nn.py 147.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14 15 16 17 18 19 20
"""
All layers just related to the neural network.
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
22
from layer_function_generator import autodoc
Y
yangyaming 已提交
23
from tensor import concat
C
chengduoZH 已提交
24
import utils
Y
Yu Yang 已提交
25 26

__all__ = [
Y
ying 已提交
27 28 29
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
30
    'dynamic_lstmp',
G
guosheng 已提交
31
    'dynamic_gru',
Y
ying 已提交
32 33 34 35 36 37 38 39 40 41
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'sequence_pool',
42 43
    'sequence_softmax',
    'softmax',
Y
ying 已提交
44 45 46 47 48 49 50 51 52 53
    'pool2d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
54
    'reduce_prod',
Y
ying 已提交
55 56 57 58
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
59 60
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
61 62
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
63
    'topk',
Y
ying 已提交
64 65
    'warpctc',
    'sequence_reshape',
66
    'transpose',
67
    'im2sequence',
68
    'nce',
Q
Qiao Longfei 已提交
69
    'beam_search',
70
    'row_conv',
71
    'multiplex',
G
guosheng 已提交
72
    'layer_norm',
73 74
    'softmax_with_cross_entropy',
    'smooth_l1',
75
    'one_hot',
Y
Yu Yang 已提交
76
    'autoincreased_step_counter',
C
caoying03 已提交
77
    'reshape',
Y
yangyaming 已提交
78
    'lod_reset',
D
dragonwarrior 已提交
79
    'lrn',
G
guosheng 已提交
80
    'pad',
81
    'label_smooth',
82
    'roi_pool',
W
whs 已提交
83
    'dice_loss',
84
    'upsampling_bilinear2d',
Y
Yu Yang 已提交
85 86 87 88 89 90 91 92
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
K
Kexin Zhao 已提交
93
       use_cudnn=False,
94
       use_mkldnn=False,
Y
Yu Yang 已提交
95
       act=None,
J
Jacek Czaja 已提交
96
       is_test=False,
97
       name=None):
Y
Yu Yang 已提交
98
    """
99
    **Fully Connected Layer**
Y
Yu Yang 已提交
100

C
caoying03 已提交
101
    The fully connected layer can take multiple tensors as its inputs. It
R
ranqiu 已提交
102 103 104 105 106 107
    creates a variable called weights for each input tensor, which represents
    a fully connected weight matrix from each input unit to each output unit.
    The fully connected layer multiplies each input tensor with its coresponding
    weight to produce an output Tensor. If multiple input tensors are given,
    the results of multiple multiplications will be sumed up. If bias_attr is
    not None, a bias variable will be created and added to the output. Finally,
Y
ying 已提交
108
    if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
109

C
caoying03 已提交
110
    This process can be formulated as follows:
111 112 113

    .. math::

114
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
115 116 117

    In the above equation:

C
caoying03 已提交
118 119 120 121
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
122
    * :math:`Act`: The activation function.
C
caoying03 已提交
123
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
124 125

    Args:
R
ranqiu 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
            of this layer. If it is set to None, no bias will be added to the output units.
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
143
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
144 145
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
146
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
147

148
    Returns:
R
ranqiu 已提交
149
        A tensor variable storing the transformation result.
150 151

    Raises:
C
caoying03 已提交
152
        ValueError: If rank of the input tensor is less than 2.
153 154 155 156

    Examples:
        .. code-block:: python

C
caoying03 已提交
157
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
158
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
159
    """
C
caoying03 已提交
160

C
caoying03 已提交
161
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
162 163 164 165

    dtype = helper.input_dtype()

    mul_results = []
166 167
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
168 169 170
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
171

Y
Yu Yang 已提交
172
        w = helper.create_parameter(
173 174
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
175
        helper.append_op(
176 177 178
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
179
            outputs={"Out": tmp},
J
Jacek Czaja 已提交
180
            attrs={
181 182 183
                "x_num_col_dims": num_flatten_dims,
                "y_num_col_dims": 1,
                "use_mkldnn": use_mkldnn
J
Jacek Czaja 已提交
184
            })
185 186 187 188
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
189
    else:
190 191 192 193 194 195 196
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
197 198


199 200 201
def embedding(input,
              size,
              is_sparse=False,
202
              is_distributed=False,
203 204 205
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
206
    """
207 208
    **Embedding Layer**

209
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
210 211
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
212 213 214

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
215 216

    Args:
217 218 219 220 221 222 223
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
224 225
            with zeros whenever lookup encounters it in :attr:`input`. If
            :math:`padding_idx < 0`, the padding_idx to use in lookup is
226 227
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
228
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
229

230 231 232
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
233

234 235
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
236

C
chengduoZH 已提交
237
          dict_size = len(dataset.ids)
238
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
239
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
240 241 242 243 244 245
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
246 247
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
248 249 250 251 252
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
253 254 255 256 257
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270
    return tmp


# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
271 272
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
273 274 275 276 277 278
    """
    **Dynamic LSTM Layer**

    The defalut implementation is diagonal/peephole connection
    (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

Y
Yibing Liu 已提交
279
    .. math::
Y
Yibing Liu 已提交
280

281
        i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
282

283
        f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
284

285
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
Y
Yibing Liu 已提交
286

287 288 289
        o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)

        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
290

Y
Yibing Liu 已提交
291
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
292

293
    where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
294
    the matrix of weights from the input gate to the input), :math:`W_{ic}, \
295 296 297
    W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In
    our implementation, we use vectors to reprenset these diagonal weight
    matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input
Y
Yibing Liu 已提交
298
    gate bias vector), :math:`\sigma` is the non-linear activations, such as
299 300
    logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input
    gate, forget gate, output gate, and cell activation vectors, respectively,
301 302
    all of which have the same size as the cell output activation vector :math:`h`.

303 304 305 306
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
    and :math:`act_h` are the cell input and cell output activation functions
    and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called
    candidate hidden state, which is computed based on the current input and
307 308 309
    the previous hidden state.

    Set `use_peepholes` to `False` to disable peephole connection. The formula
Y
Yibing Liu 已提交
310 311 312
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.

