nn.py 464.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39
    'fc',
H
HaoRen 已提交
40
    'center_loss',
X
Xin Pan 已提交
41 42 43 44 45 46 47 48 49
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
50
    'bpr_loss',
X
Xin Pan 已提交
51 52 53 54 55 56 57 58 59 60
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
61 62
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
63
    'batch_norm',
H
heqiaozhi 已提交
64
    'data_norm',
X
Xin Pan 已提交
65 66 67 68 69 70
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
71
    'sequence_unpad',
X
Xin Pan 已提交
72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
78 79
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
80 81
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
82
    'sequence_slice',
X
Xin Pan 已提交
83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
95
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
96 97 98 99 100
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
101
    'group_norm',
D
dengkaipeng 已提交
102
    'spectral_norm',
X
Xin Pan 已提交
103 104 105 106 107 108 109 110
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
111
    'lod_append',
X
Xin Pan 已提交
112 113 114 115 116
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
117
    'roi_align',
X
Xin Pan 已提交
118 119 120 121
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
122
    'resize_nearest',
X
Xin Pan 已提交
123 124 125 126 127 128
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
129
    'selu',
X
Xin Pan 已提交
130 131 132
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
133
    'margin_rank_loss',
X
Xin Pan 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
Z
zhoukunsheng 已提交
150
    'unique',
151
    'unique_with_counts',
X
Xin Pan 已提交
152 153 154 155 156 157 158 159 160 161
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
162 163
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
164 165 166 167 168 169 170
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
171
    'rank',
Z
zhoukunsheng 已提交
172
    'size',
X
Xin Pan 已提交
173 174 175 176 177 178 179 180 181 182
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
183
    'space_to_depth',
W
whs 已提交
184
    'affine_grid',
S
sneaxiy 已提交
185
    'sequence_reverse',
186
    'affine_channel',
B
barrierye 已提交
187
    'similarity_focus',
M
minqiyang 已提交
188
    'hash',
D
dengkaipeng 已提交
189
    'grid_sampler',
G
gmcather 已提交
190 191
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
192
    'bilinear_tensor_product',
C
chengduo 已提交
193 194
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
195
    'lstm',
S
shippingwang 已提交
196
    'shuffle_channel',
197
    'temporal_shift',
S
sneaxiy 已提交
198
    'py_func',
199
    'psroi_pool',
H
heqiaozhi 已提交
200
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
201
    'huber_loss',
D
dengkaipeng 已提交
202
    'kldiv_loss',
Z
zhaozhehao 已提交
203
    'tree_conv',
C
ceci3 已提交
204
    'npair_loss',
R
ruri 已提交
205
    'pixel_shuffle',
206
    'fsp_matrix',
H
heqiaozhi 已提交
207
    'continuous_value_model',
Z
zhoukunsheng 已提交
208
    'where',
Z
zhoukunsheng 已提交
209
    'sign',
210
    'deformable_conv',
211
    'unfold',
C
cjt222 已提交
212
    'deformable_roi_pooling',
213
    'shard_index',
Y
Yu Yang 已提交
214 215
]

J
jerrywgz 已提交
216 217
kIgnoreIndex = -100

Y
Yu Yang 已提交
218 219 220 221 222 223 224

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
225
       is_test=False,
226
       name=None):
Y
Yu Yang 已提交
227
    """
228
    **Fully Connected Layer**
Y
Yu Yang 已提交
229

230
    This function creates a fully connected layer in the network. It can take
231
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
232
    Args in detail). It creates a variable called weights for each input tensor,
233 234 235 236
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
237
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
238 239
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
240

241
    When the input is single tensor:
C
caoying03 已提交
242

243 244 245 246 247
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
248 249 250

    .. math::

251
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
252 253 254

    In the above equation:

255 256 257
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
258
    * :math:`b`: The bias parameter created by this layer (if needed).
259
    * :math:`Act`: The activation function.
C
caoying03 已提交
260
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
261

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
280
    Args:
R
ranqiu 已提交
281 282 283 284 285 286 287 288 289 290
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
291
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
292 293 294 295
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
296 297
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
298
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
299
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
300
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
301

302
    Returns:
F
fengjiayi 已提交
303
        Variable: The transformation result.
304 305

    Raises:
C
caoying03 已提交
306
        ValueError: If rank of the input tensor is less than 2.
307 308 309 310

    Examples:
        .. code-block:: python

311
          import paddle.fluid as fluid
312
          # when input is single tensor
F
fengjiayi 已提交
313
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
314
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
315 316 317 318 319

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
320
    """
C
caoying03 已提交
321
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
322 323 324 325

    dtype = helper.input_dtype()

    mul_results = []
326 327
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
328 329 330
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
331

Y
Yu Yang 已提交
332
        w = helper.create_parameter(
333
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
334
        tmp = helper.create_variable_for_type_inference(dtype)
335
        helper.append_op(
336 337 338
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
339
            outputs={"Out": tmp},
M
mozga-intel 已提交
340 341
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
342 343 344 345
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
346
    else:
X
Xin Pan 已提交
347
        pre_bias = helper.create_variable_for_type_inference(dtype)
348
        helper.append_op(
349 350 351
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
352
            attrs={"use_mkldnn": False})
353 354 355 356
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
357 358


H
HaoRen 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
def center_loss(input,
                label,
                num_classes,
                alpha,
                param_attr,
                update_center=True):
    """
    **Center loss Cost layer**
    
    This layer accepts input (deep features,the output of the last hidden layer)
    and target label and return the center loss cost
    
    For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
    
    .. math::

        Out = \\frac{1}{2}(X - Y)^2

    Args:
        input (Variable): a 2-D tensor with shape[N x M].
        label (Variable): the groud truth which is a 2-D tensor
                         with shape[N x 1],where N is the batch size.
        num_classes (int): the number of classification categories.
        alpha (float|Variable): learning rate of centers.
        param_attr (ParamAttr): Attribute initializer of centers. 
        update_center (bool): whether to update value of center.

    Returns:
        Variable: 2-D tensor with shape [N * 1] 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid 

          input = fluid.layers.data(name='x',shape=[20,30],dtype='float32')
          label = fluid.layers.data(name='y',shape=[20,1],dtype='int64')
          num_classes = 1000
          alpha = 0.01
          param_attr = fluid.initializer.Xavier(uniform=False)
          center_loss=fluid.layers.center_loss(input=input,
                 label=label,
                 num_classes=1000,
                 alpha=alpha,
                 param_attr=fluid.initializer.Xavier(uniform=False),
                 update_center=True)
    """
    helper = LayerHelper('center_loss', **locals())
    dtype = helper.input_dtype()
    centers_shape = [num_classes, input.shape[1]]
    centers_param = helper.create_parameter(
        attr=param_attr, shape=centers_shape, dtype=dtype)
    centers_param.stop_gradient = True
    if isinstance(alpha, Variable):
        alpha_param = alpha
    else:
        assert isinstance(alpha, float)
        alpha_param = helper.create_variable(
            name="centerloss_alpha",
            shape=[1],
            dtype="float32",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True,
            stop_gradient=True,
            initializer=Constant(alpha))

    centersdiff = helper.create_variable_for_type_inference(dtype=input.dtype)
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='center_loss',
        inputs={
            'X': [input],
            'Label': [label],
            'Centers': [centers_param],
            'CenterUpdateRate': [alpha_param]
        },
        outputs={
            'SampleCenterDiff': [centersdiff],
            'Loss': [loss],
            'CentersOut': [centers_param]
        },
        attrs={'cluster_num': num_classes,
               'need_update': update_center})
    return loss


445 446 447
def embedding(input,
              size,
              is_sparse=False,
448
              is_distributed=False,
449 450 451
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
452
    """
453 454
    **Embedding Layer**

455
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
456 457
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
458 459 460

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
461 462

    Args:
463
        input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
464 465 466 467
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
468
        is_distributed(bool): Whether to run lookup table from remote parameter server.
469 470
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
471
            with zeros whenever lookup encounters it in :attr:`input`. If
472
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
473 474
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
475
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
476

477 478 479
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
480

481 482
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
483

B
bdzhuxiaoning 已提交
484 485 486
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
487 488 489
    """

    helper = LayerHelper('embedding', **locals())
490
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
491 492
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
493 494
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
495
    tmp = helper.create_variable_for_type_inference(dtype)
496 497
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
498 499 500 501 502
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
503 504 505
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
506
            'remote_prefetch': remote_prefetch,
507 508
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
509 510 511
    return tmp


W
wopeizl 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
528

W
wopeizl 已提交
529 530 531 532 533 534 535 536 537 538 539
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
540

W
wopeizl 已提交
541 542 543 544
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
545

W
wopeizl 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
582
            
583
            import paddle.fluid as fluid
584 585
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
586
            hidden_dim = 512
587 588 589 590 591 592
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
593
                                           bias_attr=False)
594

W
wopeizl 已提交
595 596 597
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
598
    assert in_dygraph_mode(
599
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
643 644


P
phlrain 已提交
645 646 647 648 649 650
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
651
         dropout_prob=0.0,
P
phlrain 已提交
652 653 654 655 656
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
657
    """
P
phlrain 已提交
658
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
659 660

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
661
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
662 663
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
664
    .. math::
M
minqiyang 已提交
665 666 667 668 669 670 671

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
672
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
673 674 675 676

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
677 678

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
679 680 681 682 683 684
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
685 686 687
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
688
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
689

M
minqiyang 已提交
690
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
691 692 693 694 695
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
696
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
697 698 699 700 701
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
702
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
703 704
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
705 706
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
707 708 709 710 711 712
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
713
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
714

L
liuhongyu 已提交
715 716

    Returns:
M
minqiyang 已提交
717 718
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
719
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
720

H
haowang101779990 已提交
721 722 723 724
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
725
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
726 727
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
728
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
729 730 731 732


    Examples:
        .. code-block:: python
733
            
734 735 736
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

737 738 739 740 741
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
742 743 744 745 746 747
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
748 749 750 751 752
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
753 754 755 756
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
757 758 759
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
819 820 821 822 823 824 825 826 827 828
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
829
                  proj_activation='tanh',
830
                  dtype='float32',
X
xuezhong 已提交
831 832 833 834 835
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
836 837 838
    """
    **Dynamic LSTMP Layer**

839 840 841 842 843 844
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
845 846 847 848 849

    The formula is as follows:

    .. math::

850
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
851

852
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
853

854
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
855

856
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
857

858
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
859

860
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
861

862
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
863

Y
Yibing Liu 已提交
864 865 866 867 868 869
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
870
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
871
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
872
          bias vector).
Y
Yibing Liu 已提交
873 874 875
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
876
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
877
    * :math:`h`: The hidden state.
878
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
879 880
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
881
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
882
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
883
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
884 885
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
886 887 888 889

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
890

Y
Yibing Liu 已提交
891 892 893 894 895 896 897 898 899 900 901 902
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
903
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
904 905
                               hidden-hidden weight and projection weight.

906 907
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
908 909
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
910 911
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
912
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
913 914 915 916 917

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
918
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
919 920 921 922 923 924
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
925
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
926 927 928
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
929
                                - The shape is (1 x 7D).
C
chengduo 已提交
930 931 932 933 934

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
935 936 937 938 939 940 941 942 943
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
944
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
945 946
                              default "tanh".
        proj_activation(str): The activation for projection output.
947
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
948
                              default "tanh".
Y
Yibing Liu 已提交
949
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
950 951
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
952 953 954 955 956 957 958 959 960 961 962
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
963 964

    Returns:
965 966 967 968
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
969 970

    Examples:
971

Y
Yibing Liu 已提交
972 973
        .. code-block:: python

974
            import paddle.fluid as fluid
975 976 977 978
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
979
            hidden_dim, proj_dim = 512, 256
980
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
981
                                     act=None, bias_attr=None)
982 983 984
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
985 986 987 988
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
989
    """
990

L
lujun 已提交
991
    assert in_dygraph_mode(
992 993
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
994
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
995
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
996
    size = size // 4
Y
Yibing Liu 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
1007 1008 1009 1010 1011 1012
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
1028

X
xuezhong 已提交
1029 1030 1031 1032 1033
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
1034 1035
    helper.append_op(
        type='lstmp',
1036
        inputs=inputs,
Y
Yibing Liu 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
1046 1047
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
1057 1058 1059 1060 1061 1062 1063
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
1064 1065
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
1066
    """
1067
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
1068

1069 1070 1071
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
1072

G
guosheng 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
1082

G
guosheng 已提交
1083
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
1084

Q
Qiao Longfei 已提交
1085 1086 1087

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1100
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1101 1102
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1103 1104 1105 1106
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1107
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1108 1109

    Args:
1110 1111
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1112
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1113
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1114 1115
            is the hidden size.
        size(int): The dimension of the gru cell.
1116
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1117 1118
            hidden-hidden weight matrix. Note:

1119
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1120
              :math:`D` is the hidden size.
1121
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1122
              The first part are weights of the update gate and reset gate with
1123
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1124
              candidate hidden state with shape :math:`(D \\times D)`.
1125 1126 1127 1128 1129

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1130
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1131
            the bias in the update gate, reset gate and candidate calculations.
1132 1133 1134
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1135 1136
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1137
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1138 1139 1140
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1141
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1142
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1143 1144 1145 1146
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1147 1148

    Returns:
G
guosheng 已提交
1149
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1150
            and sequence length is the same with the input.
1151

G
guosheng 已提交
1152
    Examples:
1153

G
guosheng 已提交
1154 1155
        .. code-block:: python

1156 1157
            import paddle.fluid as fluid

1158 1159 1160 1161
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1162
            hidden_dim = 512
1163
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1164
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1165 1166
    """

L
lujun 已提交
1167
    assert in_dygraph_mode(
1168 1169
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1170 1171 1172 1173 1174 1175 1176
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1177
    batch_size = input.shape[0]
G
guosheng 已提交
1178
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1179
    if h_0:
G
guosheng 已提交
1180
        assert h_0.shape == (
Y
Yancey 已提交
1181 1182 1183
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1184

X
Xin Pan 已提交
1185 1186 1187 1188
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1202 1203
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1204 1205 1206 1207
        })
    return hidden


Y
Yu Yang 已提交
1208 1209 1210
def gru_unit(input,
             hidden,
             size,
1211 1212
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1213
             activation='tanh',
Q
Qiao Longfei 已提交
1214 1215
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1216
    """
1217 1218 1219
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1220
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1221
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1222

1223 1224
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1225

1226
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1227

1228
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1229

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1245 1246

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1247 1248 1249
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1250 1251
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1252 1253
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1254 1255 1256
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1257 1258 1259

    Args:
        input (Variable): The fc transformed input value of current step.
1260
        hidden (Variable): The hidden value of gru unit from previous step.
1261
        size (integer): The input dimension value.
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1276
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1277
            the bias in the update gate, reset gate and candidate calculations.
1278 1279 1280
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1281 1282
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1283 1284 1285 1286
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1287

1288 1289 1290 1291 1292 1293
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1294

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1318
    size = size // 3
Y
Yu Yang 已提交
1319 1320

    # create weight
1321 1322
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1323

X
Xin Pan 已提交
1324 1325 1326
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1327
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1328
    # create bias
1329
    if helper.bias_attr:
Y
Yu Yang 已提交
1330 1331 1332
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1333
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1334 1335 1336

    helper.append_op(
        type='gru_unit',
1337
        inputs=inputs,
Y
Yu Yang 已提交
1338 1339 1340 1341 1342 1343
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1344 1345
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1346 1347 1348 1349 1350
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1351
@templatedoc()
1352
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1353 1354 1355 1356 1357 1358 1359
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1360
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1361 1362 1363 1364
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1365 1366 1367
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1368

J
JesseyXujin 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1382
    """
Y
Yu Yang 已提交
1383 1384 1385 1386 1387 1388
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1389 1390 1391 1392 1393 1394 1395 1396
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1412 1413 1414 1415
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1416

W
wopeizl 已提交
1417 1418
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1419

W
wopeizl 已提交
1420
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1421

W
wopeizl 已提交
1422
        label(${label_type}): ${label_comment}
1423

W
wopeizl 已提交
1424 1425
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1426

W
wopeizl 已提交
1427 1428
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1429

1430
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1431 1432 1433 1434 1435 1436 1437
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1438 1439 1440 1441 1442 1443 1444 1445
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1446
                "Transition": transition,
W
wopeizl 已提交
1447 1448
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1449

W
wopeizl 已提交
1450
    return viterbi_path
Y
Yu Yang 已提交
1451 1452


Y
yi.wu 已提交
1453
@templatedoc()
F
fengjiayi 已提交
1454
def cos_sim(X, Y):
Y
Yu Yang 已提交
1455
    """
Y
yi.wu 已提交
1456 1457 1458
    ${comment}

    Args:
1459 1460
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1461

Y
yi.wu 已提交
1462
    Returns:
1463
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1464 1465 1466 1467

    Examples:
        .. code-block:: python

1468
            import paddle.fluid as fluid
L
lvmengsi 已提交
1469 1470 1471
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1472
    """
F
fengjiayi 已提交
1473
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1474 1475 1476
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1487 1488 1489 1490 1491
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1492
            dropout_implementation="downgrade_in_infer"):
1493 1494 1495 1496 1497
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1498
    training. The dropout operator randomly sets (according to the given dropout
1499 1500 1501
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1502 1503
    dropout op can be removed from the program to make the program more efficient.

