nn.py 274.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
99
    'roi_align',
X
Xin Pan 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
113
    'margin_rank_loss',
X
Xin Pan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
S
sneaxiy 已提交
157
    'sequence_reverse',
158
    'affine_channel',
M
minqiyang 已提交
159
    'hash',
G
gmcather 已提交
160 161
    'log_loss',
    'add_position_encoding',
Y
Yu Yang 已提交
162 163 164 165 166 167 168 169 170
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
171
       is_test=False,
172
       name=None):
Y
Yu Yang 已提交
173
    """
174
    **Fully Connected Layer**
Y
Yu Yang 已提交
175

176 177 178 179 180 181 182 183
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
184
    to the output as well.
C
caoying03 已提交
185

C
caoying03 已提交
186
    This process can be formulated as follows:
187 188 189

    .. math::

190
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
191 192 193

    In the above equation:

C
caoying03 已提交
194 195 196 197
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
198
    * :math:`Act`: The activation function.
C
caoying03 已提交
199
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
200 201

    Args:
R
ranqiu 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
217 218
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
219
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
220
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
221
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
222

223
    Returns:
F
fengjiayi 已提交
224
        Variable: The transformation result.
225 226

    Raises:
C
caoying03 已提交
227
        ValueError: If rank of the input tensor is less than 2.
228 229 230 231

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
232
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
233
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
234
    """
C
caoying03 已提交
235

C
caoying03 已提交
236
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
237 238 239 240

    dtype = helper.input_dtype()

    mul_results = []
241 242
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
243 244 245
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
246

Y
Yu Yang 已提交
247
        w = helper.create_parameter(
248
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
249
        tmp = helper.create_variable_for_type_inference(dtype)
250
        helper.append_op(
251 252 253
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
254
            outputs={"Out": tmp},
M
mozga-intel 已提交
255 256
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
257 258 259 260
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
261
    else:
X
Xin Pan 已提交
262
        pre_bias = helper.create_variable_for_type_inference(dtype)
263
        helper.append_op(
264 265 266
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
267
            attrs={"use_mkldnn": False})
268 269 270 271
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
272 273


274 275 276
def embedding(input,
              size,
              is_sparse=False,
277
              is_distributed=False,
278 279 280
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
281
    """
282 283
    **Embedding Layer**

284
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
285 286
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
287 288 289

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
290 291

    Args:
292 293 294 295 296
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
297
        is_distributed(bool): Whether to run lookup table from remote parameter server.
298 299
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
300
            with zeros whenever lookup encounters it in :attr:`input`. If
301
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
302 303
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
304
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
305

306 307 308
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
309

310 311
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
312

C
chengduoZH 已提交
313
          dict_size = len(dataset.ids)
314
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
315
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
316 317 318 319 320
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
321
    tmp = helper.create_variable_for_type_inference(dtype)
322 323
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
324 325 326 327 328
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
329 330 331 332 333
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
334 335 336
    return tmp


Y
yi.wu 已提交
337
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
338 339
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
340 341
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
342 343 344 345 346 347 348
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
349 350
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
351
    """
Y
yi.wu 已提交
352
    ${comment}
Y
Yibing Liu 已提交
353 354

    Args:
Y
yi.wu 已提交
355 356
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
357 358 359 360 361 362
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
363
        param_attr(ParamAttr|None): The parameter attribute for the learnable
364
                               hidden-hidden weights.
Y
Yibing Liu 已提交
365 366 367

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
368 369
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
370 371 372 373 374

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
375
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
376 377 378
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
379

380
                              1. `use_peepholes = False`
Y
yi.wu 已提交
381 382
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
383
                              2. `use_peepholes = True`
Y
yi.wu 已提交
384
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
385
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
386
                                 - The shape is (1 x 7D).
C
chengduo 已提交
387 388 389 390 391

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
392 393 394 395 396 397 398 399
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
400 401

    Returns:
Y
Yibing Liu 已提交
402 403
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
404

Y
Yibing Liu 已提交
405
    Examples:
Y
Yibing Liu 已提交
406 407
        .. code-block:: python

Y
Yibing Liu 已提交
408 409
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
410
                                           bias_attr=False)
Y
Yibing Liu 已提交
411 412
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
413
    """
C
chengduo 已提交
414
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
415
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
416
    size = size // 4
Y
Yu Yang 已提交
417 418 419 420 421 422 423 424
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
425 426 427 428
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
429 430 431 432 433 434 435 436 437 438
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
439 440 441

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
442
        inputs=inputs,
Y
Yu Yang 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
459 460 461 462 463 464 465 466 467 468 469
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
470 471
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
472 473 474
    """
    **Dynamic LSTMP Layer**

475 476 477 478 479 480
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
481 482 483 484 485

    The formula is as follows:

    .. math::

486
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
487

488
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
489

490
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
491

492
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
493

494
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
495

496
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
497

498
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
499

Y
Yibing Liu 已提交
500 501 502 503 504 505
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
506
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
507
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
508
          bias vector).
Y
Yibing Liu 已提交
509 510 511
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
512
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
513
    * :math:`h`: The hidden state.
514
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
515 516
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
517
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
518
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
519
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
520 521
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
522 523 524 525

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
526

Y
Yibing Liu 已提交
527 528 529 530 531 532 533 534 535 536 537 538
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
539
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
540 541
                               hidden-hidden weight and projection weight.

542 543
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
544 545
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
546 547
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
548
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
549 550 551 552 553

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
554
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
555 556 557 558 559 560
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
561
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
562 563 564
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
565
                                - The shape is (1 x 7D).
C
chengduo 已提交
566 567 568 569 570

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
571 572 573 574 575 576 577 578 579
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
580
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
581 582
                              default "tanh".
        proj_activation(str): The activation for projection output.
583
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
584 585
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
586 587
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
588 589

    Returns:
590 591 592 593
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
594 595

    Examples:
596

Y
Yibing Liu 已提交
597 598
        .. code-block:: python

599 600 601 602
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
603
            hidden_dim, proj_dim = 512, 256
604
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
605
                                     act=None, bias_attr=None)
606 607 608
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
609 610 611 612
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
613
    """
614

C
chengduo 已提交
615
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
616
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
617
    size = size // 4
Y
Yibing Liu 已提交
618 619 620 621 622 623 624 625 626 627
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
628 629 630 631 632 633
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
662 663 664 665 666 667 668 669 670
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
671
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
672

673
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
674
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
675

G
guosheng 已提交
676 677 678 679 680 681 682 683 684
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
685

G
guosheng 已提交
686
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
687

G
guosheng 已提交
688
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
689 690
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
691 692 693 694
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
695
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
696 697

    Args:
698 699
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
700
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
701
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
702 703
            is the hidden size.
        size(int): The dimension of the gru cell.
704
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
705 706
            hidden-hidden weight matrix. Note:

707
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
708
              :math:`D` is the hidden size.
709
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
710
              The first part are weights of the update gate and reset gate with
711
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
712
              candidate hidden state with shape :math:`(D \\times D)`.
713 714 715 716 717 718 719 720 721 722 723 724

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, dynamic_gru will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
725
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
726 727 728
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
729
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
730
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
731 732 733 734
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
735 736

    Returns:
G
guosheng 已提交
737
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
738
            and sequence length is the same with the input.
739

G
guosheng 已提交
740
    Examples:
741

G
guosheng 已提交
742 743
        .. code-block:: python

744 745 746 747
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
748
            hidden_dim = 512
749
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
750 751 752 753 754 755 756 757 758 759
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
760
    batch_size = input.shape[0]
G
guosheng 已提交
761
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
762
    if h_0:
G
guosheng 已提交
763
        assert h_0.shape == (
Y
Yancey 已提交
764 765 766
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
767

X
Xin Pan 已提交
768 769 770 771
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
790 791 792
def gru_unit(input,
             hidden,
             size,
793 794
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
795
             activation='tanh',
796
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
797
    """
798
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
799

800 801
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
802

803
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
804

805
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
806

807
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
808 809

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
810 811 812
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
813 814
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

815 816
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
817 818 819
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
820 821 822

    Args:
        input (Variable): The fc transformed input value of current step.
823
        hidden (Variable): The hidden value of gru unit from previous step.
824
        size (integer): The input dimension value.
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, gru_unit will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
846 847 848 849
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
850

851 852 853 854 855 856
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
857

858
             # assuming we have x_t_data and prev_hidden of size=10
859
             x_t = fluid.layers.fc(input=x_t_data, size=30)
860 861
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
862 863 864 865 866 867 868 869 870 871 872 873

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
874
    size = size // 3
Y
Yu Yang 已提交
875 876

    # create weight
877 878
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
879

X
Xin Pan 已提交
880 881 882
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
883
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
884
    # create bias
885
    if helper.bias_attr:
Y
Yu Yang 已提交
886 887 888
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
889
        inputs['Bias'] = bias
Y
Yu Yang 已提交
890 891 892

    helper.append_op(
        type='gru_unit',
893
        inputs=inputs,
Y
Yu Yang 已提交
894 895 896 897 898 899
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
900 901
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
902 903 904 905 906
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
907
@templatedoc()
908
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
909 910 911 912 913 914 915
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
916
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
917 918 919 920
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
921 922 923
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
924 925