Y
Yibing Liu 已提交
313 314 315
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connect layer before LSTM layer.
Y
Yibing Liu 已提交
316 317

    Args:
318 319 320 321
        input(Variable): The input of dynamic_lstm layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
Y
Yibing Liu 已提交
322 323
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
324
        param_attr(ParamAttr|None): The parameter attribute for the learnable
325
                               hidden-hidden weights.
Y
Yibing Liu 已提交
326 327 328

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
329 330 331
                               - The shape is (D x 4D), where D is the hidden
                                 size.
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
332 333 334
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
335

336
                              1. `use_peepholes = False`
Y
Yibing Liu 已提交
337
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
338
                                - The shape is (1 x 4D).
339
                              2. `use_peepholes = True`
Y
Yibing Liu 已提交
340 341
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
342
                                - The shape is (1 x 7D).
343
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
Y
Yibing Liu 已提交
344 345
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
346 347
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
Y
Yibing Liu 已提交
348
                              "identity"], default "sigmoid".
349
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
Y
Yibing Liu 已提交
350 351 352 353 354
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
355 356
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
357 358

    Returns:
Y
Yibing Liu 已提交
359 360
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
361

Y
Yibing Liu 已提交
362
    Examples:
Y
Yibing Liu 已提交
363 364
        .. code-block:: python

Y
Yibing Liu 已提交
365 366
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
367
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
368 369
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
370
    """
371

Y
Yu Yang 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
408 409 410 411 412 413 414 415 416 417 418
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
419 420
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
421 422 423
    """
    **Dynamic LSTMP Layer**

424 425 426 427 428 429
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
430 431 432 433 434

    The formula is as follows:

    .. math::

435
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
436

437
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
438

439
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
440

441
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
442

443
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
444

445
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
446

447
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
448

Y
Yibing Liu 已提交
449 450 451 452 453 454
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
455
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
456
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
457
          bias vector).
Y
Yibing Liu 已提交
458 459 460
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
461
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
462
    * :math:`h`: The hidden state.
463
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
464 465
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
466
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
467
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
468
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
469 470
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
471 472 473 474

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
475

Y
Yibing Liu 已提交
476 477 478 479 480 481 482 483 484 485 486 487
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
488
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
489 490
                               hidden-hidden weight and projection weight.

491 492
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
493 494
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
495 496
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
497 498
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
499 500 501 502 503 504
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
505
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
506 507 508
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
509
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        proj_activation(str): The activation for projection output.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
525 526
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
527 528

    Returns:
529 530
        tuple: The projection of hidden state, and cell state of LSTMP. The \
               shape of projection is (T x P), for the cell state which is \
Y
Yibing Liu 已提交
531 532 533 534 535
               (T x D), and both LoD is the same with the `input`.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
536
            hidden_dim, proj_dim = 512, 256
Y
Yibing Liu 已提交
537 538
            fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                     act=None, bias_attr=None)
539 540 541
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
542 543 544 545
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
546
    """
547

Y
Yibing Liu 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
594 595 596 597 598 599 600 601 602 603 604
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
    **Dynamic GRU Layer**

605
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
G
guosheng 已提交
606
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_
607

G
guosheng 已提交
608 609 610 611 612 613 614 615 616
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
617

G
guosheng 已提交
618
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
619

G
guosheng 已提交
620
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
621 622
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
623 624 625 626
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
627
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
628 629

    Args:
630 631
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
632
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
633
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
634 635
            is the hidden size.
        size(int): The dimension of the gru cell.
636
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
637 638
            hidden-hidden weight matrix. Note:

639
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
640
              :math:`D` is the hidden size.
641
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
642
              The first part are weights of the update gate and reset gate with
643
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
644
              candidate hidden state with shape :math:`(D \\times D)`.
645
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
646
            hidden-hidden bias.
647
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
648 649 650
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
651
        activation(str): The activation for candidate hidden state.
G
guosheng 已提交
652 653 654
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".

    Returns:
G
guosheng 已提交
655 656
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
            and lod is the same with the input.
657

G
guosheng 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
    Examples:
        .. code-block:: python

            hidden_dim = 512
            x = fluid.layers.fc(input=data, size=hidden_dim * 3)
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
            size, size), 'The shape of h0 should be(%d, %d)' % (size, size)
        inputs['h0'] = h_0

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
701 702 703
def gru_unit(input,
             hidden,
             size,
704 705
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
706
             activation='tanh',
707
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
708
    """
709
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
710

711 712
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
713

714
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
715

716
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
717

718
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
719 720

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
721 722 723
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
724 725
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

726 727
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
728 729 730
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
731 732 733 734 735

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
736 737
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
738 739 740 741
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
742

743 744 745 746 747 748
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
749

750
             # assuming we have x_t_data and prev_hidden of size=10
751
             x_t = fluid.layers.fc(input=x_t_data, size=30)
752 753
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
769 770
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
771

772 773 774 775
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
776
    # create bias
777
    if helper.bias_attr:
Y
Yu Yang 已提交
778 779 780
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
781
        inputs['Bias'] = bias
Y
Yu Yang 已提交
782 783 784

    helper.append_op(
        type='gru_unit',
785
        inputs=inputs,
Y
Yu Yang 已提交
786 787 788 789 790 791
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
792 793
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
794 795 796 797 798
        })

    return updated_hidden, reset_hidden_pre, gate


799
def linear_chain_crf(input, label, param_attr=None):
Y
Yu Yang 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


825
def crf_decoding(input, param_attr, label=None):
Y
Yu Yang 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


F
fengjiayi 已提交
839
def cos_sim(X, Y):
Y
Yu Yang 已提交
840 841 842 843
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
F
fengjiayi 已提交
844
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


858
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
    training. The dropout operator randomly set (according to the given dropout
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
       x(variable): The input tensor.
       dropout_prob(float): Probability of setting units to zero.
       is_test(bool): A flag indicating whether it is in test phrase or not.
       seed(int): A Python integer used to create random seeds. If this
                  parameter is set to None, a random seed is used.
                  NOTE: If an integer seed is given, always the same output
                  units will be dropped. DO NOT use a fixed seed in training.
876 877
       name(str|None): A name for this layer(optional). If set None, the layer
                    will be named automatically.
878 879 880 881 882 883 884 885 886 887 888

    Returns:
        Variable: A tensor variable.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
          droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
    """

F
fengjiayi 已提交
889
    helper = LayerHelper('dropout', **locals())
890 891 892 893 894 895 896
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
897 898 899 900 901 902
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
903 904 905
    return out


F
fengjiayi 已提交
906
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
907
    """
Y
Yibing Liu 已提交
908 909
    **Cross Entropy Layer**

910 911 912
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
913 914

    1) One-hot cross-entropy:
F
fengjiayi 已提交
915
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
916

Y
Yibing Liu 已提交
917
        .. math::
Y
yangyaming 已提交
918

Y
Yibing Liu 已提交
919 920 921
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
922 923
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
924 925 926 927 928

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
929
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
930 931 932
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
933 934
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
935
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
936

Y
Yibing Liu 已提交
937
    Args:
Y
yangyaming 已提交
938
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
939 940 941 942
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
943
        label (Variable|list): the ground truth which is a 2-D tensor. When
944 945 946 947
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
948
        soft_label (bool): a flag indicating whether to
949 950
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
951 952 953 954 955

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
956 957 958 959 960
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
961 962 963 964 965 966

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
967
    """
F
fengjiayi 已提交
968
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
969 970 971 972 973 974
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
975
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
976 977 978
    return out


F
fengjiayi 已提交
979
def square_error_cost(input, label):
Y
Yu Yang 已提交
980
    """
981 982
    **Square error cost layer**

983 984
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
985

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
       input(Variable): Input tensor, has predictions.
       label(Variable): Label tensor, has target labels.

