nn.py 447.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
178
    'space_to_depth',
W
whs 已提交
179
    'affine_grid',
S
sneaxiy 已提交
180
    'sequence_reverse',
181
    'affine_channel',
B
barrierye 已提交
182
    'similarity_focus',
M
minqiyang 已提交
183
    'hash',
D
dengkaipeng 已提交
184
    'grid_sampler',
G
gmcather 已提交
185 186
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
187
    'bilinear_tensor_product',
C
chengduo 已提交
188 189
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
190
    'lstm',
S
shippingwang 已提交
191
    'shuffle_channel',
192
    'temporal_shift',
S
sneaxiy 已提交
193
    'py_func',
194
    'psroi_pool',
H
heqiaozhi 已提交
195
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
196
    'huber_loss',
D
dengkaipeng 已提交
197
    'kldiv_loss',
Z
zhaozhehao 已提交
198
    'tree_conv',
C
ceci3 已提交
199
    'npair_loss',
R
ruri 已提交
200
    'pixel_shuffle',
201
    'fsp_matrix',
H
heqiaozhi 已提交
202
    'continuous_value_model',
Z
zhoukunsheng 已提交
203
    'where',
Z
zhoukunsheng 已提交
204
    'sign',
205
    'deformable_conv',
206
    'unfold',
C
cjt222 已提交
207
    'deformable_roi_pooling',
Y
Yu Yang 已提交
208 209
]

J
jerrywgz 已提交
210 211
kIgnoreIndex = -100

Y
Yu Yang 已提交
212 213 214 215 216 217 218

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
219
       is_test=False,
220
       name=None):
Y
Yu Yang 已提交
221
    """
222
    **Fully Connected Layer**
Y
Yu Yang 已提交
223

224
    This function creates a fully connected layer in the network. It can take
225
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
226
    Args in detail). It creates a variable called weights for each input tensor,
227 228 229 230
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
231
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
232 233
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
234

235
    When the input is single tensor:
C
caoying03 已提交
236

237 238 239 240 241
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
242 243 244

    .. math::

245
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
246 247 248

    In the above equation:

249 250 251
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
252
    * :math:`b`: The bias parameter created by this layer (if needed).
253
    * :math:`Act`: The activation function.
C
caoying03 已提交
254
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
274
    Args:
R
ranqiu 已提交
275 276 277 278 279 280 281 282 283 284
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
285
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
286 287 288 289
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
290 291
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
292
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
293
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
294
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
295

296
    Returns:
F
fengjiayi 已提交
297
        Variable: The transformation result.
298 299

    Raises:
C
caoying03 已提交
300
        ValueError: If rank of the input tensor is less than 2.
301 302 303 304

    Examples:
        .. code-block:: python

305
          # when input is single tensor
F
fengjiayi 已提交
306
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
307
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
308 309 310 311 312

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
313
    """
C
caoying03 已提交
314
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
315 316 317 318

    dtype = helper.input_dtype()

    mul_results = []
319 320
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
321 322 323
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
324

Y
Yu Yang 已提交
325
        w = helper.create_parameter(
326
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
327
        tmp = helper.create_variable_for_type_inference(dtype)
328
        helper.append_op(
329 330 331
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
332
            outputs={"Out": tmp},
M
mozga-intel 已提交
333 334
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
335 336 337 338
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
339
    else:
X
Xin Pan 已提交
340
        pre_bias = helper.create_variable_for_type_inference(dtype)
341
        helper.append_op(
342 343 344
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
345
            attrs={"use_mkldnn": False})
346 347 348 349
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
350 351


352 353 354
def embedding(input,
              size,
              is_sparse=False,
355
              is_distributed=False,
356 357 358
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
359
    """
360 361
    **Embedding Layer**

362
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
363 364
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
365 366 367

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
368 369

    Args:
370 371 372 373 374
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
375
        is_distributed(bool): Whether to run lookup table from remote parameter server.
376 377
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
378
            with zeros whenever lookup encounters it in :attr:`input`. If
379
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
380 381
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
382
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
383

384 385 386
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
387

388 389
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
390

B
bdzhuxiaoning 已提交
391 392 393
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
394 395 396
    """

    helper = LayerHelper('embedding', **locals())
397
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
398 399
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
400 401
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
402
    tmp = helper.create_variable_for_type_inference(dtype)
403 404
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
405 406 407 408 409
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
410 411 412
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
413
            'remote_prefetch': remote_prefetch,
414 415
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
416 417 418
    return tmp


W
wopeizl 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
435

W
wopeizl 已提交
436 437 438 439 440 441 442 443 444 445 446
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
447

W
wopeizl 已提交
448 449 450 451
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
452

W
wopeizl 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
489 490 491
            
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
492
            hidden_dim = 512
493 494 495 496 497 498
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
499
                                           bias_attr=False)
500

W
wopeizl 已提交
501 502 503
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
504
    assert in_dygraph_mode(
505
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
549 550


P
phlrain 已提交
551 552 553 554 555 556
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
557
         dropout_prob=0.0,
P
phlrain 已提交
558 559 560 561 562
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
563
    """
P
phlrain 已提交
564
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
565 566

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
567
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
568 569
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
570
    .. math::
M
minqiyang 已提交
571 572 573 574 575 576 577

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
578
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
579 580 581 582

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
583 584

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
585 586 587 588 589 590
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
591 592 593
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
594
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
595

M
minqiyang 已提交
596
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
597 598 599 600 601
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
602
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
603 604 605 606 607
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
608
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
609 610
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
611 612
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
613 614 615 616 617 618
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
619
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
620

L
liuhongyu 已提交
621 622

    Returns:
M
minqiyang 已提交
623 624
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
625
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
626

H
haowang101779990 已提交
627 628 629 630
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
631
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
632 633
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
634
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
635 636 637 638


    Examples:
        .. code-block:: python
639
            
640 641 642
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

643 644 645 646 647
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
648 649 650 651 652 653
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
654 655 656 657 658
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
659 660 661 662
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
663 664 665
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
725 726 727 728 729 730 731 732 733 734
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
735
                  proj_activation='tanh',
736
                  dtype='float32',
X
xuezhong 已提交
737 738 739 740 741
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
742 743 744
    """
    **Dynamic LSTMP Layer**

745 746 747 748 749 750
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
751 752 753 754 755

    The formula is as follows:

    .. math::

756
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
757

758
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
759

760
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
761

762
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
763

764
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
765

766
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
767

768
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
769

Y
Yibing Liu 已提交
770 771 772 773 774 775
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
776
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
777
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
778
          bias vector).
Y
Yibing Liu 已提交
779 780 781
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
782
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
783
    * :math:`h`: The hidden state.
784
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
785 786
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
787
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
788
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
789
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
790 791
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
792 793 794 795

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
796

Y
Yibing Liu 已提交
797 798 799 800 801 802 803 804 805 806 807 808
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
809
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
810 811
                               hidden-hidden weight and projection weight.

812 813
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
814 815
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
816 817
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
818
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
819 820 821 822 823

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
824
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
825 826 827 828 829 830
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
831
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
832 833 834
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
835
                                - The shape is (1 x 7D).
C
chengduo 已提交
836 837 838 839 840

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
841 842 843 844 845 846 847 848 849
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
850
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
851 852
                              default "tanh".
        proj_activation(str): The activation for projection output.
853
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
854
                              default "tanh".
Y
Yibing Liu 已提交
855
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
856 857
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
858 859 860 861 862 863 864 865 866 867 868
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
869 870

    Returns:
871 872 873 874
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
875 876

    Examples:
877

Y
Yibing Liu 已提交
878 879
        .. code-block:: python

880 881 882 883
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
884
            hidden_dim, proj_dim = 512, 256
885
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
886
                                     act=None, bias_attr=None)
887 888 889
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
890 891 892 893
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
894
    """
895

L
lujun 已提交
896
    assert in_dygraph_mode(
897 898
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
899
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
900
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
901
    size = size // 4
Y
Yibing Liu 已提交
902 903 904 905 906 907 908 909 910 911
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
912 913 914 915 916 917
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
933

X
xuezhong 已提交
934 935 936 937 938
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
939 940
    helper.append_op(
        type='lstmp',
941
        inputs=inputs,
Y
Yibing Liu 已提交
942 943 944 945 946 947 948 949 950
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
951 952
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
953 954 955 956 957 958 959 960 961
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
962 963 964 965 966 967 968
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
969 970
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
971
    """
972
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
973

974 975 976
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
977

G
guosheng 已提交
978 979 980 981 982 983 984 985 986
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
987

G
guosheng 已提交
988
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
989

Q
Qiao Longfei 已提交
990 991 992

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
993 994 995 996 997 998 999 1000 1001 1002 1003 1004
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1005
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1006 1007
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1008 1009 1010 1011
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1012
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1013 1014

    Args:
1015 1016
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1017
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1018
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1019 1020
            is the hidden size.
        size(int): The dimension of the gru cell.
1021
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1022 1023
            hidden-hidden weight matrix. Note:

1024
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1025
              :math:`D` is the hidden size.
1026
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1027
              The first part are weights of the update gate and reset gate with
1028
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1029
              candidate hidden state with shape :math:`(D \\times D)`.
1030 1031 1032 1033 1034

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1035
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1036
            the bias in the update gate, reset gate and candidate calculations.
1037 1038 1039
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1040 1041
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1042
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1043 1044 1045
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1046
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1047
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1048 1049 1050 1051
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1052 1053

    Returns:
G
guosheng 已提交
1054
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1055
            and sequence length is the same with the input.
1056

G
guosheng 已提交
1057
    Examples:
1058

G
guosheng 已提交
1059 1060
        .. code-block:: python

1061 1062
            import paddle.fluid as fluid

1063 1064 1065 1066
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1067
            hidden_dim = 512
1068
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1069
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1070 1071
    """

L
lujun 已提交
1072
    assert in_dygraph_mode(
1073 1074
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1075 1076 1077 1078 1079 1080 1081
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1082
    batch_size = input.shape[0]
G
guosheng 已提交
1083
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1084
    if h_0:
G
guosheng 已提交
1085
        assert h_0.shape == (
Y
Yancey 已提交
1086 1087 1088
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1089

X
Xin Pan 已提交
1090 1091 1092 1093
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1107 1108
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1109 1110 1111 1112
        })
    return hidden


Y
Yu Yang 已提交
1113 1114 1115
def gru_unit(input,
             hidden,
             size,
1116 1117
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1118
             activation='tanh',
Q
Qiao Longfei 已提交
1119 1120
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1121
    """
1122 1123 1124
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1125
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1126
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1127

1128 1129
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1130

1131
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1132

1133
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1150 1151

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1152 1153 1154
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1155 1156
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1157 1158
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1159 1160 1161
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1162 1163 1164

    Args:
        input (Variable): The fc transformed input value of current step.
1165
        hidden (Variable): The hidden value of gru unit from previous step.
1166
        size (integer): The input dimension value.
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1181
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1182
            the bias in the update gate, reset gate and candidate calculations.
1183 1184 1185
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1186 1187
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1188 1189 1190 1191
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1192

1193 1194 1195 1196 1197 1198
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1223
    size = size // 3
Y
Yu Yang 已提交
1224 1225