    """
Y
Yu Yang 已提交
926 927 928 929 930 931
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
932 933 934 935 936 937 938 939
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
955
@templatedoc()
956
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
957 958 959 960 961
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
962

Y
yuyang18 已提交
963
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
964

Y
yuyang18 已提交
965 966 967
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
968
        Variable: ${viterbi_path_comment}
969

Y
yi.wu 已提交
970 971 972 973 974
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
975
    """
Y
Yu Yang 已提交
976 977
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
978 979
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
980 981 982 983 984 985 986 987 988 989
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
990
@templatedoc()
F
fengjiayi 已提交
991
def cos_sim(X, Y):
Y
Yu Yang 已提交
992
    """
Y
yi.wu 已提交
993 994 995
    ${comment}

    Args:
996 997
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
998

Y
yi.wu 已提交
999
    Returns:
1000
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1001
    """
F
fengjiayi 已提交
1002
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1003 1004 1005
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1016 1017 1018 1019 1020
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1021
            dropout_implementation="downgrade_in_infer"):
1022 1023 1024 1025 1026
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1027
    training. The dropout operator randomly sets (according to the given dropout
1028 1029 1030 1031
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1032 1033
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1034 1035 1036 1037 1038 1039 1040
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1055

1056 1057

    Returns:
1058
        Variable: A tensor variable is the shape with `x`.
1059 1060

    Examples:
1061

1062 1063
        .. code-block:: python

1064 1065
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1066 1067
    """

F
fengjiayi 已提交
1068
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1069 1070 1071
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1072 1073 1074 1075

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1076 1077 1078 1079 1080
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1081 1082 1083 1084
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1085 1086
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1087
        })
1088 1089 1090
    return out


1091
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1092
    """
Y
Yibing Liu 已提交
1093 1094
    **Cross Entropy Layer**

1095 1096 1097
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1098 1099

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1100
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1101

Y
Yibing Liu 已提交
1102
        .. math::
Y
yangyaming 已提交
1103

Y
Yibing Liu 已提交
1104 1105 1106
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1107 1108
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1109 1110 1111 1112 1113

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1114
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1115 1116 1117
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1118 1119
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1120
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1121

Y
Yibing Liu 已提交
1122
    Args:
Y
yangyaming 已提交
1123
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1124 1125 1126 1127
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1128
        label (Variable|list): the ground truth which is a 2-D tensor. When
1129 1130 1131 1132
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1133
        soft_label (bool): a flag indicating whether to
1134
                                           interpretate the given labels as soft
1135
                                           labels. Default: `False`.
M
minqiyang 已提交
1136 1137
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1138
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1139 1140 1141 1142 1143

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1144 1145 1146 1147 1148
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1149 1150 1151 1152 1153 1154

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1155
    """
F
fengjiayi 已提交
1156
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1157
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1158 1159 1160 1161 1162
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1163 1164
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1165 1166 1167
    return out


F
fengjiayi 已提交
1168
def square_error_cost(input, label):
Y
Yu Yang 已提交
1169
    """
1170 1171
    **Square error cost layer**

1172 1173
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1174

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1188 1189
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1190 1191

    Returns:
G
guosheng 已提交
1192
        Variable: The tensor variable storing the element-wise squared error \
1193
                  difference of input and label.
1194 1195 1196 1197 1198 1199 1200 1201

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1202
    """
F
fengjiayi 已提交
1203
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1204
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1205 1206 1207 1208 1209 1210
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1211
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1212
    helper.append_op(
F
fengjiayi 已提交
1213 1214
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1215 1216 1217
    return square_out


Y
yi.wu 已提交
1218
@templatedoc()
Y
Yu Yang 已提交
1219 1220 1221 1222
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1223
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1224
    """
Y
yi.wu 已提交
1225
    **Chunk Evaluator**
Y
yi.wu 已提交
1226

Y
yangyaming 已提交
1227
    This function computes and outputs the precision, recall and
1228
    F1-score of chunk detection.
Y
yi.wu 已提交
1229

Y
yi.wu 已提交
1230 1231 1232 1233 1234 1235 1236 1237
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1238

Y
yi.wu 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1264

Y
yi.wu 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1289
    Args:
1290 1291 1292 1293 1294
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1295

Y
yi.wu 已提交
1296
    Returns:
Y
update  
yi.wu 已提交
1297 1298 1299
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1300

Y
yi.wu 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1313
    """
F
fengjiayi 已提交
1314
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1315 1316

    # prepare output
X
Xin Pan 已提交
1317 1318 1319 1320 1321 1322 1323
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1324 1325 1326 1327 1328 1329 1330 1331

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1332 1333 1334 1335
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1336 1337 1338
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1339 1340
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1341
        })
1342 1343
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1344 1345


1346
@templatedoc()
Y
Yu Yang 已提交
1347 1348 1349 1350 1351 1352 1353
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1354 1355
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1356 1357 1358 1359
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1360 1361 1362 1363 1364 1365 1366

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1380

1381 1382
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1383 1384 1385 1386 1387 1388 1389
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1390
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1401
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1402 1403 1404 1405 1406 1407
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1408
def sequence_softmax(input, use_cudnn=False, name=None):
1409 1410 1411
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1412
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1429 1430 1431
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1432

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1444 1445
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1446
    softmax_out = helper.create_variable_for_type_inference(dtype)
1447 1448 1449 1450 1451 1452 1453 1454
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1455
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1456
    """
1457
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1458
    has the same shape as the input.
Q
qiaolongfei 已提交
1459

1460 1461 1462 1463 1464 1465
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1466
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1467 1468 1469 1470 1471 1472 1473

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1474
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1475 1476 1477 1478 1479 1480 1481 1482

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1483 1484 1485
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1498 1499
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1500
    softmax_out = helper.create_variable_for_type_inference(dtype)
1501 1502 1503 1504 1505 1506 1507 1508
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1509 1510 1511
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1512 1513
           stride=1,
           padding=0,
1514
           dilation=1,
Y
Yu Yang 已提交
1515 1516 1517
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1518
           use_cudnn=True,
1519 1520
           act=None,
           name=None):
Y
Yu Yang 已提交
1521
    """
C
chengduoZH 已提交
1522
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1523 1524
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1525
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1526 1527 1528 1529 1530 1531 1532
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1533 1534 1535
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1536

1537
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1538

C
chengduoZH 已提交
1539 1540
    .. math::

C
refine  
chengduoZH 已提交
1541
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1542

T
tensor-tang 已提交
1543
    Where:
C
chengduoZH 已提交
1544

1545 1546 1547 1548 1549
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1550
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1551 1552 1553

    Example:

1554 1555
        - Input:

W
weixing02 已提交
1556
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1557

W
weixing02 已提交
1558
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1559

1560
        - Output:
T
tensor-tang 已提交
1561

W
weixing02 已提交
1562
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1563

C
chengduoZH 已提交
1564
        Where
1565 1566

        .. math::
C
chengduoZH 已提交
1567

W
weixing02 已提交
1568 1569
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1570 1571

    Args:
1572
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1573
        num_filters(int): The number of filter. It is as same as the output
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1602 1603
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1604 1605
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1606
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1607
            will be named automatically. Default: None
C
chengduoZH 已提交
1608 1609

    Returns:
G
guosheng 已提交
1610
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1611 1612
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1613
    Raises:
1614 1615
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1616

C
chengduoZH 已提交
1617 1618 1619
    Examples:
        .. code-block:: python

1620 1621
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1622 1623 1624
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1625
    assert param_attr is not False, "param_attr should not be False here."
1626
    l_type = 'conv2d'
X
xzl 已提交
1627 1628
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1629
        l_type = 'depthwise_conv2d'
1630 1631 1632 1633

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1634 1635 1636 1637 1638
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1639
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1640

C
chengduoZH 已提交
1641 1642 1643
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1644
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1645

C
chengduoZH 已提交
1646 1647
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1648 1649

    input_shape = input.shape
M
minqiyang 已提交
1650
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1651 1652

    def _get_default_param_initializer():
C
chengduo 已提交
1653 1654
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1655 1656 1657 1658 1659 1660 1661 1662
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1663
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1664 1665

    helper.append_op(
1666
        type=l_type,
Y
Yu Yang 已提交
1667 1668 1669 1670 1671
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1672 1673 1674
        attrs={
            'strides': stride,
            'paddings': padding,
1675
            'dilations': dilation,
C
chengduoZH 已提交
1676
            'groups': groups,
1677
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1678
            'use_mkldnn': False
C
chengduoZH 已提交
1679
        })
Y
Yu Yang 已提交
1680 1681 1682 1683 1684 1685

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1703 1704 1705 1706 1707 1708
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1718 1719
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1720 1721 1722
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1723
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1749
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1750 1751
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1752
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1753 1754
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1755
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1756 1757
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1758
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1759 1760 1761 1762 1763 1764
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1775 1776
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1777 1778
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1779
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1780
            will be named automatically. Default: None.
C
chengduoZH 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1793 1794
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1795 1796 1797
    """

    l_type = 'conv3d'
C
chengduo 已提交
1798
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1809
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1823 1824 1825
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1826 1827 1828 1829 1830 1831 1832 1833
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1834
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1849
            'use_mkldnn': False
C
chengduoZH 已提交
1850 1851
        })