1504
    Args:
1505 1506
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1507 1508 1509 1510 1511 1512 1513
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1514 1515
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1516
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1517 1518

                                           - train: out = input * mask
C
ceci3 已提交
1519
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1520 1521 1522

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1523
                                        2. upscale_in_train, upscale the outcome at training time
1524

H
haowang101779990 已提交
1525 1526
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1527

H
haowang101779990 已提交
1528 1529
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1530

M
minqiyang 已提交
1531

1532
    Returns:
1533
        Variable: A tensor variable is the shape with `x`.
1534 1535

    Examples:
1536

1537 1538
        .. code-block:: python

1539
            import paddle.fluid as fluid
1540 1541
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1542 1543
    """

F
fengjiayi 已提交
1544
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1545 1546
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1547
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1548 1549 1550 1551

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1552 1553 1554 1555 1556
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1557 1558 1559 1560
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
L
lvmengsi 已提交
1561
            'seed': seed,
P
phlrain 已提交
1562
            'dropout_implementation': dropout_implementation,
1563
        })
1564 1565 1566
    return out


J
jerrywgz 已提交
1567
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1568
    """
Y
Yibing Liu 已提交
1569 1570
    **Cross Entropy Layer**

1571 1572 1573
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1574 1575

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1576
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1577

Y
Yibing Liu 已提交
1578
        .. math::
Y
yangyaming 已提交
1579

Y
Yibing Liu 已提交
1580 1581 1582
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1583 1584
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1585 1586 1587 1588 1589

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1590
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1591 1592 1593
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1594 1595
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1596
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1597

Y
Yibing Liu 已提交
1598
    Args:
Y
yangyaming 已提交
1599
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1600 1601 1602 1603
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1604
        label (Variable|list): the ground truth which is a 2-D tensor. When
1605 1606 1607 1608
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1609
        soft_label (bool): a flag indicating whether to
1610
                                           interpretate the given labels as soft
1611
                                           labels. Default: `False`.
M
minqiyang 已提交
1612 1613
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1614
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1615 1616 1617 1618 1619

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1620 1621 1622
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1623

H
haowang101779990 已提交
1624 1625
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1626

H
haowang101779990 已提交
1627 1628
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1629 1630 1631 1632

    Examples:
        .. code-block:: python

1633
          import paddle.fluid as fluid
L
lvmengsi 已提交
1634 1635 1636 1637
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1638
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1639
    """
S
sneaxiy 已提交
1640 1641
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1642
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1643
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1644 1645 1646 1647 1648
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1649 1650
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1651 1652 1653
    return out


S
sneaxiy 已提交
1654 1655 1656 1657
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1658
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1659 1660 1661 1662 1663
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1664
                 'MatchX': [match_x],
S
sneaxiy 已提交
1665 1666 1667 1668 1669
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1670
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1671
    """
1672
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1673

1674
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1675
    The loss at a given point in one session is defined as:
1676 1677 1678

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1679 1680

    Learn more details by reading paper <session-based recommendations with recurrent
1681
    neural networks>.
F
frankwhzhang 已提交
1682

1683 1684 1685 1686 1687 1688
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1689 1690
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1691 1692 1693
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1694 1695 1696
    Examples:
        .. code-block:: python

1697 1698 1699 1700 1701 1702 1703
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1704
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1705
    """
1706 1707 1708 1709 1710
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1711
                'Label': [label]},
1712 1713 1714 1715
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1716
def square_error_cost(input, label):
Y
Yu Yang 已提交
1717
    """
1718 1719
    **Square error cost layer**

1720 1721
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1722

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1736 1737
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1738 1739

    Returns:
G
guosheng 已提交
1740
        Variable: The tensor variable storing the element-wise squared error \
1741
                  difference of input and label.
1742 1743 1744 1745

    Examples:
        .. code-block:: python

1746
          import paddle.fluid as fluid
R
ruri 已提交
1747 1748 1749
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1750

Y
Yu Yang 已提交
1751
    """
F
fengjiayi 已提交
1752
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1753
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1754 1755 1756 1757 1758 1759
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1760
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1761
    helper.append_op(
F
fengjiayi 已提交
1762 1763
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1764 1765 1766
    return square_out


Y
yi.wu 已提交
1767
@templatedoc()
Y
Yu Yang 已提交
1768 1769 1770 1771
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1772 1773
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1774
    """
Y
yi.wu 已提交
1775
    **Chunk Evaluator**
Y
yi.wu 已提交
1776

Y
yangyaming 已提交
1777
    This function computes and outputs the precision, recall and
1778
    F1-score of chunk detection.
Y
yi.wu 已提交
1779

M
minqiyang 已提交
1780
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1781
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1782 1783 1784 1785 1786 1787

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1788

Y
yi.wu 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1814

Y
yi.wu 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1839
    Args:
1840 1841 1842 1843 1844
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
1845
        seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
F
fengjiayi 已提交
1846

Y
yi.wu 已提交
1847
    Returns:
Y
update  
yi.wu 已提交
1848 1849 1850
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1851

Y
yi.wu 已提交
1852 1853 1854
    Examples:
        .. code-block:: python

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1866
            crf = fluid.layers.linear_chain_crf(
1867
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1868
            crf_decode = fluid.layers.crf_decoding(
1869
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1870 1871 1872 1873 1874
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1875
    """
F
fengjiayi 已提交
1876
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1877 1878

    # prepare output
X
Xin Pan 已提交
1879 1880 1881 1882 1883 1884 1885
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1886

1887 1888 1889 1890 1891
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
1892 1893
    helper.append_op(
        type="chunk_eval",
1894
        inputs=this_input,
Y
Yu Yang 已提交
1895 1896 1897
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1898 1899 1900 1901
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1902 1903 1904
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1905 1906
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1907
        })
1908 1909
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1910 1911


1912
@templatedoc()
Y
Yu Yang 已提交
1913 1914 1915 1916 1917 1918 1919
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1920 1921
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1922 1923 1924 1925
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1926 1927 1928 1929 1930 1931 1932

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1946

1947 1948
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
1949 1950 1951 1952 1953 1954 1955

    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
             x_conved = fluid.layers.sequence_conv(x,2)
Y
Yu Yang 已提交
1956 1957
    """

L
lujun 已提交
1958
    assert not in_dygraph_mode(), (
1959
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1960 1961 1962 1963 1964
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1965
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1976
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1977 1978 1979 1980 1981 1982
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1983
def sequence_softmax(input, use_cudnn=False, name=None):
1984 1985 1986
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1987
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
2004 2005 2006
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
2007

2008 2009 2010 2011 2012 2013 2014
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

2015
             import paddle.fluid as fluid
2016 2017 2018 2019
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
2020
    assert not in_dygraph_mode(), (
2021
        "sequence layer is not supported in dygraph mode yet.")
2022 2023
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2024
    softmax_out = helper.create_variable_for_type_inference(dtype)
2025 2026 2027 2028 2029 2030 2031 2032
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
2033
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
2034
    """
2035
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
2036
    has the same shape as the input.
Q
qiaolongfei 已提交
2037

D
dengkaipeng 已提交
2038
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
2039
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
2040
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
2041 2042 2043
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
2044
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
2045
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
2046 2047 2048 2049 2050 2051 2052

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
2053
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
2054 2055 2056 2057 2058 2059 2060 2061

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
2062 2063
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
2064 2065
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
2066 2067 2068
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
2069 2070 2071 2072 2073 2074 2075 2076

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
2077 2078
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
2079
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
2080
             # perform softmax in the second dimension
D
dengkaipeng 已提交
2081
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
2082 2083
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
2084 2085

    """
2086 2087
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2088
    softmax_out = helper.create_variable_for_type_inference(dtype)
2089 2090 2091 2092
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
2093 2094
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
2095 2096 2097
    return softmax_out


Y
Yu Yang 已提交
2098 2099 2100
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2101 2102
           stride=1,
           padding=0,
2103
           dilation=1,
Y
Yu Yang 已提交
2104 2105 2106
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2107
           use_cudnn=True,
2108 2109
           act=None,
           name=None):
Y
Yu Yang 已提交
2110
    """
C
chengduoZH 已提交
2111
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2112 2113
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2114
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2115 2116 2117 2118 2119 2120 2121
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
2122 2123 2124
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2125

2126
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2127

C
chengduoZH 已提交
2128 2129
    .. math::

C
refine  
chengduoZH 已提交
2130
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2131

T
tensor-tang 已提交
2132
    Where:
C
chengduoZH 已提交
2133

2134 2135 2136 2137 2138
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2139
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2140 2141 2142

    Example:

2143 2144
        - Input:

W
weixing02 已提交
2145
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2146

W
weixing02 已提交
2147
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2148

2149
        - Output:
T
tensor-tang 已提交
2150

W
weixing02 已提交
2151
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2152

C
chengduoZH 已提交
2153
        Where
2154 2155

        .. math::
C
chengduoZH 已提交
2156

W
weixing02 已提交
2157 2158
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2159 2160

    Args:
2161
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2162
        num_filters(int): The number of filter. It is as same as the output
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2180 2181 2182 2183 2184
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2185
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2186 2187 2188 2189 2190
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2191 2192
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2193 2194
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2195
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2196
            will be named automatically. Default: None
C
chengduoZH 已提交
2197 2198

    Returns:
G
guosheng 已提交
2199
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2200 2201
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2202
    Raises:
2203 2204
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2205

C
chengduoZH 已提交
2206 2207 2208
    Examples:
        .. code-block:: python

2209
          import paddle.fluid as fluid
2210 2211
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2212 2213 2214
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2215
    assert param_attr is not False, "param_attr should not be False here."
2216
    l_type = 'conv2d'
X
xzl 已提交
2217 2218
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2219
        l_type = 'depthwise_conv2d'
2220 2221 2222 2223

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2224 2225 2226 2227 2228
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2229
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2230

C
chengduoZH 已提交
2231 2232 2233
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2234
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2235

C
chengduoZH 已提交
2236 2237
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2238 2239

    input_shape = input.shape
M
minqiyang 已提交
2240
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2241 2242

    def _get_default_param_initializer():
C
chengduo 已提交
2243 2244
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2245 2246 2247 2248 2249 2250 2251 2252
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2253
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2254

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2269
    helper.append_op(
2270
        type=l_type,
Y
Yu Yang 已提交
2271 2272 2273 2274 2275
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2276 2277 2278
        attrs={
            'strides': stride,
            'paddings': padding,
2279
            'dilations': dilation,
C
chengduoZH 已提交
2280
            'groups': groups,
2281
            'use_cudnn': use_cudnn,
2282
            'use_mkldnn': False,
2283
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2284
        })
Y
Yu Yang 已提交
2285 2286 2287 2288 2289 2290

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2308 2309 2310 2311 2312 2313
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2323 2324
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2325 2326 2327
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2328
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2351
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2352 2353
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2354
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2355 2356
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2357
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2358 2359
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2360
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2361 2362
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2363
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2364 2365 2366 2367 2368 2369
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2380 2381
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2382 2383
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2384
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2385
            will be named automatically. Default: None.
C
chengduoZH 已提交
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2398
          import paddle.fluid as fluid
2399 2400
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2401 2402 2403
    """

    l_type = 'conv3d'
C
chengduo 已提交
2404
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2415
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2429 2430 2431
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2432 2433 2434 2435 2436 2437 2438 2439
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2440
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2455
            'use_mkldnn': False
C
chengduoZH 已提交
2456 2457
        })

2458
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2459 2460 2461 2462

    return helper.append_activation(pre_act)


2463
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2464
    """
Y
yangyaming 已提交
2465 2466 2467
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2478 2479
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2480 2481 2482 2483
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2484
         out.dim = [4, 1]
2485
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2486 2487

       for different pool_type:
2488 2489 2490
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2491
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2492 2493 2494 2495 2496
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2497

L
Luo Tao 已提交
2498
    Args:
2499
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2500
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2501
            It supports average, sum, sqrt and max.
2502 2503
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2504 2505 2506 2507 2508 2509 2510

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2511

2512 2513
             import paddle.fluid as fluid

Y
yangyaming 已提交
2514
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2515 2516 2517 2518 2519
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2520 2521
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2522
    """
L
lujun 已提交
2523
    assert not in_dygraph_mode(), (
2524
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2525
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2526
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2527 2528
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2529 2530 2531 2532 2533 2534

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2535 2536 2537 2538 2539
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2540

Y
yangyaming 已提交
2541 2542 2543 2544 2545
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2546 2547 2548
    return pool_out


C
add doc  
chengduoZH 已提交
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2565 2566 2567 2568
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2569
    """
L
lujun 已提交
2570
    assert not in_dygraph_mode(), (
2571
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2572
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2573
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2574 2575 2576 2577 2578
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2579
def sequence_first_step(input):
L
Luo Tao 已提交
2580
    """
L
Luo Tao 已提交
2581
    This function gets the first step of sequence.
L
Luo Tao 已提交
2582 2583 2584 2585

    .. code-block:: text

       x is a 1-level LoDTensor:
2586
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2587 2588 2589 2590 2591
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2592
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2593
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2594

L
Luo Tao 已提交
2595 2596 2597 2598 2599 2600 2601 2602 2603
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2604

2605
             import paddle.fluid as fluid
Y
yangyaming 已提交
2606
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2607 2608 2609
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2610 2611 2612
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2613
def sequence_last_step(input):
L
Luo Tao 已提交
2614
    """
L
Luo Tao 已提交
2615
    This function gets the last step of sequence.
L
Luo Tao 已提交
2616 2617 2618 2619

    .. code-block:: text

       x is a 1-level LoDTensor:
2620
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2621 2622 2623 2624 2625
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2626
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2627
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2628

L
Luo Tao 已提交
2629 2630 2631 2632 2633 2634 2635 2636 2637
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2638

2639
             import paddle.fluid as fluid
Y
yangyaming 已提交
2640
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2641 2642 2643
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2644 2645 2646
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2647 2648 2649 2650
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2651
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2652 2653 2654 2655 2656
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2657

H
haowang101779990 已提交
2658
              - Case:
Y
Yibing Liu 已提交
2659

2660
            Given the input Variable **input**:
2661

2662 2663 2664
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2665

2666
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2667

2668
            the output Variable will be
2669

2670 2671 2672
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2673

M
minqiyang 已提交
2674
    Note:
H
haowang101779990 已提交
2675
          The first dimension size of **input**, **offset** and **length**
2676
          should be equal. The **offset** should start from 0.
2677

Y
Yibing Liu 已提交
2678
    Args:
2679
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2680
                         sequences.
Y
Yibing Liu 已提交
2681 2682 2683 2684 2685 2686
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2687
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2688 2689 2690 2691 2692

    Examples:

        .. code-block:: python

2693
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2694 2695 2696 2697 2698
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2699
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2700 2701
                                                   length=length)
    """
L
lujun 已提交
2702
    assert not in_dygraph_mode(), (
2703
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2704 2705
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2706
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2721
@templatedoc()
Y
Yu Yang 已提交
2722
def pool2d(input,
C
chengduoZH 已提交
2723 2724
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2725 2726
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2727
           global_pooling=False,
C
chengduoZH 已提交
2728
           use_cudnn=True,
2729
           ceil_mode=False,
2730 2731
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2732
    """
F
fengjiayi 已提交
2733
    ${comment}
2734 2735

    Args:
2736 2737 2738
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2739
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2740
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2741 2742
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2743
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2744 2745 2746 2747 2748 2749
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2750 2751 2752
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2753
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2754
                        layer will be named automatically.
2755
        exclusive (bool): Whether to exclude padding points in average pooling
2756
                          mode, default is true
F
fengjiayi 已提交
2757

2758
    Returns:
F
fengjiayi 已提交
2759
        Variable: The pooling result.
F
fengjiayi 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2770
          import paddle.fluid as fluid
F
fengjiayi 已提交
2771 2772
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2773
          pool2d = fluid.layers.pool2d(
2774 2775 2776 2777
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2778
                            global_pooling=False)
Y
Yu Yang 已提交
2779 2780 2781 2782 2783
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2784

C
chengduoZH 已提交
2785 2786 2787 2788 2789
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2790 2791 2792 2793
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2794 2795
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2796

C
Add doc  
chengduoZH 已提交
2797
    l_type = 'pool2d'
2798 2799

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2800
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2801
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2802 2803

    helper.append_op(
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2815 2816
            "use_mkldnn": False,
            "exclusive": exclusive,
2817 2818 2819 2820 2821
        })

    return pool_out


D
dengkaipeng 已提交
2822
@templatedoc()
2823 2824 2825 2826 2827 2828 2829 2830
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2831 2832
           name=None,
           exclusive=True):
2833
    """
2834
    ${comment}
2835 2836

    Args:
D
dengkaipeng 已提交
2837 2838 2839 2840 2841
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2842 2843 2844 2845 2846
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2847 2848 2849 2850 2851 2852 2853
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2854
        exclusive (bool): Whether to exclude padding points in average pooling
2855
                          mode, default is true
2856

2857
    Returns:
2858
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2859 2860 2861 2862 2863

    Examples:

        .. code-block:: python

2864
          import paddle.fluid as fluid
D
dengkaipeng 已提交
2865 2866 2867 2868 2869 2870 2871 2872
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2873 2874 2875 2876 2877
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2878

C
chengduoZH 已提交
2879 2880 2881 2882 2883
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2884 2885 2886
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2887