    # create weight
1226 1227
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1228

X
Xin Pan 已提交
1229 1230 1231
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1232
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1233
    # create bias
1234
    if helper.bias_attr:
Y
Yu Yang 已提交
1235 1236 1237
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1238
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1239 1240 1241

    helper.append_op(
        type='gru_unit',
1242
        inputs=inputs,
Y
Yu Yang 已提交
1243 1244 1245 1246 1247 1248
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1249 1250
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1251 1252 1253 1254 1255
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1256
@templatedoc()
1257
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1258 1259 1260 1261 1262 1263 1264
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1265
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1266 1267 1268 1269
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1270 1271 1272
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1273

J
JesseyXujin 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1287
    """
Y
Yu Yang 已提交
1288 1289 1290 1291 1292 1293
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1294 1295 1296 1297 1298 1299 1300 1301
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1317 1318 1319 1320
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1321

W
wopeizl 已提交
1322 1323
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1324

W
wopeizl 已提交
1325
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1326

W
wopeizl 已提交
1327
        label(${label_type}): ${label_comment}
1328

W
wopeizl 已提交
1329 1330
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1331

W
wopeizl 已提交
1332 1333
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1334

Y
Yibing Liu 已提交
1335 1336 1337 1338 1339 1340 1341
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1342 1343 1344 1345 1346 1347 1348 1349
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1350
                "Transition": transition,
W
wopeizl 已提交
1351 1352
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1353

W
wopeizl 已提交
1354
    return viterbi_path
Y
Yu Yang 已提交
1355 1356


Y
yi.wu 已提交
1357
@templatedoc()
F
fengjiayi 已提交
1358
def cos_sim(X, Y):
Y
Yu Yang 已提交
1359
    """
Y
yi.wu 已提交
1360 1361 1362
    ${comment}

    Args:
1363 1364
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1365

Y
yi.wu 已提交
1366
    Returns:
1367
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1368 1369 1370 1371 1372 1373 1374

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1375
    """
F
fengjiayi 已提交
1376
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1377 1378 1379
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1390 1391 1392 1393 1394
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1395
            dropout_implementation="downgrade_in_infer"):
1396 1397 1398 1399 1400
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1401
    training. The dropout operator randomly sets (according to the given dropout
1402 1403 1404
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1405 1406
    dropout op can be removed from the program to make the program more efficient.

1407
    Args:
1408 1409
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1410 1411 1412 1413 1414 1415 1416
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1417 1418
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1419
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1420 1421

                                           - train: out = input * mask
C
ceci3 已提交
1422
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1423 1424 1425

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1426
                                        2. upscale_in_train, upscale the outcome at training time
1427

H
haowang101779990 已提交
1428 1429
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1430

H
haowang101779990 已提交
1431 1432
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1433

M
minqiyang 已提交
1434

1435
    Returns:
1436
        Variable: A tensor variable is the shape with `x`.
1437 1438

    Examples:
1439

1440 1441
        .. code-block:: python

1442 1443
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1444 1445
    """

F
fengjiayi 已提交
1446
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1447 1448
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1449
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1450 1451 1452 1453

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1454 1455 1456 1457 1458
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1459 1460 1461 1462
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1463 1464
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1465
        })
1466 1467 1468
    return out


J
jerrywgz 已提交
1469
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1470
    """
Y
Yibing Liu 已提交
1471 1472
    **Cross Entropy Layer**

1473 1474 1475
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1476 1477

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1478
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1479

Y
Yibing Liu 已提交
1480
        .. math::
Y
yangyaming 已提交
1481

Y
Yibing Liu 已提交
1482 1483 1484
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1485 1486
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1487 1488 1489 1490 1491

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1492
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1493 1494 1495
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1496 1497
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1498
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1499

Y
Yibing Liu 已提交
1500
    Args:
Y
yangyaming 已提交
1501
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1502 1503 1504 1505
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1506
        label (Variable|list): the ground truth which is a 2-D tensor. When
1507 1508 1509 1510
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1511
        soft_label (bool): a flag indicating whether to
1512
                                           interpretate the given labels as soft
1513
                                           labels. Default: `False`.
M
minqiyang 已提交
1514 1515
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1516
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1517 1518 1519 1520 1521

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1522 1523 1524
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1525

H
haowang101779990 已提交
1526 1527
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1528

H
haowang101779990 已提交
1529 1530
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1531 1532 1533 1534

    Examples:
        .. code-block:: python

L
lvmengsi 已提交
1535 1536 1537 1538
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1539
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1540
    """
S
sneaxiy 已提交
1541 1542
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1543
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1544
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1545 1546 1547 1548 1549
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1550 1551
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1552 1553 1554
    return out


S
sneaxiy 已提交
1555 1556 1557 1558
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1559
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1560 1561 1562 1563 1564
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1565
                 'MatchX': [match_x],
S
sneaxiy 已提交
1566 1567 1568 1569 1570
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1571
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1572
    """
1573
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1574

1575
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1576
    The loss at a given point in one session is defined as:
1577 1578 1579

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1580 1581

    Learn more details by reading paper <session-based recommendations with recurrent
1582
    neural networks>.
F
frankwhzhang 已提交
1583

1584 1585 1586 1587 1588 1589
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1590 1591
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1592 1593 1594
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1595 1596 1597
    Examples:
        .. code-block:: python

1598 1599 1600 1601 1602 1603 1604
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1605
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1606
    """
1607 1608 1609 1610 1611
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1612
                'Label': [label]},
1613 1614 1615 1616
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1617
def square_error_cost(input, label):
Y
Yu Yang 已提交
1618
    """
1619 1620
    **Square error cost layer**

1621 1622
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1623

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1637 1638
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1639 1640

    Returns:
G
guosheng 已提交
1641
        Variable: The tensor variable storing the element-wise squared error \
1642
                  difference of input and label.
1643 1644 1645 1646

    Examples:
        .. code-block:: python

R
ruri 已提交
1647 1648 1649
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1650

Y
Yu Yang 已提交
1651
    """
F
fengjiayi 已提交
1652
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1653
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1654 1655 1656 1657 1658 1659
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1660
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1661
    helper.append_op(
F
fengjiayi 已提交
1662 1663
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1664 1665 1666
    return square_out


Y
yi.wu 已提交
1667
@templatedoc()
Y
Yu Yang 已提交
1668 1669 1670 1671
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1672
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1673
    """
Y
yi.wu 已提交
1674
    **Chunk Evaluator**
Y
yi.wu 已提交
1675

Y
yangyaming 已提交
1676
    This function computes and outputs the precision, recall and
1677
    F1-score of chunk detection.
Y
yi.wu 已提交
1678

M
minqiyang 已提交
1679
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1680
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1681 1682 1683 1684 1685 1686

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1687

Y
yi.wu 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1713

Y
yi.wu 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1738
    Args:
1739 1740 1741 1742 1743
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1744

Y
yi.wu 已提交
1745
    Returns:
Y
update  
yi.wu 已提交
1746 1747 1748
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1749

Y
yi.wu 已提交
1750 1751 1752
    Examples:
        .. code-block:: python

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1764
            crf = fluid.layers.linear_chain_crf(
1765
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1766
            crf_decode = fluid.layers.crf_decoding(
1767
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1768 1769 1770 1771 1772
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1773
    """
F
fengjiayi 已提交
1774
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1775 1776

    # prepare output
X
Xin Pan 已提交
1777 1778 1779 1780 1781 1782 1783
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1784 1785 1786 1787 1788 1789 1790 1791

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1792 1793 1794 1795
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1796 1797 1798
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1799 1800
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1801
        })
1802 1803
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1804 1805


1806
@templatedoc()
Y
Yu Yang 已提交
1807 1808 1809 1810 1811 1812 1813
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1814 1815
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1816 1817 1818 1819
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1820 1821 1822 1823 1824 1825 1826

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1840

1841 1842
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
1843 1844 1845 1846 1847 1848 1849

    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
             x_conved = fluid.layers.sequence_conv(x,2)
Y
Yu Yang 已提交
1850 1851
    """

L
lujun 已提交
1852
    assert not in_dygraph_mode(), (
1853
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1854 1855 1856 1857 1858
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1859
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1870
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1871 1872 1873 1874 1875 1876
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1877
def sequence_softmax(input, use_cudnn=False, name=None):
1878 1879 1880
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1881
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1898 1899 1900
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1913
    assert not in_dygraph_mode(), (
1914
        "sequence layer is not supported in dygraph mode yet.")
1915 1916
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1917
    softmax_out = helper.create_variable_for_type_inference(dtype)
1918 1919 1920 1921 1922 1923 1924 1925
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1926
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1927
    """
1928
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1929
    has the same shape as the input.
Q
qiaolongfei 已提交
1930

D
dengkaipeng 已提交
1931
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1932
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1933
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1934 1935 1936
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1937
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1938
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1939 1940 1941 1942 1943 1944 1945

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1946
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1947 1948 1949 1950 1951 1952 1953 1954

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1955 1956
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1957 1958
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1959 1960 1961
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1962 1963 1964 1965 1966 1967 1968 1969

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
1970 1971
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
1972
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1973
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1974
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1975 1976
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1977 1978

    """
1979 1980
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1981
    softmax_out = helper.create_variable_for_type_inference(dtype)
1982 1983 1984 1985
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1986 1987
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1988 1989 1990
    return softmax_out


Y
Yu Yang 已提交
1991 1992 1993
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1994 1995
           stride=1,
           padding=0,
1996
           dilation=1,
Y
Yu Yang 已提交
1997 1998 1999
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2000
           use_cudnn=True,
2001 2002
           act=None,
           name=None):
Y
Yu Yang 已提交
2003
    """
C
chengduoZH 已提交
2004
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2005 2006
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2007
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2008 2009 2010 2011 2012 2013 2014
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
2015 2016 2017
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2018

2019
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2020

C
chengduoZH 已提交
2021 2022
    .. math::

C
refine  
chengduoZH 已提交
2023
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2024

T
tensor-tang 已提交
2025
    Where:
C
chengduoZH 已提交
2026

2027 2028 2029 2030 2031
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2032
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2033 2034 2035

    Example:

2036 2037
        - Input:

W
weixing02 已提交
2038
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2039

W
weixing02 已提交
2040
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2041

2042
        - Output:
T
tensor-tang 已提交
2043

W
weixing02 已提交
2044
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2045

C
chengduoZH 已提交
2046
        Where
2047 2048

        .. math::
C
chengduoZH 已提交
2049

W
weixing02 已提交
2050 2051
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2052 2053

    Args:
2054
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2055
        num_filters(int): The number of filter. It is as same as the output
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2073 2074 2075 2076 2077
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2078
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2079 2080 2081 2082 2083
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2084 2085
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2086 2087
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2088
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2089
            will be named automatically. Default: None
C
chengduoZH 已提交
2090 2091

    Returns:
G
guosheng 已提交
2092
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2093 2094
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2095
    Raises:
2096 2097
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2098

C
chengduoZH 已提交
2099 2100 2101
    Examples:
        .. code-block:: python

2102 2103
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2104 2105 2106
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2107
    assert param_attr is not False, "param_attr should not be False here."
2108
    l_type = 'conv2d'
X
xzl 已提交
2109 2110
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2111
        l_type = 'depthwise_conv2d'
2112 2113 2114 2115

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2116 2117 2118 2119 2120
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2121
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2122

C
chengduoZH 已提交
2123 2124 2125
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2126
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2127

C
chengduoZH 已提交
2128 2129
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2130 2131

    input_shape = input.shape
M
minqiyang 已提交
2132
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2133 2134

    def _get_default_param_initializer():
C
chengduo 已提交
2135 2136
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2137 2138 2139 2140 2141 2142 2143 2144
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2145
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2146