1852
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1853 1854 1855 1856

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1857
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1858
    """
Y
yangyaming 已提交
1859 1860 1861
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1873
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1874 1875 1876 1877 1878
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1879
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1880 1881 1882 1883 1884 1885 1886

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1887 1888
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1889

L
Luo Tao 已提交
1890 1891
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1892
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1893
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1894
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1895 1896 1897 1898 1899 1900 1901

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1902

Y
yangyaming 已提交
1903
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1904 1905 1906 1907 1908
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1909 1910
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1911
    """
F
fengjiayi 已提交
1912
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1913
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1914 1915
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1916 1917 1918 1919 1920 1921

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1922 1923
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1924

Y
yangyaming 已提交
1925 1926 1927 1928 1929
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1930 1931 1932
    return pool_out


C
add doc  
chengduoZH 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1952
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1953 1954 1955 1956 1957
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1958
def sequence_first_step(input):
L
Luo Tao 已提交
1959
    """
L
Luo Tao 已提交
1960
    This function gets the first step of sequence.
L
Luo Tao 已提交
1961 1962 1963 1964

    .. code-block:: text

       x is a 1-level LoDTensor:
1965
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1966 1967 1968 1969 1970
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1971
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1972
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1973

L
Luo Tao 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1983

Y
yangyaming 已提交
1984
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1985 1986 1987
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1988 1989 1990
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1991
def sequence_last_step(input):
L
Luo Tao 已提交
1992
    """
L
Luo Tao 已提交
1993
    This function gets the last step of sequence.
L
Luo Tao 已提交
1994 1995 1996 1997

    .. code-block:: text

       x is a 1-level LoDTensor:
1998
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1999 2000 2001 2002 2003
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2004
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2005
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2006

L
Luo Tao 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2016

Y
yangyaming 已提交
2017
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2018 2019 2020
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2021 2022 2023
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2024 2025 2026 2027
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2028
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2029 2030 2031 2032 2033
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2034

Y
Yibing Liu 已提交
2035 2036
	- Case:

2037
            Given the input Variable **input**:
2038

2039 2040 2041
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2042

2043
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2044

2045
            the output Variable will be
2046

2047 2048 2049
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2050 2051

    NOTE: The first dimension size of **input**, **offset** and **length**
2052
          should be equal. The **offset** should start from 0.
2053

Y
Yibing Liu 已提交
2054
    Args:
2055
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2056
                         sequences.
Y
Yibing Liu 已提交
2057 2058 2059 2060 2061 2062
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2063
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2074
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2075 2076 2077 2078
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2079
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2094
@templatedoc()
Y
Yu Yang 已提交
2095
def pool2d(input,
C
chengduoZH 已提交
2096 2097
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2098 2099
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2100
           global_pooling=False,
C
chengduoZH 已提交
2101
           use_cudnn=True,
2102
           ceil_mode=False,
C
caoying03 已提交
2103
           name=None):
Y
Yu Yang 已提交
2104
    """
F
fengjiayi 已提交
2105
    ${comment}
2106 2107

    Args:
2108 2109 2110
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2111
                          feature, and W is the width of the feature.
2112
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2113
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2114
        pool_type: ${pooling_type_comment}
2115 2116
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2117 2118 2119
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2120
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2121 2122
                        layer will be named automatically.

2123
    Returns:
F
fengjiayi 已提交
2124
        Variable: The pooling result.
F
fengjiayi 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2138 2139 2140 2141
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2142
                            global_pooling=False)
Y
Yu Yang 已提交
2143 2144 2145 2146 2147
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2148

C
chengduoZH 已提交
2149 2150 2151 2152 2153
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2154 2155 2156 2157
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2158 2159
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2160

C
Add doc  
chengduoZH 已提交
2161
    l_type = 'pool2d'
2162 2163

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2164
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2165
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2166 2167

    helper.append_op(
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2179
            "use_mkldnn": False
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2196
    pooling configurations mentioned in input parameters.
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2209

2210
    Returns:
2211
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2212 2213 2214 2215 2216
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2217

C
chengduoZH 已提交
2218 2219 2220 2221 2222
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2223 2224 2225
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2226

C
chengduoZH 已提交
2227 2228
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2229

2230 2231
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2232
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2233
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2234 2235

    helper.append_op(
2236
        type=l_type,
Y
Yu Yang 已提交
2237 2238 2239 2240 2241 2242 2243
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2244
            "paddings": pool_padding,
2245
            "use_cudnn": use_cudnn,
2246
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2247
            "use_mkldnn": False
Y
Yu Yang 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2260
               data_layout='NCHW',
Y
Yang Yang 已提交
2261
               in_place=False,
2262 2263
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2264
               moving_variance_name=None,
2265 2266
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2267
    """
Q
qiaolongfei 已提交
2268 2269 2270 2271
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2272

Q
qiaolongfei 已提交
2273
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2274

Q
qiaolongfei 已提交
2275 2276
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2277 2278 2279
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2292 2293

    Args:
Q
qiaolongfei 已提交
2294
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2295 2296 2297 2298
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2299 2300 2301 2302 2303 2304 2305 2306
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2307
        data_layout(string, default NCHW): NCHW|NHWC
2308
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2309 2310 2311 2312
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2313
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2314
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2315 2316

    Returns:
Q
qiaolongfei 已提交
2317
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2318 2319 2320 2321 2322 2323 2324

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2325
    """
C
chengduo 已提交
2326
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2349
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2350

2351 2352
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2353 2354 2355
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2356
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2357
        shape=param_shape,
2358 2359 2360 2361 2362 2363 2364
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2365
            trainable=False,
W
wanghaoshuang 已提交
2366
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2367
        shape=param_shape,
2368 2369
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2370 2371 2372 2373 2374 2375

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2376 2377 2378 2379
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2380

X
Xin Pan 已提交
2381 2382
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2400 2401 2402 2403
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2404
            "use_mkldnn": False,
2405
            "fuse_with_relu": fuse_with_relu
2406
        })
Y
Yu Yang 已提交
2407 2408 2409 2410

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2411
@templatedoc()
G
guosheng 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2422
    ${comment}
G
guosheng 已提交
2423 2424 2425

    The formula is as follows:

Y
yuyang18 已提交
2426
    ..  math::
G
guosheng 已提交
2427 2428 2429 2430 2431 2432 2433

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2434 2435 2436 2437 2438 2439 2440 2441
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2442

G
guosheng 已提交
2443 2444
    Args:
        input(Variable): The input tensor variable.
2445
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2446
            normalization. Default True.
2447
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2448 2449
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2450
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2451
            Default 1.
2452
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2453
            division by zero. Default 1e-05.
G
guosheng 已提交
2454
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2455 2456
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2457 2458
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2459
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2460 2461
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2462
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2463
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2464
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2465 2466 2467
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2468 2469

    Returns:
Y
yuyang18 已提交
2470
        ${y_comment}
G
guosheng 已提交
2471 2472 2473

    Examples:

Y
yuyang18 已提交
2474 2475 2476
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2492
    if shift:
G
guosheng 已提交
2493 2494 2495 2496 2497 2498
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2499 2500 2501 2502 2503
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2519 2520 2521 2522
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2523 2524 2525
                     padding=0,
                     stride=1,
                     dilation=1,
2526
                     groups=None,
C
caoying03 已提交
2527
                     param_attr=None,
2528
                     bias_attr=None,
C
chengduoZH 已提交
2529
                     use_cudnn=True,
2530
                     act=None,
C
caoying03 已提交
2531
                     name=None):
Y
Yu Yang 已提交
2532
    """
2533 2534 2535 2536 2537 2538 2539 2540
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2541 2542
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2543 2544 2545
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2546 2547 2548 2549 2550

    For each input :math:`X`, the equation is:

    .. math::

2551
        Out = \sigma (W \\ast X + b)
2552

2553
    Where:
2554 2555 2556

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2557 2558 2559 2560
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2561

2562 2563 2564 2565
    Example:

        - Input:

2566
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2567

2568
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2569 2570 2571

        - Output:

2572
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2573 2574

        Where
Y
Yu Yang 已提交
2575

2576 2577
        .. math::

2578 2579 2580 2581
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2582 2583

    Args:
2584 2585 2586 2587
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2588 2589 2590 2591
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2620
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2621 2622 2623
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2624
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2625
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2626 2627

    Returns:
2628
        Variable: The tensor variable storing the convolution transpose result.
2629 2630

    Raises:
2631 2632
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2633 2634 2635 2636

    Examples:
       .. code-block:: python

2637 2638
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2639
    """
C
chengduo 已提交
2640
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2641 2642 2643 2644 2645 2646 2647 2648
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2649 2650 2651
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2652 2653 2654
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2655

C
chengduoZH 已提交
2656 2657
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2658

Y
Yu Yang 已提交
2659 2660 2661 2662 2663
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2664

Y
Yu Yang 已提交
2665 2666
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2667

C
chengduoZH 已提交
2668
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2669
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2670
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2671
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2672
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2673 2674 2675
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2676

