1] - 1) / dilation[1] + 1
2565 2566 2567
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
                         padding[2] - 1) / dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2568
    else:
2569 2570
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2571

2572 2573
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2574 2575 2576
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2577
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2578
    helper.append_op(
2579
        type=l_type,
Y
Yu Yang 已提交
2580 2581
        inputs={'Input': [input],
                'Filter': [img_filter]},
2582
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2583 2584 2585 2586
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2587
            'groups': groups,
C
chengduoZH 已提交
2588 2589
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2590

2591 2592
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2593
    return out
Y
yangyaming 已提交
2594 2595


Y
yangyaming 已提交
2596
def sequence_expand(x, y, ref_level=-1, name=None):
2597
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2598 2599 2600 2601
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2602 2603 2604 2605 2606

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2607
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2608
                x.data = [[a], [b], [c], [d]]
2609 2610 2611
                x.dims = [4, 1]

            y is a LoDTensor:
2612 2613
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2614

Y
yangyaming 已提交
2615
            ref_level: 0
2616

Y
yangyaming 已提交
2617
            then output is a 1-level LoDTensor:
2618
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2619
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2620 2621 2622 2623
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2624
                x.data = [[a], [b], [c]]
2625 2626 2627
                x.dims = [3, 1]

            y is a LoDTensor:
2628
                y.lod = [[2, 0, 3]]
2629

Y
yangyaming 已提交
2630
            ref_level: -1
2631

Y
yangyaming 已提交
2632 2633 2634
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2635 2636 2637
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2638 2639
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2640
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2641
                        will be named automatically.
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2652
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2653
    """
Y
yangyaming 已提交
2654
    helper = LayerHelper('sequence_expand', input=x, **locals())
2655 2656 2657
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2658 2659 2660 2661 2662
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2663
    return tmp
2664 2665


2666 2667 2668 2669 2670 2671 2672 2673 2674
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2675 2676
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2677 2678 2679

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
2680 2681 2682 2683 2684 2685 2686 2687
    
    This layer does the search in beams for one time step. Specifically, it 
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
2688 2689 2690 2691 2692 2693 2694 2695 2696
 
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2697

2698
    Args:
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2724

2725
    Returns:
2726 2727
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2728 2729 2730 2731

    Examples:
        .. code-block:: python

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2760
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2778 2779 2780 2781 2782 2783 2784
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2785

2786 2787 2788 2789 2790 2791 2792 2793 2794
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2795

2796 2797 2798 2799 2800 2801
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2802

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2828 2829 2830 2831
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2832
              param_attr=None,
C
caoying03 已提交
2833 2834
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2835 2836 2837 2838
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2839
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2840

2841
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2842

2843
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2844

2845
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2846 2847 2848

            h_t & = o_t tanh(c_t)

2849 2850 2851 2852 2853 2854
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2855 2856 2857

        .. math::

2858
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2859 2860 2861 2862 2863 2864 2865 2866

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2867
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2868 2869

    Args:
Y
yangyaming 已提交
2870 2871 2872 2873 2874 2875
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2876
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2877 2878
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2879 2880
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2881 2882
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2883 2884

    Returns:
Y
yangyaming 已提交
2885
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2886 2887

    Raises:
2888 2889 2890 2891
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2892 2893 2894 2895 2896 2897

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2898
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2899
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2900
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2917
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2918 2919 2920 2921
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2922 2923
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2924 2925 2926
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2927
    size = cell_t_prev.shape[1]
2928
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2929 2930
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2931
                param_attr=param_attr,
2932
                bias_attr=bias_attr)
Y
yangyaming 已提交
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2945
    return h, c
G
guosheng 已提交
2946 2947


C
caoying03 已提交
2948
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2949
    """
Y
yangyaming 已提交
2950
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2951 2952 2953

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2954
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2955 2956
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2957 2958
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2959
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2960
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2961
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2962 2963
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2964 2965 2966

