提交 1f12ba61 编写于 作者: P peizhilin

gpu support, fix build issue:

1. Non utf-8 characters within comments of OPs may lead to protobuf fail to parse_from_string
2. comment out some ops which not supported on windows
3. cuda libs may not be correctly linked to target on windows
上级 71d7980f
......@@ -157,6 +157,9 @@ list(APPEND EXTERNAL_LIBS ${CUDA_LIBRARIES} ${CUDA_rt_LIBRARY})
if(NOT WITH_DSO)
# TODO(panyx0718): CUPTI only allows DSO?
list(APPEND EXTERNAL_LIBS ${CUDNN_LIBRARY} ${CUPTI_LIBRARY} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_curand_LIBRARY} ${NCCL_LIBRARY})
if(WIN32)
set_property(GLOBAL PROPERTY CUDA_MODULES ${CUDNN_LIBRARY} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_curand_LIBRARY})
endif(WIN32)
endif(NOT WITH_DSO)
# setting nvcc arch flags
......
......@@ -13,10 +13,14 @@ cc_library(paddle_fluid_api
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
get_property(fluid_modules GLOBAL PROPERTY FLUID_MODULES)
get_property(cuda_modules GLOBAL PROPERTY CUDA_MODULES)
# paddle_fluid_origin exclude inference api interface
if(WIN32)
sep_library(paddle_fluid_origin DEPS ${fluid_modules} paddle_fluid_api)
if(WITH_GPU AND NOT WITH_DSO)
target_link_libraries(paddle_fluid_origin ${cuda_modules})
endif(WITH_GPU AND NOT WITH_DSO)
else(WIN32)
cc_library(paddle_fluid_origin DEPS ${fluid_modules} paddle_fluid_api)
endif(WIN32)
......@@ -36,6 +40,9 @@ endif()
# Create static library
if(WIN32)
sep_library(paddle_fluid DEPS ${fluid_modules} ${STATIC_INFERENCE_APIS} zero_copy_tensor reset_tensor_array)
if(WITH_GPU AND NOT WITH_DSO)
target_link_libraries(paddle_fluid ${cuda_modules})
endif(WITH_GPU AND NOT WITH_DSO)
else(WIN32)
cc_library(paddle_fluid DEPS ${fluid_modules} ${STATIC_INFERENCE_APIS} zero_copy_tensor reset_tensor_array)
endif(WIN32)
......@@ -50,6 +57,9 @@ endif()
if(WIN32)
sep_library(paddle_fluid_shared SHARED SRCS ${SHARED_INFERENCE_SRCS}
DEPS ${fluid_modules} paddle_fluid_api reset_tensor_array)
if(WITH_GPU AND NOT WITH_DSO)
target_link_libraries(paddle_fluid_origin ${cuda_modules})
endif(WITH_GPU AND NOT WITH_DSO)
else(WIN32)
cc_library(paddle_fluid_shared SHARED SRCS ${SHARED_INFERENCE_SRCS}
DEPS ${fluid_modules} paddle_fluid_api reset_tensor_array)
......
......@@ -74,7 +74,7 @@ PadConstantLikeOp Operator.
Pad input(Y) with a pad_value, the number of values padded to the edges of each
axis is specified by the difference of the shape of X and Y.
((0, shape_x_0 - shape_y_0), (0, shape_x_n - shape_y_n)) unique pad widths for
((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n)) unique pad widths for
each axis.
The input should be a k-D tensor(k > 0 and k < 7). As an example:
......
......@@ -122,7 +122,7 @@ class ROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
"(Tensor), "
"Argmaxes corresponding to indices in X used "
"for gradient computation. Only output "
"if arg “is_test” is false.")
"if arg \"is_test\" is false.")
.AsIntermediate();
AddAttr<float>("spatial_scale",
"(float, default 1.0), "
......