C
chengduoZH 已提交
2888 2889
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2890

2891 2892
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2893
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2894
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2895 2896

    helper.append_op(
2897
        type=l_type,
Y
Yu Yang 已提交
2898 2899 2900 2901 2902 2903 2904
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2905
            "paddings": pool_padding,
2906
            "use_cudnn": use_cudnn,
2907
            "ceil_mode": ceil_mode,
2908 2909
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2910 2911 2912 2913 2914
        })

    return pool_out


2915 2916 2917 2918 2919 2920 2921
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2922 2923 2924 2925 2926 2927 2928
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2929

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2943 2944 2945 2946 2947 2948 2949 2950 2951

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2952 2953
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2968
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2969
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2970
          # of input data into m * n grids averagely and performs poolings in each
2971 2972
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2973
          #
2974 2975 2976 2977 2978 2979 2980 2981
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2982
          import paddle.fluid as fluid
2983 2984
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2985
          pool_out = fluid.layers.adaptive_pool2d(
2986 2987
                            input=data,
                            pool_size=[3, 3],
2988
                            pool_type='avg')
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2999
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3025
    return (pool_out, mask) if require_index else pool_out
3026 3027 3028 3029 3030 3031 3032 3033 3034


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3035 3036 3037 3038 3039 3040 3041
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
3042

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
3060 3061 3062

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
3063 3064 3065
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
3066
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
3067
            it must contain three integers, (Depth, Height, Width).
3068
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3069 3070
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

3085 3086
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
3087
          # of input data into l * m * n grids averagely and performs poolings in each
3088 3089
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3090
          #
3091 3092 3093 3094 3095 3096 3097 3098 3099
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3100
          #                 output[:, :, i, j, k] =
3101 3102
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3103 3104 3105

          import paddle.fluid as fluid

3106
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3107 3108
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3109
                            input=data,
D
dengkaipeng 已提交
3110
                            pool_size=[3, 3, 3],
3111
                            pool_type='avg')
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3122
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3148
    return (pool_out, mask) if require_index else pool_out
3149 3150


Y
Yu Yang 已提交
3151 3152 3153 3154 3155 3156 3157
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3158
               data_layout='NCHW',
Y
Yang Yang 已提交
3159
               in_place=False,
3160 3161
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3162
               moving_variance_name=None,
3163
               do_model_average_for_mean_and_var=False,
3164 3165
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3166
    """
Q
qiaolongfei 已提交
3167 3168 3169 3170
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3171

Q
qiaolongfei 已提交
3172
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3173

Q
qiaolongfei 已提交
3174 3175
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3176 3177 3178
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3191

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3205
    Args:
Q
qingqing01 已提交
3206
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3207
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3208 3209 3210 3211 3212 3213 3214 3215 3216
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3217 3218
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3219 3220 3221
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3222 3223
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3224 3225 3226
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3227
        data_layout(string, default NCHW): NCHW|NHWC
3228
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3229 3230
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3231 3232 3233
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3234
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3235 3236
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3237
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3238
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3239 3240 3241 3242 3243
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3244 3245

    Returns:
Q
qiaolongfei 已提交
3246
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3247 3248 3249 3250 3251

    Examples:

        .. code-block:: python

3252
            import paddle.fluid as fluid
L
lvmengsi 已提交
3253
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3254 3255
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3256
    """
C
chengduo 已提交
3257
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3258 3259 3260
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3261 3262 3263 3264
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3283
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3284

3285 3286
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3287 3288 3289
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3290
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3291
        shape=param_shape,
W
Wu Yi 已提交
3292
        dtype=dtype)
3293 3294 3295 3296 3297 3298
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3299
            trainable=False,
W
wanghaoshuang 已提交
3300
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3301
        shape=param_shape,
W
Wu Yi 已提交
3302
        dtype=dtype)
3303
    variance.stop_gradient = True
Y
Yu Yang 已提交
3304 3305 3306 3307 3308 3309

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3310 3311 3312 3313
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3314

X
Xin Pan 已提交
3315 3316
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3334 3335 3336 3337
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3338
            "data_layout": data_layout,
X
Xin Pan 已提交
3339
            "use_mkldnn": False,
3340 3341
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3342
        })
Y
Yu Yang 已提交
3343 3344 3345 3346

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3398 3399
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3400

3401 3402
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3468
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3469 3470 3471 3472

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3473
@templatedoc()
G
guosheng 已提交
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3484
    ${comment}
G
guosheng 已提交
3485 3486 3487

    The formula is as follows:

Y
yuyang18 已提交
3488
    ..  math::
G
guosheng 已提交
3489 3490 3491 3492 3493 3494 3495

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3496 3497 3498 3499 3500 3501 3502 3503
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3504

G
guosheng 已提交
3505 3506
    Args:
        input(Variable): The input tensor variable.
3507
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3508
            normalization. Default True.
3509
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3510 3511
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3512
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3513
            Default 1.
3514
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3515
            division by zero. Default 1e-05.
G
guosheng 已提交
3516
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3517 3518
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3519 3520
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3521
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3522 3523
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3524
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3525
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3526
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3527 3528 3529
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3530 3531

    Returns:
Y
yuyang18 已提交
3532
        ${y_comment}
G
guosheng 已提交
3533 3534 3535

    Examples:

3536
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3537 3538 3539
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3540
    """
L
lujun 已提交
3541
    assert in_dygraph_mode(
L
lujun 已提交
3542
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3557
    if shift:
G
guosheng 已提交
3558 3559 3560 3561 3562 3563
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3564 3565 3566 3567 3568
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3596
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3618
        >>> import paddle.fluid as fluid
D
Dun 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3645 3646
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3664
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3665 3666 3667
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3668
    This layer calculates the spectral normalization value of weight parameters of
3669
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3670
    Parameters. Calculations are showed as follows.
3671

D
dengkaipeng 已提交
3672 3673 3674
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3675
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3688
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3689 3690 3691 3692

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3693

D
dengkaipeng 已提交
3694
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3695 3696
                

D
dengkaipeng 已提交
3697 3698 3699 3700
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3701 3702 3703
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3704 3705 3706
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3707
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3708 3709

    Examples:
K
Kaipeng Deng 已提交
3710
       .. code-block:: python
D
dengkaipeng 已提交
3711

K
Kaipeng Deng 已提交
3712 3713 3714 3715 3716
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3717 3718
    """
    helper = LayerHelper('spectral_norm', **locals())
3719
    dtype = weight.dtype
D
dengkaipeng 已提交
3720 3721 3722

    # create intput and parameters
    inputs = {'Weight': weight}
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3741 3742

    # create output
3743
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3744 3745

    helper.append_op(
3746
        type="spectral_norm",
D
Dun 已提交
3747
        inputs=inputs,
3748 3749 3750 3751 3752 3753
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3754

3755
    return out
D
Dun 已提交
3756 3757


Y
Yu Yang 已提交
3758 3759 3760 3761
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3762 3763 3764
                     padding=0,
                     stride=1,
                     dilation=1,
3765
                     groups=None,
C
caoying03 已提交
3766
                     param_attr=None,
3767
                     bias_attr=None,
C
chengduoZH 已提交
3768
                     use_cudnn=True,
3769
                     act=None,
C
caoying03 已提交
3770
                     name=None):
Y
Yu Yang 已提交
3771
    """
3772 3773 3774 3775 3776 3777 3778 3779
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3780
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3781
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3782 3783 3784
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3785 3786 3787 3788 3789

    For each input :math:`X`, the equation is:

    .. math::

3790
        Out = \sigma (W \\ast X + b)
3791

3792
    Where:
3793 3794 3795

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3796 3797 3798 3799
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3800

3801 3802 3803 3804
    Example:

        - Input:

3805
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3806

3807
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3808 3809 3810

        - Output:

3811
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3812 3813

        Where
Y
Yu Yang 已提交
3814

3815 3816
        .. math::

3817 3818
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3819 3820 3821 3822 3823 3824 3825 3826 3827
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] 

    Note:
          if output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3828 3829

    Args:
3830 3831 3832 3833
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3834 3835 3836 3837
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3866
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3867 3868 3869
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3870
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3871
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3872 3873

    Returns:
3874
        Variable: The tensor variable storing the convolution transpose result.
3875 3876

    Raises:
3877 3878
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3879 3880 3881 3882

    Examples:
       .. code-block:: python

3883
          import paddle.fluid as fluid
3884 3885
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3886
    """
C
chengduo 已提交
3887
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3888 3889 3890 3891 3892 3893 3894 3895
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3896 3897 3898
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3899 3900 3901
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3902

C
chengduoZH 已提交
3903 3904
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3905

Y
Yu Yang 已提交
3906 3907 3908 3909 3910
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3911

Y
Yu Yang 已提交
3912 3913
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3914

C
chengduoZH 已提交
3915
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3916
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3917
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3918
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3919
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3920 3921 3922
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3923

3924 3925 3926 3927 3928 3929 3930
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3931
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3932
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3933

Y
Yu Yang 已提交
3934 3935 3936
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3937
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3938
    helper.append_op(
3939
        type=op_type,
Y
Yu Yang 已提交
3940 3941
        inputs={'Input': [input],
                'Filter': [img_filter]},
3942
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3943
        attrs={
3944
            'output_size': output_size,
3945 3946 3947 3948 3949
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3950 3951
        })

3952 3953 3954
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3955 3956


3957
def conv3d_transpose(input,
Y
Yu Yang 已提交
3958 3959 3960
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3961 3962 3963
                     padding=0,
                     stride=1,
                     dilation=1,
3964
                     groups=None,
C
caoying03 已提交
3965
                     param_attr=None,
3966
                     bias_attr=None,
C
chengduoZH 已提交
3967
                     use_cudnn=True,
3968
                     act=None,
C
caoying03 已提交
3969
                     name=None):
Y
Yu Yang 已提交
3970
    """
3971
    **Convlution3D transpose layer**
3972

3973
    The convolution3D transpose layer calculates the output based on the input,
3974
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3975 3976 3977 3978 3979
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
3980
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3981 3982 3983
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3984 3985 3986 3987 3988

    For each input :math:`X`, the equation is:

    .. math::

3989
        Out = \sigma (W \\ast X + b)
3990 3991 3992

    In the above equation:

3993 3994
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3995 3996 3997 3998
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3999

4000 4001 4002 4003
    Example:

        - Input:

4004
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
4005

4006
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
4007 4008 4009

        - Output:

4010
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
4011 4012

        Where
Y
Yu Yang 已提交
4013

4014 4015
        .. math::

4016 4017 4018
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
4019 4020

    Args:
4021
        input(Variable): The input image with [N, C, D, H, W] format.
4022 4023 4024
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
4025
            tuple, it must contain three integers, (image_D, image_H, image_W). This
4026 4027
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
4028
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
4029 4030 4031
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
4032 4033
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
4034
        stride(int|tuple): The stride size. If stride is a tuple, it must
4035 4036
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
4037
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
4038 4039 4040
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
4041 4042 4043 4044 4045
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
4046 4047 4048 4049 4050 4051 4052 4053 4054
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4055 4056
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
4057 4058
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4059 4060
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
4061 4062

    Returns:
4063
        Variable: The tensor variable storing the convolution transpose result.
4064 4065

    Raises:
4066 4067
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4068 4069 4070 4071

    Examples:
       .. code-block:: python

4072
          import paddle.fluid as fluid
4073 4074
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4075
    """
C
chengduo 已提交
4076
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4077 4078
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4079
    if not isinstance(input, Variable):
4080
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
4081 4082
    input_channel = input.shape[1]

4083 4084 4085
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4086

C
chengduoZH 已提交
4087 4088 4089
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
4090 4091 4092 4093 4094 4095
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

4096 4097 4098
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
4099

4100
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4101
                         padding[0] - 1) // dilation[0] + 1
4102
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4103
                         padding[1] - 1) // dilation[1] + 1
4104
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
4105
                         padding[2] - 1) // dilation[2] + 1
4106
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4107
    else:
4108 4109
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4110

4111
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4112
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4113 4114 4115
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4116
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4117
    helper.append_op(
4118
        type=l_type,
Y
Yu Yang 已提交
4119 4120
        inputs={'Input': [input],
                'Filter': [img_filter]},
4121
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4122 4123 4124 4125
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4126
            'groups': groups,
C
chengduoZH 已提交
4127 4128
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4129

4130 4131
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4132
    return out
Y
yangyaming 已提交
4133 4134


Y
yangyaming 已提交
4135
def sequence_expand(x, y, ref_level=-1, name=None):
4136
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4137 4138 4139 4140
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4141 4142 4143 4144 4145

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4146
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4147
                x.data = [[a], [b], [c], [d]]
4148 4149 4150
                x.dims = [4, 1]

            y is a LoDTensor:
4151 4152
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4153

Y
yangyaming 已提交
4154
            ref_level: 0
4155

Y
yangyaming 已提交
4156
            then output is a 1-level LoDTensor:
4157
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4158
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4159 4160 4161 4162
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4163
                x.data = [[a], [b], [c]]
4164 4165 4166
                x.dims = [3, 1]

            y is a LoDTensor:
4167
                y.lod = [[2, 0, 3]]
4168

Y
yangyaming 已提交
4169
            ref_level: -1
4170

Y
yangyaming 已提交
4171 4172 4173
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4174 4175 4176
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4177 4178
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4179
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4180
                        will be named automatically.
4181 4182 4183 4184 4185 4186

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4187
	
4188
            import paddle.fluid as fluid
4189
            import paddle.fluid.layers as layers
4190 4191 4192
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4193
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4194
    """
L
lujun 已提交
4195
    assert not in_dygraph_mode(), (
4196
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4197
    helper = LayerHelper('sequence_expand', input=x, **locals())
4198
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4199
    tmp = helper.create_variable_for_type_inference(dtype)
4200
    helper.append_op(
Y
yangyaming 已提交
4201 4202 4203 4204 4205
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4206
    return tmp
4207 4208


C
chengduo 已提交
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4257 4258
            
            import paddle.fluid as fluid
4259
            import paddle.fluid.layers as layers
C
chengduo 已提交
4260 4261 4262 4263 4264 4265

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4266
    assert not in_dygraph_mode(), (
4267
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4268 4269
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4270
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4271 4272 4273 4274 4275 4276 4277 4278
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4279
@templatedoc()
4280
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4281 4282 4283 4284 4285
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4286 4287 4288
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4289
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4290 4291 4292 4293
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4294 4295 4296
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4297

F
fengjiayi 已提交
4298
    Returns:
M
minqiyang 已提交
4299
        Variable: The padded sequence batch and the original lengths before
4300
                  padding. All sequences has the same length.
M
minqiyang 已提交
4301

F
fengjiayi 已提交
4302 4303 4304
    Examples:
        .. code-block:: python

4305
            import paddle.fluid as fluid
F
fengjiayi 已提交
4306 4307 4308 4309
            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4310
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4311
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4312 4313 4314
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4315
    assert not in_dygraph_mode(), (
4316
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4317 4318
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4319 4320
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4321 4322 4323 4324

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4325 4326 4327 4328 4329 4330
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4331 4332
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4333
        attrs={'padded_length': maxlen})
4334
    return out, length
F
fengjiayi 已提交
4335 4336


4337
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4338
    """
4339
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4340

4341 4342
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4343 4344 4345 4346 4347 4348 4349 4350 4351
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4352 4353 4354
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4355
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4356 4357 4358 4359 4360 4361

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4362
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4363 4364 4365 4366 4367 4368

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4369 4370
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4371 4372 4373 4374 4375 4376 4377

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4378
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4379 4380 4381 4382 4383
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4384
    assert not in_dygraph_mode(), (
4385
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4386 4387
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4388
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4400 4401 4402 4403 4404 4405 4406
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4407
                is_accumulated=True,
4408 4409
                name=None,
                return_parent_idx=False):
4410
    """
4411 4412
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4413 4414 4415

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4416 4417

    This layer does the search in beams for one time step. Specifically, it
4418 4419 4420
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4432 4433 4434 4435

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4436

4437
    Args:
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4461 4462
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4463 4464
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4465 4466 4467 4468
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4469

4470
    Returns:
4471 4472 4473 4474
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4475 4476 4477 4478

    Examples:
        .. code-block:: python

4479 4480
            import paddle.fluid as fluid

4481 4482 4483
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4496
                axis=0)
4497
            selected_ids, selected_scores = fluid.layers.beam_search(
4498 4499 4500 4501 4502 4503 4504
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4505
    helper = LayerHelper('beam_search', **locals())
4506 4507 4508 4509 4510 4511
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4512

X
Xin Pan 已提交
4513 4514 4515
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4516 4517 4518 4519 4520
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4521 4522 4523

    helper.append_op(
        type='beam_search',
4524
        inputs=inputs,
Q
Qiao Longfei 已提交
4525 4526 4527
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4528
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4529 4530 4531 4532 4533 4534
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4535
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4536
        })
4537 4538 4539 4540
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4541 4542


4543 4544 4545 4546 4547 4548 4549
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4550

4551 4552 4553 4554 4555 4556 4557 4558 4559
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4560

4561 4562 4563 4564 4565 4566
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4567

4568 4569
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4570

4571 4572
            import paddle.fluid as fluid

4573 4574
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4575 4576 4577
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4578 4579 4580
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4581 4582
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4598 4599 4600 4601
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4602
              param_attr=None,
C
caoying03 已提交
4603 4604
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4605 4606 4607 4608
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4609
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4610