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2967

G
guosheng 已提交
2968 2969 2970 2971 2972 2973
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
2974
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
2975 2976 2977 2978
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2979 2980 2981 2982

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
2983
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
2984 2985 2986
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2987 2988 2989
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2990 2991
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2992 2993 2994 2995 2996
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2997
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2998 2999 3000 3001
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3002 3003


C
caoying03 已提交
3004
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3005
    """
Y
Yibing Liu 已提交
3006
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3007 3008 3009

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3010 3011 3012
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3013
            must be in the range :math:`[-rank(input), rank(input))`. If
3014
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3015
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3016 3017
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3018
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3019
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3020
                       will be named automatically.
G
guosheng 已提交
3021 3022

    Returns:
Y
Yibing Liu 已提交
3023
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3024

G
guosheng 已提交
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3035 3036
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3037 3038 3039 3040 3041 3042 3043

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3044 3045 3046
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3047 3048
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3049 3050 3051 3052 3053
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3054
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3055 3056 3057 3058
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3059 3060


C
caoying03 已提交
3061
def reduce_max(input, dim=None, keep_dim=False, name=None):
3062
    """
Y
yangyaming 已提交
3063
    Computes the maximum of tensor elements over the given dimension.
3064 3065 3066

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3067
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3068 3069 3070
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3071
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3072 3073
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3074
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3075 3076
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3077 3078 3079

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3080

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3092 3093 3094 3095 3096 3097 3098

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3099 3100 3101
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3102 3103
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3104 3105 3106 3107 3108
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3109
            'dim': dim if dim != None else [0],
3110 3111 3112 3113 3114 3115
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3116
def reduce_min(input, dim=None, keep_dim=False, name=None):
3117
    """
Y
yangyaming 已提交
3118
    Computes the minimum of tensor elements over the given dimension.
3119 3120 3121

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3122
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3123 3124 3125
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3126
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3127 3128
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3129
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3130 3131
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3132 3133 3134

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3135

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3147 3148 3149 3150 3151 3152 3153

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3154 3155 3156
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3157 3158
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3159 3160 3161 3162 3163
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3164
            'dim': dim if dim != None else [0],
3165 3166 3167 3168
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3169 3170


3171 3172 3173 3174 3175 3176
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3177
        dim (list|int|None): The dimensions along which the product is performed. If
3178 3179
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3180 3181
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3182 3183 3184
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3185
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3186
            layer will be named automatically.
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3201
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3202
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3203 3204 3205 3206 3207 3208 3209

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3210 3211 3212
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3213 3214
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3215 3216 3217 3218 3219
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3220
            'dim': dim if dim != None else [0],
3221 3222 3223 3224 3225 3226
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3227
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3228
    """
C
caoying03 已提交
3229
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3230 3231 3232

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3233 3234 3235 3236 3237
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3238
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3239
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3240
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3241 3242
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3243 3244

    Returns:
D
dzhwinter 已提交
3245
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3246 3247 3248 3249 3250 3251 3252 3253 3254

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3255 3256
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3286 3287 3288 3289 3290 3291 3292 3293 3294


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3295
    .. math::
3296 3297

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3298 3299 3300 3301 3302

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3303
        x(Variable|list): The input tensor to l2_normalize layer.
3304
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3305 3306
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3307
        epsilon(float): The epsilon value is used to avoid division by zero, \
3308
            the defalut value is 1e-10.
3309
        name(str|None): A name for this layer(optional). If set None, the layer \
3310
            will be named automatically.
C
caoying03 已提交
3311 3312

    Returns:
3313
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3314 3315

    Examples:
3316

C
caoying03 已提交
3317 3318
        .. code-block:: python

3319 3320 3321 3322
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3323 3324
    """

F
fengjiayi 已提交
3325 3326
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3327 3328
    helper = LayerHelper("l2_normalize", **locals())