......@@ -57,8 +57,8 @@ class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
Input shape is: $(N, C_{in}, H_{in}, W_{in})$, Output shape is:
$(N, C_{out}, H_{out}, W_{out})$, where
$$
H_{out} = (H_{in}−1) * strides[0] − 2 * paddings[0] + ksize[0] \\
W_{out} = (W_{in}−1) * strides[1] − 2 * paddings[1] + ksize[1]
H_{out} = (H_{in}-1) * strides[0] - 2 * paddings[0] + ksize[0] \\
W_{out} = (W_{in}-1) * strides[1] - 2 * paddings[1] + ksize[1]
$$
Paper: http://www.matthewzeiler.com/wp-content/uploads/2017/07/iccv2011.pdf
)DOC");
......
......@@ -22,6 +22,10 @@ if(WITH_PYTHON)
endif(WITH_AMD_GPU)
if(WIN32)
if(WITH_GPU AND NOT WITH_DSO)
get_property(cuda_modules GLOBAL PROPERTY CUDA_MODULES)
target_link_libraries(paddle_pybind ${cuda_modules})
endif(WITH_GPU AND NOT WITH_DSO)
target_link_libraries(paddle_pybind shlwapi)
endif(WIN32)
......
......@@ -61,12 +61,13 @@ IF(WIN32)
add_custom_command(OUTPUT ${PADDLE_PYTHON_BUILD_DIR}/.timestamp
# COMMAND ${CMAKE_COMMAND} -E touch stub.cc
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_BINARY_DIR}/python/paddle
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_BINARY_DIR}/python/paddle/libs
COMMAND ${CMAKE_COMMAND} -E copy ${PADDLE_SOURCE_DIR}/python/paddle ${PADDLE_BINARY_DIR}/python/paddle
COMMAND ${CMAKE_COMMAND} -E copy ${PADDLE_SOURCE_DIR}/paddle/py_paddle ${PADDLE_BINARY_DIR}/python/
COMMAND ${CMAKE_COMMAND} -E env ${py_env} ${PYTHON_EXECUTABLE} setup.py bdist_wheel
COMMAND ${CMAKE_COMMAND} -E touch ${PADDLE_PYTHON_BUILD_DIR}/.timestamp
COMMAND ${CMAKE_COMMAND} -E remove_directory ${PADDLE_PYTHON_BUILD_DIR}/lib-python
COMMAND ${CMAKE_COMMAND} -E copy ${PADDLE_PYTHON_BUILD_DIR}/libs ${PADDLE_PYTHON_BUILD_DIR}/lib-python
# COMMAND ${CMAKE_COMMAND} -E remove_directory ${PADDLE_PYTHON_BUILD_DIR}/libs
# COMMAND ${CMAKE_COMMAND} -E copy ${PADDLE_PYTHON_BUILD_DIR}/libs ${PADDLE_PYTHON_BUILD_DIR}/libs
DEPENDS gen_proto_py copy_paddle_pybind ${FLUID_CORE} framework_py_proto profiler_py_proto ${PY_FILES} ${external_project_dependencies} ${COPY_PADDLE_MASTER})
ELSE(WIN32)
add_custom_command(OUTPUT ${PADDLE_PYTHON_BUILD_DIR}/.timestamp
......