4611
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4612

4613
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4614

4615
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4616 4617 4618

            h_t & = o_t tanh(c_t)

4619 4620 4621 4622 4623 4624
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4625 4626 4627

        .. math::

4628
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4629 4630 4631 4632 4633 4634 4635 4636

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4637
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4638 4639

    Args:
Y
yangyaming 已提交
4640 4641 4642 4643 4644 4645
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4646
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4659 4660
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4661 4662

    Returns:
Y
yangyaming 已提交
4663
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4664 4665

    Raises:
4666 4667 4668 4669
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4670 4671 4672 4673 4674

    Examples:

        .. code-block:: python

4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4702
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4703 4704 4705 4706
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4707 4708
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4709 4710 4711
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4712
    size = cell_t_prev.shape[1]
4713
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4714 4715
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4716
                param_attr=param_attr,
4717
                bias_attr=bias_attr)
Y
yangyaming 已提交
4718
    dtype = x_t.dtype
X
Xin Pan 已提交
4719 4720
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4721 4722 4723 4724 4725 4726 4727 4728 4729

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4730
    return h, c
G
guosheng 已提交
4731 4732


C
caoying03 已提交
4733
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4734
    """
Y
yangyaming 已提交
4735
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4736 4737 4738

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4739
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4740 4741
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4742 4743
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4744
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4745
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4746
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4747 4748
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4749 4750 4751

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4752

G
guosheng 已提交
4753 4754 4755
    Examples:
        .. code-block:: python

4756
            import paddle.fluid as fluid
G
guosheng 已提交
4757 4758 4759
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4760
            # Each example is followed by the corresponding output tensor.
4761
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4762 4763 4764 4765
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4766

4767
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4768 4769
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4770
            # Each example is followed by the corresponding output tensor.
4771 4772 4773
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4774

G
guosheng 已提交
4775 4776
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4777
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4778 4779
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4780 4781 4782 4783 4784
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4785
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4786 4787 4788 4789
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4790 4791


C
caoying03 已提交
4792
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4793
    """
Y
Yibing Liu 已提交
4794
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4795 4796 4797

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4798 4799 4800
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4801
            must be in the range :math:`[-rank(input), rank(input))`. If
4802
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4803
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4804 4805
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4806
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4807
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4808
                       will be named automatically.
G
guosheng 已提交
4809 4810

    Returns:
Y
Yibing Liu 已提交
4811
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4812

G
guosheng 已提交
4813 4814 4815
    Examples:
        .. code-block:: python

4816
            import paddle.fluid as fluid
G
guosheng 已提交
4817 4818 4819 4820
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4821
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4822 4823 4824
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4825
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4826

4827
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4828 4829 4830
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4831 4832 4833
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4834 4835
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4836
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4837 4838
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4839 4840 4841 4842 4843
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4844
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4845 4846 4847 4848
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4849 4850


C
caoying03 已提交
4851
def reduce_max(input, dim=None, keep_dim=False, name=None):
4852
    """
Y
yangyaming 已提交
4853
    Computes the maximum of tensor elements over the given dimension.
4854 4855 4856

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4857
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4858 4859 4860
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4861
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4862 4863
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4864
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4865 4866
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4867 4868 4869

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4870

4871 4872 4873
    Examples:
        .. code-block:: python

4874
            import paddle.fluid as fluid
4875 4876 4877 4878
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4879
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4880 4881 4882 4883
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4884

4885
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4886 4887 4888
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4889 4890 4891
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4892 4893
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4894
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4895 4896
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4897 4898 4899 4900 4901
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4902
            'dim': dim if dim != None else [0],
4903 4904 4905 4906 4907 4908
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4909
def reduce_min(input, dim=None, keep_dim=False, name=None):
4910
    """
Y
yangyaming 已提交
4911
    Computes the minimum of tensor elements over the given dimension.
4912 4913 4914

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4915
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4916 4917 4918
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4919
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4920 4921
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4922
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4923 4924
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4925 4926 4927

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4928

4929 4930 4931
    Examples:
        .. code-block:: python

4932
            import paddle.fluid as fluid
4933 4934 4935 4936
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4937
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4938 4939 4940 4941
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4942

4943
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4944 4945 4946
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4947 4948 4949
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4950 4951
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4952
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4953 4954
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4955 4956 4957 4958 4959
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4960
            'dim': dim if dim != None else [0],
4961 4962 4963 4964
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4965 4966


4967 4968 4969 4970 4971 4972
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4973
        dim (list|int|None): The dimensions along which the product is performed. If
4974 4975
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4976 4977
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4978 4979 4980
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4981
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4982
            layer will be named automatically.
4983 4984 4985 4986 4987 4988 4989

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

4990
            import paddle.fluid as fluid
4991 4992 4993 4994
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4995
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4996 4997 4998
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4999
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
5000
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
5001

5002
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5003 5004 5005
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5006 5007 5008
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
5009 5010
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
5011
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5012 5013
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5014 5015 5016 5017 5018
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5019
            'dim': dim if dim != None else [0],
5020 5021 5022 5023 5024 5025
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
5026 5027
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5028
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5048
        
5049
            import paddle.fluid as fluid
5050 5051 5052
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5053 5054 5055
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
5056 5057 5058 5059 5060 5061 5062
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5083
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5103

5104
            import paddle.fluid as fluid
5105 5106 5107
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5108 5109 5110
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5111 5112 5113 5114 5115 5116 5117
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5132 5133 5134 5135 5136
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5137
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5138
    """
C
caoying03 已提交
5139
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5140 5141 5142

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5143 5144 5145 5146 5147
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5148
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5149
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5150
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5151 5152
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5153 5154

    Returns:
D
dzhwinter 已提交
5155
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5156 5157 5158 5159

    Examples:
        .. code-block:: python

5160 5161 5162 5163 5164 5165
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5166
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5167 5168 5169 5170 5171 5172 5173 5174
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5175 5176 5177 5178 5179 5180 5181 5182
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5183
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5184 5185 5186
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5187
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5201 5202 5203 5204 5205 5206 5207 5208 5209


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5210
    .. math::
5211 5212

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5213 5214 5215 5216 5217

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5218
        x(Variable|list): The input tensor to l2_normalize layer.
5219
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5220 5221
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5222
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5223
            the default value is 1e-12.
5224
        name(str|None): A name for this layer(optional). If set None, the layer \
5225
            will be named automatically.
C
caoying03 已提交
5226 5227

    Returns:
5228
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5229 5230

    Examples:
5231

C
caoying03 已提交
5232 5233
        .. code-block:: python

5234
            import paddle.fluid as fluid
5235 5236 5237 5238
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5239 5240
    """

F
fengjiayi 已提交
5241 5242
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5243 5244
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5245 5246
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5247
    helper.append_op(
5248 5249 5250 5251
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5252
        attrs={
5253 5254
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5255 5256
        })
    return out
5257 5258


S
sneaxiy 已提交
5259
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5260
    """
Y
ying 已提交
5261 5262 5263 5264
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5265

C
chengduoZH 已提交
5266
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5267
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5268

5269 5270 5271 5272 5273
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5274
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5275

C
chengduoZH 已提交
5276
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5277
      performs in the following way.
G
guosheng 已提交
5278

5279
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5280
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5281
        last two dimensions and a batched matrix multiply supporting broadcast
5282
        applies on the two tensors.
G
guosheng 已提交
5283

Y
ying 已提交
5284 5285
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5286
    removed after matrix multiplication.
G
guosheng 已提交
5287 5288 5289

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5290 5291 5292
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5293
        alpha (float): The scale of output. Default 1.0.
5294
        name(str|None): A name for this layer(optional). If set None, the layer
5295
            will be named automatically.
G
guosheng 已提交
5296 5297

    Returns:
石晓伟 已提交
5298
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
5299

G
guosheng 已提交
5300 5301 5302
    Examples:
        .. code-block:: python

5303
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5304
            # x: [B, ..., M, K], y: [B, ..., K, N]
5305
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5306

5307
            # x: [B, M, K], y: [B, K, N]
5308
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5309

5310
            # x: [B, M, K], y: [K, N]
5311
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5312

5313
            # x: [M, K], y: [K, N]
5314
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5315 5316

            # x: [B, M, K], y: [K]
5317
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5318

5319
            # x: [K], y: [K]
5320
            # fluid.layers.matmul(x, y)  # out: [1]
5321

Y
ying 已提交
5322
            # x: [M], y: [N]
5323 5324
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5325
            import paddle.fluid as fluid
5326 5327 5328
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5329
    """
Y
ying 已提交
5330 5331 5332 5333 5334 5335 5336

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5337
            y_shape = y_shape + [1]
Y
ying 已提交
5338 5339 5340 5341 5342 5343 5344

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5345 5346
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5347

C
chengduo 已提交
5348
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5349
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5350 5351 5352
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5353
                if dim_x != y_shape[i]:
C
chengduo 已提交
5354 5355
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5356 5357 5358

    __check_input(x, y)

5359
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5360
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5361
    helper.append_op(
5362 5363 5364 5365
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5366 5367 5368
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5369
            'alpha': float(alpha),
S
sneaxiy 已提交
5370
        })
5371
    return out
5372 5373


5374
def topk(input, k, name=None):
Q
qingqing01 已提交
5375 5376 5377 5378
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5379
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5380 5381 5382 5383 5384 5385
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5407 5408 5409
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5410
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5411
                 of input.
5412
        name(str|None): A name for this layer(optional). If set None, the layer
5413
                       will be named automatically.
F
fengjiayi 已提交
5414
                       Default: None
Q
qingqing01 已提交
5415 5416

    Returns:
5417 5418 5419
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5420
        within the last dimension of input.
Q
qingqing01 已提交
5421

F
fengjiayi 已提交
5422 5423
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5424 5425 5426 5427

    Examples:
        .. code-block:: python

5428
            import paddle.fluid as fluid
5429 5430
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5431 5432 5433
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5434 5435
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5436 5437 5438 5439 5440 5441
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5442 5443
    helper.append_op(
        type="top_k",
W
whs 已提交
5444
        inputs=inputs,
Q
qingqing01 已提交
5445 5446
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5447
        attrs=attrs)
Q
qingqing01 已提交
5448 5449 5450 5451 5452
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5453 5454 5455 5456 5457 5458
def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
5459
    """
R
ruri 已提交
5460
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5461 5462 5463 5464 5465 5466 5467 5468
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5469

Y
ying 已提交
5470
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5471

5472
    The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
Y
ying 已提交
5473
    the total number denoted by `batch_size`, and the separation is specified
5474 5475
    by the LoD information or input_length. And the `batch_size` reference strings are arranged
    in order in the same way as `input`.
W
wanghaoshuang 已提交
5476

5477
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5478 5479
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5480

5481
    Args:
5482 5483
        input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
        label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
5484
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5485
                          the length of reference string.
5486
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5487
                                     calculating edit distance.
5488 5489
        input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
        label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
5490

W
wanghaoshuang 已提交
5491
    Returns:
5492 5493 5494
        edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
        sequence_num(Variable): sequence number in shape [].
        
W
wanghaoshuang 已提交
5495 5496 5497

    Examples:
        .. code-block:: python
5498
            
R
ruri 已提交
5499 5500
            import paddle.fluid as fluid

5501 5502 5503 5504
            # using LoDTensor
            x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
            y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
            distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
R
ruri 已提交
5505

5506 5507 5508 5509 5510 5511 5512 5513
            # using Tensor
            x_seq_len = 5
            y_seq_len = 6
            x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
            y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
            x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
            y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
            distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
R
ruri 已提交
5514

5515
    """
5516
    helper = LayerHelper("edit_distance", **locals())
5517

5518
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5519
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5520 5521
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5522 5523 5524 5525 5526

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5527
            attrs={"tokens": ignored_tokens})
5528 5529 5530 5531 5532
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5533
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5534
            attrs={"tokens": ignored_tokens})
5535 5536
        label = erased_label

5537 5538 5539 5540 5541
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length and label_length:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

5542
    # edit distance op
X
Xin Pan 已提交
5543 5544
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5545 5546
    helper.append_op(
        type="edit_distance",
5547
        inputs=this_inputs,
5548 5549
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5550 5551
        attrs={"normalized": normalized})

5552
    return edit_distance_out, sequence_num
5553 5554 5555 5556 5557


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5558

Y
ying 已提交
5559 5560 5561 5562
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5580
        input.lod = [[4, 4]]
M
minqiyang 已提交
5581

W
whs 已提交
5582
        Computation:
5583

W
whs 已提交
5584 5585 5586 5587 5588 5589
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5590 5591 5592 5593 5594

        output.data = [[2],
                       [1],
                       [3]]

5595
        output.lod = [[2, 1]]
5596

W
whs 已提交
5597

5598 5599
    Args:

Y
ying 已提交
5600 5601 5602 5603 5604 5605 5606 5607 5608
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5609
        name (str): The name of this layer. It is optional.
5610 5611

    Returns:
H
haowang101779990 已提交
5612 5613 5614
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5615
                  LoD [[]] and dims [1, 1].
5616 5617 5618 5619

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5620
            import paddle.fluid as fluid
5621 5622
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5623
    """
5624
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5625
    _, topk_indices = topk(input, k=1)
5626 5627

    # ctc align op
X
Xin Pan 已提交
5628
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5629 5630 5631
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5632
        outputs={"Output": [ctc_out]},
5633 5634
        attrs={"merge_repeated": True,
               "blank": blank})
5635
    return ctc_out
5636 5637


W
Wu Yi 已提交
5638
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5639
    """
5640 5641
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5642
    to compute Connectionist Temporal Classification (CTC) loss.
5643 5644
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5645 5646 5647
    input tensor.

    Args:
5648
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5649 5650 5651 5652
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5653
       label (Variable): The ground truth of variable-length sequence,
5654 5655 5656
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5657 5658
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5659 5660 5661
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5662
         follewed by a mean_op.
W
Wu Yi 已提交
5663
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5664 5665

    Returns:
5666 5667
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5668 5669

    Examples:
5670

W
wanghaoshuang 已提交
5671
        .. code-block:: python
5672

B
Bai Yifan 已提交
5673 5674 5675 5676 5677
            import paddle.fluid as fluid
            label = fluid.layers.data(name='label', shape=[11, 8],
                                      dtype='float32', lod_level=1)
            predict = fluid.layers.data(name='predict', shape=[11, 1],
                                        dtype='float32')
5678
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5679 5680

    """
F
fengjiayi 已提交
5681
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5682 5683
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5684 5685 5686 5687 5688 5689
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5690 5691 5692 5693 5694
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5695
    return loss_out
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5711 5712 5713
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5714 5715 5716 5717 5718
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5719

5720
            out.lod  = [[0, 1, 3]]
5721 5722 5723 5724

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5725 5726 5727 5728 5729 5730 5731
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5732 5733 5734

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5735 5736

    Returns:
5737

5738 5739 5740 5741 5742
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5743 5744 5745
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5746
    """
L
lujun 已提交
5747
    assert not in_dygraph_mode(), (
5748
        "sequence layer is not supported in dygraph mode yet.")
5749
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5750
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5751 5752 5753 5754 5755 5756
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5757 5758


5759 5760 5761 5762
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5763 5764 5765 5766 5767 5768
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5769
        num_neg_samples=None,
5770 5771 5772
        name=None,
        sampler="uniform",
        custom_dist=None,
5773 5774
        seed=0,
        is_sparse=False):
5775 5776 5777 5778 5779 5780 5781
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5782 5783
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5784
            sample is 1.0.
C
chengduo 已提交
5785 5786 5787 5788 5789 5790 5791 5792 5793
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5794
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5795 5796
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5797 5798 5799
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5800
        custom_dist (float[]): A float[] with size=num_total_classes.
5801 5802 5803 5804
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5805
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5806

5807
    Returns:
Y
Yibing Liu 已提交
5808 5809 5810 5811 5812 5813
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


X
xsrobin 已提交
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
            import paddle.fluid as fluid
            import numpy as np

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(fluid.layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
                                   param_attr='embed', is_sparse=True)
                embs.append(emb)

            embs = fluid.layers.concat(input=embs, axis=1)
            loss = fluid.layers.nce(input=embs, label=words[label_word],
                      num_total_classes=dict_size, param_attr='nce.w_0',
                      bias_attr='nce.b_0')

             #or use custom distribution
             dist = np.array([0.05,0.5,0.1,0.3,0.05])
             loss = fluid.layers.nce(input=embs, label=words[label_word],
                       num_total_classes=5, param_attr='nce.w_1',
                       bias_attr='nce.b_1',
                       num_neg_samples=3,
                       sampler="custom_dist",
                       custom_dist=dist)
5848
    """
Y
Yang Yu 已提交
5849 5850 5851
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5852 5853

    dim = input.shape[1]
Y
Yang Yu 已提交
5854 5855 5856 5857 5858 5859
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5860
    inputs = {}
C
chengduo 已提交
5861 5862 5863 5864 5865 5866 5867
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5868 5869 5870
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5871

5872 5873 5874 5875
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5876 5877 5878 5879 5880 5881 5882

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5883 5884
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5885
        custom_dist_len = num_total_classes
5886 5887 5888 5889 5890 5891
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5892
            if normal_prob - 1.0 > 0:
5893
                bigs.append((i, normal_prob))
5894
            elif 1.0 - normal_prob > 0:
5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5910
            if big_left - 1.0 > 0:
5911
                bigs.append((big_idx, big_left))
5912
            elif 1.0 - big_left > 0:
5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5942 5943 5944 5945
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5946 5947 5948 5949 5950
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5951 5952 5953 5954
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5955