3329 3330
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3331
    helper.append_op(
3332 3333 3334 3335
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3336
        attrs={
3337 3338
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3339 3340
        })
    return out
3341 3342


3343
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3344
    """
Y
ying 已提交
3345 3346 3347 3348
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3349

C
chengduoZH 已提交
3350
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3351
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3352

3353 3354 3355 3356 3357
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3358
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3359

C
chengduoZH 已提交
3360
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3361
      performs in the following way.
G
guosheng 已提交
3362

3363
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3364
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3365
        last two dimensions and a batched matrix multiply supporting broadcast
3366
        applies on the two tensors.
G
guosheng 已提交
3367

Y
ying 已提交
3368 3369
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3370
    removed after matrix multiplication.
G
guosheng 已提交
3371 3372 3373

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3374 3375 3376
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3377
        name(str|None): A name for this layer(optional). If set None, the layer
3378
            will be named automatically.
G
guosheng 已提交
3379 3380

    Returns:
3381
        Variable: The product Tensor variable.
G
guosheng 已提交
3382

G
guosheng 已提交
3383 3384 3385
    Examples:
        .. code-block:: python

3386
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3387 3388
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3389

3390 3391
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3392

3393 3394
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3395

3396 3397
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3398 3399 3400 3401

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3402 3403
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3404

Y
ying 已提交
3405
            # x: [M], y: [N]
3406
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3407
    """
Y
ying 已提交
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3420
            y_shape = y_shape + [1]
Y
ying 已提交
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3437
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3438
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3439
    helper.append_op(
3440 3441 3442 3443 3444 3445 3446
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3447 3448


3449
def topk(input, k, name=None):
Q
qingqing01 已提交
3450 3451 3452 3453
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3454
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3455 3456 3457 3458 3459 3460
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3482 3483 3484
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3485
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3486
                 of input.
3487
        name(str|None): A name for this layer(optional). If set None, the layer
3488
                       will be named automatically.
F
fengjiayi 已提交
3489
                       Default: None
Q
qingqing01 已提交
3490 3491

    Returns:
3492 3493 3494
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3495
        within the last dimension of input.
Q
qingqing01 已提交
3496

F
fengjiayi 已提交
3497 3498
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3499 3500 3501 3502 3503 3504 3505

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3506
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3524
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3525
    """
Y
ying 已提交
3526 3527 3528 3529 3530 3531 3532 3533 3534
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3535

Y
ying 已提交
3536
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3537

3538
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3539 3540
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3541
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3542

3543
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3544 3545
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3546

3547 3548 3549
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3550
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3551
                          the length of reference string.
3552
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3553
                                     calculating edit distance.
3554
        name (str): The name of this layer. It is optional.
3555

W
wanghaoshuang 已提交
3556
    Returns:
W
wanghaoshuang 已提交
3557
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3558 3559 3560 3561 3562

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3563
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3564
            cost = fluid.layers.edit_distance(input=x,label=y)
3565
    """
3566
    helper = LayerHelper("edit_distance", **locals())
3567

3568
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3569
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3570 3571 3572 3573 3574 3575 3576
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3577
            attrs={"tokens": ignored_tokens})
3578 3579 3580 3581 3582
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3583
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3584
            attrs={"tokens": ignored_tokens})
3585 3586
        label = erased_label

3587 3588
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3589
    sequence_num = helper.create_tmp_variable(dtype="int64")
3590 3591 3592 3593
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3594 3595
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3596 3597
        attrs={"normalized": normalized})

3598
    return edit_distance_out, sequence_num
3599 3600 3601 3602 3603


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3604

Y
ying 已提交
3605 3606 3607 3608
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3626
        input.lod = [[4, 4]]
3627 3628 3629 3630 3631 3632 3633

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3634
        output.lod = [[2, 1]]
3635 3636 3637

    Args:

Y
ying 已提交
3638 3639 3640 3641 3642 3643 3644 3645 3646
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3647
        name (str): The name of this layer. It is optional.
3648 3649

    Returns:
3650
        Variable: CTC greedy decode result. If all the sequences in result were
3651
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3652 3653 3654 3655 3656

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3657

3658
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3659
    """
3660
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3661
    _, topk_indices = topk(input, k=1)
3662 3663 3664 3665 3666 3667

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3668
        outputs={"Output": [ctc_out]},
3669 3670
        attrs={"merge_repeated": True,
               "blank": blank})
3671
    return ctc_out
3672 3673


F
fengjiayi 已提交
3674
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3675
    """
3676 3677
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3678
    to compute Connectionist Temporal Classification (CTC) loss.
3679 3680
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3681 3682 3683
    input tensor.

    Args:
3684
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3685 3686 3687 3688
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3689
       label (Variable): The ground truth of variable-length sequence,
3690 3691 3692
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3693 3694
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3695 3696 3697
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3698
         follewed by a mean_op.
W
wanghaoshuang 已提交
3699 3700

    Returns:
3701 3702
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3703 3704

    Examples:
3705

W
wanghaoshuang 已提交
3706
        .. code-block:: python
3707

3708 3709 3710
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3711 3712

    """
F
fengjiayi 已提交
3713
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3740 3741 3742
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3743 3744 3745 3746 3747
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3748

3749
            out.lod  = [[0, 1, 3]]
3750 3751 3752 3753

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3754 3755 3756 3757 3758 3759 3760
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3761 3762 3763

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3764 3765

    Returns:
3766

3767 3768 3769 3770 3771
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3772
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3773
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3774 3775 3776 3777 3778 3779 3780 3781 3782
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3783 3784


3785 3786 3787 3788
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3789 3790 3791 3792 3793 3794 3795
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3796 3797 3798 3799 3800 3801 3802
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3803 3804
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3805
            sample is 1.0.
3806 3807 3808
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3809

3810
    Returns:
Y
Yibing Liu 已提交
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3838
    """
Y
Yang Yu 已提交
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3883
    return cost / (num_neg_samples + 1)
3884 3885


G
guosheng 已提交
3886
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3887 3888 3889
    """
    The hierarchical sigmoid operator is used to accelerate the training
    process of language model. This operator organizes the classes into a 
G
guosheng 已提交
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
    
W
weixing02 已提交
3900
    Args:
G
guosheng 已提交
3901 3902 3903 3904 3905 3906
        input (Variable): The input tensor variable with shape 
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3907 3908 3909
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter 
G
guosheng 已提交
3910 3911
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
3912 3913 3914 3915 3916 3917 3918 3919

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
3920 3921 3922
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
3923 3924 3925 3926 3927 3928 3929 3930
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
3931
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
3932 3933 3934 3935 3936
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
3937 3938 3939 3940 3941 3942 3943 3944
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
3945 3946
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
3947
        inputs=inputs,
W
weixing02 已提交
3948 3949 3950 3951 3952 3953
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
3954
def transpose(x, perm, name=None):
Y
ying 已提交
3955 3956 3957 3958 3959 3960 3961
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3962 3963 3964
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3965 3966 3967 3968 3969 3970 3971 3972

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3973
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3974 3975
    """

Y
fix ci.  
ying 已提交
3976
    if len(perm) != len(x.shape):
Y
ying 已提交
3977 3978 3979
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3980 3981 3982 3983 3984 3985
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3986 3987

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3988
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3989 3990
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3991
        inputs={'X': [x]},
Y
ying 已提交
3992 3993 3994
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3995 3996


3997 3998 3999 4000 4001 4002 4003
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4004
    """
4005 4006 4007 4008 4009 4010 4011
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4040 4041 4042 4043 4044 4045 4046 4047 4048
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4049 4050 4051
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4052 4053 4054 4055 4056
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4084 4085 4086
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4099
            output.dims = {8, 8}
4100