......@@ -13,6 +13,7 @@
# limitations under the License.
from __future__ import print_function
import os
# import all class inside framework into fluid module
from . import framework
from .framework import *
......@@ -43,16 +44,17 @@ from .lod_tensor import create_lod_tensor, create_random_int_lodtensor
from . import clip
from . import profiler
from . import unique_name
from . import recordio_writer
from . import parallel_executor
from .parallel_executor import *
if os.name != 'nt':
from . import recordio_writer
from . import parallel_executor
from .parallel_executor import *
from paddle.fluid.layers.math_op_patch import monkey_patch_variable
Tensor = LoDTensor
__all__ = framework.__all__ + executor.__all__ + \
trainer.__all__ + inferencer.__all__ + transpiler.__all__ + \
parallel_executor.__all__ + lod_tensor.__all__ + [
lod_tensor.__all__ + [
'io',
'initializer',
'layers',
......@@ -78,7 +80,8 @@ __all__ = framework.__all__ + executor.__all__ + \
'recordio_writer',
'Scope',
]
if os.name != 'nt':
__all__ += parallel_executor.__all__
def __bootstrap__():
"""
......@@ -110,12 +113,16 @@ def __bootstrap__():
os.environ['OMP_NUM_THREADS'] = str(num_threads)
read_env_flags = [
'use_pinned_memory', 'check_nan_inf', 'benchmark', 'warpctc_dir',
'use_pinned_memory', 'check_nan_inf', 'benchmark',
'eager_delete_scope', 'use_mkldnn', 'initial_cpu_memory_in_mb',
'init_allocated_mem', 'free_idle_memory', 'paddle_num_threads',
'dist_threadpool_size', 'cpu_deterministic', 'eager_delete_tensor_gb',
'dist_threadpool_size', 'eager_delete_tensor_gb',
'reader_queue_speed_test_mode'
]
if os.name != 'nt':
read_env_flags.append('warpctc_dir')
read_env_flags.append('cpu_deterministic')
if core.is_compiled_with_dist():
read_env_flags.append('rpc_deadline')
read_env_flags.append('rpc_server_profile_period')
......
......@@ -15,13 +15,15 @@
from __future__ import print_function
import contextlib
import os
from .. import core
from .. import executor
from .. import framework
from .. import io
from .. import parallel_executor
if os.name != 'nt':
from .. import parallel_executor
from .. import unique_name
from .trainer import check_and_get_place
......
......@@ -28,7 +28,8 @@ from .. import framework
from .. import io
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
from .. import optimizer as opt_module
from .. import parallel_executor
if os.name != 'nt':
from .. import parallel_executor
from ..transpiler import distribute_transpiler
__all__ = [
......
......@@ -536,7 +536,7 @@ class Operator(object):
OP_WITHOUT_KERNEL_SET = {
'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
'listen_and_serv', 'parallel_do', 'save_combine', 'loadload_combine',
'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
}
......
......@@ -15,6 +15,7 @@
from __future__ import print_function
import contextlib
import multiprocessing
import os
import six
import threading
......@@ -344,70 +345,71 @@ def _copy_reader_create_op_(block, op):
return new_op
@templatedoc(op_type='create_recordio_file_reader')
def open_recordio_file(filename,
shapes,
lod_levels,
dtypes,
pass_num=1,
for_parallel=True):
"""
${comment}
Args:
filename(${filename_type}): ${filename_comment}.
shapes(list): List of tuples which declaring data shapes.
lod_levels(${lod_levels_type}): ${lod_levels_comment}.
dtypes(list): List of strs which declaring data type.
pass_num(int): Number of passes to run.
for_parallel(Bool): Set it as True if you are going to run
subsequent operators in parallel.
Returns:
${out_comment}.
Examples:
>>> import paddle.fluid as fluid
>>> reader = fluid.layers.io.open_recordio_file(
>>> filename='./data.recordio',
>>> shapes=[(3,224,224), (1)],
>>> lod_levels=[0, 0],
>>> dtypes=['float32', 'int64'])
>>> # Via the reader, we can use 'read_file' layer to get data:
>>> image, label = fluid.layers.io.read_file(reader)
"""
dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
shape_concat = []
ranks = []
for shape in shapes:
shape_concat.extend(shape)
ranks.append(len(shape))
var_name = unique_name('open_recordio_file')
startup_blk = default_startup_program().current_block()
startup_var = startup_blk.create_var(name=var_name)
startup_blk.append_op(
type='create_recordio_file_reader',
outputs={'Out': [startup_var]},
attrs={
'shape_concat': shape_concat,
'lod_levels': lod_levels,
'filename': filename,
'ranks': ranks
})
if os.name != 'nt':
@templatedoc(op_type='create_recordio_file_reader')
def open_recordio_file(filename,
shapes,
lod_levels,
dtypes,
pass_num=1,
for_parallel=True):
"""
${comment}
Args:
filename(${filename_type}): ${filename_comment}.