    Returns:
G
guosheng 已提交
1003
        Variable: The tensor variable storing the element-wise squared error \
1004
                  difference of input and label.
1005 1006 1007 1008 1009 1010 1011 1012

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1013
    """
F
fengjiayi 已提交
1014
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1024 1025
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1026 1027 1028 1029 1030 1031 1032
    return square_out


def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1033
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1034
    """
Y
yangyaming 已提交
1035
    This function computes and outputs the precision, recall and
1036
    F1-score of chunk detection.
Y
Yu Yang 已提交
1037
    """
F
fengjiayi 已提交
1038
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1039 1040 1041 1042 1043

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1044 1045 1046
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1047 1048 1049 1050 1051 1052 1053 1054

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1055 1056 1057 1058
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1059 1060 1061
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1062 1063
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1064
        })
1065 1066
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075


def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1076
                  act=None):
Y
Yu Yang 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1122
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1134 1135 1136
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1137 1138
           stride=1,
           padding=0,
1139
           dilation=1,
Y
Yu Yang 已提交
1140 1141 1142
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1143
           use_cudnn=True,
1144
           use_mkldnn=False,
1145 1146
           act=None,
           name=None):
Y
Yu Yang 已提交
1147
    """
C
chengduoZH 已提交
1148 1149 1150
    **Convlution2D Layer**

    The convolution2D layer calculates the output based on the input, filter
1151 1152 1153
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCHW format. Where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
C
chengduoZH 已提交
1154 1155
    The details of convolution layer, please refer UFLDL's `convolution,
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
1156 1157 1158
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1159

1160
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1161

C
chengduoZH 已提交
1162 1163
    .. math::

C
refine  
chengduoZH 已提交
1164
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1165

C
chengduoZH 已提交
1166
    In the above equation:
C
chengduoZH 已提交
1167

1168 1169 1170 1171 1172
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1173 1174
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
C
chengduoZH 已提交
1175 1176 1177

    Example:

1178 1179 1180
        - Input:

          Input shape: $(N, C_{in}, H_{in}, W_{in})$
C
refine  
chengduoZH 已提交
1181

1182
          Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
refine  
chengduoZH 已提交
1183

1184 1185
        - Output:
          Output shape: $(N, C_{out}, H_{out}, W_{out})$
C
refine  
chengduoZH 已提交
1186

C
chengduoZH 已提交
1187
        Where
1188 1189

        .. math::
C
chengduoZH 已提交
1190

C
chengduoZH 已提交
1191 1192
        H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
        W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1193 1194

    Args:
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
       input(Variable): The input image with [N, C, H, W] format.
       num_filters(int): The number of filter. It is as same as the output
           image channel.
       filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
           it must contain two integers, (filter_size_H, filter_size_W).
           Otherwise, the filter will be a square.
       stride(int|tuple): The stride size. If stride is a tuple, it must
           contain two integers, (stride_H, stride_W). Otherwise, the
           stride_H = stride_W = stride. Default: stride = 1.
       padding(int|tuple): The padding size. If padding is a tuple, it must
           contain two integers, (padding_H, padding_W). Otherwise, the
           padding_H = padding_W = padding. Default: padding = 0.
1207 1208 1209
       dilation(int|tuple): The dilation size. If dilation is a tuple, it must
           contain two integers, (dilation_H, dilation_W). Otherwise, the
           dilation_H = dilation_W = dilation. Default: dilation = 1.
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
       groups(int): The groups number of the Conv2d Layer. According to grouped
           convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
           the first half of the filters is only connected to the first half
           of the input channels, while the second half of the filters is only
           connected to the second half of the input channels. Default: groups=1
       param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None
       bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
       use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
           library is installed. Default: True
       act(str): Activation type. Default: None
1220 1221
       name(str|None): A name for this layer(optional). If set None, the layer
           will be named automatically.
C
chengduoZH 已提交
1222 1223

    Returns:
G
guosheng 已提交
1224
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1225 1226
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1227
    Raises:
1228 1229
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1230

C
chengduoZH 已提交
1231 1232 1233
    Examples:
        .. code-block:: python

1234 1235 1236 1237
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(
              input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1238 1239 1240 1241 1242
    """
    if stride is None:
        stride = [1, 1]

    num_channels = input.shape[1]
1243 1244

    l_type = 'conv2d'
X
xzl 已提交
1245 1246
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1247
        l_type = 'depthwise_conv2d'
1248 1249 1250 1251

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1252 1253 1254 1255 1256 1257 1258
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1259 1260 1261
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1262
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1263

C
chengduoZH 已提交
1264 1265
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1283
        type=l_type,
Y
Yu Yang 已提交
1284 1285 1286 1287 1288
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1289 1290 1291
        attrs={
            'strides': stride,
            'paddings': padding,
1292
            'dilations': dilation,
C
chengduoZH 已提交
1293
            'groups': groups,
1294 1295
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1296
        })
Y
Yu Yang 已提交
1297 1298 1299 1300 1301 1302

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1303
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1304
    """
Y
yangyaming 已提交
1305 1306 1307
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1333 1334
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1335

L
Luo Tao 已提交
1336 1337
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1338
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1339 1340 1341 1342 1343 1344 1345 1346
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1347

Y
yangyaming 已提交
1348
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1349 1350 1351 1352 1353
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1354 1355
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1356
    """
F
fengjiayi 已提交
1357
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1369 1370 1371 1372 1373
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1374 1375 1376
    return pool_out


F
fengjiayi 已提交
1377
def sequence_first_step(input):
L
Luo Tao 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
    """
    This funciton get the first step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1392

L
Luo Tao 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1402

Y
yangyaming 已提交
1403
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1404 1405 1406
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1407 1408 1409
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1410
def sequence_last_step(input):
L
Luo Tao 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
    """
    This funciton get the last step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1425

L
Luo Tao 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1435

Y
yangyaming 已提交
1436
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1437 1438 1439
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1440 1441 1442
    return sequence_pool(input=input, pool_type="last")


Y
Yu Yang 已提交
1443
def pool2d(input,
C
chengduoZH 已提交
1444 1445
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1446 1447
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1448
           global_pooling=False,
C
chengduoZH 已提交
1449
           use_cudnn=True,
1450
           ceil_mode=False,
1451
           use_mkldnn=False,
C
caoying03 已提交
1452
           name=None):
Y
Yu Yang 已提交
1453 1454 1455 1456 1457 1458 1459 1460
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1461

C
chengduoZH 已提交
1462 1463 1464 1465 1466
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1467 1468 1469 1470
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1471 1472
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

    helper = LayerHelper('pool2d', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1487
            "paddings": pool_padding,
1488
            "use_cudnn": use_cudnn,
1489 1490
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1503
               data_layout='NCHW',
Y
Yang Yang 已提交
1504
               in_place=False,
1505
               use_mkldnn=False,
1506 1507
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1508
               moving_variance_name=None,
W
wanghaoshuang 已提交
1509
               do_model_average_for_mean_and_var=False):
Y
Yu Yang 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1536
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1537