Y
Yang Yu 已提交
5956 5957
    attrs = {
        'num_total_classes': int(num_total_classes),
5958 5959
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5960
        'sampler': sampler,
5961 5962
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5963
    }
Y
Yang Yu 已提交
5964 5965 5966

    helper.append_op(
        type='nce',
C
chengduo 已提交
5967
        inputs=inputs,
Y
Yang Yu 已提交
5968 5969 5970 5971 5972 5973
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5974
    return cost / (num_neg_samples + 1)
5975 5976


C
chengduo 已提交
5977 5978
def hsigmoid(input,
             label,
5979
             num_classes,
C
chengduo 已提交
5980 5981
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5982
             name=None,
5983 5984 5985
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5986
             is_sparse=False):
W
weixing02 已提交
5987 5988
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5989
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5990
    complete binary tree, or you can use is_custom to pass your own tree to
5991
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5992 5993 5994 5995 5996 5997
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5998
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5999
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
6000

6001 6002
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
6003 6004 6005 6006
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
6007
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
6008
       related to the same batch of inputs.
6009

W
weixing02 已提交
6010
    Args:
M
minqiyang 已提交
6011
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
6012 6013 6014 6015
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
6016 6017
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
6018
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
6030
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
6031
            it should be in leaf -> root order
M
minqiyang 已提交
6032 6033 6034
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
6035
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
6036
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
6037
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
6038
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
6039
             of W and input will be sparse.
W
weixing02 已提交
6040 6041

    Returns:
J
JiabinYang 已提交
6042
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
6043 6044 6045 6046 6047

    Examples:

        .. code-block:: python

6048
            import paddle.fluid as fluid
G
guosheng 已提交
6049 6050 6051
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
6052 6053 6054 6055
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6056 6057
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
6058
    dim = input.shape[1]
6059
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
6060 6061 6062
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

6063 6064 6065 6066 6067 6068 6069 6070 6071
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

6072
    if (is_custom) and (path_code is None):
6073
        raise ValueError("path_code should not be None with custom tree")
6074
    elif (is_custom) and (path_table is None):
6075
        raise ValueError("path_table should not be None with custom tree")
6076
    elif (is_custom) and (num_classes is None):
6077
        raise ValueError("num_classes should not be None with custom tree")
6078 6079 6080
    else:
        pass

J
JiabinYang 已提交
6081
    weights = None
6082 6083 6084 6085
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6086
    if not is_custom:
J
JiabinYang 已提交
6087 6088 6089 6090 6091 6092 6093 6094
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
6095
            shape=[num_classes, dim],
J
JiabinYang 已提交
6096 6097
            is_bias=False,
            dtype=input.dtype)
6098 6099 6100
    inputs = {
        "X": input,
        "W": weights,
6101
        "PathTable": path_table,
6102
        "PathCode": path_code,
6103 6104
        "Label": label
    }
W
weixing02 已提交
6105
    if helper.bias_attr:
6106
        if not is_custom:
J
JiabinYang 已提交
6107 6108
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
6109
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
6110 6111 6112 6113 6114 6115
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
6116
                shape=[num_classes, 1],
J
JiabinYang 已提交
6117 6118 6119
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6120 6121
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6122
        inputs=inputs,
W
weixing02 已提交
6123
        outputs={"Out": out,
6124 6125 6126 6127 6128 6129 6130
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6131 6132 6133
    return out


Y
fix ci.  
ying 已提交
6134
def transpose(x, perm, name=None):
Y
ying 已提交
6135 6136 6137 6138 6139 6140 6141
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6142 6143 6144
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6145 6146 6147 6148 6149 6150 6151

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6152
            # use append_batch_size=False to avoid prepending extra
6153
            # batch size in shape
6154
            import paddle.fluid as fluid
6155
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6156
                            dtype='float32', append_batch_size=False)
6157
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6158 6159
    """

Y
fix ci.  
ying 已提交
6160
    if len(perm) != len(x.shape):
Y
ying 已提交
6161 6162
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6163
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6164 6165 6166 6167 6168 6169
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6170 6171

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6172 6173
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6174
    helper.append_op(
6175
        type='transpose2',
Y
fix ci.  
ying 已提交
6176
        inputs={'X': [x]},
6177 6178
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6179 6180
        attrs={'axis': perm})
    return out
6181 6182


6183 6184 6185 6186 6187 6188 6189
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6190
    """
6191 6192 6193 6194 6195 6196 6197
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6198 6199 6200 6201 6202 6203 6204 6205 6206 6207

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6226 6227 6228 6229 6230 6231 6232 6233 6234
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6235 6236 6237
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6238 6239 6240 6241 6242
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6270 6271 6272
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6285
            output.dims = {8, 8}
6286

6287
            output.lod = [[4, 4]]
6288

T
Tink_Y 已提交
6289
    Examples:
6290 6291 6292

        .. code-block:: python

B
Bai Yifan 已提交
6293 6294 6295
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6296
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6297 6298
                input=data, stride=[1, 1], filter_size=[2, 2])

6299 6300

    """
L
lujun 已提交
6301
    assert not in_dygraph_mode(), (
6302
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6303 6304 6305 6306 6307 6308 6309 6310 6311 6312

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6313
    inputs = {"X": input}
6314
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6315 6316 6317 6318 6319
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6320
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6321
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6322
    helper.append_op(
6323
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6324
    return out
6325 6326


Y
yuyang18 已提交
6327
@templatedoc()
6328
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6329 6330
    """
    ${comment}
6331 6332

    Args:
Y
yuyang18 已提交
6333
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6334 6335
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6336 6337 6338 6339 6340
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6341
        ${out_comment}.
6342 6343

    Examples:
Y
yuyang18 已提交
6344 6345 6346 6347
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6348 6349 6350 6351 6352 6353
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6354
    out = helper.create_variable_for_type_inference(dtype)
6355 6356 6357 6358 6359
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6360
    return helper.append_activation(out)
6361 6362


Y
yuyang18 已提交
6363
@templatedoc()
6364 6365
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6366 6367
    ${comment}

L
lujun 已提交
6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6411 6412

    Args:
Y
yuyang18 已提交
6413 6414
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6415 6416

    Returns:
Y
yuyang18 已提交
6417
        ${out_comment}.
6418 6419
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6420 6421 6422 6423 6424

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6425
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6426 6427 6428 6429 6430 6431
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6432 6433


6434 6435 6436
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6437
                               ignore_index=kIgnoreIndex,
6438
                               numeric_stable_mode=True,
6439 6440
                               return_softmax=False,
                               axis=-1):
6441 6442
    """
    **Softmax With Cross Entropy Operator.**
6443

6444
    Cross entropy loss with softmax is used as the output layer extensively. This
6445 6446 6447
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6448

6449 6450 6451
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6452

6453 6454 6455 6456
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6457

6458
    The equation is as follows:
6459

6460
    1) Hard label (one-hot label, so every sample has exactly one class)
6461

6462 6463 6464 6465
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6466

6467 6468 6469
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6470

6471 6472 6473 6474
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6475 6476
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6477 6478

    .. math::
6479

H
haowang101779990 已提交
6480
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6481

H
haowang101779990 已提交
6482
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6483

H
haowang101779990 已提交
6484
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6485 6486 6487

    and then cross entropy loss is calculated by softmax and label.

6488
    Args:
6489 6490 6491 6492 6493 6494
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6495
        soft_label (bool): A flag to indicate whether to interpretate the given
6496
            labels as soft labels. Default False.
M
minqiyang 已提交
6497 6498
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6499 6500
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6501 6502
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6503 6504 6505 6506
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6507
                                    Note that the speed may be slower when use
6508
                                    stable algorithm. Default: True
6509
        return_softmax (bool): A flag indicating whether to return the softmax
6510
                               along with the cross entropy loss. Default: False
6511 6512 6513
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6514

6515
    Returns:
H
haowang101779990 已提交
6516 6517
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6518 6519 6520 6521
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6522 6523 6524 6525

    Examples:
        .. code-block:: python

6526 6527
            import paddle.fluid as fluid

6528 6529 6530
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6531 6532
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6533 6534
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6535 6536
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6537 6538 6539 6540 6541 6542
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6543 6544 6545
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6546 6547
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6548
        })
6549 6550 6551 6552

    if return_softmax:
        return loss, softmax

6553 6554 6555
    return loss


6556 6557 6558
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6559
                                       num_true=1,
6560
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6561 6562 6563
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6564
                                       seed=0):
X
xuezhong 已提交
6565 6566 6567 6568 6569
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6570
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6571 6572 6573 6574 6575 6576 6577 6578
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6579
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6580 6581 6582 6583 6584 6585 6586 6587
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6588
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6600
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6601 6602 6603 6604 6605
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6606
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6607
            logits.
X
xuezhong 已提交
6608 6609 6610 6611 6612
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6613 6614 6615
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6616 6617 6618 6619 6620 6621 6622
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6623 6624 6625
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
6626
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
6627
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6628
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6629
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6630 6631 6632 6633 6634 6635 6636 6637
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6638 6639
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6640 6641
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6642 6643 6644 6645 6646

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6647
            'Labels': label,
X
xuezhong 已提交
6648 6649
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6650 6651 6652 6653
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6654
            'SampledLabels': sampled_label,
6655 6656 6657
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6658 6659
        },
        attrs={
X
xuezhong 已提交
6660
            'use_customized_samples': use_customized_samples,
6661
            'uniq': True,
X
xuezhong 已提交
6662 6663 6664 6665
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6666 6667
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6668 6669 6670 6671 6672 6673
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6674 6675
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6676
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6677
                'Label': sampled_softlabel},
X
xuezhong 已提交
6678 6679 6680
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6681
            'soft_label': True,
X
xuezhong 已提交
6682 6683 6684
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6685
    return loss / num_true
X
xuezhong 已提交
6686 6687


6688 6689
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6690 6691
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6692
    For each instance, it computes the smooth L1 loss element by element first
6693
    and then sums all the losses. So the shape of ouput Variable is
6694
    [batch_size, 1].
6695

6696 6697
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6698
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6699
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6700
            L1 loss op with same shape as :attr:`x`.
6701
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6702 6703
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6704
            by this tensor element by element.
6705
        outside_weight (Variable|None): A tensor with rank at least 2. This
6706 6707
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6708
            element by element.
6709
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6710 6711
           scalar with default value 1.0.

6712
    Returns:
6713
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6714 6715 6716 6717

    Examples:
        .. code-block:: python

6718
            import paddle.fluid as fluid
6719
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6720 6721
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6722
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6723
            out = fluid.layers.smooth_l1(x=fc, y=label)
6724
    """
6725

6726
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6727 6728
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6739
        attrs={'sigma': sigma if sigma is not None else 1.0})
6740
    return loss
6741 6742


6743
def one_hot(input, depth, allow_out_of_range=False):
6744
    """
Y
Yibing Liu 已提交
6745
    This layer creates the one-hot representations for input indices.
6746 6747

    Args:
Y
Yibing Liu 已提交
6748 6749
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6750 6751 6752 6753
        allow_out_of_range(bool): A bool value indicating whether the input
            indices could be out of range [0, depth). When input indices are
            out of range, exceptions is raised if allow_out_of_range is False,
            or zero-filling representations is created if it is set True
6754 6755

    Returns:
Y
Yibing Liu 已提交
6756
        Variable: The one-hot representations of input.
6757 6758

    Examples:
C
caoying03 已提交
6759
        .. code-block:: python
6760

6761
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
6762 6763
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6764 6765
    """
    helper = LayerHelper("one_hot", **locals())
6766

X
Xin Pan 已提交
6767
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6768 6769 6770 6771 6772 6773 6774 6775 6776 6777

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6778
            depth.stop_gradient = True
6779 6780
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6781 6782
    helper.append_op(
        type="one_hot",
6783 6784
        inputs=inputs,
        attrs=attrs,
6785 6786
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6787
    return one_hot_out
Y
Yu Yang 已提交
6788 6789


Y
Yu Yang 已提交
6790
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6791
    """
Y
yi.wu 已提交
6792 6793 6794
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6795 6796 6797 6798 6799 6800

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6801 6802
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6803 6804 6805 6806

    Examples:
        .. code-block:: python

6807
           import paddle.fluid as fluid
Y
yi.wu 已提交
6808
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6809
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6810 6811
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6812 6813
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6814 6815 6816 6817 6818
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6819
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6820
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6821 6822
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6823
            outputs={'Out': [counter]},
M
minqiyang 已提交
6824 6825
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6826 6827 6828
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6829 6830


6831
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6832
    """
C
caoying03 已提交
6833 6834
    Gives a new shape to the input Tensor without changing its data.

6835 6836 6837 6838 6839
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6840

6841
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6842

6843 6844 6845 6846
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6847
    2. 0 means the actual dimension value is going to be copied from the
6848 6849 6850 6851
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6852 6853

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6854
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6855
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6856

6857
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6858 6859
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6860 6861
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6862
    dimensions.
C
caoying03 已提交
6863

6864
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6865 6866 6867 6868
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6869 6870

    Args:
6871
        x(variable): The input tensor.
C
caoying03 已提交
6872 6873
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6874 6875 6876 6877 6878
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6879 6880
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6881 6882 6883
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6884
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6885
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6886

6887
    Returns:
G
guosheng 已提交
6888 6889 6890 6891
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6892

X
Xin Pan 已提交
6893 6894 6895
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6896 6897
    Examples:
        .. code-block:: python
G
guosheng 已提交
6898

6899
            import paddle.fluid as fluid
6900
            data = fluid.layers.data(
6901
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6902
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6903
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6904 6905 6906
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6907
        raise ValueError("Input shape must be a python list or tuple.")
6908

X
Xin Pan 已提交
6909 6910 6911 6912 6913
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6914

6915 6916
    # Validate the shape
    unk_dim_idx = -1
6917
    contain_var = False
6918
    for dim_idx, dim_size in enumerate(shape):
6919 6920 6921 6922
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6935
    helper = LayerHelper("reshape2", **locals())
6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
6958 6959
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6960
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6961
    helper.append_op(
6962
        type="reshape2",
X
Xin Pan 已提交
6963
        inputs=inputs,
6964
        attrs=attrs,
6965 6966
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6967

D
dzhwinter 已提交
6968
    return helper.append_activation(out)
6969

6970

6971
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6972
    """
M
minqiyang 已提交
6973 6974 6975
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6976
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6977

H
haowang101779990 已提交
6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6999

Y
Yibing Liu 已提交
7000
    Args:
7001
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
7002
        axes (list): List of integers, indicating the dimensions to be squeezed.
7003
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7004 7005 7006 7007 7008 7009 7010

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

7011
            import paddle.fluid as fluid
7012
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
7013
            x = layers.data(name='x', shape=[5, 1, 10])
7014
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7015
    """
L
lujun 已提交
7016
    assert not in_dygraph_mode(), (
L
lujun 已提交
7017
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
7018
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
7019 7020
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7021
    helper.append_op(
7022
        type="squeeze2",
7023
        inputs={"X": input},
Y
Yibing Liu 已提交
7024
        attrs={"axes": axes},
7025 7026
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7027

7028 7029 7030
    return out


7031
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
7032
    """
M
minqiyang 已提交
7033 7034 7035
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
7036

M
minqiyang 已提交
7037
    For example:
H
haowang101779990 已提交
7038 7039 7040

    .. code-block:: text

M
minqiyang 已提交
7041
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
7042
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
7043

Y
Yibing Liu 已提交
7044
    Args:
7045
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
7046
        axes (list): List of integers, indicating the dimensions to be inserted.
7047
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7048 7049 7050 7051 7052 7053 7054

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

7055 7056 7057
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7058 7059
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
7060 7061
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7062
    helper.append_op(
7063
        type="unsqueeze2",
7064
        inputs={"X": input},
Y
Yibing Liu 已提交
7065
        attrs={"axes": axes},
7066 7067
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7068

7069 7070
    return out

7071

Y
yangyaming 已提交
7072
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
7073
    """
Y
Yibing Liu 已提交
7074
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
7075 7076 7077 7078
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
7079
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
7080 7081 7082 7083 7084 7085

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
7086
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
7087 7088 7089
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

7090
            target_lod: [4, 2]
Y
yangyaming 已提交
7091 7092

            then we get a 1-level LoDTensor:
7093
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
7094 7095 7096 7097 7098 7099
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
7100
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7101 7102 7103 7104
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
7105
                y.data = [[2, 4]]
Y
yangyaming 已提交
7106 7107 7108
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
7109
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
7110 7111 7112 7113 7114 7115
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
7116
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7117 7118 7119 7120
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
7121
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7122 7123 7124 7125
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7126
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7127 7128 7129 7130
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
7131
        x (Variable): Input variable which could be a Tensor or LoDTensor.
7132
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7133
                           from :attr:`y`.
Y
yangyaming 已提交
7134
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7135
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7136 7137

    Returns:
Y
Yibing Liu 已提交
7138
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7139 7140

    Raises:
Y
Yibing Liu 已提交
7141
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7142 7143 7144 7145

    Examples:
        .. code-block:: python

7146
            import paddle.fluid as fluid
7147 7148 7149
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7150 7151
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7152
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
7190
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
7191 7192 7193 7194 7195 7196

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
7197

7198 7199 7200 7201 7202 7203 7204 7205 7206 7207
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
7208 7209 7210
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

7211 7212
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7213 7214 7215 7216 7217 7218 7219 7220

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
7221
    helper.append_op(
7222
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
7223
    return out
D
dragonwarrior 已提交
7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7235
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7264
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7265 7266
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7279 7280 7281
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7295 7296 7297 7298


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7299
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7300
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7301

G
guosheng 已提交
7302 7303 7304 7305
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7328
                         The length of :attr:paddings must be
G
guosheng 已提交
7329 7330 7331 7332 7333 7334 7335 7336 7337 7338
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7339

G
guosheng 已提交
7340
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7341 7342
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7343 7344 7345 7346 7347
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7348
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7349 7350 7351 7352 7353 7354 7355
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7356 7357


C
chengduo 已提交
7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7389 7390
		And
            pad_value = -1,
C
chengduo 已提交
7391

T
Tink_Y 已提交
7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7422 7423 7424
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7425 7426 7427 7428 7429
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7430
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7431 7432 7433 7434 7435 7436 7437 7438 7439
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7440 7441 7442 7443 7444 7445 7446
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7447 7448
    called label-smoothing regularization (LSR).