4101
            output.lod = [[4, 4]]
4102

D
dzhwinter 已提交
4103
     Examples:
4104 4105 4106

        .. code-block:: python

4107 4108
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4109 4110

    """
W
wanghaoshuang 已提交
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4121 4122 4123 4124 4125 4126 4127
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4128
    helper = LayerHelper('im2sequence', **locals())
4129 4130
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4131
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4132
    return out
4133 4134


Y
yuyang18 已提交
4135
@templatedoc()
4136
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4137 4138
    """
    ${comment}
4139 4140

    Args:
Y
yuyang18 已提交
4141
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4142 4143
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4144 4145 4146 4147 4148
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4149
        ${out_comment}.
4150 4151

    Examples:
Y
yuyang18 已提交
4152 4153 4154 4155
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4168
    return helper.append_activation(out)
4169 4170


Y
yuyang18 已提交
4171
@templatedoc()
4172 4173
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4174 4175 4176 4177 4178 4179 4180
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4181 4182

    Args:
Y
yuyang18 已提交
4183 4184
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4185 4186

    Returns:
Y
yuyang18 已提交
4187
        ${out_comment}.
4188 4189
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4190 4191 4192 4193 4194 4195

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4196 4197 4198 4199 4200 4201
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4202 4203 4204 4205 4206


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4207

4208 4209 4210 4211
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4212

4213 4214 4215
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4216

4217 4218 4219
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4220

4221
    The equation is as follows:
4222

4223
    1) Hard label (one-hot label, so every sample has exactly one class)
4224

4225 4226 4227 4228
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4229

4230 4231 4232
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4233

4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4255 4256
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4273 4274
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4275
    For each instance, it computes the smooth L1 loss element by element first
4276
    and then sums all the losses. So the shape of ouput Variable is
4277
    [batch_size, 1].
4278

4279 4280
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4281
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4282
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4283
            L1 loss op with same shape as :attr:`x`.
4284
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4285 4286
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4287
            by this tensor element by element.
4288
        outside_weight (Variable|None): A tensor with rank at least 2. This
4289 4290
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4291
            element by element.
4292
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4293 4294
           scalar with default value 1.0.

4295
    Returns:
4296
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4297 4298 4299 4300 4301

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4302 4303
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4304
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4305
            out = fluid.layers.smooth_l1(x=fc, y=label)
4306
    """
4307

4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4323 4324 4325 4326


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4327
    This layer creates the one-hot representations for input indices.
4328 4329

    Args:
Y
Yibing Liu 已提交
4330 4331
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4332 4333

    Returns:
Y
Yibing Liu 已提交
4334
        Variable: The one-hot representations of input.
4335 4336

    Examples:
C
caoying03 已提交
4337
        .. code-block:: python
4338

Y
Yibing Liu 已提交
4339 4340
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4341 4342 4343 4344 4345 4346 4347 4348 4349
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4350 4351


Y
Yu Yang 已提交
4352
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4353
    """
Y
yi.wu 已提交
4354 4355 4356
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4357 4358 4359 4360 4361 4362

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4363 4364
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4365 4366 4367 4368 4369 4370

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4371 4372
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4373 4374
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4375 4376 4377 4378 4379
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4380
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4381
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4382 4383
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4384 4385
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4386 4387 4388
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4389 4390


4391
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4392
    """
C
caoying03 已提交
4393 4394
    Gives a new shape to the input Tensor without changing its data.