1538 1539
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
1540 1541 1542
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
1543
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1544
        shape=param_shape,
1545 1546 1547 1548 1549 1550 1551
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
1552
            trainable=False,
W
wanghaoshuang 已提交
1553
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1554
        shape=param_shape,
1555 1556
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
1557 1558 1559 1560 1561 1562

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1563 1564
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1565

Y
Yang Yang 已提交
1566
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
1584 1585 1586 1587 1588 1589
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
            "use_mkldnn": use_mkldnn
        })
Y
Yu Yang 已提交
1590 1591 1592 1593

    return helper.append_activation(batch_norm_out)


G
guosheng 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
    **Layer Normalization**

1606
    Assume feature vectors exist on dimensions
G
guosheng 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
    :attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
    along these dimensions for each feature vector :math:`a` with size
    :math:`H`, then normalize each feature vector using the corresponding
    statistics. After that, apply learnable gain and bias on the normalized
    tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    .. math::

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

    Args:
        input(Variable): The input tensor variable.
1627
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
1628
            normalization.
1629
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
1630
            normalization.
1631
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
1632
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
1633
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.

    Returns:
        Variable: A tensor variable with the same shape as the input.

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
            x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
1665
    if shift:
G
guosheng 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


C
caoying03 已提交
1690
def beam_search_decode(ids, scores, name=None):
Y
Yu Yang 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
1711 1712 1713
                     padding=0,
                     stride=1,
                     dilation=1,
1714
                     groups=None,
C
caoying03 已提交
1715
                     param_attr=None,
1716
                     bias_attr=None,
C
chengduoZH 已提交
1717
                     use_cudnn=True,
1718
                     act=None,
C
caoying03 已提交
1719
                     name=None):
Y
Yu Yang 已提交
1720
    """
1721 1722 1723 1724 1725 1726 1727 1728
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
1729 1730
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

    For each input :math:`X`, the equation is:

    .. math::

        Out = W \\ast X

    In the above equation:

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast` : Convolution transpose operation.
1743 1744
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
Y
Yu Yang 已提交
1745

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
    Example:

        - Input:

          Input shape: $(N, C_{in}, H_{in}, W_{in})$

          Filter shape: $(C_{in}, C_{out}, H_f, W_f)$

        - Output:

          Output shape: $(N, C_{out}, H_{out}, W_{out})$

        Where
Y
Yu Yang 已提交
1759

1760 1761 1762 1763
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
1764 1765

    Args:
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
       input(Variable): The input image with [N, C, H, W] format.
       num_filters(int): The number of the filter. It is as same as the output
           image channel.
       output_size(int|tuple|None): The output image size. If output size is a
           tuple, it must contain two integers, (image_H, image_W). This
           parameter only works when filter_size is None.
       filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
           it must contain two integers, (filter_size_H, filter_size_W).
           Otherwise, the filter will be a square. None if use output size to
           calculate filter_size.
       padding(int|tuple): The padding size. If padding is a tuple, it must
           contain two integers, (padding_H, padding_W). Otherwise, the
           padding_H = padding_W = padding. Default: padding = 0.
       stride(int|tuple): The stride size. If stride is a tuple, it must
           contain two integers, (stride_H, stride_W). Otherwise, the
           stride_H = stride_W = stride. Default: stride = 1.
       dilation(int|tuple): The dilation size. If dilation is a tuple, it must
           contain two integers, (dilation_H, dilation_W). Otherwise, the
           dilation_H = dilation_W = dilation. Default: dilation = 1.
1785 1786 1787 1788 1789 1790
       groups(int): The groups number of the Conv2d transpose layer. Inspired by
           grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
           when group=2, the first half of the filters is only connected to the
           first half of the input channels, while the second half of the
           filters is only connected to the second half of the input channels.
           Default: groups=1
1791 1792
       param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                              Default: None
1793
       bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
1794 1795
       use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
           library is installed. Default: True
1796
       act(str): Activation type. Default: None
1797 1798
       name(str|None): A name for this layer(optional). If set None, the layer
           will be named automatically.
Y
Yu Yang 已提交
1799 1800

    Returns:
1801 1802 1803
       Variable: The tensor variable storing the convolution transpose result.

    Raises:
1804 1805
       ValueError: If the shapes of input, filter_size, stride, padding and
                   groups mismatch.
1806 1807 1808 1809

    Examples:
       .. code-block:: python

1810 1811 1812 1813
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(
              input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
1814 1815 1816 1817 1818 1819
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

C
chengduoZH 已提交
1820 1821 1822
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1823

C
chengduoZH 已提交
1824 1825 1826
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
1827 1828 1829 1830 1831 1832 1833 1834
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
1835 1836 1837 1838 1839

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
1840
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
1841 1842 1843
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
Y
Yu Yang 已提交
1844

1845 1846
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
1847 1848 1849
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

1850
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
1851 1852 1853 1854
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
1855
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
1856 1857 1858 1859
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
1860
            'groups': groups,
C
chengduoZH 已提交
1861 1862
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
1863

1864 1865
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
1866
    return out
Y
yangyaming 已提交
1867 1868


Y
yangyaming 已提交
1869
def sequence_expand(x, y, ref_level=-1, name=None):
1870
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
1871 1872 1873 1874
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
1875 1876 1877 1878 1879

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
Y
yangyaming 已提交
1880 1881
                x.lod  = [[0,   2,        4]]
                x.data = [[a], [b], [c], [d]]
1882 1883 1884 1885 1886 1887
                x.dims = [4, 1]

            y is a LoDTensor:
                y.lod = [[0,    2,    4],
                         [0, 3, 6, 7, 8]]

Y
yangyaming 已提交
1888
            ref_level: 0
1889

Y
yangyaming 已提交
1890 1891 1892
            then output is a 1-level LoDTensor:
                out.lod =  [[0,   2,        4,        6,        8]]
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
1893 1894 1895 1896
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
1897
                x.data = [[a], [b], [c]]
1898 1899 1900
                x.dims = [3, 1]

            y is a LoDTensor:
Y
yangyaming 已提交
1901
                y.lod = [[0, 2, 2, 5]]
1902

Y
yangyaming 已提交
1903
            ref_level: -1
1904

Y
yangyaming 已提交
1905 1906 1907
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
1908 1909 1910
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1911 1912
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
1913
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
1914
                        will be named automatically.
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
1925
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
1926
    """
Y
yangyaming 已提交
1927
    helper = LayerHelper('sequence_expand', input=x, **locals())
1928 1929 1930
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
1931 1932 1933 1934 1935
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
1936
    return tmp
1937 1938


Q
Qiao Longfei 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
    '''
    This function implements the beam search algorithm.
    '''
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


Y
yangyaming 已提交
1971 1972 1973 1974
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
1975
              param_attr=None,
C
caoying03 已提交
1976 1977
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
1978 1979 1980 1981
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