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2161
    helper.append_op(
2162
        type=l_type,
Y
Yu Yang 已提交
2163 2164 2165 2166 2167
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2168 2169 2170
        attrs={
            'strides': stride,
            'paddings': padding,
2171
            'dilations': dilation,
C
chengduoZH 已提交
2172
            'groups': groups,
2173
            'use_cudnn': use_cudnn,
2174
            'use_mkldnn': False,
2175
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2176
        })
Y
Yu Yang 已提交
2177 2178 2179 2180 2181 2182

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2200 2201 2202 2203 2204 2205
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2215 2216
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2217 2218 2219
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2220
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2243
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2244 2245
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2246
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2247 2248
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2249
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2250 2251
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2252
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2253 2254
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2255
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2256 2257 2258 2259 2260 2261
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2272 2273
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2274 2275
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2276
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2277
            will be named automatically. Default: None.
C
chengduoZH 已提交
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2290 2291
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2292 2293 2294
    """

    l_type = 'conv3d'
C
chengduo 已提交
2295
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2306
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2320 2321 2322
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2323 2324 2325 2326 2327 2328 2329 2330
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2331
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2346
            'use_mkldnn': False
C
chengduoZH 已提交
2347 2348
        })

2349
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2350 2351 2352 2353

    return helper.append_activation(pre_act)


2354
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2355
    """
Y
yangyaming 已提交
2356 2357 2358
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2369 2370
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2371 2372 2373 2374
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2375
         out.dim = [4, 1]
2376
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2377 2378

       for different pool_type:
2379 2380 2381
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2382
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2383 2384 2385 2386 2387
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2388

L
Luo Tao 已提交
2389
    Args:
2390
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2391
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2392
            It supports average, sum, sqrt and max.
2393 2394
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2395 2396 2397 2398 2399 2400 2401

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2402

2403 2404
             import paddle.fluid as fluid

Y
yangyaming 已提交
2405
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2406 2407 2408 2409 2410
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2411 2412
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2413
    """
L
lujun 已提交
2414
    assert not in_dygraph_mode(), (
2415
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2416
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2417
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2418 2419
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2420 2421 2422 2423 2424 2425

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2426 2427 2428 2429 2430
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2431

Y
yangyaming 已提交
2432 2433 2434 2435 2436
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2437 2438 2439
    return pool_out


C
add doc  
chengduoZH 已提交
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2456 2457 2458 2459
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2460
    """
L
lujun 已提交
2461
    assert not in_dygraph_mode(), (
2462
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2463
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2464
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2465 2466 2467 2468 2469
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2470
def sequence_first_step(input):
L
Luo Tao 已提交
2471
    """
L
Luo Tao 已提交
2472
    This function gets the first step of sequence.
L
Luo Tao 已提交
2473 2474 2475 2476

    .. code-block:: text

       x is a 1-level LoDTensor:
2477
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2478 2479 2480 2481 2482
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2483
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2484
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2485

L
Luo Tao 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2495

Y
yangyaming 已提交
2496
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2497 2498 2499
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2500 2501 2502
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2503
def sequence_last_step(input):
L
Luo Tao 已提交
2504
    """
L
Luo Tao 已提交
2505
    This function gets the last step of sequence.
L
Luo Tao 已提交
2506 2507 2508 2509

    .. code-block:: text

       x is a 1-level LoDTensor:
2510
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2511 2512 2513 2514 2515
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2516
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2517
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2518

L
Luo Tao 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2528

Y
yangyaming 已提交
2529
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2530 2531 2532
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2533 2534 2535
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2536 2537 2538 2539
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2540
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2541 2542 2543 2544 2545
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2546

H
haowang101779990 已提交
2547
              - Case:
Y
Yibing Liu 已提交
2548

2549
            Given the input Variable **input**:
2550

2551 2552 2553
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2554

2555
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2556

2557
            the output Variable will be
2558

2559 2560 2561
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2562

M
minqiyang 已提交
2563
    Note:
H
haowang101779990 已提交
2564
          The first dimension size of **input**, **offset** and **length**
2565
          should be equal. The **offset** should start from 0.
2566

Y
Yibing Liu 已提交
2567
    Args:
2568
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2569
                         sequences.
Y
Yibing Liu 已提交
2570 2571 2572 2573 2574 2575
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2576
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2587
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2588 2589
                                                   length=length)
    """
L
lujun 已提交
2590
    assert not in_dygraph_mode(), (
2591
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2592 2593
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2594
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2609
@templatedoc()
Y
Yu Yang 已提交
2610
def pool2d(input,
C
chengduoZH 已提交
2611 2612
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2613 2614
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2615
           global_pooling=False,
C
chengduoZH 已提交
2616
           use_cudnn=True,
2617
           ceil_mode=False,
2618 2619
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2620
    """
F
fengjiayi 已提交
2621
    ${comment}
2622 2623

    Args:
2624 2625 2626
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2627
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2628
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2629 2630
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2631
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2632 2633 2634 2635 2636 2637
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2638 2639 2640
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2641
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2642
                        layer will be named automatically.
2643
        exclusive (bool): Whether to exclude padding points in average pooling
2644
                          mode, default is true
F
fengjiayi 已提交
2645

2646
    Returns:
F
fengjiayi 已提交
2647
        Variable: The pooling result.
F
fengjiayi 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2660
          pool2d = fluid.layers.pool2d(
2661 2662 2663 2664
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2665
                            global_pooling=False)
Y
Yu Yang 已提交
2666 2667 2668 2669 2670
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2671

C
chengduoZH 已提交
2672 2673 2674 2675 2676
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2677 2678 2679 2680
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2681 2682
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2683

C
Add doc  
chengduoZH 已提交
2684
    l_type = 'pool2d'
2685 2686

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2687
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2688
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2689 2690

    helper.append_op(
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2702 2703
            "use_mkldnn": False,
            "exclusive": exclusive,
2704 2705 2706 2707 2708
        })

    return pool_out


D
dengkaipeng 已提交
2709
@templatedoc()
2710 2711 2712 2713 2714 2715 2716 2717
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2718 2719
           name=None,
           exclusive=True):
2720
    """
2721
    ${comment}
2722 2723

    Args:
D
dengkaipeng 已提交
2724 2725 2726 2727 2728
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2729 2730 2731 2732 2733
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2734 2735 2736 2737 2738 2739 2740
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2741
        exclusive (bool): Whether to exclude padding points in average pooling
2742
                          mode, default is true
2743

2744
    Returns:
2745
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2759 2760 2761 2762 2763
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2764

C
chengduoZH 已提交
2765 2766 2767 2768 2769
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2770 2771 2772
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2773

C
chengduoZH 已提交
2774 2775
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2776

2777 2778
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2779
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2780
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2781 2782

    helper.append_op(
2783
        type=l_type,
Y
Yu Yang 已提交
2784 2785 2786 2787 2788 2789 2790
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2791
            "paddings": pool_padding,
2792
            "use_cudnn": use_cudnn,
2793
            "ceil_mode": ceil_mode,
2794 2795
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2796 2797 2798 2799 2800
        })

    return pool_out


2801 2802 2803 2804 2805 2806 2807
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2808 2809 2810 2811 2812 2813 2814
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2815

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2829 2830 2831 2832 2833 2834 2835 2836 2837

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2838 2839
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2854
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2855
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2856
          # of input data into m * n grids averagely and performs poolings in each
2857 2858
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2859
          #
2860 2861 2862 2863 2864 2865 2866 2867
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2868 2869
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2870
          pool_out = fluid.layers.adaptive_pool2d(
2871 2872
                            input=data,
                            pool_size=[3, 3],
2873
                            pool_type='avg')
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2884
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2910
    return (pool_out, mask) if require_index else pool_out
2911 2912 2913 2914 2915 2916 2917 2918 2919


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2920 2921 2922 2923 2924 2925 2926
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2927

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2945 2946 2947

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2948 2949 2950
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2951
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2952
            it must contain three integers, (Depth, Height, Width).
2953
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2954 2955
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2970 2971
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2972
          # of input data into l * m * n grids averagely and performs poolings in each
2973 2974
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2975
          #
2976 2977 2978 2979 2980 2981 2982 2983 2984
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2985
          #                 output[:, :, i, j, k] =
2986 2987
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2988 2989 2990

          import paddle.fluid as fluid

2991
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
2992 2993
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
2994
                            input=data,
D
dengkaipeng 已提交
2995
                            pool_size=[3, 3, 3],
2996
                            pool_type='avg')
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3007
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3033
    return (pool_out, mask) if require_index else pool_out
3034 3035


Y
Yu Yang 已提交
3036 3037 3038 3039 3040 3041 3042
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3043
               data_layout='NCHW',
Y
Yang Yang 已提交
3044
               in_place=False,
3045 3046
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3047
               moving_variance_name=None,
3048
               do_model_average_for_mean_and_var=False,
3049 3050
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3051
    """
Q
qiaolongfei 已提交
3052 3053 3054 3055
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3056

Q
qiaolongfei 已提交
3057
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3058

Q
qiaolongfei 已提交
3059 3060
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3061 3062 3063
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3076

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3090
    Args:
Q
qingqing01 已提交
3091
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3092
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3102 3103
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3104 3105 3106
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3107 3108
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3109 3110 3111
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3112
        data_layout(string, default NCHW): NCHW|NHWC
3113
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3114 3115
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3116 3117 3118
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3119
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3120 3121
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3122
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3123
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3124 3125 3126 3127 3128
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3129 3130

    Returns:
Q
qiaolongfei 已提交
3131
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3132 3133 3134 3135 3136

    Examples:

        .. code-block:: python

L
lvmengsi 已提交
3137
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3138 3139
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3140
    """
C
chengduo 已提交
3141
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3142 3143 3144
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3145 3146 3147 3148
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3167
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3168

3169 3170
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3171 3172 3173
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3174
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3175
        shape=param_shape,
W
Wu Yi 已提交
3176
        dtype=dtype)
3177 3178 3179 3180 3181 3182
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3183
            trainable=False,
W
wanghaoshuang 已提交
3184
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3185
        shape=param_shape,
W
Wu Yi 已提交
3186
        dtype=dtype)
3187
    variance.stop_gradient = True
Y
Yu Yang 已提交
3188 3189 3190 3191 3192 3193

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3194 3195 3196 3197
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3198

X
Xin Pan 已提交
3199 3200
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3218 3219 3220 3221
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3222
            "data_layout": data_layout,
X
Xin Pan 已提交
3223
            "use_mkldnn": False,
3224 3225
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3226
        })
Y
Yu Yang 已提交
3227 3228 3229 3230

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3282 3283
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3284

3285 3286
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3352
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3353 3354 3355 3356

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3357
@templatedoc()
G
guosheng 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3368
    ${comment}
G
guosheng 已提交
3369 3370 3371

    The formula is as follows:

Y
yuyang18 已提交
3372
    ..  math::
G
guosheng 已提交
3373 3374 3375 3376 3377 3378 3379

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3380 3381 3382 3383 3384 3385 3386 3387
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3388

G
guosheng 已提交
3389 3390
    Args:
        input(Variable): The input tensor variable.
3391
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3392
            normalization. Default True.
3393
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3394 3395
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3396
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3397
            Default 1.
3398
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3399
            division by zero. Default 1e-05.
G
guosheng 已提交
3400
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3401 3402
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3403 3404
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3405
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3406 3407
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3408
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3409
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3410
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3411 3412 3413
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3414 3415

    Returns:
Y
yuyang18 已提交
3416
        ${y_comment}
G
guosheng 已提交
3417 3418 3419

    Examples:

Y
yuyang18 已提交
3420 3421 3422
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3423
    """
L
lujun 已提交
3424
    assert in_dygraph_mode(
L
lujun 已提交
3425
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3440
    if shift:
G
guosheng 已提交
3441 3442 3443 3444 3445 3446
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3447 3448 3449 3450 3451
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3479
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3527 3528
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3546
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3547 3548 3549
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3550
    This layer calculates the spectral normalization value of weight parameters of
3551
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3552
    Parameters. Calculations are showed as follows.
3553

D
dengkaipeng 已提交
3554 3555 3556
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3557
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3570
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3571 3572 3573 3574

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3575

D
dengkaipeng 已提交
3576
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3577 3578
                

D
dengkaipeng 已提交
3579 3580 3581 3582
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3583 3584 3585
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3586 3587 3588
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3589
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3590 3591

    Examples:
K
Kaipeng Deng 已提交
3592
       .. code-block:: python
D
dengkaipeng 已提交
3593

K
Kaipeng Deng 已提交
3594 3595 3596 3597 3598
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3599 3600
    """
    helper = LayerHelper('spectral_norm', **locals())
3601
    dtype = weight.dtype
D
dengkaipeng 已提交
3602 3603 3604

    # create intput and parameters
    inputs = {'Weight': weight}
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3623 3624

    # create output
3625
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3626 3627

    helper.append_op(
3628
        type="spectral_norm",
D
Dun 已提交
3629
        inputs=inputs,
3630 3631 3632 3633 3634 3635
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3636

3637
    return out
D
Dun 已提交
3638 3639


Y
Yu Yang 已提交
3640 3641 3642 3643
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3644 3645 3646
                     padding=0,
                     stride=1,
                     dilation=1,
3647
                     groups=None,
C
caoying03 已提交
3648
                     param_attr=None,
3649
                     bias_attr=None,
C
chengduoZH 已提交
3650
                     use_cudnn=True,
3651
                     act=None,
C
caoying03 已提交
3652
                     name=None):
Y
Yu Yang 已提交
3653
    """
3654 3655 3656 3657 3658 3659 3660 3661
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3662 3663
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3664 3665 3666
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3667 3668 3669 3670 3671

    For each input :math:`X`, the equation is:

    .. math::

3672
        Out = \sigma (W \\ast X + b)
3673

3674
    Where:
3675 3676 3677

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3678 3679 3680 3681
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3682

3683 3684 3685 3686
    Example:

        - Input:

3687
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3688

3689
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3690 3691 3692

        - Output:

3693
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3694 3695

        Where
Y
Yu Yang 已提交
3696

3697 3698
        .. math::

3699 3700
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3701 3702
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3703 3704

    Args:
3705 3706 3707 3708
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3709 3710 3711 3712
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3741
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3742 3743 3744
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3745
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3746
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3747 3748

    Returns:
3749
        Variable: The tensor variable storing the convolution transpose result.
3750 3751

    Raises:
3752 3753
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3754 3755 3756 3757

    Examples:
       .. code-block:: python

3758 3759
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3760
    """
C
chengduo 已提交
3761
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3762 3763 3764 3765 3766 3767 3768 3769
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3770 3771 3772
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3773 3774 3775
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3776

C
chengduoZH 已提交
3777 3778
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3779

Y
Yu Yang 已提交
3780 3781 3782 3783 3784
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3785

Y
Yu Yang 已提交
3786 3787
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3788

C
chengduoZH 已提交
3789
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3790
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3791
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3792
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3793
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3794 3795 3796
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3797

3798 3799 3800 3801 3802 3803 3804
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3805
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3806
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3807

Y
Yu Yang 已提交
3808 3809 3810
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3811
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3812
    helper.append_op(
3813
        type=op_type,
Y
Yu Yang 已提交
3814 3815
        inputs={'Input': [input],
                'Filter': [img_filter]},
3816
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3817
        attrs={
3818
            'output_size': output_size,
3819 3820 3821 3822 3823
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3824 3825
        })

3826 3827 3828
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3829 3830


3831
def conv3d_transpose(input,
Y
Yu Yang 已提交
3832 3833 3834
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3835 3836 3837
                     padding=0,
                     stride=1,
                     dilation=1,
3838
                     groups=None,
C
caoying03 已提交
3839
                     param_attr=None,
3840
                     bias_attr=None,
C
chengduoZH 已提交
3841
                     use_cudnn=True,
3842
                     act=None,
C
caoying03 已提交
3843
                     name=None):
Y
Yu Yang 已提交
3844
    """
3845
    **Convlution3D transpose layer**
3846

3847
    The convolution3D transpose layer calculates the output based on the input,
3848
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3849 3850 3851 3852 3853 3854
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3855 3856 3857
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3858 3859 3860 3861 3862

    For each input :math:`X`, the equation is:

    .. math::

3863
        Out = \sigma (W \\ast X + b)
3864 3865 3866

    In the above equation:

3867 3868
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3869 3870 3871 3872
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3873

3874 3875 3876 3877
    Example:

        - Input:

3878
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3879

3880
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3881 3882 3883

        - Output:

3884
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3885 3886

        Where
Y
Yu Yang 已提交
3887

3888 3889
        .. math::

3890 3891 3892
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3893 3894

    Args:
3895
        input(Variable): The input image with [N, C, D, H, W] format.
3896 3897 3898
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3899
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3900 3901
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3902
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3903 3904 3905
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3906 3907
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3908
        stride(int|tuple): The stride size. If stride is a tuple, it must
3909 3910
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3911
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3912 3913 3914
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3915 3916 3917 3918 3919
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3920 3921 3922 3923 3924 3925 3926 3927 3928
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3929 3930
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3931 3932
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3933 3934
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3935 3936

    Returns:
3937
        Variable: The tensor variable storing the convolution transpose result.
3938 3939

    Raises:
3940 3941
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3942 3943 3944 3945

    Examples:
       .. code-block:: python

3946 3947
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3948
    """
C
chengduo 已提交
3949
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3950 3951
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3952
    if not isinstance(input, Variable):
3953
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3954 3955
    input_channel = input.shape[1]

3956 3957 3958
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3959

C
chengduoZH 已提交
3960 3961 3962
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3963 3964 3965 3966 3967 3968
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3969 3970 3971
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3972

3973
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3974
                         padding[0] - 1) // dilation[0] + 1
3975
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3976
                         padding[1] - 1) // dilation[1] + 1
3977
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3978
                         padding[2] - 1) // dilation[2] + 1
3979
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3980
    else:
3981 3982
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3983

3984
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3985
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3986 3987 3988
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3989
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3990
    helper.append_op(
3991
        type=l_type,
Y
Yu Yang 已提交
3992 3993
        inputs={'Input': [input],
                'Filter': [img_filter]},
3994
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3995 3996 3997 3998
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3999
            'groups': groups,
C
chengduoZH 已提交
4000 4001
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4002

4003 4004
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4005
    return out
Y
yangyaming 已提交
4006 4007


Y
yangyaming 已提交
4008
def sequence_expand(x, y, ref_level=-1, name=None):
4009
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4010 4011 4012 4013
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4014 4015 4016 4017 4018

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4019
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4020
                x.data = [[a], [b], [c], [d]]
4021 4022 4023
                x.dims = [4, 1]

            y is a LoDTensor:
4024 4025
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4026

Y
yangyaming 已提交
4027
            ref_level: 0
4028

Y
yangyaming 已提交
4029
            then output is a 1-level LoDTensor:
4030
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4031
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4032 4033 4034 4035
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4036
                x.data = [[a], [b], [c]]
4037 4038 4039
                x.dims = [3, 1]

            y is a LoDTensor:
4040
                y.lod = [[2, 0, 3]]
4041

Y
yangyaming 已提交
4042
            ref_level: -1
4043

Y
yangyaming 已提交
4044 4045 4046
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4047 4048 4049
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4050 4051
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4052
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4053
                        will be named automatically.
4054 4055 4056 4057 4058 4059

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4060 4061
	
            import paddle.fluid.layers as layers
4062 4063 4064
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4065
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4066
    """
L
lujun 已提交
4067
    assert not in_dygraph_mode(), (
4068
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4069
    helper = LayerHelper('sequence_expand', input=x, **locals())
4070
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4071
    tmp = helper.create_variable_for_type_inference(dtype)
4072
    helper.append_op(
Y
yangyaming 已提交
4073 4074 4075 4076 4077
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4078
    return tmp
4079 4080


C
chengduo 已提交
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4129
            import paddle.fluid.layers as layers
C
chengduo 已提交
4130 4131 4132 4133 4134 4135

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4136
    assert not in_dygraph_mode(), (
4137
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4138 4139
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4140
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4141 4142 4143 4144 4145 4146 4147 4148
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4149
@templatedoc()
4150
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4151 4152 4153 4154 4155
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4156 4157 4158
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4159
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4160 4161 4162 4163
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4164 4165 4166
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4167

F
fengjiayi 已提交
4168
    Returns:
M
minqiyang 已提交
4169
        Variable: The padded sequence batch and the original lengths before
4170
                  padding. All sequences has the same length.
M
minqiyang 已提交
4171

F
fengjiayi 已提交
4172 4173 4174 4175 4176 4177 4178
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4179
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4180
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4181 4182 4183
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4184
    assert not in_dygraph_mode(), (
4185
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4186 4187
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4188 4189
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4190 4191 4192 4193

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4194 4195 4196 4197 4198 4199
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4200 4201
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4202
        attrs={'padded_length': maxlen})
4203
    return out, length
F
fengjiayi 已提交
4204 4205


4206
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4207
    """
4208
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4209

4210 4211
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4212 4213 4214 4215 4216 4217 4218 4219 4220
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4221 4222 4223
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4224
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4225 4226 4227 4228 4229 4230

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4231
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4232 4233 4234 4235 4236 4237

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4238 4239
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4252
    assert not in_dygraph_mode(), (
4253
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4254 4255
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4256
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4268 4269 4270 4271 4272 4273 4274
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4275
                is_accumulated=True,
4276 4277
                name=None,
                return_parent_idx=False):
4278
    """
4279 4280
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4281 4282 4283

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4284 4285

    This layer does the search in beams for one time step. Specifically, it
4286 4287 4288
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4300 4301 4302 4303

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4304

4305
    Args:
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4329 4330
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4331 4332
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4333 4334 4335 4336
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4337

4338
    Returns:
4339 4340 4341 4342
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4343 4344 4345 4346

    Examples:
        .. code-block:: python

4347 4348
            import paddle.fluid as fluid

4349 4350 4351
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4364
                axis=0)
4365
            selected_ids, selected_scores = fluid.layers.beam_search(
4366 4367 4368 4369 4370 4371 4372
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4373
    helper = LayerHelper('beam_search', **locals())
4374 4375 4376 4377 4378 4379
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4380

X
Xin Pan 已提交
4381 4382 4383
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4384 4385 4386 4387 4388
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4389 4390 4391

    helper.append_op(
        type='beam_search',
4392
        inputs=inputs,
Q
Qiao Longfei 已提交
4393 4394 4395
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4396
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4397 4398 4399 4400 4401 4402
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4403
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4404
        })
4405 4406 4407 4408
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4409 4410


4411 4412 4413 4414 4415 4416 4417
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4418

4419 4420 4421 4422 4423 4424 4425 4426 4427
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4428

4429 4430 4431 4432 4433 4434
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4435