2677 2678 2679 2680 2681 2682 2683
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2684
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2685
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2686

Y
Yu Yang 已提交
2687 2688 2689
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2690
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2691
    helper.append_op(
2692
        type=op_type,
Y
Yu Yang 已提交
2693 2694
        inputs={'Input': [input],
                'Filter': [img_filter]},
2695
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2696
        attrs={
2697
            'output_size': output_size,
2698 2699 2700 2701 2702
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2703 2704
        })

2705 2706 2707
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2708 2709


2710
def conv3d_transpose(input,
Y
Yu Yang 已提交
2711 2712 2713
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2714 2715 2716
                     padding=0,
                     stride=1,
                     dilation=1,
2717
                     groups=None,
C
caoying03 已提交
2718
                     param_attr=None,
2719
                     bias_attr=None,
C
chengduoZH 已提交
2720
                     use_cudnn=True,
2721
                     act=None,
C
caoying03 已提交
2722
                     name=None):
Y
Yu Yang 已提交
2723
    """
2724
    **Convlution3D transpose layer**
2725

2726
    The convolution3D transpose layer calculates the output based on the input,
2727
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2728 2729 2730 2731 2732 2733
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2734 2735 2736
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2737 2738 2739 2740 2741

    For each input :math:`X`, the equation is:

    .. math::

2742
        Out = \sigma (W \\ast X + b)
2743 2744 2745

    In the above equation:

2746 2747
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2748 2749 2750 2751
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2752

2753 2754 2755 2756
    Example:

        - Input:

2757
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2758

2759
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2760 2761 2762

        - Output:

2763
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2764 2765

        Where
Y
Yu Yang 已提交
2766

2767 2768
        .. math::

2769 2770 2771
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2772 2773

    Args:
2774
        input(Variable): The input image with [N, C, D, H, W] format.
2775 2776 2777
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2778
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2779 2780
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2781
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2782 2783 2784
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2785 2786
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2787
        stride(int|tuple): The stride size. If stride is a tuple, it must
2788 2789
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2790
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2791 2792 2793
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2794 2795 2796 2797 2798
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2799 2800 2801 2802 2803 2804 2805 2806 2807
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2808 2809
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2810 2811
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2812 2813
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2814 2815

    Returns:
2816
        Variable: The tensor variable storing the convolution transpose result.
2817 2818

    Raises:
2819 2820
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2821 2822 2823 2824

    Examples:
       .. code-block:: python

2825 2826
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2827
    """
C
chengduo 已提交
2828
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2829 2830
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2831
    if not isinstance(input, Variable):
2832
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2833 2834
    input_channel = input.shape[1]

2835 2836 2837
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2838

C
chengduoZH 已提交
2839 2840 2841
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2842 2843 2844 2845 2846 2847
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2848 2849 2850
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2851

2852
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2853
                         padding[0] - 1) // dilation[0] + 1
2854
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2855
                         padding[1] - 1) // dilation[1] + 1
2856
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2857
                         padding[2] - 1) // dilation[2] + 1
2858
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2859
    else:
2860 2861
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2862

2863
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2864
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2865 2866 2867
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2868
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2869
    helper.append_op(
2870
        type=l_type,
Y
Yu Yang 已提交
2871 2872
        inputs={'Input': [input],
                'Filter': [img_filter]},
2873
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2874 2875 2876 2877
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2878
            'groups': groups,
C
chengduoZH 已提交
2879 2880
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2881

2882 2883
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2884
    return out
Y
yangyaming 已提交
2885 2886


Y
yangyaming 已提交
2887
def sequence_expand(x, y, ref_level=-1, name=None):
2888
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2889 2890 2891 2892
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2893 2894 2895 2896 2897

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2898
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2899
                x.data = [[a], [b], [c], [d]]
2900 2901 2902
                x.dims = [4, 1]

            y is a LoDTensor:
2903 2904
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2905

Y
yangyaming 已提交
2906
            ref_level: 0
2907

Y
yangyaming 已提交
2908
            then output is a 1-level LoDTensor:
2909
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2910
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2911 2912 2913 2914
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2915
                x.data = [[a], [b], [c]]
2916 2917 2918
                x.dims = [3, 1]

            y is a LoDTensor:
2919
                y.lod = [[2, 0, 3]]
2920

Y
yangyaming 已提交
2921
            ref_level: -1
2922

Y
yangyaming 已提交
2923 2924 2925
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2926 2927 2928
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2929 2930
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2931
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2932
                        will be named automatically.
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2943
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2944
    """
Y
yangyaming 已提交
2945
    helper = LayerHelper('sequence_expand', input=x, **locals())
2946
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2947
    tmp = helper.create_variable_for_type_inference(dtype)
2948
    helper.append_op(
Y
yangyaming 已提交
2949 2950 2951 2952 2953
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2954
    return tmp
2955 2956


C
chengduo 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3013
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3014 3015 3016 3017 3018 3019 3020 3021
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3022
@templatedoc()
3023
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3024 3025 3026 3027 3028
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3029 3030 3031
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3032
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3033 3034 3035 3036
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3037 3038 3039
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3040

F
fengjiayi 已提交
3041
    Returns:
M
minqiyang 已提交
3042
        Variable: The padded sequence batch and the original lengths before
3043
                  padding. All sequences has the same length.
M
minqiyang 已提交
3044

F
fengjiayi 已提交
3045 3046 3047 3048 3049 3050 3051
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3052 3053
            pad_value = fluid.layers.assign(
                input=numpy.array([0], dtype=numpy.float32))
F
fengjiayi 已提交
3054 3055 3056 3057 3058
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3059 3060
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3061 3062 3063 3064

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3065 3066 3067 3068 3069 3070
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3071 3072
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3073
        attrs={'padded_length': maxlen})
3074
    return out, length
F
fengjiayi 已提交
3075 3076


3077
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3078
    """
3079
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3080

3081 3082
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3083 3084 3085 3086 3087 3088 3089 3090 3091
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3092 3093 3094
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3095
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3096 3097 3098 3099 3100 3101

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3102
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3103 3104 3105 3106 3107 3108

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3109 3110
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3125
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3137 3138 3139 3140 3141 3142 3143 3144 3145
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3146 3147
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3148 3149 3150

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3151 3152

    This layer does the search in beams for one time step. Specifically, it
3153 3154 3155 3156 3157 3158
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3159

3160 3161 3162 3163 3164 3165 3166 3167
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3168

3169
    Args:
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3195

3196
    Returns:
3197 3198
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3199 3200 3201 3202

    Examples:
        .. code-block:: python

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3220 3221 3222 3223
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3224 3225 3226
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3227 3228 3229 3230 3231

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3232
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3250 3251 3252 3253 3254 3255 3256
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3257

3258 3259 3260 3261 3262 3263 3264 3265 3266
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3267

3268 3269 3270 3271 3272 3273
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3274

3275 3276 3277 3278 3279 3280 3281 3282
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3283 3284
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3300 3301 3302 3303
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3304
              param_attr=None,
C
caoying03 已提交
3305 3306
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3307 3308 3309 3310
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3311
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3312

3313
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3314

3315
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3316

3317
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3318 3319 3320

            h_t & = o_t tanh(c_t)

3321 3322 3323 3324 3325 3326
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3327 3328 3329

        .. math::

3330
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3331 3332 3333 3334 3335 3336 3337 3338

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3339
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3340 3341

    Args:
Y
yangyaming 已提交
3342 3343 3344 3345 3346 3347
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3348
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3361 3362
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3363 3364

    Returns:
Y
yangyaming 已提交
3365
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3366 3367

    Raises:
3368 3369 3370 3371
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3372 3373 3374 3375 3376 3377

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3378
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3379
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3380
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3397
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3398 3399 3400 3401
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3402 3403
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3404 3405 3406
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3407
    size = cell_t_prev.shape[1]
3408
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3409 3410
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3411
                param_attr=param_attr,
3412
                bias_attr=bias_attr)
Y
yangyaming 已提交
3413
    dtype = x_t.dtype
X
Xin Pan 已提交
3414 3415
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3425
    return h, c
G
guosheng 已提交
3426 3427


C
caoying03 已提交
3428
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3429
    """
Y
yangyaming 已提交
3430
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3431 3432 3433

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3434
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3435 3436
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3437 3438
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3439
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3440
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3441
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3442 3443
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3444 3445 3446

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3447

G
guosheng 已提交
3448 3449 3450 3451 3452 3453
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3454
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3455 3456 3457 3458
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3459 3460 3461 3462

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3463
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3464 3465 3466
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3467 3468
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3469
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3470 3471
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3472 3473 3474 3475 3476
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3477
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3478 3479 3480 3481
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3482 3483


C
caoying03 已提交
3484
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3485
    """
Y
Yibing Liu 已提交
3486
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3487 3488 3489

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3490 3491 3492
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3493
            must be in the range :math:`[-rank(input), rank(input))`. If
3494
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3495
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3496 3497
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3498
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3499
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3500
                       will be named automatically.
G
guosheng 已提交
3501 3502

    Returns:
Y
Yibing Liu 已提交
3503
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3504

G
guosheng 已提交
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3515 3516
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3517 3518 3519 3520 3521 3522 3523