7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7472
                              be :math:`(1, class\_num)`.
7473 7474
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7475
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7476 7477 7478 7479 7480 7481 7482 7483 7484
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7485
            
7486
            import paddle.fluid as fluid
7487
            import paddle.fluid.layers as layers
7488 7489 7490 7491 7492 7493 7494 7495 7496 7497

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7498
    smooth_label = helper.create_variable_for_type_inference(dtype)
7499 7500 7501 7502 7503 7504 7505
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7506 7507


W
wopeizl 已提交
7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7556 7557


J
jerrywgz 已提交
7558 7559 7560 7561 7562 7563
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7564 7565
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7582
            import paddle.fluid as fluid
J
jerrywgz 已提交
7583 7584 7585 7586
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7587 7588 7589
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7590 7591 7592 7593 7594 7595
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7596
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7637 7638
        .. code-block:: python

S
SunGaofeng 已提交
7639 7640 7641
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7642
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7643
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7644 7645
    """
    label = one_hot(label, depth=input.shape[-1])
7646
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7647 7648 7649 7650 7651 7652
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7653 7654


7655 7656 7657 7658
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7659
                 resample='BILINEAR',
7660 7661
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7662
                 align_mode=1):
7663
    """
Q
qiaolongfei 已提交
7664
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7665

7666
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7667 7668 7669
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7670

7671
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7672

7673
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7674

7675 7676 7677 7678 7679 7680 7681 7682 7683 7684
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7685
    Align_corners and align_mode are optinal parameters,the calculation method 
7686 7687 7688 7689
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7690
    .. code-block:: text
7691

T
Tink_Y 已提交
7692
        For scale:
7693
          
T
Tink_Y 已提交
7694
            if align_corners = True && out_size > 1 :
7695

T
Tink_Y 已提交
7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7707

T
Tink_Y 已提交
7708 7709
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7710

T
Tink_Y 已提交
7711 7712
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7713

T
Tink_Y 已提交
7714 7715
          else:
              align_corners = True
7716

T
Tink_Y 已提交
7717 7718
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7719

T
Tink_Y 已提交
7720 7721
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7722

T
Tink_Y 已提交
7723 7724 7725 7726 7727 7728 7729 7730 7731 7732
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7733

T
Tink_Y 已提交
7734 7735 7736 7737
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7738

T
Tink_Y 已提交
7739 7740
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7741 7742 7743 7744 7745 7746 7747 7748 7749

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7750
    Args:
7751
        input (Variable): The input tensor of image resize layer,
7752 7753
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7754
        out_shape(list|tuple|Variable|None): Output shape of image resize
7755 7756
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7757
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7758
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7759
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7760
             Default: None.
7761 7762
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7763
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7764
                       currently.
7765
                       Default: 'BILINEAR'
7766 7767 7768
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7769
                                :attr:`out_shape` and :attr:`scale` specifying
7770 7771 7772 7773 7774 7775 7776
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7777 7778
                                constructing stage.
                                Default: None
7779 7780 7781 7782
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7783
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7784 7785
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7786 7787

    Returns:
Q
update  
qiaolongfei 已提交
7788 7789
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7790

7791 7792 7793
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7794
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7795 7796 7797
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7798
        ValueError: scale should be greater than zero.
7799 7800
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7801

7802 7803 7804
    Examples:
        .. code-block:: python

7805
            import paddle.fluid as fluid
R
ruri 已提交
7806
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7807
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7808
    """
7809 7810 7811 7812
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7813 7814
    if resample not in resample_methods:
        raise ValueError(
7815
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7816
        )
7817
    resample_type = resample_methods[resample]
7818 7819 7820 7821 7822 7823

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7824
    if out_shape is None and scale is None:
7825
        raise ValueError("One of out_shape and scale must not be None.")
7826
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7827
    dtype = helper.input_dtype()
7828 7829 7830 7831

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7832
    inputs = {"X": input}
D
dengkaipeng 已提交
7833
    attrs = {
D
dengkaipeng 已提交
7834 7835
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7836 7837 7838 7839 7840
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7841
    if out_shape is not None:
7842 7843 7844 7845
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7846
            inputs['OutSize'] = out_shape
7847 7848
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7849 7850
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7851 7852 7853 7854 7855 7856 7857
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7858
    else:
D
dengkaipeng 已提交
7859 7860
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7861
        attrs['scale'] = float(scale)
7862

7863 7864 7865 7866 7867
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7868
    out = helper.create_variable_for_type_inference(dtype)
7869
    helper.append_op(
7870
        type='{}_interp'.format(resample_type),
7871
        inputs=inputs,
7872
        outputs={"Out": out},
D
dengkaipeng 已提交
7873
        attrs=attrs)
7874
    return out
F
stash  
fengjiayi 已提交
7875 7876


7877
@templatedoc(op_type="bilinear_interp")
7878 7879 7880 7881
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7882 7883
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7884
                    align_mode=1):
7885
    """
7886 7887
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7888 7889
    in priority order.

7890 7891 7892 7893
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7894 7895
    again in the other direction.

7896
    For details of bilinear interpolation, please refer to Wikipedia:
7897
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7898

T
tink2123 已提交
7899
    Align_corners and align_mode are optinal parameters,the calculation 
7900 7901 7902 7903
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7904
    .. code-block:: text
7905

T
Tink_Y 已提交
7906
        For scale:
7907
          
T
Tink_Y 已提交
7908
            if align_corners = True && out_size > 1 :
7909

T
Tink_Y 已提交
7910 7911 7912 7913 7914
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7915

T
Tink_Y 已提交
7916 7917 7918 7919 7920 7921 7922 7923 7924 7925
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7926 7927


T
Tink_Y 已提交
7928
          else:
T
tink2123 已提交
7929

T
Tink_Y 已提交
7930 7931
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7932

T
Tink_Y 已提交
7933 7934
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7935 7936 7937



Y
yuyang18 已提交
7938 7939 7940
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7941 7942 7943
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7944

Y
yuyang18 已提交
7945
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7946
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7947
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7948
             Default: None.
Y
yuyang18 已提交
7949 7950

        name(str|None): The output variable name.
7951 7952 7953
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7954
                                :attr:`out_shape` and :attr:`scale` specifying
7955 7956 7957 7958 7959 7960 7961
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7962 7963
                                constructing stage.
                                Default: None
7964 7965
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7966 7967 7968

    Returns:
        ${out_comment}.
7969 7970 7971 7972

    Examples:
        .. code-block:: python

7973
            import paddle.fluid as fluid
R
ruri 已提交
7974
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7975
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7976 7977
    """

7978 7979
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7980 7981


7982
@templatedoc(op_type="nearest_interp")
7983 7984 7985 7986
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7987 7988
                   actual_shape=None,
                   align_corners=True):
7989
    """
7990
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7991 7992
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7993 7994
    out_shape and scale in priority order.

7995 7996
    Example:

T
Tink_Y 已提交
7997 7998 7999 8000 8001
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
8002

T
Tink_Y 已提交
8003 8004 8005 8006 8007 8008 8009 8010
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
8011
          
T
Tink_Y 已提交
8012 8013
          if:
              align_corners = False
8014

T
Tink_Y 已提交
8015 8016
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8017

T
Tink_Y 已提交
8018 8019
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
8020

T
Tink_Y 已提交
8021 8022
          else:
              align_corners = True
8023

T
Tink_Y 已提交
8024 8025
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8026

T
Tink_Y 已提交
8027 8028
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8029 8030


8031
    For details of nearest neighbor interpolation, please refer to Wikipedia:
8032
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
8033 8034 8035 8036

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
8037 8038 8039
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
8040

Y
yuyang18 已提交
8041
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8042
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8043
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8044
             Default: None.
Y
yuyang18 已提交
8045 8046

        name(str|None): The output variable name.
8047 8048 8049
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8050
                                :attr:`out_shape` and :attr:`scale` specifying
8051 8052 8053 8054 8055 8056 8057
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8058 8059
                                constructing stage.
                                Default: None
8060
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
8061 8062 8063

    Returns:
        ${out_comment}.
8064 8065 8066 8067

    Examples:
        .. code-block:: python

8068
            import paddle.fluid as fluid
R
ruri 已提交
8069
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8070
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
8071 8072
    """

8073 8074
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
8075 8076 8077 8078


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
8079 8080 8081
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
8082 8083 8084 8085 8086 8087 8088
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
8089
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
8090

8091
    Returns:
Q
update  
qiaolongfei 已提交
8092
        Variable: The output is a 4-D tensor of the shape
8093
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
8094 8095 8096 8097

    Examples:
        .. code-block:: python

8098
            import paddle.fluid as fluid
R
ruri 已提交
8099 8100
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
8101 8102 8103 8104 8105 8106 8107 8108 8109 8110
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
8111 8112 8113
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
8114 8115 8116
    return image_resize(input=input, out_shape=out_shape, resample=resample)


8117
def gather(input, index, overwrite=True):
W
whs 已提交
8118
    """
Q
qiaolongfei 已提交
8119 8120
    **Gather Layer**

8121
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
8122 8123 8124 8125
    of X indexed by `index` and concatenate them together.

    .. math::

8126
        Out = X[Index]
W
whs 已提交
8127 8128 8129 8130 8131 8132 8133


    .. code-block:: text


                Given:

8134 8135
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
8136 8137 8138 8139 8140 8141 8142 8143 8144 8145
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
8146
        input (Variable): The source input with rank>=1.
W
whs 已提交
8147
        index (Variable): The index input with rank=1.
8148 8149 8150 8151 8152 8153
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
8154 8155 8156 8157 8158

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
8159

W
whs 已提交
8160 8161
        .. code-block:: python

8162
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
8163 8164
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
8165 8166 8167 8168
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8169
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8170 8171 8172 8173
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
8174 8175
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
8176 8177 8178
    return out


8179
def scatter(input, index, updates, name=None, overwrite=True):
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
8197 8198 8199 8200
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
8201 8202 8203 8204 8205 8206 8207 8208

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

8209 8210 8211 8212 8213
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
8214

8215
            output = fluid.layers.scatter(input, index, updates)
8216 8217 8218
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8219
    out = helper.create_variable_for_type_inference(dtype)
8220 8221 8222 8223 8224
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
8225
        attrs={'overwrite': overwrite},
8226 8227 8228 8229
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
8230 8231 8232 8233 8234 8235 8236 8237 8238
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
8239

Q
Qingsheng Li 已提交
8240
    Given the following input:
H
haowang101779990 已提交
8241

Q
Qingsheng Li 已提交
8242
    .. code-block:: text
H
haowang101779990 已提交
8243

Q
Qingsheng Li 已提交
8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
8256

Q
Qingsheng Li 已提交
8257
    .. code-block:: text
H
haowang101779990 已提交
8258

Q
Qingsheng Li 已提交
8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8274
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8275 8276 8277 8278

    Examples:

        .. code-block:: python
8279
	
8280
            import paddle.fluid as fluid
8281
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8282

8283 8284 8285
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8286 8287 8288
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8289
    assert not in_dygraph_mode(), (
8290
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8291 8292
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8293
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8294 8295 8296 8297 8298 8299 8300 8301 8302
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8316

8317
    Examples:
8318
        >>> import paddle.fluid as fluid
8319 8320
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8321
    """
F
stash  
fengjiayi 已提交
8322
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8323
    dtype = x.dtype
X
Xin Pan 已提交
8324
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8325
    if seed is None:
8326
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8327
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8328
    if isinstance(seed, int):
F
fengjiayi 已提交
8329 8330 8331 8332 8333
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8334 8335 8336 8337
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8338
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8339 8340
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8341 8342
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8343
    return out
W
whs 已提交
8344 8345


8346
def log(x, name=None):
W
wanghaoshuang 已提交
8347 8348 8349 8350 8351
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8352
        Out = \\ln(x)
W
wanghaoshuang 已提交
8353 8354

    Args:
8355
        x (Variable): Input tensor.
8356 8357
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8358 8359 8360 8361 8362 8363 8364 8365

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8366
            import paddle.fluid as fluid
8367
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8368
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8369 8370
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8371
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8372
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8373
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8374 8375 8376
    return out


8377
def relu(x, name=None):
W
wanghaoshuang 已提交
8378 8379
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8380
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8381 8382 8383 8384
    the tensor elementwise.

    .. math::

8385
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8386 8387

    Args:
8388
        x (Variable): The input tensor.
8389 8390
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8391 8392 8393 8394 8395 8396 8397 8398

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8399
            import paddle.fluid as fluid
8400
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8401
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8402 8403
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8404
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8405
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8406 8407
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8408
    return out
8409 8410


C
chengduo 已提交
8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8435 8436 8437 8438 8439 8440
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8456 8457 8458
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8459 8460 8461 8462
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8463
    .. math::
8464

H
haowang101779990 已提交
8465
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8466

8467
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8468 8469 8470 8471 8472
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8473
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8474
                           Its shape should be the same as input.
8475
        num_classes (int): The possible number of labels.
W
whs 已提交
8476 8477

    Returns:
M
minqiyang 已提交
8478 8479
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8480
                     Three variables:
M
minqiyang 已提交
8481

H
haowang101779990 已提交
8482 8483 8484
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8485 8486 8487 8488

    Examples:

        .. code-block:: python
8489

B
Bai Yifan 已提交
8490 8491 8492 8493 8494
            import paddle.fluid as fluid
            predict = fluid.layers.data(name='predict', shape=[3, 32, 32])
            label = fluid.layers.data(name='label', shape=[1])
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
                                                          num_classes=5)
W
whs 已提交
8495 8496 8497
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8498 8499 8500
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8501 8502
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8503 8504
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8505
        outputs={
W
whs 已提交
8506 8507 8508
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8509 8510 8511
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8554
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8555
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8556
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8574
            import paddle.fluid as fluid
8575 8576 8577 8578 8579 8580
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8581
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8582 8583 8584 8585 8586

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8587
            isinstance(shape, Variable)):
8588 8589 8590 8591 8592
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8593
    out = helper.create_variable_for_type_inference(x.dtype)
8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8611 8612


W
whs 已提交
8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8630

W
whs 已提交
8631
              out_shape = [2, 3, 5, 5]
8632

W
whs 已提交
8633
          Step 1:
8634

W
whs 已提交
8635 8636 8637
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8638

W
whs 已提交
8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8684
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8685
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8698

S
SunGaofeng 已提交
8699
            import paddle.fluid as fluid
W
whs 已提交
8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8711
            isinstance(out_shape, Variable)):
W
whs 已提交
8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8733 8734
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8735

8736 8737
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8738
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8739 8740 8741
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8742

8743 8744
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8745

H
haowang101779990 已提交
8746 8747
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8748 8749
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8750

H
haowang101779990 已提交
8751 8752 8753 8754 8755 8756 8757 8758
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8759 8760 8761

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8779
            import paddle.fluid as fluid
8780 8781 8782
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8797
    out = helper.create_variable_for_type_inference("float32")
8798 8799 8800 8801 8802 8803 8804 8805

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8806 8807


M
minqiyang 已提交
8808 8809
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8810
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8811
    which compares left score and right score passed in.
M
minqiyang 已提交
8812
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8813 8814 8815

    .. math::

H
haowang101779990 已提交
8816
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8817 8818

    Args:
M
minqiyang 已提交
8819
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8820 8821
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8822
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8823 8824
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8825

M
minqiyang 已提交
8826
    Returns:
M
minqiyang 已提交
8827
       Variable: The ranking loss.
H
haowang101779990 已提交
8828

M
minqiyang 已提交
8829
    Raises:
M
minqiyang 已提交
8830
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8831

M
minqiyang 已提交
8832
    Examples:
H
haowang101779990 已提交
8833

M
minqiyang 已提交
8834
        .. code-block:: python
H
haowang101779990 已提交
8835

8836
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
8837 8838 8839
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8840 8841
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8842
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8843 8844 8845 8846 8847 8848
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8849 8850
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8874
        .. code-block:: text
W
whs 已提交
8875

T
Tink_Y 已提交
8876
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8877

T
Tink_Y 已提交
8878 8879
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8880

T
Tink_Y 已提交
8881
	      Case 0:
M
minqiyang 已提交
8882

T
Tink_Y 已提交
8883 8884 8885
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8886