1982
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
1983

1984
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
1985

1986
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
1987

1988
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
1989 1990 1991

            h_t & = o_t tanh(c_t)

1992 1993 1994 1995 1996 1997
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
1998 1999 2000

        .. math::

2001
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2002 2003 2004 2005 2006 2007 2008 2009

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2010
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2011 2012

    Args:
Y
yangyaming 已提交
2013 2014 2015 2016 2017 2018
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2019
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2020 2021
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2022 2023
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2024 2025
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2026 2027

    Returns:
Y
yangyaming 已提交
2028
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2029 2030

    Raises:
2031 2032 2033 2034
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2035 2036 2037 2038 2039 2040

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2041
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2042
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2043
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2060
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2061 2062 2063 2064
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2065 2066
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2067 2068 2069
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2070
    size = cell_t_prev.shape[1]
2071
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2072 2073
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2074
                param_attr=param_attr,
2075
                bias_attr=bias_attr)
Y
yangyaming 已提交
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2088
    return h, c
G
guosheng 已提交
2089 2090


C
caoying03 已提交
2091
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2092
    """
Y
yangyaming 已提交
2093
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2094 2095 2096

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2097
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2098 2099
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2100 2101
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2102
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2103
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2104
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2105 2106
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2107 2108 2109

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2110

G
guosheng 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2122 2123 2124 2125 2126 2127 2128 2129

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2130 2131 2132
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2133 2134
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2135 2136 2137 2138 2139
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2140
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2141 2142 2143 2144
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2145 2146


C
caoying03 已提交
2147
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2148
    """
Y
yangyaming 已提交
2149
    Computes the mean of tensor elements over the given dimension.
G
guosheng 已提交
2150 2151 2152

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2153
        dim (list|int|None): The dimensions along which the mean is computed. If
Y
yangyaming 已提交
2154 2155 2156
            :attr:`None`, compute the mean over all elements of :attr:`input`
            and return a Tensor variable with a single element, otherwise
            must be in the range :math:`[-rank(input), rank(input))`. If
W
whs 已提交
2157
            :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2158 2159
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2160
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2161 2162
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2163 2164 2165

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2166

G
guosheng 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
2178 2179 2180 2181 2182 2183 2184

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
2185 2186 2187
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2188 2189
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2190 2191 2192 2193 2194
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2195
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2196 2197 2198 2199
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
2200 2201


C
caoying03 已提交
2202
def reduce_max(input, dim=None, keep_dim=False, name=None):
2203
    """
Y
yangyaming 已提交
2204
    Computes the maximum of tensor elements over the given dimension.
2205 2206 2207

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2208
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
2209 2210 2211
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2212
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2213 2214
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2215
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2216 2217
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2218 2219 2220

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2221

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
2233 2234 2235 2236 2237 2238 2239

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
2240 2241 2242
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2243 2244
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2245 2246 2247 2248 2249
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2250
            'dim': dim if dim != None else [0],
2251 2252 2253 2254 2255 2256
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2257
def reduce_min(input, dim=None, keep_dim=False, name=None):
2258
    """
Y
yangyaming 已提交
2259
    Computes the minimum of tensor elements over the given dimension.
2260 2261 2262

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2263
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
2264 2265 2266
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2267
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2268 2269
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2270
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2271 2272
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2273 2274 2275

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2276

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
2288 2289 2290 2291 2292 2293 2294

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
2295 2296 2297
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2298 2299
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2300 2301 2302 2303 2304
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2305
            'dim': dim if dim != None else [0],
2306 2307 2308 2309
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2310 2311


2312 2313 2314 2315 2316 2317
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2318
        dim (list|int|None): The dimensions along which the product is performed. If
2319 2320
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2321 2322
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2323 2324 2325
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
2326
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
2327
            layer will be named automatically.
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
2342
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
2343
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
2344 2345 2346 2347 2348 2349 2350

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
2351 2352 2353
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2354 2355
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2356 2357 2358 2359 2360
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2361
            'dim': dim if dim != None else [0],
2362 2363 2364 2365 2366 2367
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2368
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2369
    """
C
caoying03 已提交
2370
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
2371 2372 2373

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
2374 2375 2376 2377 2378
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
2379
            :attr:`dim` dimension orderly.
C
caoying03 已提交
2380
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
2381
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
2382 2383
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

    output = x / sqrt(max(sum(x**2), epsilon))

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
       x(Variable|list): The input tensor to l2_normalize layer.
       axis(int): Dimension along which to normalize the input.
       epsilon(float): A lower bound value for `x`'s l2 norm. sqrt(epsilon) will
                       be used as the divisor if the l2 norm of `x` is less than
                       sqrt(epsilon).
       name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.


    Returns:
        Variable: The output tensor variable.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data",
                                   shape=(3, 17, 13),
                                   dtype="float32")
Y
ying 已提交
2459
          normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
2460 2461
    """

F
fengjiayi 已提交
2462 2463
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
    helper = LayerHelper("l2_normalize", **locals())

    square = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(type="square", inputs={"X": x}, outputs={"Out": square})

    reduced_sum = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reduce_sum",
        inputs={"X": square},
        outputs={"Out": reduced_sum},
        attrs={
W
whs 已提交
2475
            "dim": [1] if axis is None else [axis],
C
caoying03 已提交
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
            "keep_dim": True,
            "reduce_all": False
        })

    # TODO(caoying) A lower bound value epsilon for the norm is needed to
    # imporve the numeric stability of reciprocal. This requires a maximum_op.
    rsquare = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reciprocal", inputs={"X": reduced_sum}, outputs={"Out": rsquare})

    # TODO(caoying) the current elementwise_mul operator does not support a
    # general broadcast rule which broadcasts input(Y) to have the same
    # dimension with Input(X) starting from a specified dimension. So this
2489
    # exanpsion is requred. Once a general broadcast rule is spported, this
C
caoying03 已提交
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
    # expanding canbe removed.
    rsquare_expanded = helper.create_tmp_variable(dtype=x.dtype)
    expand_times = [1] * len(x.shape)
    expand_times[axis] = int(x.shape[axis])
    helper.append_op(
        type="expand",
        inputs={"X": rsquare},
        outputs={"Out": rsquare_expanded},
        attrs={"expand_times": expand_times})

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="elementwise_mul",
        inputs={"X": x,
                "Y": rsquare_expanded},
        outputs={"Out": out})
    return out
2507 2508


2509
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
2510
    """
Y
ying 已提交
2511 2512 2513 2514
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
2515

C
chengduoZH 已提交
2516
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
2517
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
2518

2519 2520 2521 2522 2523
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
2524
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
2525

C
chengduoZH 已提交
2526
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
2527
      performs in the following way.
G
guosheng 已提交
2528

2529
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
2530
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
2531
        last two dimensions and a batched matrix multiply supporting broadcast
2532
        applies on the two tensors.
G
guosheng 已提交
2533