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3524 3525
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3526
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3527 3528
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3529 3530 3531 3532 3533
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3534
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3535 3536 3537 3538
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3539 3540


C
caoying03 已提交
3541
def reduce_max(input, dim=None, keep_dim=False, name=None):
3542
    """
Y
yangyaming 已提交
3543
    Computes the maximum of tensor elements over the given dimension.
3544 3545 3546

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3547
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3548 3549 3550
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3551
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3552 3553
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3554
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3555 3556
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3557 3558 3559

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3560

3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3572 3573 3574 3575 3576 3577 3578

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3579 3580
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3581
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3582 3583
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3584 3585 3586 3587 3588
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3589
            'dim': dim if dim != None else [0],
3590 3591 3592 3593 3594 3595
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3596
def reduce_min(input, dim=None, keep_dim=False, name=None):
3597
    """
Y
yangyaming 已提交
3598
    Computes the minimum of tensor elements over the given dimension.
3599 3600 3601

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3602
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3603 3604 3605
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3606
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3607 3608
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3609
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3610 3611
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3612 3613 3614

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3615

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3627 3628 3629 3630 3631 3632 3633

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3634 3635
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3636
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3637 3638
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3639 3640 3641 3642 3643
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3644
            'dim': dim if dim != None else [0],
3645 3646 3647 3648
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3649 3650


3651 3652 3653 3654 3655 3656
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3657
        dim (list|int|None): The dimensions along which the product is performed. If
3658 3659
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3660 3661
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3662 3663 3664
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3665
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3666
            layer will be named automatically.
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3681
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3682
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3683 3684 3685 3686 3687 3688 3689

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3690 3691
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3692
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3693 3694
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3695 3696 3697 3698 3699
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3700
            'dim': dim if dim != None else [0],
3701 3702 3703 3704 3705 3706
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3707
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3708
    """
C
caoying03 已提交
3709
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3710 3711 3712

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3713 3714 3715 3716 3717
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3718
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3719
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3720
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3721 3722
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3723 3724

    Returns:
D
dzhwinter 已提交
3725
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3726 3727 3728 3729 3730 3731 3732 3733 3734

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3735 3736
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3752
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3766 3767 3768 3769 3770 3771 3772 3773 3774


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3775
    .. math::
3776 3777

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3778 3779 3780 3781 3782

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3783
        x(Variable|list): The input tensor to l2_normalize layer.
3784
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3785 3786
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3787
        epsilon(float): The epsilon value is used to avoid division by zero, \
3788
            the defalut value is 1e-10.
3789
        name(str|None): A name for this layer(optional). If set None, the layer \
3790
            will be named automatically.
C
caoying03 已提交
3791 3792

    Returns:
3793
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3794 3795

    Examples:
3796

C
caoying03 已提交
3797 3798
        .. code-block:: python

3799 3800 3801 3802
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3803 3804
    """

F
fengjiayi 已提交
3805 3806
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3807 3808
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3809 3810
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3811
    helper.append_op(
3812 3813 3814 3815
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3816
        attrs={
3817 3818
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3819 3820
        })
    return out
3821 3822


S
sneaxiy 已提交
3823
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3824
    """
Y
ying 已提交
3825 3826 3827 3828
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3829

C
chengduoZH 已提交
3830
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3831
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3832

3833 3834 3835 3836 3837
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3838
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3839

C
chengduoZH 已提交
3840
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3841
      performs in the following way.
G
guosheng 已提交
3842

3843
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3844
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3845
        last two dimensions and a batched matrix multiply supporting broadcast
3846
        applies on the two tensors.
G
guosheng 已提交
3847

Y
ying 已提交
3848 3849
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3850
    removed after matrix multiplication.
G
guosheng 已提交
3851 3852 3853

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3854 3855 3856
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3857
        alpha (float): The scale of output. Default 1.0.
3858
        name(str|None): A name for this layer(optional). If set None, the layer
3859
            will be named automatically.
G
guosheng 已提交
3860 3861

    Returns:
3862
        Variable: The product Tensor variable.
G
guosheng 已提交
3863

G
guosheng 已提交
3864 3865 3866
    Examples:
        .. code-block:: python

3867
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3868 3869
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3870

3871 3872
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3873

3874 3875
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3876

3877 3878
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3879 3880 3881 3882

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3883 3884
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3885

Y
ying 已提交
3886
            # x: [M], y: [N]
3887
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3888
    """
Y
ying 已提交
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3901
            y_shape = y_shape + [1]
Y
ying 已提交
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3918
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3919
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3920
    helper.append_op(
3921 3922 3923 3924
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3925 3926 3927
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3928
            'alpha': float(alpha),
S
sneaxiy 已提交
3929
        })
3930
    return out
3931 3932


3933
def topk(input, k, name=None):
Q
qingqing01 已提交
3934 3935 3936 3937
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3938
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3939 3940 3941 3942 3943 3944
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3966 3967 3968
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3969
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3970
                 of input.
3971
        name(str|None): A name for this layer(optional). If set None, the layer
3972
                       will be named automatically.
F
fengjiayi 已提交
3973
                       Default: None
Q
qingqing01 已提交
3974 3975

    Returns:
3976 3977 3978
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3979
        within the last dimension of input.
Q
qingqing01 已提交
3980

F
fengjiayi 已提交
3981 3982
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3983 3984 3985 3986 3987 3988 3989

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
3990 3991
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4003
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4004
    """
Y
ying 已提交
4005 4006 4007 4008 4009 4010 4011 4012 4013
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4014

Y
ying 已提交
4015
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4016

4017
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4018 4019
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4020
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4021

4022
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4023 4024
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4025

4026 4027 4028
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4029
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4030
                          the length of reference string.
4031
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4032
                                     calculating edit distance.
4033
        name (str): The name of this layer. It is optional.
4034

W
wanghaoshuang 已提交
4035
    Returns:
W
wanghaoshuang 已提交
4036
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4037 4038 4039 4040 4041

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4042
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4043
            cost = fluid.layers.edit_distance(input=x,label=y)
4044
    """
4045
    helper = LayerHelper("edit_distance", **locals())
4046

4047
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4048
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4049 4050
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4051 4052 4053 4054 4055

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4056
            attrs={"tokens": ignored_tokens})
4057 4058 4059 4060 4061
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4062
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4063
            attrs={"tokens": ignored_tokens})
4064 4065
        label = erased_label

4066
    # edit distance op
X
Xin Pan 已提交
4067 4068
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4069 4070 4071 4072
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4073 4074
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4075 4076
        attrs={"normalized": normalized})

4077
    return edit_distance_out, sequence_num
4078 4079 4080 4081 4082


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4083

Y
ying 已提交
4084 4085 4086 4087
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4105
        input.lod = [[4, 4]]
4106 4107 4108 4109 4110 4111 4112

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4113
        output.lod = [[2, 1]]
4114 4115 4116

    Args:

Y
ying 已提交
4117 4118 4119 4120 4121 4122 4123 4124 4125
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4126
        name (str): The name of this layer. It is optional.
4127 4128

    Returns:
4129
        Variable: CTC greedy decode result. If all the sequences in result were
4130
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4131 4132 4133 4134 4135

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4136

4137
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4138
    """
4139
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4140
    _, topk_indices = topk(input, k=1)
4141 4142

    # ctc align op
X
Xin Pan 已提交
4143
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4144 4145 4146
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4147
        outputs={"Output": [ctc_out]},
4148 4149
        attrs={"merge_repeated": True,
               "blank": blank})
4150
    return ctc_out
4151 4152


F
fengjiayi 已提交
4153
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4154
    """
4155 4156
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4157
    to compute Connectionist Temporal Classification (CTC) loss.
4158 4159
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4160 4161 4162
    input tensor.

    Args:
4163
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4164 4165 4166 4167
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4168
       label (Variable): The ground truth of variable-length sequence,
4169 4170 4171
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4172 4173
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4174 4175 4176
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4177
         follewed by a mean_op.
W
wanghaoshuang 已提交
4178 4179

    Returns:
4180 4181
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4182 4183

    Examples:
4184

W
wanghaoshuang 已提交
4185
        .. code-block:: python
4186

4187 4188 4189
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4190 4191

    """
F
fengjiayi 已提交
4192
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4193 4194
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4195 4196 4197 4198 4199 4200 4201 4202 4203
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4219 4220 4221
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4222 4223 4224 4225 4226
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4227

4228
            out.lod  = [[0, 1, 3]]
4229 4230 4231 4232

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4233 4234 4235 4236 4237 4238 4239
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4240 4241 4242

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4243 4244

    Returns:
4245

4246 4247 4248 4249 4250
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4251
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4252
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4253 4254
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4255
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4256 4257 4258 4259 4260 4261
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4262 4263


4264 4265 4266 4267
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4268 4269 4270 4271 4272 4273
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4274 4275
        num_neg_samples=None,
        name=None):
4276 4277 4278 4279 4280 4281 4282
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4283 4284
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4285
            sample is 1.0.
C
chengduo 已提交
4286 4287 4288 4289 4290 4291 4292 4293 4294
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4295
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4296 4297
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4298