shapes(list): List of tuples which declaring data shapes.
lod_levels(${lod_levels_type}): ${lod_levels_comment}.
dtypes(list): List of strs which declaring data type.
pass_num(int): Number of passes to run.
for_parallel(Bool): Set it as True if you are going to run
subsequent operators in parallel.
Returns:
${out_comment}.
Examples:
>>> import paddle.fluid as fluid
>>> reader = fluid.layers.io.open_recordio_file(
>>> filename='./data.recordio',
>>> shapes=[(3,224,224), (1)],
>>> lod_levels=[0, 0],
>>> dtypes=['float32', 'int64'])
>>> # Via the reader, we can use 'read_file' layer to get data:
>>> image, label = fluid.layers.io.read_file(reader)
"""
dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
shape_concat = []
ranks = []
for shape in shapes:
shape_concat.extend(shape)
ranks.append(len(shape))
var_name = unique_name('open_recordio_file')
startup_blk = default_startup_program().current_block()
startup_var = startup_blk.create_var(name=var_name)
startup_blk.append_op(
type='create_recordio_file_reader',
outputs={'Out': [startup_var]},
attrs={
'shape_concat': shape_concat,
'lod_levels': lod_levels,
'filename': filename,
'ranks': ranks
})
startup_var.desc.set_dtypes(dtypes)
startup_var.persistable = True
main_prog_var = _copy_reader_var_(default_main_program().current_block(),
startup_var)
startup_var.desc.set_dtypes(dtypes)
startup_var.persistable = True
main_prog_var = _copy_reader_var_(default_main_program().current_block(),
startup_var)
if pass_num > 1:
main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)
if pass_num > 1:
main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)
return monkey_patch_reader_methods(main_prog_var)
return monkey_patch_reader_methods(main_prog_var)
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
......
......@@ -18,6 +18,7 @@ All layers just related to the neural network.
from __future__ import print_function
import numpy as np
import os
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable, OpProtoHolder
......@@ -31,12 +32,10 @@ from functools import reduce
__all__ = [
'fc',
'embedding',
'dynamic_lstm',
'dynamic_lstmp',
'dynamic_gru',
'gru_unit',
'linear_chain_crf',
'crf_decoding',
'cos_sim',
'cross_entropy',
'square_error_cost',
......@@ -95,7 +94,6 @@ __all__ = [
'pad',
'pad_constant_like',
'label_smooth',
'roi_pool',
'roi_align',
'dice_loss',
'image_resize',
......@@ -160,6 +158,10 @@ __all__ = [
'log_loss',
'add_position_encoding',
]
if os.name != 'nt':
__all__.append('dynamic_lstm')
__all__.append('crf_decoding')
__all__.append('roi_pool')
def fc(input,
......@@ -334,126 +336,127 @@ def embedding(input,
return tmp
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
size,
h_0=None,
c_0=None,
param_attr=None,
bias_attr=None,
use_peepholes=True,
is_reverse=False,
gate_activation='sigmoid',
cell_activation='tanh',
candidate_activation='tanh',
dtype='float32',
name=None):
"""
${comment}
Args:
input (Variable): ${input_comment}
size (int): 4 * hidden size.
h_0(Variable): The initial hidden state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size and D is the hidden size.
c_0(Variable): The initial cell state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size. `h_0` and `c_0` can be NULL but only at the same time.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weights.
- Weights = {:math:`W_{ch}, W_{ih}, \
W_{fh}, W_{oh}`}
- The shape is (D x 4D), where D is the hidden
size.