Y
ying 已提交
2534 2535
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
2536
    removed after matrix multiplication.
G
guosheng 已提交
2537 2538 2539

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
2540 2541 2542
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
2543
        name(str|None): A name for this layer(optional). If set None, the layer
2544
            will be named automatically.
G
guosheng 已提交
2545 2546

    Returns:
2547
        Variable: The product Tensor variable.
G
guosheng 已提交
2548

G
guosheng 已提交
2549 2550 2551
    Examples:
        .. code-block:: python

2552
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
2553 2554
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
2555

2556 2557
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2558

2559 2560
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2561

2562 2563
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
2564 2565 2566 2567

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

2568 2569
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
2570

Y
ying 已提交
2571
            # x: [M], y: [N]
2572
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
2573
    """
Y
ying 已提交
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
2586
            y_shape = y_shape + [1]
Y
ying 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

2603
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
2604
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
2605
    helper.append_op(
2606 2607 2608 2609 2610 2611 2612
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
2613 2614


2615
def topk(input, k, name=None):
Q
qingqing01 已提交
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

    If the input is a vector (rank=1), finds the k largest entries in the vector
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
        k(int): An integer value to specify the top k largest elements.
2631 2632
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Q
qingqing01 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663

    Returns:
        values(Variable): The k largest elements along each last dimensional
            slice.
        indices(Variable): The indices of values within the last dimension of
            input.

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
    if k < 1 and k >= shape[-1]:
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


W
wanghaoshuang 已提交
2664
def edit_distance(input, label, normalized=True, ignored_tokens=None,
W
wanghaoshuang 已提交
2665
                  name=None):
2666
    """
Y
ying 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
2676

Y
ying 已提交
2677
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
2678

Y
ying 已提交
2679 2680 2681 2682
    Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
    in order in the same way in the LoDTensor Input(Refs).
W
wanghaoshuang 已提交
2683

Y
ying 已提交
2684 2685 2686
    Output(Out) contains the `batch_size` results and each stands for the edit
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
2687

2688 2689 2690 2691 2692
    Args:

        input(Variable): The indices for hypothesis strings.

        label(Variable): The indices for reference strings.
W
wanghaoshuang 已提交
2693

Y
ying 已提交
2694 2695
        normalized(bool): Indicated whether to normalize the edit distance by
                          the length of reference string.
2696

Y
ying 已提交
2697 2698
        ignored_tokens(list of int): Tokens that should be removed before
                                     calculating edit distance.
2699

W
wanghaoshuang 已提交
2700
    Returns:
W
wanghaoshuang 已提交
2701
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
2702 2703 2704 2705 2706

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
2707 2708
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')

2709
            cost = fluid.layers.edit_distance(input=x,label=y)
2710
    """
2711
    helper = LayerHelper("edit_distance", **locals())
2712

2713
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
2714
    if ignored_tokens is not None and len(ignored_tokens) > 0:
2715 2716 2717 2718 2719 2720 2721
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
2722
            attrs={"tokens": ignored_tokens})
2723 2724 2725 2726 2727
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
2728
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
2729
            attrs={"tokens": ignored_tokens})
2730 2731
        label = erased_label

2732 2733
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
2734
    sequence_num = helper.create_tmp_variable(dtype="int64")
2735 2736 2737 2738
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
2739 2740
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
2741 2742
        attrs={"normalized": normalized})

2743
    return edit_distance_out, sequence_num
2744 2745 2746 2747 2748


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
ying 已提交
2749 2750 2751 2752
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

        input.lod = [[0, 4, 8]]

        Then:

        output.data = [[2],
                       [1],
                       [3]]

        output.lod = [[0, 2, 3]]

    Args:

Y
ying 已提交
2782 2783 2784 2785 2786 2787
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
2788

Y
ying 已提交
2789 2790 2791
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
2792 2793

    Returns:
2794
        Variable: CTC greedy decode result. If all the sequences in result were
2795
        empty, the result LoDTensor will be [-1] with LoD [[0]] and dims [1, 1].
2796 2797 2798 2799 2800

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
2801

2802
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
2803
    """
2804
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
2805
    _, topk_indices = topk(input, k=1)
2806 2807 2808 2809 2810 2811

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
2812
        outputs={"Output": [ctc_out]},
2813 2814
        attrs={"merge_repeated": True,
               "blank": blank})
2815
    return ctc_out
2816 2817


F
fengjiayi 已提交
2818
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
2819
    """
2820 2821
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
2822
    to compute Connectionist Temporal Classification (CTC) loss.
2823 2824
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
    input tensor.

    Args:
       input(Variable): (LodTensor, default: LoDTensor<float>),
         the unscaled probabilities of variable-length sequences,
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
       label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
         of variable-length sequence, which is a 2-D Tensor with LoD
         information. It is of the shape [Lg, 1], where Lg is th sum of
         all labels' length.
2838
       blank: (int, default: 0), the blank label index of Connectionist
W
wanghaoshuang 已提交
2839 2840
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
2841
       norm_by_times: (bool, default: false), whether to normalize
W
wanghaoshuang 已提交
2842
       the gradients by the number of time-step, which is also the
2843 2844
       sequence's length. There is no need to normalize the gradients
       if warpctc layer was follewed by a mean_op.
W
wanghaoshuang 已提交
2845 2846

    Returns:
2847 2848
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
2849 2850 2851

    Examples:
        .. code-block:: python
2852 2853 2854 2855
            y = layers.data(
                name='y', shape=[11, 8], dtype='float32', lod_level=1)
            y_predict = layers.data(
                name='y_predict', shape=[11, 1], dtype='float32')
W
wanghaoshuang 已提交
2856 2857 2858
            cost = layers.warpctc(input=y_predict, label=y)

    """
F
fengjiayi 已提交
2859
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
            x.data = [[1, 2], [3, 4],
                      [5, 6], [7, 8], [9, 10], [11, 12]]
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
            out.lod  = [[0, 1, 3]]
            out.data = [[1, 2, 3, 4],
                        [5, 6, 7, 8], [9, 10, 11, 12]]
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
       input (Variable): (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor
                with shape being [N, M] where M for dimension.
       new_dim (int): New dimension which the input LoDTensor is reshaped to.

    Returns:
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 20],
                              dtype='float32', lod_level=1)
            x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
2925 2926


2927
@autodoc()
Y
Yang Yu 已提交
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
2954 2955 2956 2957 2958 2959 2960 2961 2962
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
2979
    return cost / (num_neg_samples + 1)
2980 2981


Y
fix ci.  
ying 已提交
2982
def transpose(x, perm, name=None):
Y
ying 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
    """
    **transpose Layer**

    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
       input (Variable): (Tensor), A Tensor.
       perm (list): A permutation of the dimensions of `input`.