4299
    Returns:
Y
Yibing Liu 已提交
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4327
    """
Y
Yang Yu 已提交
4328 4329 4330
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4331 4332

    dim = input.shape[1]
Y
Yang Yu 已提交
4333 4334 4335 4336 4337 4338
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4352 4353 4354
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4355

Y
Yang Yu 已提交
4356 4357 4358 4359 4360 4361 4362 4363 4364
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4365 4366 4367

    helper.append_op(
        type='nce',
C
chengduo 已提交
4368
        inputs=inputs,
Y
Yang Yu 已提交
4369 4370 4371 4372 4373 4374
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4375
    return cost / (num_neg_samples + 1)
4376 4377


C
chengduo 已提交
4378 4379 4380 4381 4382 4383
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4384 4385
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4386
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4387 4388 4389 4390 4391 4392 4393 4394 4395
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4396

W
weixing02 已提交
4397
    Args:
M
minqiyang 已提交
4398
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4399 4400 4401 4402 4403
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4415 4416 4417 4418 4419 4420 4421 4422

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4423 4424 4425
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4426 4427 4428 4429
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4430 4431
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4432 4433
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4434
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4435 4436 4437 4438 4439
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4440 4441 4442 4443 4444 4445 4446 4447
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4448 4449
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4450
        inputs=inputs,
W
weixing02 已提交
4451 4452 4453 4454 4455 4456
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4457
def transpose(x, perm, name=None):
Y
ying 已提交
4458 4459 4460 4461 4462 4463 4464
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4465 4466 4467
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4468 4469 4470 4471 4472 4473 4474

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4475 4476 4477 4478
            # use append_batch_size=False to avoid prepending extra 
            # batch size in shape
            x = fluid.layers.data(name='x', shape=[5, 10, 15], 
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4479
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4480 4481
    """

Y
fix ci.  
ying 已提交
4482
    if len(perm) != len(x.shape):
Y
ying 已提交
4483 4484 4485
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4486 4487 4488 4489 4490 4491
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4492 4493

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4494 4495
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4496
    helper.append_op(
4497
        type='transpose2',
Y
fix ci.  
ying 已提交
4498
        inputs={'X': [x]},
4499 4500
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4501 4502
        attrs={'axis': perm})
    return out
4503 4504


4505 4506 4507 4508 4509 4510 4511
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4512
    """
4513 4514 4515 4516 4517 4518 4519
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4548 4549 4550 4551 4552 4553 4554 4555 4556
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4557 4558 4559
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4560 4561 4562 4563 4564
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4592 4593 4594
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4607
            output.dims = {8, 8}
4608

4609
            output.lod = [[4, 4]]
4610

D
dzhwinter 已提交
4611
     Examples:
4612 4613 4614

        .. code-block:: python

4615 4616
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4617 4618

    """
W
wanghaoshuang 已提交
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4629 4630 4631 4632 4633 4634 4635
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4636
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4637
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4638
    helper.append_op(
4639
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4640
    return out
4641 4642


Y
yuyang18 已提交
4643
@templatedoc()
4644
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4645 4646
    """
    ${comment}
4647 4648

    Args:
Y
yuyang18 已提交
4649
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4650 4651
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4652 4653 4654 4655 4656
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4657
        ${out_comment}.
4658 4659

    Examples:
Y
yuyang18 已提交
4660 4661 4662 4663
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4664 4665 4666 4667 4668 4669
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4670
    out = helper.create_variable_for_type_inference(dtype)
4671 4672 4673 4674 4675
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4676
    return helper.append_activation(out)
4677 4678


Y
yuyang18 已提交
4679
@templatedoc()
4680 4681
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4682 4683 4684 4685 4686 4687 4688
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4689 4690

    Args:
Y
yuyang18 已提交
4691 4692
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4693 4694

    Returns:
Y
yuyang18 已提交
4695
        ${out_comment}.
4696 4697
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4698 4699 4700 4701 4702

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4703
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4704 4705 4706 4707 4708 4709
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4710 4711


4712 4713 4714 4715
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4716 4717
    """
    **Softmax With Cross Entropy Operator.**
4718

4719 4720 4721 4722
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4723

4724 4725 4726
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4727

4728 4729 4730
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4731

4732
    The equation is as follows:
4733

4734
    1) Hard label (one-hot label, so every sample has exactly one class)
4735

4736 4737 4738 4739
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4740

4741 4742 4743
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4744

4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4757 4758
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4759 4760
                            if soft_label is set to False. Default: -100

4761 4762 4763 4764 4765 4766 4767 4768 4769
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4770 4771
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4772 4773
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4774 4775
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4776 4777 4778 4779 4780 4781
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4782 4783
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4784 4785 4786 4787 4788
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4789 4790
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4791
    For each instance, it computes the smooth L1 loss element by element first
4792
    and then sums all the losses. So the shape of ouput Variable is
4793
    [batch_size, 1].
4794

4795 4796
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4797
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4798
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4799
            L1 loss op with same shape as :attr:`x`.
4800
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4801 4802
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4803
            by this tensor element by element.
4804
        outside_weight (Variable|None): A tensor with rank at least 2. This
4805 4806
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4807
            element by element.
4808
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4809 4810
           scalar with default value 1.0.

4811
    Returns:
4812
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4813 4814 4815 4816 4817

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4818 4819
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4820
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4821
            out = fluid.layers.smooth_l1(x=fc, y=label)
4822
    """
4823

4824
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4825 4826
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4839 4840 4841 4842


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4843
    This layer creates the one-hot representations for input indices.
4844 4845

    Args:
Y
Yibing Liu 已提交
4846 4847
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4848 4849

    Returns:
Y
Yibing Liu 已提交
4850
        Variable: The one-hot representations of input.
4851 4852

    Examples:
C
caoying03 已提交
4853
        .. code-block:: python
4854

Y
Yibing Liu 已提交
4855 4856
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4857 4858
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4859
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4860 4861 4862 4863 4864 4865
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4866 4867


Y
Yu Yang 已提交
4868
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4869
    """
Y
yi.wu 已提交
4870 4871 4872
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4873 4874 4875 4876 4877 4878

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4879 4880
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4881 4882 4883 4884 4885 4886

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4887 4888
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4889 4890
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4891 4892 4893 4894 4895
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4896
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4897
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4898 4899
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4900 4901
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4902 4903 4904
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4905 4906


4907
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4908
    """
C
caoying03 已提交
4909 4910
    Gives a new shape to the input Tensor without changing its data.

4911 4912 4913 4914 4915
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4916

4917
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4918

4919 4920 4921 4922
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4923
    2. 0 means the actual dimension value is going to be copied from the
4924 4925 4926 4927
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4928 4929

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4930
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4931
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4932

4933
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4934 4935
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4936 4937
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4938
    dimensions.
C
caoying03 已提交
4939

4940
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4941 4942 4943 4944
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4945 4946

    Args:
4947
        x(variable): The input tensor.
C
caoying03 已提交
4948 4949
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4950 4951 4952 4953 4954
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
4955 4956
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
4957 4958 4959 4960 4961 4962 4963
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
4964
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4965

4966
    Returns:
G
guosheng 已提交
4967 4968 4969 4970
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
4971

X
Xin Pan 已提交
4972 4973 4974
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4975 4976
    Examples:
        .. code-block:: python
G
guosheng 已提交
4977

4978
            data = fluid.layers.data(
4979
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4980
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
4981
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
4982 4983 4984
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4985
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4986 4987 4988 4989 4990
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4991

4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5007
    helper = LayerHelper("reshape2", **locals())
5008 5009
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5010
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5011
    helper.append_op(
5012
        type="reshape2",
X
Xin Pan 已提交
5013
        inputs=inputs,
D
dzhwinter 已提交
5014
        attrs={"shape": shape},
5015 5016
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5017

D
dzhwinter 已提交
5018
    return helper.append_activation(out)
5019

5020

5021
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5022
    """
M
minqiyang 已提交
5023 5024 5025
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5026
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5027

Y
Yibing Liu 已提交
5028 5029
    Examples:
    Case 1:
M
minqiyang 已提交
5030
      Given
Y
Yibing Liu 已提交
5031 5032 5033 5034 5035 5036 5037 5038
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5039
        and
Y
Yibing Liu 已提交
5040 5041 5042
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5043

Y
Yibing Liu 已提交
5044
    Args:
5045
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5046
        axes (list): List of integers, indicating the dimensions to be squeezed.
5047
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5048 5049 5050 5051 5052 5053 5054 5055

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5056
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5057 5058
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5059 5060
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5061
    helper.append_op(
5062
        type="squeeze2",
5063
        inputs={"X": input},
Y
Yibing Liu 已提交
5064
        attrs={"axes": axes},
5065 5066
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5067

5068 5069 5070
    return out


5071
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5072
    """
M
minqiyang 已提交
5073 5074 5075
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5076

M
minqiyang 已提交
5077 5078
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5079
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5080

Y
Yibing Liu 已提交
5081
    Args:
5082
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5083
        axes (list): List of integers, indicating the dimensions to be inserted.
5084
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5085 5086 5087 5088 5089 5090 5091 5092