4436 4437
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4438

4439 4440
            import paddle.fluid as fluid

4441 4442
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4443 4444 4445
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4446 4447 4448
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4449 4450
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4466 4467 4468 4469
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4470
              param_attr=None,
C
caoying03 已提交
4471 4472
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4473 4474 4475 4476
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4477
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4478

4479
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4480

4481
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4482

4483
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4484 4485 4486

            h_t & = o_t tanh(c_t)

4487 4488 4489 4490 4491 4492
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4493 4494 4495

        .. math::

4496
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4497 4498 4499 4500 4501 4502 4503 4504

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4505
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4506 4507

    Args:
Y
yangyaming 已提交
4508 4509 4510 4511 4512 4513
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4514
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4527 4528
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4529 4530

    Returns:
Y
yangyaming 已提交
4531
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4532 4533

    Raises:
4534 4535 4536 4537
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4538 4539 4540 4541 4542

    Examples:

        .. code-block:: python

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4570
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4571 4572 4573 4574
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4575 4576
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4577 4578 4579
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4580
    size = cell_t_prev.shape[1]
4581
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4582 4583
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4584
                param_attr=param_attr,
4585
                bias_attr=bias_attr)
Y
yangyaming 已提交
4586
    dtype = x_t.dtype
X
Xin Pan 已提交
4587 4588
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4589 4590 4591 4592 4593 4594 4595 4596 4597

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4598
    return h, c
G
guosheng 已提交
4599 4600


C
caoying03 已提交
4601
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4602
    """
Y
yangyaming 已提交
4603
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4604 4605 4606

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4607
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4608 4609
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4610 4611
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4612
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4613
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4614
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4615 4616
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4617 4618 4619

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4620

G
guosheng 已提交
4621 4622 4623
    Examples:
        .. code-block:: python

4624
            import paddle.fluid as fluid
G
guosheng 已提交
4625 4626 4627
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4628
            # Each example is followed by the corresponding output tensor.
4629
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4630 4631 4632 4633
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4634

4635
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4636 4637
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4638
            # Each example is followed by the corresponding output tensor.
4639 4640 4641
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4642

G
guosheng 已提交
4643 4644
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4645
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4646 4647
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4648 4649 4650 4651 4652
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4653
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4654 4655 4656 4657
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4658 4659


C
caoying03 已提交
4660
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4661
    """
Y
Yibing Liu 已提交
4662
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4663 4664 4665

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4666 4667 4668
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4669
            must be in the range :math:`[-rank(input), rank(input))`. If
4670
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4671
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4672 4673
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4674
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4675
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4676
                       will be named automatically.
G
guosheng 已提交
4677 4678

    Returns:
Y
Yibing Liu 已提交
4679
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4680

G
guosheng 已提交
4681 4682 4683
    Examples:
        .. code-block:: python

4684
            import paddle.fluid as fluid
G
guosheng 已提交
4685 4686 4687 4688
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4689
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4690 4691 4692
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4693
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4694

4695
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4696 4697 4698
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4699 4700 4701
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4702 4703
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4704
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4705 4706
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4707 4708 4709 4710 4711
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4712
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4713 4714 4715 4716
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4717 4718


C
caoying03 已提交
4719
def reduce_max(input, dim=None, keep_dim=False, name=None):
4720
    """
Y
yangyaming 已提交
4721
    Computes the maximum of tensor elements over the given dimension.
4722 4723 4724

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4725
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4726 4727 4728
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4729
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4730 4731
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4732
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4733 4734
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4735 4736 4737

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4738

4739 4740 4741
    Examples:
        .. code-block:: python

4742
            import paddle.fluid as fluid
4743 4744 4745 4746
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4747
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4748 4749 4750 4751
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4752

4753
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4754 4755 4756
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4757 4758 4759
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4760 4761
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4762
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4763 4764
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4765 4766 4767 4768 4769
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4770
            'dim': dim if dim != None else [0],
4771 4772 4773 4774 4775 4776
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4777
def reduce_min(input, dim=None, keep_dim=False, name=None):
4778
    """
Y
yangyaming 已提交
4779
    Computes the minimum of tensor elements over the given dimension.
4780 4781 4782

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4783
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4784 4785 4786
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4787
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4788 4789
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4790
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4791 4792
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4793 4794 4795

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4796

4797 4798 4799
    Examples:
        .. code-block:: python

4800
            import paddle.fluid as fluid
4801 4802 4803 4804
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4805
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4806 4807 4808 4809
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4810

4811
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4812 4813 4814
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4815 4816 4817
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4818 4819
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4820
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4821 4822
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4823 4824 4825 4826 4827
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4828
            'dim': dim if dim != None else [0],
4829 4830 4831 4832
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4833 4834


4835 4836 4837 4838 4839 4840
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4841
        dim (list|int|None): The dimensions along which the product is performed. If
4842 4843
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4844 4845
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4846 4847 4848
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4849
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4850
            layer will be named automatically.
4851 4852 4853 4854 4855 4856 4857

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

4858
            import paddle.fluid as fluid
4859 4860 4861 4862
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4863
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4864 4865 4866
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4867
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4868
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4869

4870
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4871 4872 4873
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4874 4875 4876
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4877 4878
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4879
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4880 4881
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4882 4883 4884 4885 4886
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4887
            'dim': dim if dim != None else [0],
4888 4889 4890 4891 4892 4893
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4894 4895
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4896
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4916
        
4917 4918 4919
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4920 4921 4922
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
4923 4924 4925 4926 4927 4928 4929
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4950
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4970

4971 4972 4973
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4974 4975 4976
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
4977 4978 4979 4980 4981 4982 4983
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4998 4999 5000 5001 5002
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5003
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5004
    """
C
caoying03 已提交
5005
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5006 5007 5008

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5009 5010 5011 5012 5013
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5014
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5015
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5016
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5017 5018
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5019 5020

    Returns:
D
dzhwinter 已提交
5021
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5022 5023 5024 5025

    Examples:
        .. code-block:: python

5026 5027 5028 5029 5030 5031
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5032
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5033 5034 5035 5036 5037 5038 5039 5040
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5041 5042 5043 5044 5045 5046 5047 5048
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5049
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5050 5051 5052
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5053
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5067 5068 5069 5070 5071 5072 5073 5074 5075


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5076
    .. math::
5077 5078

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5079 5080 5081 5082 5083

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5084
        x(Variable|list): The input tensor to l2_normalize layer.
5085
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5086 5087
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5088
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5089
            the default value is 1e-12.
5090
        name(str|None): A name for this layer(optional). If set None, the layer \
5091
            will be named automatically.
C
caoying03 已提交
5092 5093

    Returns:
5094
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5095 5096

    Examples:
5097

C
caoying03 已提交
5098 5099
        .. code-block:: python

5100 5101 5102 5103
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5104 5105
    """

F
fengjiayi 已提交
5106 5107
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5108 5109
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5110 5111
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5112
    helper.append_op(
5113 5114 5115 5116
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5117
        attrs={
5118 5119
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5120 5121
        })
    return out
5122 5123


S
sneaxiy 已提交
5124
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5125
    """
Y
ying 已提交
5126 5127 5128 5129
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5130

C
chengduoZH 已提交
5131
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5132
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5133

5134 5135 5136 5137 5138
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5139
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5140

C
chengduoZH 已提交
5141
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5142
      performs in the following way.
G
guosheng 已提交
5143

5144
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5145
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5146
        last two dimensions and a batched matrix multiply supporting broadcast
5147
        applies on the two tensors.
G
guosheng 已提交
5148

Y
ying 已提交
5149 5150
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5151
    removed after matrix multiplication.
G
guosheng 已提交
5152 5153 5154

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5155 5156 5157
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5158
        alpha (float): The scale of output. Default 1.0.
5159
        name(str|None): A name for this layer(optional). If set None, the layer
5160
            will be named automatically.
G
guosheng 已提交
5161 5162

    Returns:
5163
        Variable: The product Tensor variable.
G
guosheng 已提交
5164

G
guosheng 已提交
5165 5166 5167
    Examples:
        .. code-block:: python

5168
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5169
            # x: [B, ..., M, K], y: [B, ..., K, N]
5170
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5171

5172
            # x: [B, M, K], y: [B, K, N]
5173
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5174

5175
            # x: [B, M, K], y: [K, N]
5176
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5177

5178
            # x: [M, K], y: [K, N]
5179
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5180 5181

            # x: [B, M, K], y: [K]
5182
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5183

5184
            # x: [K], y: [K]
5185
            # fluid.layers.matmul(x, y)  # out: [1]
5186

Y
ying 已提交
5187
            # x: [M], y: [N]
5188 5189 5190 5191 5192
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5193
    """
Y
ying 已提交
5194 5195 5196 5197 5198 5199 5200

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5201
            y_shape = y_shape + [1]
Y
ying 已提交
5202 5203 5204 5205 5206 5207 5208

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5209 5210
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5211

C
chengduo 已提交
5212
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5213
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5214 5215 5216
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5217
                if dim_x != y_shape[i]:
C
chengduo 已提交
5218 5219
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5220 5221 5222

    __check_input(x, y)

5223
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5224
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5225
    helper.append_op(
5226 5227 5228 5229
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5230 5231 5232
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5233
            'alpha': float(alpha),
S
sneaxiy 已提交
5234
        })
5235
    return out
5236 5237


5238
def topk(input, k, name=None):
Q
qingqing01 已提交
5239 5240 5241 5242
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5243
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5244 5245 5246 5247 5248 5249
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5271 5272 5273
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5274
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5275
                 of input.
5276
        name(str|None): A name for this layer(optional). If set None, the layer
5277
                       will be named automatically.
F
fengjiayi 已提交
5278
                       Default: None
Q
qingqing01 已提交
5279 5280

    Returns:
5281 5282 5283
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5284
        within the last dimension of input.
Q
qingqing01 已提交
5285

F
fengjiayi 已提交
5286 5287
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5288 5289 5290 5291

    Examples:
        .. code-block:: python

5292 5293
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5294 5295 5296
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5297 5298
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5299 5300 5301 5302 5303 5304
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5305 5306
    helper.append_op(
        type="top_k",
W
whs 已提交
5307
        inputs=inputs,
Q
qingqing01 已提交
5308 5309
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5310
        attrs=attrs)
Q
qingqing01 已提交
5311 5312 5313 5314 5315
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5316
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5317
    """
R
ruri 已提交
5318
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5319 5320 5321 5322 5323 5324 5325 5326
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5327

Y
ying 已提交
5328
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5329

5330
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5331 5332
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5333
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5334

5335
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5336 5337
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5338

5339 5340 5341
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5342
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5343
                          the length of reference string.
5344
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5345
                                     calculating edit distance.
5346
        name (str): The name of this layer. It is optional.
5347

W
wanghaoshuang 已提交
5348
    Returns:
W
wanghaoshuang 已提交
5349
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5350 5351 5352 5353

    Examples:
        .. code-block:: python

R
ruri 已提交
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            cost, _ = fluid.layers.edit_distance(input=x, label=y)

            cpu = fluid.core.CPUPlace()
            exe = fluid.Executor(cpu)
            exe.run(fluid.default_startup_program())

            import numpy
            x_ = numpy.random.randint(5, size=(2, 1)).astype('int64')
            y_ = numpy.random.randint(5, size=(2, 1)).astype('int64')

            print(x_)
            print(y_)

            x = fluid.create_lod_tensor(x_, [[2]], cpu)
            y = fluid.create_lod_tensor(y_, [[2]], cpu)

            outs = exe.run(feed={'x':x, 'y':y}, fetch_list=[cost.name])

            print(outs)
5376
    """
5377
    helper = LayerHelper("edit_distance", **locals())
5378