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3002
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3003 3004
    """

Y
fix ci.  
ying 已提交
3005
    if len(perm) != len(x.shape):
Y
ying 已提交
3006 3007 3008
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3009 3010 3011 3012 3013 3014
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3015 3016

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3017
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3018 3019
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3020
        inputs={'X': [x]},
Y
ying 已提交
3021 3022 3023
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3024 3025


3026
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
3027
    """
3028 3029 3030 3031 3032 3033 3034
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

3063 3064 3065
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
3066 3067 3068 3069 3070
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099

    Examples:

    As an example:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
3100 3101 3102
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

            output.lod = [[0, 4, 8]]

        The simple usage is:

        .. code-block:: python

3123 3124
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
3125 3126

    """
W
wanghaoshuang 已提交
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

3138
    helper = LayerHelper('im2sequence', **locals())
3139 3140
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
3141
        type='im2sequence',
3142 3143 3144
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
3145 3146 3147
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
3148 3149
        })
    return out
3150 3151


3152 3153 3154 3155
def row_conv(input, future_context_size, param_attr=None, act=None):
    """Row Conv Operator. This layer will apply lookahead convolution to
    **input**. The input variable should be a 2D LoDTensor with shape [T, D].
    Parameters with shape [future_context_size + 1, D] will be created. The math
Y
yangyaming 已提交
3156
    equation of row convolution is as follows:
3157 3158 3159 3160 3161 3162 3163

    .. math::
        Out_{i} = \sum_{j = i} ^ {i + \\tau} X_{j} \odot W_{i - j}

    In the above equation:

    * :math:`Out_{i}`: The i-th row of output variable with shape [1, D].
Y
yangyaming 已提交
3164
    * :math:`\\tau`: Future context size.
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
    * :math:`X_{j}`: The j-th row of input variable with shape [1, D].
    * :math:`W_{i-j}`: The (i-j)-th row of parameters with shape [1, D].

    More details about row_conv please refer to the paper \
    (http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and
    the design document \
    (https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).

    Args:
        input (Variable): Input variable, a 2D LoDTensor with shape [T, D].
Y
yangyaming 已提交
3175 3176
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
        Variable: The output tensor with same shape as input tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[16],
                            dtype='float32', lod_level=1)
            out = fluid.layers.row_conv(input=x, future_context_size=2)
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
3202
    return helper.append_activation(out)
3203 3204


3205 3206 3207 3208
def multiplex(inputs, index):
    """
    **Multiplex Layer**

Y
yangyaming 已提交
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
    Referring to the given index variable, this layer selects rows from the
    input variables to construct a multiplex variable. Assuming that there are
    :math:`m` input variables and :math:`I_i` represents the i-th input
    variable and :math:`i` is in [0, :math:`m`). All input variables are
    tensors with same shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`].
    Please note that rank of the input tensor should be at least 2. Each input
    variable will be treated as a 2-D matrix with shape [:math:`M`, :math:`N`]
    where :math:`M` for :math:`d_0` and :math:`N` for :math:`d_1` * :math:`d_2`
    * ... * :math:`d_R`. Let :math:`I_i[j]` be the j-th row of the i-th input
    variable. The given index variable should be a 2-D tensor with shape
    [:math:`M`, 1]. Let `ID[i]` be the i-th index value of the index variable.
    Then the output variable will be a tensor with shape [:math:`d_0`,
    :math:`d_1`, ..., :math:`d_R`]. If we treat the output tensor as a 2-D
    matrix with shape [:math:`M`, :math:`N`] and let :math:`O[i]` be the i-th
    row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`.
3224 3225

    Args:
Y
yangyaming 已提交
3226 3227
       inputs (list): A list of variables to gather from. All variables have the
                same shape and the rank is at least 2.
3228
       index (Variable): Tensor<int32>, index variable which is a 2-D tensor
Y
yangyaming 已提交
3229
                with shape [M, 1] where M is the batch size.
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242

    Returns:
        Variable: Multiplex variable gathered from input variables.

    Examples:
        .. code-block:: python

            x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
            x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
            index = fluid.layers.data(name='index', shape=[1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
3243 3244 3245 3246 3247 3248

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
3249 3250 3251 3252 3253 3254
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
3255 3256 3257 3258 3259


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
3260

3261 3262 3263 3264
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
3265

3266 3267 3268
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
3269

3270 3271 3272
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
3273

3274
    The equation is as follows:
3275

3276
    1) Hard label (one-hot label, so every sample has exactly one class)
3277

3278 3279 3280 3281
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
3282

3283 3284 3285
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
3286

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.softmax_with_cross_entropy(logits=fc, label=label)
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
    **Smooth L1 Loss Operator. **

Q
qingqing01 已提交
3327
    This operator computes the smooth L1 loss for X and Y.
3328
    The operator takes the first dimension of X and Y as batch size.
Q
qingqing01 已提交
3329
    For each instance, it computes the smooth L1 loss element by element first
3330
    and then sums all the losses. So the shape of Out is [batch_size, 1].
3331

3332 3333
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
3334
            L1 loss op with shape [batch_size, dim1, ..., dimN].
3335
        y (Variable): A tensor with rank at least 2. The target value of smooth
Q
qingqing01 已提交
3336
            L1 loss op with same shape as x.
3337 3338 3339 3340 3341 3342
        inside_weight (Variable|None):  A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
            the result of (x - y) will be multiplied by this tensor element by
            element.
        outside_weight (Variable|None): A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
Q
qingqing01 已提交
3343
            the out smooth L1 loss will be multiplied by this tensor element
3344
            by element.
Q
qingqing01 已提交
3345
        sigma (float|None): Hyper parameter of smooth L1 loss op. A float scalar
3346 3347
            with default value 1.0.
    Returns:
Q
qingqing01 已提交
3348
        Variable: A tensor with rank be 2. The output smooth L1 loss with
3349 3350 3351 3352 3353 3354
            shape [batch_size, 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
Q
qingqing01 已提交
3355
            label = fluid.layers.data(name='label', shape=[100], dtype='float32')
3356
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
3357
            out = fluid.layers.smooth_l1(x=fc, y=label)
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
    """
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
3374 3375 3376 3377 3378 3379 3380 3381 3382


def one_hot(input, depth):
    """
    One Hot Operator. This operator creates the one-hot representations for input
    index values. The following example will help to explain the function of this
    operator.

    Args:
F
fengjiayi 已提交
3383
        input(variable):  A Tensor/LodTensor of indices, last dimension must be 1.
3384 3385 3386 3387 3388 3389
        depth(scalar): an interger defining the depth of the one hot dimension.

    Returns:
         The one-hot tensor or LodTensor, same as input.