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5093
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5094 5095
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5096 5097
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5098
    helper.append_op(
5099
        type="unsqueeze2",
5100
        inputs={"X": input},
Y
Yibing Liu 已提交
5101
        attrs={"axes": axes},
5102 5103
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5104

5105 5106
    return out

5107

Y
yangyaming 已提交
5108
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5109
    """
Y
Yibing Liu 已提交
5110
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5111 5112 5113 5114
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5115
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5116 5117 5118 5119 5120 5121

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5122
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5123 5124 5125
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5126
            target_lod: [4, 2]
Y
yangyaming 已提交
5127 5128

            then we get a 1-level LoDTensor:
5129
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5130 5131 5132 5133 5134 5135
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5136
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5137 5138 5139 5140
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5141
                y.data = [[2, 4]]
Y
yangyaming 已提交
5142 5143 5144
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5145
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5146 5147 5148 5149 5150 5151
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5152
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5153 5154 5155 5156
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5157
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5158 5159 5160 5161
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5162
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5163 5164 5165 5166 5167
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5168
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5169
                           from :attr:`y`.
Y
yangyaming 已提交
5170
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5171
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5172 5173

    Returns:
Y
Yibing Liu 已提交
5174
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5175 5176

    Raises:
Y
Yibing Liu 已提交
5177
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5178 5179 5180 5181 5182 5183 5184 5185 5186

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5187
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5213
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5242 5243
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5256 5257 5258
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5272 5273 5274 5275


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5276
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5277
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5278

G
guosheng 已提交
5279 5280 5281 5282
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5305
                         The length of :attr:paddings must be
G
guosheng 已提交
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5316

G
guosheng 已提交
5317 5318 5319 5320 5321 5322
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5323
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5324 5325 5326 5327 5328 5329 5330
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5331 5332


C
chengduo 已提交
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5403
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5404 5405 5406 5407 5408 5409 5410 5411 5412
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5413 5414 5415 5416 5417 5418 5419
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5420 5421
    called label-smoothing regularization (LSR).

5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5445
                              be :math:`(1, class\_num)`.
5446 5447
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5448
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5468
    smooth_label = helper.create_variable_for_type_inference(dtype)
5469 5470 5471 5472 5473 5474 5475
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5476 5477


Y
yi.wu 已提交
5478
@templatedoc()
5479 5480
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5481
    ${comment}
5482 5483

    Args:
Y
yi.wu 已提交
5484 5485
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5486 5487 5488
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5489 5490

    Returns:
Y
update  
yi.wu 已提交
5491
        Variable: ${out_comment}.
5492 5493

    Examples:
5494 5495
        .. code-block:: python

5496
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5497 5498 5499
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5500 5501
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5514 5515


J
jerrywgz 已提交
5516 5517 5518 5519 5520 5521
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5522 5523
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5540 5541 5542
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5543 5544 5545 5546 5547 5548
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5549
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5590 5591
        .. code-block:: python

W
whs 已提交
5592 5593 5594 5595
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5596
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5597 5598 5599 5600 5601 5602
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5603 5604


5605 5606 5607 5608 5609
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5610
    """
Q
qiaolongfei 已提交
5611
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5612

5613
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5614 5615 5616
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5617

5618
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5619

5620
    Args:
5621
        input (Variable): The input tensor of image resize layer,
5622 5623
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5624
        out_shape(list|tuple|Variable|None): Output shape of image resize
5625 5626
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5627
        scale(float|None): The multiplier for the input height or width.
5628 5629 5630
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5631 5632
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5633 5634
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5635 5636

    Returns:
Q
update  
qiaolongfei 已提交
5637 5638
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5639

5640 5641 5642
    Examples:
        .. code-block:: python

5643
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5644
    """
5645 5646 5647 5648
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5649 5650
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5651 5652
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5653 5654 5655 5656

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5657 5658 5659
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5660
    if out_shape is not None:
B
baiyf 已提交
5661 5662 5663
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5664 5665 5666 5667 5668 5669
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5670 5671 5672 5673
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

X
Xin Pan 已提交
5674
    out = helper.create_variable_for_type_inference(dtype)
5675
    helper.append_op(
5676
        type=resample_methods[resample],
5677
        inputs=inputs,
5678 5679 5680 5681
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5682 5683


Y
yuyang18 已提交
5684
@templatedoc(op_type="bilinear_interp")
5685 5686
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5687 5688 5689 5690 5691 5692
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5693

Y
yuyang18 已提交
5694 5695 5696 5697 5698 5699 5700 5701
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5702 5703 5704 5705 5706 5707 5708
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5709 5710 5711
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5712 5713 5714 5715 5716 5717 5718
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5719
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5720

5721
    Returns:
Q
update  
qiaolongfei 已提交
5722
        Variable: The output is a 4-D tensor of the shape
5723
        (num_batches, channls, out_h, out_w).
5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5734 5735 5736
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5737 5738 5739
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5740 5741
def gather(input, index):
    """
Q
qiaolongfei 已提交
5742 5743
    **Gather Layer**

5744
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5745 5746 5747 5748
    of X indexed by `index` and concatenate them together.

    .. math::

5749
        Out = X[Index]
W
whs 已提交
5750 5751 5752 5753 5754 5755 5756


    .. code-block:: text


                Given:

5757 5758
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5769
        input (Variable): The source input with rank>=1.
W
whs 已提交
5770 5771 5772 5773 5774 5775
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5776

W
whs 已提交
5777 5778 5779 5780 5781 5782
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5783
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5784 5785 5786 5787 5788 5789 5790 5791
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5823
    out = helper.create_variable_for_type_inference(dtype)
5824 5825 5826 5827 5828 5829 5830 5831 5832
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5883
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
5884 5885 5886 5887 5888 5889 5890 5891 5892
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5906

5907 5908 5909
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5910
    """
F
stash  
fengjiayi 已提交
5911
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5912
    dtype = x.dtype
X
Xin Pan 已提交
5913
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
5914
    if seed is None:
5915
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5916
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5917
    if isinstance(seed, int):
F
fengjiayi 已提交
5918 5919 5920 5921 5922
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5923 5924 5925 5926
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5927
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5928 5929
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5930 5931
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5932
    return out
W
whs 已提交
5933 5934


5935
def log(x, name=None):
W
wanghaoshuang 已提交
5936 5937 5938 5939 5940
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5941
        Out = \\ln(x)
W
wanghaoshuang 已提交
5942 5943

    Args:
5944
        x (Variable): Input tensor.
5945 5946
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5947 5948 5949 5950 5951 5952 5953 5954

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5955
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5956 5957
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5958
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5959
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5960
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5961 5962 5963
    return out


5964
def relu(x, name=None):
W
wanghaoshuang 已提交
5965 5966
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5967
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5968 5969 5970 5971
    the tensor elementwise.

    .. math::

5972
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5973 5974

    Args:
5975
        x (Variable): The input tensor.
5976 5977
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5978 5979 5980 5981 5982 5983 5984 5985

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5986
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5987 5988
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5989
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5990
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5991
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5992
    return out
5993 5994


W
whs 已提交
5995 5996 5997
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5998 5999 6000 6001
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6002
    .. math::
6003 6004

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6005

6006
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6007 6008 6009 6010 6011
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6012
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6013
                           Its shape should be the same as input.
6014
        num_classes (int): The possible number of labels.
W
whs 已提交
6015 6016 6017 6018

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6019
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6020 6021 6022 6023

    Examples:

        .. code-block:: python
6024

W
whs 已提交
6025 6026 6027 6028
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6029 6030 6031
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6032 6033
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6034 6035
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6036
        outputs={
W
whs 已提交
6037 6038 6039
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6040 6041 6042
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6117
                    isinstance(shape, Variable)):
6118 6119 6120 6121 6122
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6123
    out = helper.create_variable_for_type_inference(x.dtype)
6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6151

6152 6153
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6154

6155 6156 6157 6158
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6159

6160 6161 6162 6163 6164
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6165 6166 6167

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6203
    out = helper.create_variable_for_type_inference("float32")
6204 6205 6206 6207 6208 6209 6210 6211

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6212 6213


M
minqiyang 已提交
6214 6215
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6216
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6217
    which compares left score and right score passed in.
M
minqiyang 已提交
6218
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6219 6220 6221 6222 6223 6224

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6225
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6226 6227
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6228
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6229 6230 6231
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6232
       Variable: The ranking loss.
M
minqiyang 已提交
6233
    Raises:
M
minqiyang 已提交
6234
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6235 6236 6237 6238 6239 6240 6241
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6242
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6243 6244 6245 6246 6247 6248
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6249 6250
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6276

W
whs 已提交
6277 6278
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6279

W
whs 已提交
6280
      Case 0:
M
minqiyang 已提交
6281

W
whs 已提交
6282 6283 6284
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6285

W
whs 已提交
6286 6287 6288
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6289

W
whs 已提交
6290
      Case 1:
M
minqiyang 已提交
6291

W
whs 已提交
6292 6293
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6294

W
whs 已提交
6295 6296 6297
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6298

W
whs 已提交
6299
      Case 2:
M
minqiyang 已提交
6300

W
whs 已提交
6301 6302
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6303

W
whs 已提交
6304 6305 6306
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6307 6308