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as param_attr.
If the Initializer of the param_attr is not set, the
parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|None): The bias attribute for the learnable bias
weights, which contains two parts, input-hidden
bias weights and peephole connections weights if
setting `use_peepholes` to `True`.
1. `use_peepholes = False`
- Biases = {:math:`b_c, b_i, b_f, b_o`}.
- The shape is (1 x 4D).
2. `use_peepholes = True`
- Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
W_{fc}, W_{oc}`}.
- The shape is (1 x 7D).
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as bias_attr.
If the Initializer of the bias_attr is not set,
the bias is initialized zero. Default: None.
use_peepholes (bool): ${use_peepholes_comment}
is_reverse (bool): ${is_reverse_comment}
gate_activation (str): ${gate_activation_comment}
cell_activation (str): ${cell_activation_comment}
candidate_activation (str): ${candidate_activation_comment}
dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
tuple: The hidden state, and cell state of LSTM. The shape of both \
is (T x D), and lod is the same with the `input`.
Examples:
.. code-block:: python
hidden_dim = 512
forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
bias_attr=False)
forward, _ = fluid.layers.dynamic_lstm(
input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
"""
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
helper = LayerHelper('lstm', **locals())
size = size // 4
weight = helper.create_parameter(
attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
bias_size = [1, 7 * size]
if not use_peepholes:
bias_size[1] = 4 * size
bias = helper.create_parameter(
attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
if os.name != 'nt':
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
size,
h_0=None,
c_0=None,
param_attr=None,
bias_attr=None,
use_peepholes=True,
is_reverse=False,
gate_activation='sigmoid',
cell_activation='tanh',
candidate_activation='tanh',
dtype='float32',
name=None):
"""
${comment}
Args:
input (Variable): ${input_comment}
size (int): 4 * hidden size.
h_0(Variable): The initial hidden state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size and D is the hidden size.
c_0(Variable): The initial cell state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size. `h_0` and `c_0` can be NULL but only at the same time.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weights.
- Weights = {:math:`W_{ch}, W_{ih}, \
W_{fh}, W_{oh}`}
- The shape is (D x 4D), where D is the hidden
size.
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as param_attr.
If the Initializer of the param_attr is not set, the
parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|None): The bias attribute for the learnable bias
weights, which contains two parts, input-hidden
bias weights and peephole connections weights if
setting `use_peepholes` to `True`.
1. `use_peepholes = False`
- Biases = {:math:`b_c, b_i, b_f, b_o`}.
- The shape is (1 x 4D).
2. `use_peepholes = True`
- Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
W_{fc}, W_{oc}`}.
- The shape is (1 x 7D).
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as bias_attr.
If the Initializer of the bias_attr is not set,
the bias is initialized zero. Default: None.
use_peepholes (bool): ${use_peepholes_comment}
is_reverse (bool): ${is_reverse_comment}
gate_activation (str): ${gate_activation_comment}
cell_activation (str): ${cell_activation_comment}
candidate_activation (str): ${candidate_activation_comment}
dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
tuple: The hidden state, and cell state of LSTM. The shape of both \
is (T x D), and lod is the same with the `input`.