    Examples:
C
caoying03 已提交
3390 3391
        .. code-block:: python

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
        X is a LoDTensor:
          X.lod = [[0, 1, 4]]
          X.shape = [4, 1]
          X.data = [[1], [1], [3], [0]]
        set depth = 4
        Out is a LoDTensor:
          Out.lod = [[0, 1, 4]]
          Out.shape = [4, 4]
          Out.data = [[0., 1., 0., 0.],
                      [0., 1., 0., 0.],
                      [0., 0., 0., 1.],
                      [1., 0., 0., 0.]]
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
3413 3414


Y
Yu Yang 已提交
3415
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
3416
    """
Y
Yu Yang 已提交
3417
    NOTE: The counter will be automatically increased by 1 every mini-batch
Y
Yu Yang 已提交
3418
    Return the run counter of the main program, which is started with 1.
Y
Yu Yang 已提交
3419 3420 3421 3422 3423 3424

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

Y
Yu Yang 已提交
3425 3426 3427
    Returns(Variable): The global run counter.
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
3428 3429
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
3430 3431 3432 3433 3434
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
3435
                value=begin - 1, force_cpu=True))
Y
Yu Yang 已提交
3436 3437 3438
        helper.main_program.global_block().prepend_op(
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
3439 3440
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
3441 3442 3443
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
3444 3445


3446
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
3447
    """
C
caoying03 已提交
3448 3449
    Gives a new shape to the input Tensor without changing its data.

3450 3451 3452 3453 3454
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
3455

3456
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
3457

3458 3459 3460 3461
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

3462
    2. 0 means the actual dimension value is going to be copied from the
3463 3464 3465 3466
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
3467 3468

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
3469
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
3470
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
3471

3472
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
3473 3474
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
3475 3476
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
3477
    dimensions.
C
caoying03 已提交
3478

3479
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
3480 3481 3482 3483
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
3484 3485 3486 3487 3488

    Args:
        input(variable): The input tensor.
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
3489 3490 3491 3492 3493
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
3494 3495 3496 3497 3498 3499 3500 3501 3502
        act (str): The non-linear activation to be applied to output variable.
        inplace(bool): If this flag is set true, a new output tensor is created
                       whose data is copied from input x, otherwise the output
                       shares data with input without copying.

    Returns(variable): The output tensor.

    Examples:
        .. code-block:: python
G
guosheng 已提交
3503

3504
            data = fluid.layers.data(
3505
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
3506
            reshaped = fluid.layers.reshape(
3507
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
3508 3509 3510 3511 3512
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")

3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
3528 3529 3530 3531
    helper = LayerHelper("reshape", **locals())
    reshaped = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reshape",
3532 3533 3534
        inputs={"X": x,
                "Shape": actual_shape}
        if isinstance(actual_shape, Variable) else {"X": x},
C
caoying03 已提交
3535 3536 3537 3538 3539
        attrs={"shape": shape,
               "inplace": inplace},
        outputs={"Out": reshaped})

    return helper.append_activation(reshaped)
3540 3541


Y
yangyaming 已提交
3542
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
    """
    LoD Reset Operator. Set LoD of **x** to a new one specified by **y** or
    **target_lod**. When **y** provided, **y.lod** would be considered as target
    LoD first, otherwise **y.data** would be considered as target LoD. If **y**
    is not provided, target LoD should be specified by **target_lod**.
    If target LoD is specified by **Y.data** or **target_lod**, only one level
    LoD is supported.

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            target_lod: [0, 4, 6]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,                   4,            6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
                y.data = [[0, 2, 6]]
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,     2,                          6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,      2,                   5     6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
                y.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
                out.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
        y (Variable|None): If provided, output's LoD would be derived from y.
        target_lod (list|tuple|None): One level LoD which should be considered
                                      as target LoD when y not provided.

    Returns:
        Variable: Output variable with LoD specified by this operator.

    Raises:
        ValueError: If y and target_lod are both None.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

        Output(i, x, y) = Input(i, x, y) / \left(
        k + \alpha \sum\limits^{\min(C, c + n/2)}_{j = \max(0, c - n/2)}
        (Input(j, x, y))^2 \right)^{\beta}

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data", shape=[3, 112, 112], dtype="float32")
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
3705 3706 3707 3708


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
3709
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
3710
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
3711

G
guosheng 已提交
3712 3713 3714 3715
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
3738
                         The length of :attr:paddings must be
G
guosheng 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
3749

G
guosheng 已提交
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
3764 3765 3766 3767 3768 3769 3770 3771 3772


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
3773 3774
    called label-smoothing regularization (LSR).

3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
3798
                              be :math:`(1, class\_num)`.
3799 3800
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
3801
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
3829 3830 3831 3832


def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
3833
    Region of interest pooling (also known as RoI pooling) is to perform
3834 3835
        is to perform max pooling on inputs of nonuniform sizes to obtain
        fixed-size feature maps (e.g. 7*7).
3836 3837 3838 3839
    The operator has three steps:
        1. Dividing each region proposal into equal-sized sections with
           the pooled_width and pooled_height
        2. Finding the largest value in each section
3840 3841 3842 3843 3844 3845 3846
        3. Copying these max values to the output buffer

    Args:
        input (Variable): The input for ROI pooling.
        rois (Variable): ROIs (Regions of Interest) to pool over. It should
                         be a 2-D one level LoTensor of shape [num_rois, 4].
                         The layout is [x1, y1, x2, y2], where (x1, y1)
3847 3848
                         is the top left coordinates, and (x2, y2) is the
                         bottom right coordinates. The num_rois is the
3849 3850 3851 3852 3853 3854 3855 3856
                         total number of ROIs in this batch data.
        pooled_height (integer): The pooled output height. Default: 1
        pooled_width (integer): The pooled output width. Default: 1
        spatial_scale (float): Multiplicative spatial scale factor. To
                               translate ROI coords from their input scale
                               to the scale used when pooling. Default: 1.0

    Returns:
3857
        pool_out (Variable): The output is a 4-D tensor of the shape
3858 3859 3860
                             (num_rois, channels, pooled_h, pooled_w).

    Examples:
3861 3862
        .. code-block:: python

3863
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909


def dice_loss(input, label, epsilon=0.00001):
    """
    **Dice loss Layer**
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
3910 3911
        .. code-block:: python

W
whs 已提交
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
3923 3924


3925
def upsampling_bilinear2d(input, out_shape=None, scale=None, name=None):
3926
    """
3927 3928
    The mathematical meaning of upsampling_bilinear2d is also called
    Bilinear interpolation.
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this layer) on a rectilinear 2D grid.
    
    For details, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation
    
    Args:
        input (Variable): The input tensor of bilinear interpolation,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
3940 3941 3942 3943 3944 3945 3946
        out_shape(list|tuple|None): Output shape of bilinear interpolation
                                    layer, the shape is (out_h, out_w).
                                    Default: None
        scale(int|None): The multiplier for the input height or width.
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
   
    Examples:
        .. code-block:: python

3957
            out = fluid.layers.bilinear_interp(input, out_shape=[12, 12])
3958
    """
3959 3960
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
3961 3962
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if out_shape is not None:
        if not (_is_list_or_turple_(out_shape) and len(out_shape) == 2):
            raise ValueError('out_shape should be a list or tuple ',
                             'with length 2, (out_h, out_w).')
        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

3978 3979 3980 3981 3982 3983 3984 3985
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="bilinear_interp",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out