W
whs 已提交
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6335
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6364
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6387
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6410
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6434
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6459
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6483
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6484 6485 6486 6487 6488 6489 6490 6491
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6506
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6507
                        will be named automatically.
J
jerrywgz 已提交
6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6535
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6536 6537 6538 6539 6540 6541 6542 6543 6544
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6559
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6582
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6604
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6605 6606 6607 6608 6609 6610 6611 6612
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6626

6627 6628 6629 6630 6631 6632 6633 6634 6635 6636
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6637 6638
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6654
        ValueError: If axis is not in range [0, rank(x)].
6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6671 6672
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6673
    helper.append_op(
6674
        type='flatten2',
6675
        inputs={"X": x},
6676 6677
        outputs={'Out': out,
                 'XShape': x_shape},
6678 6679
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6680 6681


C
chenweihang 已提交
6682
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6683
    """
C
chenweihang 已提交
6684
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6685
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6686 6687
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6688

C
chenweihang 已提交
6689 6690 6691 6692
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6693
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6694 6695 6696 6697 6698 6699
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6700
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6701 6702 6703
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6704 6705 6706
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
6718 6719
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6720 6721 6722 6723 6724 6725
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6726
    return out
6727

6728

S
sneaxiy 已提交
6729 6730 6731 6732 6733 6734 6735 6736 6737
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6738

S
sneaxiy 已提交
6739
    .. math::
6740

S
sneaxiy 已提交
6741 6742 6743
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6744
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6745 6746 6747 6748
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6749 6750 6751
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6752 6753
    Returns:
        Variable: The output sequence mask.
6754

S
sneaxiy 已提交
6755 6756
    """

Q
qingqing01 已提交
6757
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6758
    if name is None:
X
Xin Pan 已提交
6759
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
6760
    else:
X
Xin Pan 已提交
6761
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
6762

Q
qingqing01 已提交
6763 6764 6765
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6766 6767
        outputs={'Y': out},
        attrs={
6768
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6769 6770 6771
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6772 6773


X
Xin Pan 已提交
6774
def stack(x, axis=0):
S
sneaxiy 已提交
6775 6776 6777 6778
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6779 6780 6781 6782 6783 6784 6785

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6786
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6787
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6788 6789

    Args:
6790
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6791
        axis (int|None): The axis along which all inputs are stacked.
6792

S
sneaxiy 已提交
6793 6794
    Returns:
        Variable: The stacked variable.
6795

S
sneaxiy 已提交
6796 6797
    """

X
Xin Pan 已提交
6798 6799 6800 6801 6802 6803
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
6804
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
6805
    helper.append_op(
S
sneaxiy 已提交
6806 6807
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6808

X
Xin Pan 已提交
6809
    return out
D
dzhwinter 已提交
6810 6811 6812 6813 6814 6815 6816


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6817

D
dzhwinter 已提交
6818 6819 6820
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6821
    raised.
D
dzhwinter 已提交
6822 6823

    Args:
M
minqiyang 已提交
6824
        x (Variable): Input variable.
D
dzhwinter 已提交
6825 6826
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6827

D
dzhwinter 已提交
6828 6829
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6830

D
dzhwinter 已提交
6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
6842
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
6843 6844 6845 6846 6847 6848 6849 6850

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6863

W
whs 已提交
6864 6865 6866 6867
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6868

W
whs 已提交
6869
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6870

W
whs 已提交
6871
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6872

W
whs 已提交
6873 6874 6875 6876
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6877

W
whs 已提交
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6894
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6895 6896 6897 6898 6899 6900
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6901 6902


G
fix  
gongweibao 已提交
6903 6904 6905
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6906
@templatedoc()
G
fix  
gongweibao 已提交
6907 6908 6909 6910 6911 6912 6913 6914 6915
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6916
    ${comment}
G
fix  
gongweibao 已提交
6917 6918

    Args:
G
gongweibao 已提交
6919 6920 6921
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6922
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6923 6924 6925
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6926 6927
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6928
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6929 6930 6931 6932

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
6933
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6950 6951


G
gongweibao 已提交
6952
@templatedoc()
X
Xin Pan 已提交
6953
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6954
    """
G
gongweibao 已提交
6955
    ${comment}
G
fix  
gongweibao 已提交
6956 6957

    Args:
G
gongweibao 已提交
6958 6959 6960 6961
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6962 6963 6964
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6965
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6966 6967 6968 6969

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
6970
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6971 6972 6973 6974 6975 6976 6977 6978 6979 6980
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6981
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6982 6983 6984 6985 6986
        })

    return out


G
gongweibao 已提交
6987
@templatedoc()
G
fix  
gongweibao 已提交
6988
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6989
    """
G
gongweibao 已提交
6990
    ${comment}
G
fix  
gongweibao 已提交
6991 6992

    Args:
G
gongweibao 已提交
6993 6994 6995 6996
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6997
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6998 6999

    Returns:
G
gongweibao 已提交
7000
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7001 7002 7003 7004

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7005
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7017
@templatedoc()
G
fix  
gongweibao 已提交
7018 7019 7020 7021 7022 7023 7024 7025 7026
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7027
    ${comment}
G
fix  
gongweibao 已提交
7028 7029

    Args:
G
gongweibao 已提交
7030 7031
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7032
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7033 7034 7035 7036
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7037
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7038 7039

    Returns:
G
gongweibao 已提交
7040
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7041 7042 7043
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7044
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7063
@templatedoc()
X
Xin Pan 已提交
7064
def sum(x):
G
fix  
gongweibao 已提交
7065
    """
G
gongweibao 已提交
7066
    ${comment}
G
fix  
gongweibao 已提交
7067 7068

    Args:
G
gongweibao 已提交
7069
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7070 7071

    Returns:
G
gongweibao 已提交
7072
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7073 7074 7075
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7076 7077
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7078 7079 7080 7081
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7082
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7083 7084 7085 7086

    return out


G
gongweibao 已提交
7087
@templatedoc()
G
fix  
gongweibao 已提交
7088 7089
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7090
    ${comment}
G
fix  
gongweibao 已提交
7091 7092

    Args:
G
gongweibao 已提交
7093 7094 7095 7096
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7097 7098

    Returns:
G
gongweibao 已提交
7099
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7100 7101 7102 7103

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7104 7105
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7117
@templatedoc()
G
fix  
gongweibao 已提交
7118 7119
def shape(input):
    """
G
gongweibao 已提交
7120
    ${comment}
G
fix  
gongweibao 已提交
7121 7122

    Args:
G
gongweibao 已提交
7123
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7124 7125

    Returns:
G
gongweibao 已提交
7126
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7127 7128 7129 7130

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7131 7132
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7133
    helper.append_op(
G
fix  
gongweibao 已提交
7134
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7135 7136

    return out
G
merge  
gongweibao 已提交
7137 7138


S
sneaxiy 已提交
7139 7140 7141 7142 7143 7144 7145 7146
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7147 7148
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7149
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7150 7151 7152
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7153

S
sneaxiy 已提交
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7165
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7166 7167 7168 7169 7170 7171 7172 7173
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7174
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7175
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7176 7177 7178 7179 7180 7181

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7182
    if name is None:
X
Xin Pan 已提交
7183
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7184 7185 7186
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7187 7188 7189 7190 7191 7192 7193 7194 7195 7196

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7197
    return helper.append_activation(out)
S
sneaxiy 已提交
7198 7199


X
Xin Pan 已提交
7200
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7201 7202 7203
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7204
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7205 7206 7207
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7208
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7209 7210 7211
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7212
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7213 7214 7215
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7216
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7217 7218 7219
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7220
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7221 7222 7223
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7224
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7236 7237
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7238
        ])
M
minqiyang 已提交
7239 7240


7241
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7242 7243
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7244 7245
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7246 7247 7248

    if out is None:
        if name is None:
X
Xin Pan 已提交
7249
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7265
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7284
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7303
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7322
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
X
Xin Pan 已提交
7357
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
X
Xin Pan 已提交
7389
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7419
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7449
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7450 7451 7452 7453 7454 7455 7456 7457 7458
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7459 7460
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7483
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7513
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7514 7515 7516 7517 7518 7519 7520 7521 7522 7523
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7524 7525


S
sneaxiy 已提交
7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7540
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7541 7542 7543 7544 7545 7546 7547 7548 7549 7550
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7551 7552


7553 7554 7555 7556 7557 7558
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7559

7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7579
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7592 7593


M
minqiyang 已提交
7594 7595 7596 7597 7598 7599 7600
def hash(input, hash_size, num_hash=1, name=None):
    """
    hash the input
     Args:
        input (Variable): The input variable which is a one-hot word.
        hash_size (int): The space size for hash algorithm.
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
7601
        name (str, default None): The name of this layer.
M
minqiyang 已提交
7602 7603 7604 7605
     Returns:
        Variable: The hash result variable which is a LoDTensor.
     Examples:
        .. code-block:: python
M
minqiyang 已提交
7606
            word_dict = paddle.dataset.imdb.word_dict()
M
minqiyang 已提交
7607 7608 7609 7610
            x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
            out = fluid.layers.hash(input=x, len(word_dict))
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
7611 7612
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
7613 7614 7615 7616 7617 7618 7619
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715


def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out