Examples:
.. code-block:: python
hidden_dim = 512
forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
bias_attr=False)
forward, _ = fluid.layers.dynamic_lstm(
input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
"""
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
helper = LayerHelper('lstm', **locals())
size = size // 4
weight = helper.create_parameter(
attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
bias_size = [1, 7 * size]
if not use_peepholes:
bias_size[1] = 4 * size
bias = helper.create_parameter(
attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
hidden = helper.create_variable_for_type_inference(dtype)
cell = helper.create_variable_for_type_inference(dtype)
batch_gate = helper.create_variable_for_type_inference(dtype)
batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
batch_size = input.shape[0]
if h_0:
assert h_0.shape == (batch_size, size), \
'The shape of h0 should be (batch_size, %d)' % size
inputs['H0'] = h_0
if c_0:
assert c_0.shape == (batch_size, size), \
'The shape of c0 should be (batch_size, %d)' % size
inputs['C0'] = c_0
hidden = helper.create_variable_for_type_inference(dtype)
cell = helper.create_variable_for_type_inference(dtype)
batch_gate = helper.create_variable_for_type_inference(dtype)
batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
batch_size = input.shape[0]
if h_0:
assert h_0.shape == (batch_size, size), \
'The shape of h0 should be (batch_size, %d)' % size
inputs['H0'] = h_0
if c_0:
assert c_0.shape == (batch_size, size), \
'The shape of c0 should be (batch_size, %d)' % size
inputs['C0'] = c_0
helper.append_op(
type='lstm',
inputs=inputs,
outputs={
'Hidden': hidden,
'Cell': cell,
'BatchGate': batch_gate,
'BatchCellPreAct': batch_cell_pre_act
},
attrs={
'use_peepholes': use_peepholes,
'is_reverse': is_reverse,
'gate_activation': gate_activation,
'cell_activation': cell_activation,
'candidate_activation': candidate_activation
})
return hidden, cell
helper.append_op(
type='lstm',
inputs=inputs,
outputs={
'Hidden': hidden,
'Cell': cell,
'BatchGate': batch_gate,
'BatchCellPreAct': batch_cell_pre_act
},
attrs={
'use_peepholes': use_peepholes,
'is_reverse': is_reverse,
'gate_activation': gate_activation,
'cell_activation': cell_activation,
'candidate_activation': candidate_activation
})
return hidden, cell
def dynamic_lstmp(input,
......@@ -923,39 +926,40 @@ def linear_chain_crf(input, label, param_attr=None):
return log_likelihood
@templatedoc()
def crf_decoding(input, param_attr, label=None):
"""
${comment}
if os.name != 'nt':
@templatedoc()
def crf_decoding(input, param_attr, label=None):
"""
${comment}
Args:
input(${emission_type}): ${emission_comment}
Args:
input(${emission_type}): ${emission_comment}
param_attr(ParamAttr): The parameter attribute for training.
param_attr(ParamAttr): The parameter attribute for training.
label(${label_type}): ${label_comment}
label(${label_type}): ${label_comment}
Returns:
Variable: ${viterbi_path_comment}
Returns:
Variable: ${viterbi_path_comment}
Examples:
.. code-block:: python
Examples:
.. code-block:: python
crf_decode = layers.crf_decoding(
input=hidden, param_attr=ParamAttr(name="crfw"))
"""
helper = LayerHelper('crf_decoding', **locals())
transition = helper.get_parameter(param_attr.name)
viterbi_path = helper.create_variable_for_type_inference(
dtype=helper.input_dtype())
helper.append_op(
type='crf_decoding',
inputs={"Emission": [input],
"Transition": transition,
"Label": label},
outputs={"ViterbiPath": [viterbi_path]})
crf_decode = layers.crf_decoding(
input=hidden, param_attr=ParamAttr(name="crfw"))
"""
helper = LayerHelper('crf_decoding', **locals())
transition = helper.get_parameter(param_attr.name)
viterbi_path = helper.create_variable_for_type_inference(
dtype=helper.input_dtype())
helper.append_op(
type='crf_decoding',
inputs={"Emission": [input],
"Transition": transition,
"Label": label},
outputs={"ViterbiPath": [viterbi_path]})
return viterbi_path
return viterbi_path
@templatedoc()
......@@ -5443,42 +5447,43 @@ def label_smooth(label,
return smooth_label
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
"""
${comment}
if os.name != 'nt':
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
"""
${comment}
Args:
input (Variable): ${x_comment}
rois (Variable): ROIs (Regions of Interest) to pool over.
pooled_height (integer): ${pooled_height_comment} Default: 1
pooled_width (integer): ${pooled_width_comment} Default: 1
spatial_scale (float): ${spatial_scale_comment} Default: 1.0
Args:
input (Variable): ${x_comment}
rois (Variable): ROIs (Regions of Interest) to pool over.
pooled_height (integer): ${pooled_height_comment} Default: 1
pooled_width (integer): ${pooled_width_comment} Default: 1
spatial_scale (float): ${spatial_scale_comment} Default: 1.0
Returns:
Variable: ${out_comment}.