T
Tink_Y 已提交
8887 8888 8889
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8890

T
Tink_Y 已提交
8891
	      Case 1:
M
minqiyang 已提交
8892

T
Tink_Y 已提交
8893 8894
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8895

T
Tink_Y 已提交
8896 8897 8898
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8899

T
Tink_Y 已提交
8900
	      Case 2:
M
minqiyang 已提交
8901

T
Tink_Y 已提交
8902 8903
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8904

T
Tink_Y 已提交
8905 8906 8907
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8908 8909


W
whs 已提交
8910 8911
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8912
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
8930 8931 8932 8933 8934
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8935 8936 8937 8938
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8939
    out = helper.create_variable_for_type_inference(dtype)
8940 8941 8942 8943 8944 8945 8946 8947 8948
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8949
    helper.append_op(
8950
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8951 8952 8953 8954

    return out


8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8967 8968 8969 8970 8971

    Examples:

        .. code-block:: python

8972
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8973 8974
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8975 8976
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8977
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8998 8999 9000 9001 9002

    Examples:

        .. code-block:: python

9003
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9004 9005
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
9006 9007
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
9008
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9029 9030 9031 9032 9033

    Examples:

        .. code-block:: python

9034
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9035 9036
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
9037 9038
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
9039
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9061 9062 9063 9064 9065

    Examples:

        .. code-block:: python

9066
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9067
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
9068
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
9069 9070
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
9071
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9094 9095 9096 9097 9098

    Examples:

        .. code-block:: python

9099
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9100 9101
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
9102 9103
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
9104
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9126 9127 9128 9129 9130

    Examples:

        .. code-block:: python

9131
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9132 9133
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
9134 9135
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
9136
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9137 9138 9139 9140 9141 9142 9143 9144
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
9145 9146 9147 9148
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
9149 9150
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
9151

J
jerrywgz 已提交
9152 9153 9154 9155 9156 9157 9158 9159
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
9160 9161
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
9162
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
9163
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
9164
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
9165
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
9166
          will be named automatically.
J
jerrywgz 已提交
9167 9168 9169 9170 9171 9172 9173 9174

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
9175 9176 9177
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
9178
            mode = 'channel'
J
jerrywgz 已提交
9179 9180 9181
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9193
        attr=helper.param_attr,
J
jerrywgz 已提交
9194 9195 9196 9197
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
9198
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9199 9200 9201 9202 9203 9204 9205 9206 9207
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9208 9209 9210 9211 9212 9213 9214 9215 9216 9217
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9218
    Returns:
9219
        output(${out_type}): ${out_comment}
9220 9221 9222

    Examples:

9223
    .. code-block:: python
9224

9225
            import paddle.fluid as fluid
H
haowang101779990 已提交
9226 9227
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
9228 9229
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9230
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9249
    Returns:
9250
        output(${out_type}): ${out_comment}
9251 9252 9253 9254 9255

    Examples:

        .. code-block:: python

9256
            import paddle.fluid as fluid
H
haowang101779990 已提交
9257 9258
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
9259 9260
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9261
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9279
    Returns:
9280
        output(${out_type}): ${out_comment}
9281 9282 9283

    Examples:

9284 9285 9286 9287 9288
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9289
            y = fluid.layers.soft_relu(x, threshold=20.0)
9290 9291
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9292
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9293 9294 9295 9296 9297 9298 9299 9300
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9301 9302 9303 9304
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9305

H
haowang101779990 已提交
9306
    For Example:
M
minqiyang 已提交
9307

H
haowang101779990 已提交
9308
    .. code-block:: text
9309

H
haowang101779990 已提交
9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9331 9332 9333

    Args:
        x (Variable): A tensor of rank >= axis.
9334 9335
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9336 9337 9338 9339 9340 9341 9342 9343
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9344 9345 9346
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9347 9348 9349 9350
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9351
        ValueError: If axis is not in range [0, rank(x)].
9352 9353 9354 9355 9356

    Examples:

        .. code-block:: python

9357
            import paddle.fluid as fluid
9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9369 9370
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9371
    helper.append_op(
9372
        type='flatten2',
9373
        inputs={"X": x},
9374 9375
        outputs={'Out': out,
                 'XShape': x_shape},
9376 9377
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9378 9379


C
chenweihang 已提交
9380
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9381
    """
C
chenweihang 已提交
9382
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9383
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9384 9385
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9386

H
haowang101779990 已提交
9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9404 9405

    Args:
C
chenweihang 已提交
9406 9407 9408
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9409 9410 9411 9412 9413 9414 9415

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9416 9417 9418
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9419 9420
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9421
    assert not in_dygraph_mode(), (
9422
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9423
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9424 9425
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9426 9427 9428 9429 9430 9431
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9432
    return out
9433

9434

S
sneaxiy 已提交
9435 9436 9437 9438 9439 9440 9441 9442 9443
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9444

S
sneaxiy 已提交
9445
    .. math::
9446

S
sneaxiy 已提交
9447 9448 9449
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9450
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9451 9452 9453 9454
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9455 9456 9457
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9458 9459
    Returns:
        Variable: The output sequence mask.
9460

9461 9462 9463
    Examples:
        .. code-block:: python
	
9464
            import paddle.fluid as fluid
9465 9466 9467 9468 9469
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9470
    """
L
lujun 已提交
9471
    assert not in_dygraph_mode(), (
9472
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9473

Q
qingqing01 已提交
9474
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9475
    if name is None:
X
Xin Pan 已提交
9476
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9477
    else:
X
Xin Pan 已提交
9478
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9479

9480 9481 9482 9483 9484 9485 9486 9487
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
9488
    helper.append_op(
9489 9490 9491
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
9492
    return out
S
sneaxiy 已提交
9493 9494


X
Xin Pan 已提交
9495
def stack(x, axis=0):
S
sneaxiy 已提交
9496 9497 9498 9499
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9500 9501 9502 9503 9504 9505 9506

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9507
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9508
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9509

C
chengduozh 已提交
9510 9511
    For Example:

C
chengduozh 已提交
9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9550
    Args:
9551
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9552
        axis (int|None): The axis along which all inputs are stacked.
9553

S
sneaxiy 已提交
9554 9555
    Returns:
        Variable: The stacked variable.
9556

9557 9558 9559
    Examples:
        .. code-block:: python

9560
            import paddle.fluid as fluid
9561
            import paddle.fluid.layers as layers
9562 9563
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9564 9565
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9566 9567
    """

X
Xin Pan 已提交
9568 9569 9570 9571 9572 9573
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9574
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9575
    helper.append_op(
S
sneaxiy 已提交
9576 9577
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9578

X
Xin Pan 已提交
9579
    return out
D
dzhwinter 已提交
9580 9581 9582 9583 9584 9585 9586


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9587

D
dzhwinter 已提交
9588 9589 9590
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9591
    raised.
D
dzhwinter 已提交
9592 9593

    Args:
M
minqiyang 已提交
9594
        x (Variable): Input variable.
D
dzhwinter 已提交
9595 9596
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9597

D
dzhwinter 已提交
9598 9599
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9600

9601 9602 9603 9604 9605 9606
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9607 9608 9609 9610 9611 9612 9613 9614 9615 9616
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9617
    for _ in range(num):
X
Xin Pan 已提交
9618
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9619 9620 9621 9622 9623 9624 9625 9626

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9639

W
whs 已提交
9640 9641 9642 9643
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9644

W
whs 已提交
9645
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9646

W
whs 已提交
9647
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9648

W
whs 已提交
9649 9650 9651 9652
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9653

W
whs 已提交
9654 9655 9656 9657 9658 9659 9660 9661 9662 9663
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
W
wangchaochaohu 已提交
9664 9665 9666
          
            import paddle.fluid as fluid
            x = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
W
whs 已提交
9667 9668 9669 9670
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9671
    out = helper.create_variable_for_type_inference(dtype)
9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
9689
                    ele.stop_gradient = True
9690 9691 9692
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
9693 9694
                    temp_out = helper.create_variable_for_type_inference(
                        "int32")
9695 9696 9697 9698 9699 9700 9701 9702 9703
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
9704
    helper.append_op(
9705
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9706
    return out
S
sneaxiy 已提交
9707 9708


G
fix  
gongweibao 已提交
9709 9710 9711
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9712
@templatedoc()
G
fix  
gongweibao 已提交
9713 9714 9715 9716 9717 9718 9719 9720 9721
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9722
    ${comment}
G
fix  
gongweibao 已提交
9723 9724

    Args:
G
gongweibao 已提交
9725 9726 9727
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9728
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9729 9730 9731
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9732 9733
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9734
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9735

9736 9737 9738
    Examples:
        .. code-block:: python

9739
            import paddle.fluid as fluid
9740 9741
            import paddle.fluid.layers as layers 

9742 9743
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9744 9745 9746
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9747
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9764 9765


G
gongweibao 已提交
9766
@templatedoc()
X
Xin Pan 已提交
9767
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9768
    """
G
gongweibao 已提交
9769
    ${comment}
G
fix  
gongweibao 已提交
9770 9771

    Args:
G
gongweibao 已提交
9772 9773 9774 9775
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9776 9777 9778
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9779
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9780

9781 9782 9783
    Examples:
        .. code-block:: python

9784
            import paddle.fluid as fluid
J
JesseyXujin 已提交
9785
            import paddle.fluid.layers as layers
9786
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9787 9788 9789
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9790
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9791 9792 9793 9794 9795 9796 9797 9798 9799 9800
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9801
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9802 9803 9804 9805 9806
        })

    return out


G
gongweibao 已提交
9807
@templatedoc()
G
fix  
gongweibao 已提交
9808
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9809
    """
G
gongweibao 已提交
9810
    ${comment}
G
fix  
gongweibao 已提交
9811 9812

    Args:
G
gongweibao 已提交
9813 9814 9815 9816
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9817
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9818 9819

    Returns:
G
gongweibao 已提交
9820
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9821

9822 9823 9824
    Examples:
        .. code-block:: python

9825
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9826
            x = fluid.layers.data(
9827 9828 9829 9830 9831
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9832
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9833 9834 9835
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9836
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9848
@templatedoc()
G
fix  
gongweibao 已提交
9849 9850 9851 9852 9853 9854 9855 9856 9857
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9858
    ${comment}
G
fix  
gongweibao 已提交
9859 9860

    Args:
G
gongweibao 已提交
9861 9862
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9863
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9864 9865 9866 9867
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9868
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9869 9870

    Returns:
G
gongweibao 已提交
9871
        out (Variable): ${out_comment}
9872 9873 9874 9875

    Examples:
        .. code-block:: python

9876
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9877
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9878

Y
Yibing Liu 已提交
9879
            out = fluid.layers.gaussian_random_batch_size_like(
9880
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9881 9882 9883
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9884
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9903
@templatedoc()
X
Xin Pan 已提交
9904
def sum(x):
G
fix  
gongweibao 已提交
9905
    """
G
gongweibao 已提交
9906
    ${comment}
G
fix  
gongweibao 已提交
9907 9908

    Args:
G
gongweibao 已提交
9909
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9910 9911

    Returns:
G
gongweibao 已提交
9912
        out (Variable): ${out_comment}
9913 9914 9915 9916

    Examples:
        .. code-block:: python

9917
            import paddle.fluid as fluid
9918 9919 9920 9921
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
9922 9923 9924
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9925 9926
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9927 9928 9929 9930
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9931
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9932 9933 9934 9935

    return out


G
gongweibao 已提交
9936
@templatedoc()
G
fix  
gongweibao 已提交
9937 9938
def slice(input, axes, starts, ends):
    """
9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9954

9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
9972
    Args:
G
gongweibao 已提交
9973 9974 9975 9976
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9977 9978

    Returns:
G
gongweibao 已提交
9979
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9980

9981 9982 9983
    Examples:
        .. code-block:: python

9984 9985
            import paddle.fluid as fluid
 
9986 9987 9988 9989
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

9990
            input = fluid.layers.data(
9991 9992
                name="input", shape=[3, 4, 5, 6], dtype='float32')

9993
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9994 9995 9996
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9997 9998
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
10012 10013
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10014
    Get the shape of the input.
G
fix  
gongweibao 已提交
10015 10016

    Args:
C
chengduozh 已提交
10017
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
10018 10019

    Returns:
C
fix doc  
chengduozh 已提交
10020
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
10021

10022 10023 10024
    Examples:
        .. code-block:: python

10025 10026 10027
            import paddle.fluid as fluid

            input = fluid.layers.data(
10028
                name="input", shape=[3, 100, 100], dtype="float32")
10029
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
10030 10031 10032
    """

    helper = LayerHelper('shape', **locals())
10033
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10034
    helper.append_op(
G
fix  
gongweibao 已提交
10035
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10036 10037

    return out
G
merge  
gongweibao 已提交
10038 10039


Z
zhoukunsheng 已提交
10040 10041 10042 10043
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
10044
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10045 10046 10047 10048 10049 10050 10051 10052 10053 10054

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

10055 10056 10057 10058
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
10059 10060 10061 10062 10063 10064 10065 10066
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10096 10097 10098 10099
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
10100
    if in_dygraph_mode():
X
Xin Pan 已提交
10101 10102 10103
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
10104 10105 10106 10107
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10108 10109
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
10110
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10111 10112 10113
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10114

S
sneaxiy 已提交
10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
10126
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10127 10128 10129 10130 10131 10132 10133 10134
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
10135
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
10136
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
10137 10138 10139

    Returns:
        out(${out_type}): ${out_comment}
10140 10141 10142 10143 10144 10145 10146 10147

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
10148 10149 10150
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
10151
    if name is None:
X
Xin Pan 已提交
10152
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10153 10154 10155
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10156 10157 10158 10159 10160 10161 10162 10163 10164 10165

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
10166
    return helper.append_activation(out)
S
sneaxiy 已提交
10167 10168


X
Xin Pan 已提交
10169
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10170 10171 10172
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10173
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10174 10175 10176
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10177
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10178 10179 10180
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10181
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10182 10183 10184
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10185
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10186 10187 10188
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10189
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10190 10191 10192
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10193
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10194 10195 10196
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


10197 10198 10199 10200 10201 10202 10203 10204
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
10205
for func in [
10206 10207 10208 10209 10210 10211 10212 10213 10214
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
10215 10216 10217 10218 10219
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
10220 10221
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
10222
        ])
10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
10260 10261


10262
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
10263 10264
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
10265 10266
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
10267 10268 10269

    if out is None:
        if name is None:
X
Xin Pan 已提交
10270
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
10286
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10298 10299 10300 10301

    Examples:
        .. code-block:: python

10302
            import paddle.fluid as fluid
10303
            left = fluid.layers.data(
石晓伟 已提交
10304
                name='left', shape=[1], dtype='bool')
10305
            right = fluid.layers.data(
石晓伟 已提交
10306
                name='right', shape=[1], dtype='bool')
10307
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
10308 10309 10310 10311 10312 10313 10314
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10315
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10327 10328 10329 10330

    Examples:
        .. code-block:: python

10331
            import paddle.fluid as fluid
10332
            left = fluid.layers.data(
石晓伟 已提交
10333
                name='left', shape=[1], dtype='bool')
10334
            right = fluid.layers.data(
石晓伟 已提交
10335
                name='right', shape=[1], dtype='bool')
10336
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10337 10338 10339 10340 10341 10342 10343
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10344
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10356 10357 10358 10359

    Examples:
        .. code-block:: python

10360
            import paddle.fluid as fluid
10361
            left = fluid.layers.data(
石晓伟 已提交
10362
                name='left', shape=[1], dtype='bool')
10363
            right = fluid.layers.data(
石晓伟 已提交
10364
                name='right', shape=[1], dtype='bool')
10365
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10366 10367 10368 10369 10370 10371 10372
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10373
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10374 10375 10376 10377 10378 10379 10380 10381 10382 10383
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10384 10385 10386 10387

    Examples:
        .. code-block:: python

10388
            import paddle.fluid as fluid
10389
            left = fluid.layers.data(
石晓伟 已提交
10390
                name='left', shape=[1], dtype='bool')
10391
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10392 10393 10394 10395
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10411 10412 10413 10414

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10415
            import paddle.fluid as fluid
10416 10417 10418
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10419 10420 10421 10422 10423
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10424 10425
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10426 10427 10428

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10452 10453 10454 10455

    Examples:
        .. code-block:: python

10456
            import paddle.fluid as fluid
10457 10458 10459
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10460 10461 10462 10463 10464
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10465 10466
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10467 10468 10469

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10470 10471 10472 10473 10474 10475 10476 10477

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10491 10492 10493 10494

    Examples:
        .. code-block:: python

10495
            import paddle.fluid as fluid
10496 10497 10498
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10499 10500 10501 10502 10503
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10504
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10505 10506 10507 10508 10509 10510 10511 10512 10513 10514
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10526 10527 10528 10529

    Examples:
        .. code-block:: python

10530
            import paddle.fluid as fluid
10531 10532 10533 10534 10535
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10574 10575 10576 10577 10578
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10579
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10580 10581 10582 10583 10584 10585 10586 10587 10588
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10589 10590
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10591 10592 10593 10594 10595 10596
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10597 10598 10599
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10600 10601
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10602 10603 10604 10605 10606 10607
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10608
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10609
        name(basestring|None): Name of the output.
10610 10611
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10612 10613 10614