5379
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5380
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5381 5382
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5383 5384 5385 5386 5387

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5388
            attrs={"tokens": ignored_tokens})
5389 5390 5391 5392 5393
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5394
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5395
            attrs={"tokens": ignored_tokens})
5396 5397
        label = erased_label

5398
    # edit distance op
X
Xin Pan 已提交
5399 5400
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5401 5402 5403 5404
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5405 5406
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5407 5408
        attrs={"normalized": normalized})

5409
    return edit_distance_out, sequence_num
5410 5411 5412 5413 5414


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5415

Y
ying 已提交
5416 5417 5418 5419
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5437
        input.lod = [[4, 4]]
M
minqiyang 已提交
5438

W
whs 已提交
5439
        Computation:
5440

W
whs 已提交
5441 5442 5443 5444 5445 5446
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5447 5448 5449 5450 5451

        output.data = [[2],
                       [1],
                       [3]]

5452
        output.lod = [[2, 1]]
5453

W
whs 已提交
5454

5455 5456
    Args:

Y
ying 已提交
5457 5458 5459 5460 5461 5462 5463 5464 5465
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5466
        name (str): The name of this layer. It is optional.
5467 5468

    Returns:
H
haowang101779990 已提交
5469 5470 5471
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5472
                  LoD [[]] and dims [1, 1].
5473 5474 5475 5476

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5477
            import paddle.fluid as fluid
5478 5479
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5480
    """
5481
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5482
    _, topk_indices = topk(input, k=1)
5483 5484

    # ctc align op
X
Xin Pan 已提交
5485
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5486 5487 5488
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5489
        outputs={"Output": [ctc_out]},
5490 5491
        attrs={"merge_repeated": True,
               "blank": blank})
5492
    return ctc_out
5493 5494


W
Wu Yi 已提交
5495
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5496
    """
5497 5498
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5499
    to compute Connectionist Temporal Classification (CTC) loss.
5500 5501
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5502 5503 5504
    input tensor.

    Args:
5505
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5506 5507 5508 5509
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5510
       label (Variable): The ground truth of variable-length sequence,
5511 5512 5513
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5514 5515
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5516 5517 5518
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5519
         follewed by a mean_op.
W
Wu Yi 已提交
5520
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5521 5522

    Returns:
5523 5524
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5525 5526

    Examples:
5527

W
wanghaoshuang 已提交
5528
        .. code-block:: python
5529

B
Bai Yifan 已提交
5530 5531 5532 5533 5534
            import paddle.fluid as fluid
            label = fluid.layers.data(name='label', shape=[11, 8],
                                      dtype='float32', lod_level=1)
            predict = fluid.layers.data(name='predict', shape=[11, 1],
                                        dtype='float32')
5535
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5536 5537

    """
F
fengjiayi 已提交
5538
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5539 5540
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5541 5542 5543 5544 5545 5546
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5547 5548 5549 5550 5551
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5552
    return loss_out
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5568 5569 5570
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5571 5572 5573 5574 5575
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5576

5577
            out.lod  = [[0, 1, 3]]
5578 5579 5580 5581

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5582 5583 5584 5585 5586 5587 5588
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5589 5590 5591

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5592 5593

    Returns:
5594

5595 5596 5597 5598 5599
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5600 5601 5602
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5603
    """
L
lujun 已提交
5604
    assert not in_dygraph_mode(), (
5605
        "sequence layer is not supported in dygraph mode yet.")
5606
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5607
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5608 5609 5610 5611 5612 5613
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5614 5615


5616 5617 5618 5619
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5620 5621 5622 5623 5624 5625
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5626
        num_neg_samples=None,
5627 5628 5629
        name=None,
        sampler="uniform",
        custom_dist=None,
5630 5631
        seed=0,
        is_sparse=False):
5632 5633 5634 5635 5636 5637 5638
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5639 5640
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5641
            sample is 1.0.
C
chengduo 已提交
5642 5643 5644 5645 5646 5647 5648 5649 5650
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5651
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5652 5653
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5654 5655 5656
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5657
        custom_dist (float[]): A float[] with size=num_total_classes.
5658 5659 5660 5661
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5662
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5663

5664
    Returns:
Y
Yibing Liu 已提交
5665 5666 5667 5668 5669 5670
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5671
	    import numpy as np
Y
Yibing Liu 已提交
5672

Y
Yibing Liu 已提交
5673 5674 5675 5676 5677 5678 5679 5680
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5681

Y
Yibing Liu 已提交
5682 5683 5684 5685
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5686

Y
Yibing Liu 已提交
5687 5688 5689
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5690

Y
Yibing Liu 已提交
5691 5692 5693 5694
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5695

Y
Yibing Liu 已提交
5696 5697 5698 5699 5700 5701 5702 5703
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5704
    """
Y
Yang Yu 已提交
5705 5706 5707
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5708 5709

    dim = input.shape[1]
Y
Yang Yu 已提交
5710 5711 5712 5713 5714 5715
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5716
    inputs = {}
C
chengduo 已提交
5717 5718 5719 5720 5721 5722 5723
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5724 5725 5726
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5727

5728 5729 5730 5731
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5732 5733 5734 5735 5736 5737 5738

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5739 5740
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5741
        custom_dist_len = num_total_classes
5742 5743 5744 5745 5746 5747
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5748
            if normal_prob - 1.0 > 0:
5749
                bigs.append((i, normal_prob))
5750
            elif 1.0 - normal_prob > 0:
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5766
            if big_left - 1.0 > 0:
5767
                bigs.append((big_idx, big_left))
5768
            elif 1.0 - big_left > 0:
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5798 5799 5800 5801
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5802 5803 5804 5805 5806
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5807 5808 5809 5810
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5811

Y
Yang Yu 已提交
5812 5813
    attrs = {
        'num_total_classes': int(num_total_classes),
5814 5815
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5816
        'sampler': sampler,
5817 5818
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5819
    }
Y
Yang Yu 已提交
5820 5821 5822

    helper.append_op(
        type='nce',
C
chengduo 已提交
5823
        inputs=inputs,
Y
Yang Yu 已提交
5824 5825 5826 5827 5828 5829
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5830
    return cost / (num_neg_samples + 1)
5831 5832


C
chengduo 已提交
5833 5834
def hsigmoid(input,
             label,
5835
             num_classes,
C
chengduo 已提交
5836 5837
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5838
             name=None,
5839 5840 5841
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5842
             is_sparse=False):
W
weixing02 已提交
5843 5844
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5845
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5846
    complete binary tree, or you can use is_custom to pass your own tree to
5847
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5848 5849 5850 5851 5852 5853
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5854
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5855
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5856

5857 5858
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5859 5860 5861 5862
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5863
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5864
       related to the same batch of inputs.
5865

W
weixing02 已提交
5866
    Args:
M
minqiyang 已提交
5867
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5868 5869 5870 5871
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5872 5873
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5874
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5886
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5887
            it should be in leaf -> root order
M
minqiyang 已提交
5888 5889 5890
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5891
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5892
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5893
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5894
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5895
             of W and input will be sparse.
W
weixing02 已提交
5896 5897

    Returns:
J
JiabinYang 已提交
5898
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5899 5900 5901 5902 5903

    Examples:

        .. code-block:: python

5904
            import paddle.fluid as fluid
G
guosheng 已提交
5905 5906 5907
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5908 5909 5910 5911
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5912 5913
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5914
    dim = input.shape[1]
5915
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5916 5917 5918
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5919 5920 5921 5922 5923 5924 5925 5926 5927
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5928
    if (is_custom) and (path_code is None):
5929
        raise ValueError("path_code should not be None with custom tree")
5930
    elif (is_custom) and (path_table is None):
5931
        raise ValueError("path_table should not be None with custom tree")
5932
    elif (is_custom) and (num_classes is None):
5933
        raise ValueError("num_classes should not be None with custom tree")
5934 5935 5936
    else:
        pass

J
JiabinYang 已提交
5937
    weights = None
5938 5939 5940 5941
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5942
    if not is_custom:
J
JiabinYang 已提交
5943 5944 5945 5946 5947 5948 5949 5950
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5951
            shape=[num_classes, dim],
J
JiabinYang 已提交
5952 5953
            is_bias=False,
            dtype=input.dtype)
5954 5955 5956
    inputs = {
        "X": input,
        "W": weights,
5957
        "PathTable": path_table,
5958
        "PathCode": path_code,
5959 5960
        "Label": label
    }
W
weixing02 已提交
5961
    if helper.bias_attr:
5962
        if not is_custom:
J
JiabinYang 已提交
5963 5964
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5965
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5966 5967 5968 5969 5970 5971
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5972
                shape=[num_classes, 1],
J
JiabinYang 已提交
5973 5974 5975
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5976 5977
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5978
        inputs=inputs,
W
weixing02 已提交
5979
        outputs={"Out": out,
5980 5981 5982 5983 5984 5985 5986
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5987 5988 5989
    return out


Y
fix ci.  
ying 已提交
5990
def transpose(x, perm, name=None):
Y
ying 已提交
5991 5992 5993 5994 5995 5996 5997
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5998 5999 6000
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6001 6002 6003 6004 6005 6006 6007

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6008
            # use append_batch_size=False to avoid prepending extra
6009
            # batch size in shape
6010
            import paddle.fluid as fluid
6011
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6012
                            dtype='float32', append_batch_size=False)
6013
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6014 6015
    """

Y
fix ci.  
ying 已提交
6016
    if len(perm) != len(x.shape):
Y
ying 已提交
6017 6018
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6019
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6020 6021 6022 6023 6024 6025
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6026 6027

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6028 6029
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6030
    helper.append_op(
6031
        type='transpose2',
Y
fix ci.  
ying 已提交
6032
        inputs={'X': [x]},
6033 6034
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6035 6036
        attrs={'axis': perm})
    return out
6037 6038


6039 6040 6041 6042 6043 6044 6045
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6046
    """
6047 6048 6049 6050 6051 6052 6053
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6054 6055 6056 6057 6058 6059 6060 6061 6062 6063

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6082 6083 6084 6085 6086 6087 6088 6089 6090
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6091 6092 6093
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6094 6095 6096 6097 6098
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6126 6127 6128
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6141
            output.dims = {8, 8}
6142

6143
            output.lod = [[4, 4]]
6144

T
Tink_Y 已提交
6145
    Examples:
6146 6147 6148

        .. code-block:: python

B
Bai Yifan 已提交
6149 6150 6151
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6152
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6153 6154
                input=data, stride=[1, 1], filter_size=[2, 2])

6155 6156

    """
L
lujun 已提交
6157
    assert not in_dygraph_mode(), (
6158
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6169
    inputs = {"X": input}
6170
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6171 6172 6173 6174 6175
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6176
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6177
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6178
    helper.append_op(
6179
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6180
    return out
6181 6182


Y
yuyang18 已提交
6183
@templatedoc()
6184
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6185 6186
    """
    ${comment}
6187 6188

    Args:
Y
yuyang18 已提交
6189
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6190 6191
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6192 6193 6194 6195 6196
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6197
        ${out_comment}.
6198 6199

    Examples:
Y
yuyang18 已提交
6200 6201 6202 6203
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6204 6205 6206 6207 6208 6209
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6210
    out = helper.create_variable_for_type_inference(dtype)
6211 6212 6213 6214 6215
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6216
    return helper.append_activation(out)
6217 6218


Y
yuyang18 已提交
6219
@templatedoc()
6220 6221
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6222 6223
    ${comment}

L
lujun 已提交
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6267 6268

    Args:
Y
yuyang18 已提交
6269 6270
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6271 6272

    Returns:
Y
yuyang18 已提交
6273
        ${out_comment}.
6274 6275
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6276 6277 6278 6279 6280

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6281
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6282 6283 6284 6285 6286 6287
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6288 6289


6290 6291 6292
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6293
                               ignore_index=kIgnoreIndex,
6294
                               numeric_stable_mode=True,
6295 6296
                               return_softmax=False,
                               axis=-1):
6297 6298
    """
    **Softmax With Cross Entropy Operator.**
6299

6300
    Cross entropy loss with softmax is used as the output layer extensively. This
6301 6302 6303
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6304

6305 6306 6307
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6308

6309 6310 6311 6312
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6313

6314
    The equation is as follows:
6315

6316
    1) Hard label (one-hot label, so every sample has exactly one class)
6317

6318 6319 6320 6321
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6322

6323 6324 6325
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6326

6327 6328 6329 6330
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6331 6332
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6333 6334

    .. math::
6335

H
haowang101779990 已提交
6336
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6337

H
haowang101779990 已提交
6338
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6339

H
haowang101779990 已提交
6340
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6341 6342 6343

    and then cross entropy loss is calculated by softmax and label.