4395 4396 4397 4398 4399
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4400

4401
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4402

4403 4404 4405 4406
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4407
    2. 0 means the actual dimension value is going to be copied from the
4408 4409 4410 4411
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4412 4413

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4414
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4415
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4416

4417
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4418 4419
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4420 4421
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4422
    dimensions.
C
caoying03 已提交
4423

4424
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4425 4426 4427 4428
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4429 4430

    Args:
4431
        x(variable): The input tensor.
C
caoying03 已提交
4432 4433
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4434 4435 4436 4437 4438
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4439
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4440 4441 4442 4443
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4444
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4445

4446 4447
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4448

X
Xin Pan 已提交
4449 4450 4451
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4452 4453
    Examples:
        .. code-block:: python
G
guosheng 已提交
4454

4455
            data = fluid.layers.data(
4456
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4457
            reshaped = fluid.layers.reshape(
4458
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4459 4460 4461 4462
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")
X
Xin Pan 已提交
4463 4464 4465 4466 4467
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4468

4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4484
    helper = LayerHelper("reshape", **locals())
D
dzhwinter 已提交
4485
    out = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4486 4487
    helper.append_op(
        type="reshape",
X
Xin Pan 已提交
4488
        inputs=inputs,
D
dzhwinter 已提交
4489 4490
        attrs={"shape": shape},
        outputs={"Out": out})
C
caoying03 已提交
4491

D
dzhwinter 已提交
4492
    return helper.append_activation(out)
4493 4494


Y
yangyaming 已提交
4495
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4496
    """
Y
Yibing Liu 已提交
4497
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4498 4499 4500 4501
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4502
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4503 4504 4505 4506 4507 4508

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4509
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4510 4511 4512
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4513
            target_lod: [4, 2]
Y
yangyaming 已提交
4514 4515

            then we get a 1-level LoDTensor:
4516
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4517 4518 4519 4520 4521 4522
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4523
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4524 4525 4526 4527
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4528
                y.data = [[2, 4]]
Y
yangyaming 已提交
4529 4530 4531
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4532
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4533 4534 4535 4536 4537 4538
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4539
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4540 4541 4542 4543
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4544
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4545 4546 4547 4548
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4549
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4550 4551 4552 4553 4554
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4555
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4556
                           from :attr:`y`.
Y
yangyaming 已提交
4557
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4558
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4559 4560

    Returns:
Y
Yibing Liu 已提交
4561
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4562 4563

    Raises:
Y
Yibing Liu 已提交
4564
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4600
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4629 4630
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4658 4659 4660 4661


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4662
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4663
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4664

G
guosheng 已提交
4665 4666 4667 4668
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4691
                         The length of :attr:paddings must be
G
guosheng 已提交
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4702

G
guosheng 已提交
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4717 4718 4719 4720 4721 4722 4723 4724 4725


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4726 4727
    called label-smoothing regularization (LSR).

4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4751
                              be :math:`(1, class\_num)`.
4752 4753
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4754
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4782 4783


Y
yi.wu 已提交
4784
@templatedoc()
4785 4786
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4787
    ${comment}
4788 4789

    Args:
Y
yi.wu 已提交
4790 4791
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4792 4793 4794
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4795 4796

    Returns:
Y
update  
yi.wu 已提交
4797
        Variable: ${out_comment}.
4798 4799

    Examples:
4800 4801
        .. code-block:: python

4802
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4848 4849
        .. code-block:: python

W
whs 已提交
4850 4851 4852 4853
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
4854
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
4855 4856 4857 4858 4859 4860
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4861 4862


4863 4864 4865 4866 4867
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4868
    """
Q
qiaolongfei 已提交
4869
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4870

4871
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
4872 4873 4874
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4875

4876
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4877

4878
    Args:
4879
        input (Variable): The input tensor of image resize layer,
4880 4881
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4882
        out_shape(list|tuple|Variable|None): Output shape of image resize
4883 4884
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4885
        scale(float|None): The multiplier for the input height or width.
4886 4887 4888
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4889 4890
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4891 4892
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4893 4894

    Returns:
Q
update  
qiaolongfei 已提交
4895 4896
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4897

4898 4899 4900
    Examples:
        .. code-block:: python

4901
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4902
    """
4903 4904 4905 4906
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4907 4908
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4909 4910
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4911 4912 4913 4914