    Returns:
        out(${out_type}): ${out_comment}
10615 10616 10617 10618

    Examples:
        .. code-block:: python

10619
            import paddle.fluid as fluid
10620 10621 10622 10623 10624 10625 10626 10627 10628 10629
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10630 10631 10632 10633 10634
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10635
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10636 10637 10638 10639 10640 10641 10642 10643
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10644 10645
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10662 10663 10664 10665

    Examples:
        .. code-block:: python

10666
            import paddle.fluid as fluid
J
jerrywgz 已提交
10667 10668 10669 10670 10671
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10672 10673 10674 10675
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10676
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10677 10678 10679 10680 10681 10682 10683 10684 10685 10686
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10687 10688


J
JiabinYang 已提交
10689
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10690
    """
J
JiabinYang 已提交
10691
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10692 10693 10694

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10695
    The attr blocksize indicates the input block size.
10696 10697

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10698
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10699 10700

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10701
    (but keeping all data)
J
JiabinYang 已提交
10702

J
JiabinYang 已提交
10703
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10704
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10705 10706 10707 10708 10709
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10710
    Args:
J
JiabinYang 已提交
10711
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10712
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10713 10714

    Returns:
J
JiabinYang 已提交
10715
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10716 10717

    Raises:
J
JiabinYang 已提交
10718
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10719 10720 10721

    Examples:
        .. code-block:: python
10722 10723 10724
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
10725 10726

            data = fluid.layers.data(
10727
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10728
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10729
                x=data, blocksize=2)
10730

10731
            exe = fluid.Executor(fluid.CPUPlace())
10732 10733 10734 10735
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
10736

J
JiabinYang 已提交
10737 10738
    """

J
JiabinYang 已提交
10739
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10740

J
JiabinYang 已提交
10741 10742
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10743 10744

    if name is None:
J
JiabinYang 已提交
10745 10746
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10747 10748 10749 10750 10751
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10752
        type="space_to_depth",
J
JiabinYang 已提交
10753
        inputs={"X": x},
J
JiabinYang 已提交
10754
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10755
        outputs={"Out": out})
J
JiabinYang 已提交
10756 10757
    return out

J
JiabinYang 已提交
10758

S
sneaxiy 已提交
10759 10760
@templatedoc()
def sequence_reverse(x, name=None):
10761
    """
S
sneaxiy 已提交
10762 10763 10764 10765 10766 10767 10768 10769
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
10770 10771 10772 10773 10774 10775 10776

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
10777
    """
L
lujun 已提交
10778
    assert not in_dygraph_mode(), (
10779
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10780 10781
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10782
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10783 10784 10785 10786 10787 10788 10789 10790 10791 10792
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10793 10794


10795 10796 10797 10798 10799 10800
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10801 10802 10803 10804 10805
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10806

10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10819
        act (str, default None): Activation to be applied to the output of this layer.
10820 10821 10822

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

10837 10838 10839 10840
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10841
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10853
    return helper.append_activation(out)
10854 10855


B
barrierye 已提交
10856
def similarity_focus(input, axis, indexes, name=None):
10857
    """
B
barrierye 已提交
10858
    SimilarityFocus Operator
B
barrierye 已提交
10859 10860

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10861

10862 10863 10864
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10865
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10866 10867 10868 10869 10870 10871 10872
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10873
       each index.
B
barrierye 已提交
10874 10875 10876 10877
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10927
    Args:
10928
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10929
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10930
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10931
            1, 2 or 3.
B
barrierye 已提交
10932
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10933 10934

    Returns:
H
haowang101779990 已提交
10935 10936
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10937

B
barrierye 已提交
10938 10939
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10940

10941
            import paddle.fluid as fluid
B
barrierye 已提交
10942
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10943 10944
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10957 10958 10959 10960 10961
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10962 10963 10964 10965 10966 10967 10968
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10969 10970


M
minqiyang 已提交
10971 10972
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10973 10974
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10975 10976
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10977 10978 10979 10980 10981 10982 10983 10984

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
10985
        input.data = 
10986
            [[1, 2],
10987
             [3, 4]]
M
minqiyang 已提交
10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
11001 11002
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
11003 11004 11005 11006
        ]

    Args:
        input (Variable): The input variable which is a one-hot word. The
11007
            dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
M
minqiyang 已提交
11008 11009
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
11010
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
11011
        name (str, default None): The name of this layer.
M
minqiyang 已提交
11012 11013

    Returns:
11014
       Variable: The hash result variable, which the same variable type as `input`.
M
minqiyang 已提交
11015 11016 11017

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
11018

11019 11020
            import paddle.fluid as fluid

11021 11022 11023 11024
            # titles has shape [batch, 1]
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
            # hash_r has shape [batch, 2]
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
11025 11026


11027 11028 11029 11030
            # titles has shape [batch, 1] and lod information
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            # hash_r has shape [batch, 2] and inherits lod information from titles
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
M
minqiyang 已提交
11031 11032
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
11033 11034
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
11035 11036 11037 11038 11039 11040 11041
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
11042 11043


D
dengkaipeng 已提交
11044
@templatedoc()
11045 11046
def grid_sampler(x, grid, name=None):
    """
11047
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
11048
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
11049 11050 11051 11052
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
11053
    interpolation value of 4 nearest corner points.
11054

H
haowang101779990 已提交
11055
    .. code-block:: text
11056

H
haowang101779990 已提交
11057 11058
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
11059

H
haowang101779990 已提交
11060 11061
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
11062

H
haowang101779990 已提交
11063 11064 11065
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
11066

H
haowang101779990 已提交
11067 11068 11069 11070 11071 11072 11073 11074 11075
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
11076

H
haowang101779990 已提交
11077 11078 11079 11080
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
11081

H
haowang101779990 已提交
11082 11083 11084 11085
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
11086

H
haowang101779990 已提交
11087 11088 11089 11090
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
11091

H
haowang101779990 已提交
11092 11093
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
11094 11095

    Args:
11096 11097 11098
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
11099 11100

    Returns:
H
haowang101779990 已提交
11101
        Variable: Output of shape [N, C, H, W] data samples input X
11102 11103
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
11104 11105 11106 11107
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
11108 11109 11110 11111 11112
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
11113
            out = fluid.layers.grid_sampler(x=x, grid=grid)
11114

D
dengkaipeng 已提交
11115 11116 11117 11118 11119 11120 11121 11122 11123
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

11124
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
11125 11126
    ipts = {'X': x, 'Grid': grid}

11127
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
11128 11129 11130
    return out


G
gmcather 已提交
11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

11158
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11159 11160
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
11199
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
11200 11201 11202 11203 11204 11205 11206
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
11207 11208
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
11209

11210 11211 11212 11213 11214
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
11215
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
11216

H
heqiaozhi 已提交
11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
11230 11231 11232 11233
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
11234
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
11235 11236
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
11237
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
11238 11239

    .. math::
H
haowang101779990 已提交
11240 11241 11242
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
11243 11244

    Where:
H
haowang101779990 已提交
11245 11246
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

11260 11261 11262 11263 11264 11265 11266 11267 11268
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
11269

G
gmcather 已提交
11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
11286 11287 11288 11289 11290 11291 11292 11293 11294 11295


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
11296
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
11297

Q
Qiao Longfei 已提交
11298
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
11299 11300 11301
    For example:

    .. math::
H
haowang101779990 已提交
11302
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
11303

Q
Qiao Longfei 已提交
11304
    In this formula:
11305 11306
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
11307
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
11308
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
11309 11310 11311
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
11312 11313
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
11314 11315 11316
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
11317
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
11318
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
11319
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
11320 11321 11322 11323
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
11324
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
11325 11326 11327 11328

    Examples:
        .. code-block:: python

11329
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11330 11331 11332
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11333 11334
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11335
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11336 11337 11338 11339

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11340
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11371 11372 11373 11374 11375 11376 11377 11378

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11379 11380 11381 11382 11383 11384 11385 11386 11387 11388
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11389 11390


S
shippingwang 已提交
11391
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11392 11393
    """
    **Shuffle Channel Operator**
11394

S
shippingwang 已提交
11395 11396 11397 11398 11399 11400
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11401
    
S
shippingwang 已提交
11402
    .. code-block:: text
11403

S
shippingwang 已提交
11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11432
    Args: 
S
shippingwang 已提交
11433 11434
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11435 11436

    Returns:
S
shippingwang 已提交
11437 11438
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11439 11440

    Raises:
S
shippingwang 已提交
11441
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11442 11443 11444

    Examples:
        .. code-block:: python
11445

11446
            import paddle.fluid as fluid
11447
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11448
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11449 11450 11451
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11452
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11453 11454 11455 11456 11457 11458 11459 11460 11461

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11462
    return out
S
Add  
shippingwang 已提交
11463 11464


11465
@templatedoc()
D
dengkaipeng 已提交
11466
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11467 11468 11469 11470 11471 11472 11473 11474
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11475
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11476
        name (str, default None): The name of this layer.
11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

11488
            import paddle.fluid as fluid
11489
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11490
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11503 11504
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11505 11506 11507
    return out


S
sneaxiy 已提交
11508
class PyFuncRegistry(object):
S
sneaxiy 已提交
11509 11510 11511
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11512
        if func is None or not callable(func):
S
sneaxiy 已提交
11513 11514 11515
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11516
        # find named args using reflection
S
sneaxiy 已提交
11517 11518 11519 11520 11521 11522 11523
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11524 11525 11526
        '''
        Why record self here?

M
minqiyang 已提交
11527 11528
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11529
           to find the registered function corresponding
M
minqiyang 已提交
11530
           to :code:`idx`.
S
sneaxiy 已提交
11531

M
minqiyang 已提交
11532 11533
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11534
           whose reference count is 1 would cause
M
minqiyang 已提交
11535
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11536 11537
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11538
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11553 11554 11555 11556 11557 11558 11559 11560 11561
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11562

S
sneaxiy 已提交
11563 11564
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11565 11566

        ret = []
S
sneaxiy 已提交
11567 11568 11569
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11570 11571
                continue

S
sneaxiy 已提交
11572 11573
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11574

S
sneaxiy 已提交
11575 11576 11577
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11578

S
sneaxiy 已提交
11579
        return tuple(ret)
S
sneaxiy 已提交
11580 11581


S
sneaxiy 已提交
11582 11583 11584 11585
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11586

S
sneaxiy 已提交
11587 11588 11589 11590 11591 11592 11593 11594
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11595
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11596

S
sneaxiy 已提交
11597 11598
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11599 11600 11601 11602
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11603
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11604
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11605 11606
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11607 11608 11609 11610 11611
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11612
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11613
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11614
                                       None means no backward. Default None.
S
sneaxiy 已提交
11615
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11616
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11617 11618
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11619
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11620 11621 11622

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11623 11624

    Examples:
M
minqiyang 已提交
11625

S
sneaxiy 已提交
11626 11627 11628 11629 11630
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11631
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11632 11633
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11634
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11635 11636 11637
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11638
        >>>
S
sneaxiy 已提交
11639 11640 11641 11642 11643
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11644
        >>>     print(x)
S
sneaxiy 已提交
11645 11646 11647 11648 11649 11650
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11651
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11652 11653
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11654 11655
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11656 11657 11658 11659 11660 11661 11662 11663
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11664
    """
S
sneaxiy 已提交
11665
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11666 11667 11668
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11669
        x = [x]
S
sneaxiy 已提交
11670 11671
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11672

S
sneaxiy 已提交
11673 11674 11675
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11676
        out_list = [out]
S
sneaxiy 已提交
11677
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11678
        out_list = out
S
sneaxiy 已提交
11679 11680 11681
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11682

S
sneaxiy 已提交
11683 11684
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11685
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11686 11687

    for each_out in out_list:
S
sneaxiy 已提交
11688 11689
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11690 11691
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11692

S
sneaxiy 已提交
11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11708 11709 11710 11711

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11712 11713
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11714 11715 11716
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11717
        })
S
sneaxiy 已提交
11718
    return out
S
sneaxiy 已提交
11719 11720 11721


# For debug usage
S
sneaxiy 已提交
11722 11723 11724 11725
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11739 11740 11741 11742 11743
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11756 11757 11758 11759
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11785

M
minqiyang 已提交
11786

M
minqiyang 已提交
11787
def huber_loss(input, label, delta):
11788
    """
M
minqiyang 已提交
11789 11790 11791
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11792 11793 11794 11795

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11796
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11797 11798 11799 11800

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11801
        huber\_loss = 0.5 * (label - input) * (label - input)
11802 11803 11804 11805 11806 11807 11808


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11809
        delta (float): The parameter of huber loss, which controls
11810 11811 11812
                       the range of outliers

    Returns:
M
minqiyang 已提交
11813
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11814 11815 11816 11817

    Examples:
        .. code-block:: python

11818 11819 11820 11821 11822 11823 11824 11825 11826
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11827
    """
M
minqiyang 已提交
11828
    helper = LayerHelper('huber_loss', **locals())
11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11840 11841


D
dengkaipeng 已提交
11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

11859
            import paddle.fluid as fluid
D
dengkaipeng 已提交
11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

11905
          import paddle.fluid as fluid
T
Tao Luo 已提交
11906 11907 11908
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11909
          # edges must be directional
T
Tao Luo 已提交
11910 11911 11912 11913
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11914
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11915 11916
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11917
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11918
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11942 11943


C
ceci3 已提交
11944
from .ops import square
C
ceci3 已提交
11945
from .control_flow import equal
C
ceci3 已提交
11946 11947


C
ceci3 已提交
11948 11949 11950
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11951

C
ceci3 已提交
11952
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11953 11954

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11955
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11956 11957 11958 11959 11960
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11961 11962
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11963 11964 11965 11966 11967 11968 11969

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

11970
       import paddle.fluid as fluid
C
ceci3 已提交
11971 11972 11973 11974 11975 11976 11977 11978
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11979 11980 11981 11982 11983 11984 11985
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11986
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11987 11988
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11989 11990
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11991 11992 11993 11994
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11995 11996 11997
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11998 11999 12000
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
12001 12002


R
ruri 已提交
12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

12032
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
12033 12034 12035 12036 12037 12038 12039 12040 12041

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

12042
            import paddle.fluid as fluid
R
ruri 已提交
12043
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
12094 12095 12096 12097 12098 12099
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
12100 12101 12102 12103 12104 12105 12106 12107
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
12108 12109 12110 12111


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
12112

H
heqiaozhi 已提交
12113
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
12114

H
fix doc  
heqiaozhi 已提交
12115
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
12116 12117 12118
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
12119
    
H
fix doc  
heqiaozhi 已提交
12120
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
12121

H
heqiaozhi 已提交
12122
    Args:
H
fix doc  
heqiaozhi 已提交
12123 12124

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
12125 12126
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
12127
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
12128
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
12129

H
heqiaozhi 已提交
12130
    Returns:
H
fix doc  
heqiaozhi 已提交
12131 12132 12133

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
12134
    Examples:
H
fix doc  
heqiaozhi 已提交
12135

H
heqiaozhi 已提交
12136
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
12137

12138
          import paddle.fluid as fluid
H
heqiaozhi 已提交
12139 12140 12141 12142 12143 12144 12145 12146 12147 12148
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
12149

H
heqiaozhi 已提交
12150 12151 12152 12153 12154 12155 12156 12157 12158
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
12159
    return out
Z
zhoukunsheng 已提交
12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

12178
             import paddle.fluid as fluid
12179 12180 12181
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
12182
             # condition is a tensor [True, False, True]
12183 12184 12185
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
12186 12187

             # condition is a tensor [[True, False], [False, True]]
12188 12189 12190
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
12191 12192

             # condition is a tensor [False, False, False]
12193 12194 12195 12196
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
12197 12198 12199 12200 12201 12202 12203 12204 12205
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

12223 12224 12225
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
12226
          # [1, 0, -1]
12227 12228
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
12241 12242


Z
zhoukunsheng 已提交
12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333
def unique_with_counts(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index, count). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor, \
            `count` is count of unqiue element in the `x`.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

12436
          import paddle.fluid as fluid
12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

12668
        import paddle.fluid as fluid
C
cjt222 已提交
12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    This layer creates the sharded index for input. This layers is used in
    model- and data- parallel mixed training generally, in which the index
    data (usually the label) should be recaculated in each trainer according
    to 

    .. math::
        
        assert index_num % nshards == 0

        shard_size = index_num / nshards

        y = x % shard_size if x / shard_size == shard_id else ignore_value

    We take the distributed one-hot representation to show what this layer is
    used for. The distributed one-hot representation is seperated into multiple
    shards, and each shard is filling zeros except the one with the index
    inside. In order to create these sharded representation in each trainer,
    the original index should be recalculated (i.e. sharded) before.

    Examples:
    
        X is a Tensor of integer values:
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
        
        suppose index_num = 20 and nshards = 2, then we get shard_size = 10
        
        if shard_id == 0, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
        if shard_id == 1, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
        the default `ignore_value` -1 is used in this example.
    
    Args:
        input(Variable): Input indices, last dimension must be 1.
        index_num(scalar): An interger defining the range of the index.
        nshards(scalar): The number of shards
        shard_id(scalar): The index of the current shard
        ignore_value(scalar): An ingeter value out of sharded index range

    Returns:
        Variable: The shard index of input.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if index_num % nshards != 0:
        raise ValueError(
            'The index_num(%d) cannot be evenly divided by nshards(%d)' %
            (index_num, nshards))
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out