6344
    Args:
6345 6346 6347 6348 6349 6350
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6351
        soft_label (bool): A flag to indicate whether to interpretate the given
6352
            labels as soft labels. Default False.
M
minqiyang 已提交
6353 6354
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6355 6356
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6357 6358
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6359 6360 6361 6362
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6363
                                    Note that the speed may be slower when use
6364
                                    stable algorithm. Default: True
6365
        return_softmax (bool): A flag indicating whether to return the softmax
6366
                               along with the cross entropy loss. Default: False
6367 6368 6369
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6370

6371
    Returns:
H
haowang101779990 已提交
6372 6373
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6374 6375 6376 6377
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6378 6379 6380 6381

    Examples:
        .. code-block:: python

6382 6383
            import paddle.fluid as fluid

6384 6385 6386
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6387 6388
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6389 6390
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6391 6392
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6393 6394 6395 6396 6397 6398
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6399 6400 6401
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6402 6403
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6404
        })
6405 6406 6407 6408

    if return_softmax:
        return loss, softmax

6409 6410 6411
    return loss


6412 6413 6414
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6415
                                       num_true=1,
6416
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6417 6418 6419
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6420
                                       seed=0):
X
xuezhong 已提交
6421 6422 6423 6424 6425
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6426
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6427 6428 6429 6430 6431 6432 6433 6434
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6435
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6436 6437 6438 6439 6440 6441 6442 6443
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6444
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6456
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6457 6458 6459 6460 6461
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6462
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6463
            logits.
X
xuezhong 已提交
6464 6465 6466 6467 6468
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6469 6470 6471
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6472 6473 6474 6475 6476 6477 6478
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6479 6480 6481
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
6482
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
6483
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6484
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6485
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6486 6487 6488 6489 6490 6491 6492 6493
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6494 6495
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6496 6497
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6498 6499 6500 6501 6502

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6503
            'Labels': label,
X
xuezhong 已提交
6504 6505
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6506 6507 6508 6509
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6510
            'SampledLabels': sampled_label,
6511 6512 6513
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6514 6515
        },
        attrs={
X
xuezhong 已提交
6516
            'use_customized_samples': use_customized_samples,
6517
            'uniq': True,
X
xuezhong 已提交
6518 6519 6520 6521
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6522 6523
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6524 6525 6526 6527 6528 6529
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6530 6531
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6532
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6533
                'Label': sampled_softlabel},
X
xuezhong 已提交
6534 6535 6536
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6537
            'soft_label': True,
X
xuezhong 已提交
6538 6539 6540
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6541
    return loss / num_true
X
xuezhong 已提交
6542 6543


6544 6545
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6546 6547
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6548
    For each instance, it computes the smooth L1 loss element by element first
6549
    and then sums all the losses. So the shape of ouput Variable is
6550
    [batch_size, 1].
6551

6552 6553
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6554
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6555
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6556
            L1 loss op with same shape as :attr:`x`.
6557
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6558 6559
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6560
            by this tensor element by element.
6561
        outside_weight (Variable|None): A tensor with rank at least 2. This
6562 6563
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6564
            element by element.
6565
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6566 6567
           scalar with default value 1.0.

6568
    Returns:
6569
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6570 6571 6572 6573 6574

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6575 6576
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6577
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6578
            out = fluid.layers.smooth_l1(x=fc, y=label)
6579
    """
6580

6581
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6582 6583
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6594
        attrs={'sigma': sigma if sigma is not None else 1.0})
6595
    return loss
6596 6597 6598 6599


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6600
    This layer creates the one-hot representations for input indices.
6601 6602

    Args:
Y
Yibing Liu 已提交
6603 6604
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6605 6606

    Returns:
Y
Yibing Liu 已提交
6607
        Variable: The one-hot representations of input.
6608 6609

    Examples:
C
caoying03 已提交
6610
        .. code-block:: python
6611

Y
Yibing Liu 已提交
6612 6613
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6614 6615
    """
    helper = LayerHelper("one_hot", **locals())
6616

X
Xin Pan 已提交
6617
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6628
            depth.stop_gradient = True
6629 6630
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6631 6632
    helper.append_op(
        type="one_hot",
6633 6634
        inputs=inputs,
        attrs=attrs,
6635 6636
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6637
    return one_hot_out
Y
Yu Yang 已提交
6638 6639


Y
Yu Yang 已提交
6640
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6641
    """
Y
yi.wu 已提交
6642 6643 6644
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6645 6646 6647 6648 6649 6650

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6651 6652
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6653 6654 6655 6656 6657

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6658
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6659 6660
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6661 6662
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6663 6664 6665 6666 6667
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6668
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6669
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6670 6671
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6672
            outputs={'Out': [counter]},
M
minqiyang 已提交
6673 6674
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6675 6676 6677
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6678 6679


6680
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6681
    """
C
caoying03 已提交
6682 6683
    Gives a new shape to the input Tensor without changing its data.

6684 6685 6686 6687 6688
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6689

6690
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6691

6692 6693 6694 6695
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6696
    2. 0 means the actual dimension value is going to be copied from the
6697 6698 6699 6700
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6701 6702

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6703
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6704
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6705

6706
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6707 6708
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6709 6710
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6711
    dimensions.
C
caoying03 已提交
6712

6713
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6714 6715 6716 6717
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6718 6719

    Args:
6720
        x(variable): The input tensor.
C
caoying03 已提交
6721 6722
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6723 6724 6725 6726 6727
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6728 6729
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6730 6731 6732
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6733
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6734
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6735

6736
    Returns:
G
guosheng 已提交
6737 6738 6739 6740
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6741

X
Xin Pan 已提交
6742 6743 6744
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6745 6746
    Examples:
        .. code-block:: python
G
guosheng 已提交
6747

6748
            data = fluid.layers.data(
6749
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6750
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6751
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6752 6753 6754
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6755
        raise ValueError("Input shape must be a python list or tuple.")
6756

X
Xin Pan 已提交
6757 6758 6759 6760 6761
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6762

6763 6764
    # Validate the shape
    unk_dim_idx = -1
6765
    contain_var = False
6766
    for dim_idx, dim_size in enumerate(shape):
6767 6768 6769 6770
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6783
    helper = LayerHelper("reshape2", **locals())
6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
6806 6807
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6808
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6809
    helper.append_op(
6810
        type="reshape2",
X
Xin Pan 已提交
6811
        inputs=inputs,
6812
        attrs=attrs,
6813 6814
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6815

D
dzhwinter 已提交
6816
    return helper.append_activation(out)
6817

6818

6819
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6820
    """
M
minqiyang 已提交
6821 6822 6823
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6824
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6825

H
haowang101779990 已提交
6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6847

Y
Yibing Liu 已提交
6848
    Args:
6849
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6850
        axes (list): List of integers, indicating the dimensions to be squeezed.
6851
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6852 6853 6854 6855 6856 6857 6858

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

6859
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
6860
            x = layers.data(name='x', shape=[5, 1, 10])
6861
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6862
    """
L
lujun 已提交
6863
    assert not in_dygraph_mode(), (
L
lujun 已提交
6864
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6865
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6866 6867
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6868
    helper.append_op(
6869
        type="squeeze2",
6870
        inputs={"X": input},
Y
Yibing Liu 已提交
6871
        attrs={"axes": axes},
6872 6873
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6874

6875 6876 6877
    return out


6878
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6879
    """
M
minqiyang 已提交
6880 6881 6882
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6883

M
minqiyang 已提交
6884
    For example:
H
haowang101779990 已提交
6885 6886 6887

    .. code-block:: text

M
minqiyang 已提交
6888
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6889
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6890

Y
Yibing Liu 已提交
6891
    Args:
6892
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6893
        axes (list): List of integers, indicating the dimensions to be inserted.
6894
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6895 6896 6897 6898 6899 6900 6901

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

6902 6903 6904
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6905 6906
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6907 6908
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6909
    helper.append_op(
6910
        type="unsqueeze2",
6911
        inputs={"X": input},
Y
Yibing Liu 已提交
6912
        attrs={"axes": axes},
6913 6914
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6915

6916 6917
    return out

6918

Y
yangyaming 已提交
6919
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6920
    """
Y
Yibing Liu 已提交
6921
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6922 6923 6924 6925
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6926
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6927 6928 6929 6930 6931 6932

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6933
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6934 6935 6936
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6937
            target_lod: [4, 2]
Y
yangyaming 已提交
6938 6939

            then we get a 1-level LoDTensor:
6940
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6941 6942 6943 6944 6945 6946
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6947
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6948 6949 6950 6951
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6952
                y.data = [[2, 4]]
Y
yangyaming 已提交
6953 6954 6955
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6956
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6957 6958 6959 6960 6961 6962
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6963
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6964 6965 6966 6967
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6968
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6969 6970 6971 6972
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6973
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6974 6975 6976 6977 6978
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6979
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6980
                           from :attr:`y`.
Y
yangyaming 已提交
6981
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6982
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6983 6984

    Returns:
Y
Yibing Liu 已提交
6985
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6986 6987

    Raises:
Y
Yibing Liu 已提交
6988
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6989 6990 6991 6992

    Examples:
        .. code-block:: python

6993 6994 6995
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
6996 6997
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6998
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7024
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
7053 7054
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7067 7068 7069
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7083 7084 7085 7086


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7087
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7088
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7089

G
guosheng 已提交
7090 7091 7092 7093
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7116
                         The length of :attr:paddings must be
G
guosheng 已提交
7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7127

G
guosheng 已提交
7128
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7129 7130
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7131 7132 7133 7134 7135
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7136
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7137 7138 7139 7140 7141 7142 7143
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7144 7145


C
chengduo 已提交
7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7177 7178
		And
            pad_value = -1,
C
chengduo 已提交
7179

T
Tink_Y 已提交
7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7210 7211 7212
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7213 7214 7215 7216 7217
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7218
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7219 7220 7221 7222 7223 7224 7225 7226 7227
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7228 7229 7230 7231 7232 7233 7234
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7235 7236
    called label-smoothing regularization (LSR).