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4915 4916 4917
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4918
    if out_shape is not None:
B
baiyf 已提交
4919 4920 4921
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4922 4923 4924 4925 4926 4927
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4928 4929 4930 4931
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4932 4933
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4934
        type=resample_methods[resample],
4935
        inputs=inputs,
4936 4937 4938 4939
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4940 4941


Y
yuyang18 已提交
4942
@templatedoc(op_type="bilinear_interp")
4943 4944
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4945 4946 4947 4948 4949 4950
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4951

Y
yuyang18 已提交
4952 4953 4954 4955 4956 4957 4958 4959
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4960 4961 4962 4963 4964 4965 4966
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
4967 4968 4969
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
4970 4971 4972 4973 4974 4975 4976
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4977
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4978

4979
    Returns:
Q
update  
qiaolongfei 已提交
4980
        Variable: The output is a 4-D tensor of the shape
4981
        (num_batches, channls, out_h, out_w).
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4992 4993 4994
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4995 4996 4997
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4998 4999
def gather(input, index):
    """
Q
qiaolongfei 已提交
5000 5001
    **Gather Layer**

5002
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5003 5004 5005 5006
    of X indexed by `index` and concatenate them together.

    .. math::

5007
        Out = X[Index]
W
whs 已提交
5008 5009 5010 5011 5012 5013 5014


    .. code-block:: text


                Given:

5015 5016
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5027
        input (Variable): The source input with rank>=1.
W
whs 已提交
5028 5029 5030 5031 5032 5033
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5034

W
whs 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5063

5064 5065 5066
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5067
    """
F
stash  
fengjiayi 已提交
5068
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5069
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5070
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5071 5072
    if seed is None:
        seed = random.randint(-65536, 65535)
F
fengjiayi 已提交
5073
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5074
    if isinstance(seed, int):
F
fengjiayi 已提交
5075 5076 5077 5078 5079
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5080 5081 5082 5083
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5084
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5085 5086
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5087 5088
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5089
    return out
W
whs 已提交
5090 5091


5092
def log(x):
W
wanghaoshuang 已提交
5093 5094 5095 5096 5097
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5098
        Out = \\ln(x)
W
wanghaoshuang 已提交
5099 5100

    Args:
5101
        x (Variable): Input tensor.
W
wanghaoshuang 已提交
5102 5103 5104 5105 5106 5107 5108 5109

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5110
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5111 5112
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5113
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5114
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5115
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5116 5117 5118
    return out


5119
def relu(x):
W
wanghaoshuang 已提交
5120 5121
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5122
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5123 5124 5125 5126
    the tensor elementwise.

    .. math::

5127
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5128 5129

    Args:
5130
        x (Variable): The input tensor.
W
wanghaoshuang 已提交
5131 5132 5133 5134 5135 5136 5137 5138

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5139
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5140 5141
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5142
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5143
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5144
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5145
    return out
5146 5147


W
whs 已提交
5148 5149 5150
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5151 5152 5153 5154
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5155
    .. math::
5156 5157

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5158

5159
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5160 5161 5162 5163 5164
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5165
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5166
                           Its shape should be the same as input.
5167
        num_classes (int): The possible number of labels.
W
whs 已提交
5168 5169 5170 5171

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5172
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5173 5174 5175 5176

    Examples:

        .. code-block:: python
5177

W
whs 已提交
5178 5179 5180 5181 5182 5183 5184 5185 5186
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5187 5188
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5189
        outputs={
W
whs 已提交
5190 5191 5192
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5193 5194 5195
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
        isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
 
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
    
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
    
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
    
    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).   
 
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431


def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
    
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
        axis (int): Indicate up to which input dimensions (exclusive) should 
                    be flattened to the outer dimension of the output. 
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
        ValueError: If axis is not in range [0, rank(x)]. 

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
    helper.append_op(
        type='flatten',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={"axis": axis})
    return out