Returns:
Variable: ${out_comment}.
Examples:
.. code-block:: python
Examples:
.. code-block:: python
pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
"""
helper = LayerHelper('roi_pool', **locals())
dtype = helper.input_dtype()
pool_out = helper.create_variable_for_type_inference(dtype)
argmaxes = helper.create_variable_for_type_inference(dtype='int32')
helper.append_op(
type="roi_pool",
inputs={"X": input,
"ROIs": rois},
outputs={"Out": pool_out,
"Argmax": argmaxes},
attrs={
"pooled_height": pooled_height,
"pooled_width": pooled_width,
"spatial_scale": spatial_scale
})
return pool_out
pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
"""
helper = LayerHelper('roi_pool', **locals())
dtype = helper.input_dtype()
pool_out = helper.create_variable_for_type_inference(dtype)
argmaxes = helper.create_variable_for_type_inference(dtype='int32')
helper.append_op(
type="roi_pool",
inputs={"X": input,
"ROIs": rois},
outputs={"Out": pool_out,
"Argmax": argmaxes},
attrs={
"pooled_height": pooled_height,
"pooled_width": pooled_width,
"spatial_scale": spatial_scale
})
return pool_out
@templatedoc()
......
......@@ -13,6 +13,7 @@
# limitations under the License.
from __future__ import print_function
import os
from .layer_function_generator import generate_layer_fn, generate_layer_fn_noattr
from .. import core
from ..framework import convert_np_dtype_to_dtype_
......@@ -99,27 +100,28 @@ Examples:
>>> result = fluid.layers.hard_shrink(x=data, threshold=0.3)
"""
__all__ += ['cumsum']
if os.name != 'nt':
__all__ += ['cumsum']
_cum_sum_ = generate_layer_fn('cumsum')
_cum_sum_ = generate_layer_fn('cumsum')
def cumsum(x, axis=None, exclusive=None, reverse=None):
locals_var = locals().keys()
kwargs = dict()
for name in locals_var:
val = locals()[name]
if val is not None:
kwargs[name] = val
return _cum_sum_(**kwargs)
def cumsum(x, axis=None, exclusive=None, reverse=None):
locals_var = locals().keys()
kwargs = dict()
for name in locals_var:
val = locals()[name]
if val is not None:
kwargs[name] = val
return _cum_sum_(**kwargs)
cumsum.__doc__ = _cum_sum_.__doc__ + """
Examples:
>>> data = fluid.layers.data(name="input", shape=[32, 784])
>>> result = fluid.layers.cumsum(data, axis=0)
"""
cumsum.__doc__ = _cum_sum_.__doc__ + """
Examples:
>>> data = fluid.layers.data(name="input", shape=[32, 784])
>>> result = fluid.layers.cumsum(data, axis=0)
"""
__all__ += ['thresholded_relu']
......
......@@ -180,7 +180,8 @@ if '${CMAKE_BUILD_TYPE}' == 'Release':
package_data['paddle.libs']+=['libmkldnn.so.0']
shutil.copy('${MKLDNN_SHARED_LIB}', libs_path)
# remove unused paddle/libs/__init__.py
os.remove(libs_path+'/__init__.py')
if os.path.isfile(libs_path+'/__init__.py'):
os.remove(libs_path+'/__init__.py')
package_dir['paddle.libs']=libs_path
# change rpath of core.so, add $ORIGIN/../libs/ to it.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册