7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7260
                              be :math:`(1, class\_num)`.
7261 7262
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7263
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7264 7265 7266 7267 7268 7269 7270 7271 7272
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7273 7274
            
            import paddle.fluid.layers as layers
7275 7276 7277 7278 7279 7280 7281 7282 7283 7284

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7285
    smooth_label = helper.create_variable_for_type_inference(dtype)
7286 7287 7288 7289 7290 7291 7292
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7293 7294


W
wopeizl 已提交
7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7343 7344


J
jerrywgz 已提交
7345 7346 7347 7348 7349 7350
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7351 7352
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7369 7370 7371 7372
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7373 7374 7375
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7376 7377 7378 7379 7380 7381
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7382
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7423 7424
        .. code-block:: python

S
SunGaofeng 已提交
7425 7426 7427
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7428
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7429
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7430 7431
    """
    label = one_hot(label, depth=input.shape[-1])
7432
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7433 7434 7435 7436 7437 7438
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7439 7440


7441 7442 7443 7444
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7445
                 resample='BILINEAR',
7446 7447
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7448
                 align_mode=1):
7449
    """
Q
qiaolongfei 已提交
7450
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7451

7452
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7453 7454 7455
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7456

7457
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7458

7459
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7460

7461 7462 7463 7464 7465 7466 7467 7468 7469 7470
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7471
    Align_corners and align_mode are optinal parameters,the calculation method 
7472 7473 7474 7475
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7476
    .. code-block:: text
7477

T
Tink_Y 已提交
7478
        For scale:
7479
          
T
Tink_Y 已提交
7480
            if align_corners = True && out_size > 1 :
7481

T
Tink_Y 已提交
7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7493

T
Tink_Y 已提交
7494 7495
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7496

T
Tink_Y 已提交
7497 7498
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7499

T
Tink_Y 已提交
7500 7501
          else:
              align_corners = True
7502

T
Tink_Y 已提交
7503 7504
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7505

T
Tink_Y 已提交
7506 7507
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7508

T
Tink_Y 已提交
7509 7510 7511 7512 7513 7514 7515 7516 7517 7518
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7519

T
Tink_Y 已提交
7520 7521 7522 7523
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7524

T
Tink_Y 已提交
7525 7526
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7527 7528 7529 7530 7531 7532 7533 7534 7535

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7536
    Args:
7537
        input (Variable): The input tensor of image resize layer,
7538 7539
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7540
        out_shape(list|tuple|Variable|None): Output shape of image resize
7541 7542
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7543
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7544
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7545
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7546
             Default: None.
7547 7548
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7549
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7550
                       currently.
7551
                       Default: 'BILINEAR'
7552 7553 7554
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7555
                                :attr:`out_shape` and :attr:`scale` specifying
7556 7557 7558 7559 7560 7561 7562
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7563 7564
                                constructing stage.
                                Default: None
7565 7566 7567 7568
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7569
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7570 7571
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7572 7573

    Returns:
Q
update  
qiaolongfei 已提交
7574 7575
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7576

7577 7578 7579
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7580
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7581 7582 7583
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7584
        ValueError: scale should be greater than zero.
7585 7586
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7587

7588 7589 7590
    Examples:
        .. code-block:: python

R
ruri 已提交
7591
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7592
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7593
    """
7594 7595 7596 7597
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7598 7599
    if resample not in resample_methods:
        raise ValueError(
7600
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7601
        )
7602
    resample_type = resample_methods[resample]
7603 7604 7605 7606 7607 7608

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7609
    if out_shape is None and scale is None:
7610
        raise ValueError("One of out_shape and scale must not be None.")
7611
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7612
    dtype = helper.input_dtype()
7613 7614 7615 7616

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7617
    inputs = {"X": input}
D
dengkaipeng 已提交
7618
    attrs = {
D
dengkaipeng 已提交
7619 7620
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7621 7622 7623 7624 7625
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7626
    if out_shape is not None:
7627 7628 7629 7630
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7631
            inputs['OutSize'] = out_shape
7632 7633
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7634 7635
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7636 7637 7638 7639 7640 7641 7642
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7643
    else:
D
dengkaipeng 已提交
7644 7645
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7646
        attrs['scale'] = float(scale)
7647

7648 7649 7650 7651 7652
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7653
    out = helper.create_variable_for_type_inference(dtype)
7654
    helper.append_op(
7655
        type='{}_interp'.format(resample_type),
7656
        inputs=inputs,
7657
        outputs={"Out": out},
D
dengkaipeng 已提交
7658
        attrs=attrs)
7659
    return out
F
stash  
fengjiayi 已提交
7660 7661


7662
@templatedoc(op_type="bilinear_interp")
7663 7664 7665 7666
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7667 7668
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7669
                    align_mode=1):
7670
    """
7671 7672
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7673 7674
    in priority order.

7675 7676 7677 7678
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7679 7680
    again in the other direction.

7681
    For details of bilinear interpolation, please refer to Wikipedia:
7682
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7683

T
tink2123 已提交
7684
    Align_corners and align_mode are optinal parameters,the calculation 
7685 7686 7687 7688
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7689
    .. code-block:: text
7690

T
Tink_Y 已提交
7691
        For scale:
7692
          
T
Tink_Y 已提交
7693
            if align_corners = True && out_size > 1 :
7694

T
Tink_Y 已提交
7695 7696 7697 7698 7699
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7700

T
Tink_Y 已提交
7701 7702 7703 7704 7705 7706 7707 7708 7709 7710
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7711 7712


T
Tink_Y 已提交
7713
          else:
T
tink2123 已提交
7714

T
Tink_Y 已提交
7715 7716
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7717

T
Tink_Y 已提交
7718 7719
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7720 7721 7722



Y
yuyang18 已提交
7723 7724 7725
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7726 7727 7728
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7729

Y
yuyang18 已提交
7730
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7731
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7732
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7733
             Default: None.
Y
yuyang18 已提交
7734 7735

        name(str|None): The output variable name.
7736 7737 7738
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7739
                                :attr:`out_shape` and :attr:`scale` specifying
7740 7741 7742 7743 7744 7745 7746
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7747 7748
                                constructing stage.
                                Default: None
7749 7750
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7751 7752 7753

    Returns:
        ${out_comment}.
7754 7755 7756 7757

    Examples:
        .. code-block:: python

R
ruri 已提交
7758
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7759
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7760 7761
    """

7762 7763
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7764 7765


7766
@templatedoc(op_type="nearest_interp")
7767 7768 7769 7770
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7771 7772
                   actual_shape=None,
                   align_corners=True):
7773
    """
7774
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7775 7776
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7777 7778
    out_shape and scale in priority order.

7779 7780
    Example:

T
Tink_Y 已提交
7781 7782 7783 7784 7785
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7786

T
Tink_Y 已提交
7787 7788 7789 7790 7791 7792 7793 7794
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7795
          
T
Tink_Y 已提交
7796 7797
          if:
              align_corners = False
7798

T
Tink_Y 已提交
7799 7800
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7801

T
Tink_Y 已提交
7802 7803
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7804

T
Tink_Y 已提交
7805 7806
          else:
              align_corners = True
7807

T
Tink_Y 已提交
7808 7809
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7810

T
Tink_Y 已提交
7811 7812
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7813 7814


7815
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7816
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7817 7818 7819 7820

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7821 7822 7823
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7824

Y
yuyang18 已提交
7825
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7826
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7827
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7828
             Default: None.
Y
yuyang18 已提交
7829 7830

        name(str|None): The output variable name.
7831 7832 7833
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7834
                                :attr:`out_shape` and :attr:`scale` specifying
7835 7836 7837 7838 7839 7840 7841
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7842 7843
                                constructing stage.
                                Default: None
7844
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7845 7846 7847

    Returns:
        ${out_comment}.
7848 7849 7850 7851

    Examples:
        .. code-block:: python

R
ruri 已提交
7852
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7853
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7854 7855
    """

7856 7857
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7858 7859 7860 7861


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7862 7863 7864
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7865 7866 7867 7868 7869 7870 7871
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7872
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7873

7874
    Returns:
Q
update  
qiaolongfei 已提交
7875
        Variable: The output is a 4-D tensor of the shape
7876
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7877 7878 7879 7880 7881 7882

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7883 7884 7885 7886 7887 7888 7889 7890 7891 7892
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7893 7894 7895
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7896 7897 7898
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7899
def gather(input, index, overwrite=True):
W
whs 已提交
7900
    """
Q
qiaolongfei 已提交
7901 7902
    **Gather Layer**

7903
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7904 7905 7906 7907
    of X indexed by `index` and concatenate them together.

    .. math::

7908
        Out = X[Index]
W
whs 已提交
7909 7910 7911 7912 7913 7914 7915


    .. code-block:: text


                Given:

7916 7917
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7918 7919 7920 7921 7922 7923 7924 7925 7926 7927
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7928
        input (Variable): The source input with rank>=1.
W
whs 已提交
7929
        index (Variable): The index input with rank=1.
7930 7931 7932 7933 7934 7935
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7936 7937 7938 7939 7940

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7941

W
whs 已提交
7942 7943
        .. code-block:: python

Y
Yibing Liu 已提交
7944 7945
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7946 7947 7948 7949
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7950
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7951 7952 7953 7954
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
7955 7956
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
7957 7958 7959
    return out


7960
def scatter(input, index, updates, name=None, overwrite=True):
7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
7978 7979 7980 7981
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
7982 7983 7984 7985 7986 7987 7988 7989

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

7990 7991 7992 7993 7994
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
7995

7996
            output = fluid.layers.scatter(input, index, updates)
7997 7998 7999
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8000
    out = helper.create_variable_for_type_inference(dtype)
8001 8002 8003 8004 8005
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
8006
        attrs={'overwrite': overwrite},
8007 8008 8009 8010
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
8011 8012 8013 8014 8015 8016 8017 8018 8019
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
8020

Q
Qingsheng Li 已提交
8021
    Given the following input:
H
haowang101779990 已提交
8022

Q
Qingsheng Li 已提交
8023
    .. code-block:: text
H
haowang101779990 已提交
8024

Q
Qingsheng Li 已提交
8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
8037

Q
Qingsheng Li 已提交
8038
    .. code-block:: text
H
haowang101779990 已提交
8039

Q
Qingsheng Li 已提交
8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8055
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8056 8057 8058 8059

    Examples:

        .. code-block:: python
8060 8061
	
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8062

8063 8064 8065
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8066 8067 8068
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8069
    assert not in_dygraph_mode(), (
8070
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8071 8072
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8073
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8074 8075 8076 8077 8078 8079 8080 8081 8082
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8096

8097 8098 8099
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8100
    """
F
stash  
fengjiayi 已提交
8101
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8102
    dtype = x.dtype
X
Xin Pan 已提交
8103
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8104
    if seed is None:
8105
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8106
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8107
    if isinstance(seed, int):
F
fengjiayi 已提交
8108 8109 8110 8111 8112
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8113 8114 8115 8116
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8117
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8118 8119
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8120 8121
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8122
    return out
W
whs 已提交
8123 8124


8125
def log(x, name=None):
W
wanghaoshuang 已提交
8126 8127 8128 8129 8130
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8131
        Out = \\ln(x)
W
wanghaoshuang 已提交
8132 8133

    Args:
8134
        x (Variable): Input tensor.
8135 8136
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8137 8138 8139 8140 8141 8142 8143 8144

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8145
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8146
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8147 8148
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8149
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8150
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8151
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8152 8153 8154
    return out


8155
def relu(x, name=None):
W
wanghaoshuang 已提交
8156 8157
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8158
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8159 8160 8161 8162
    the tensor elementwise.

    .. math::

8163
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8164 8165

    Args:
8166
        x (Variable): The input tensor.
8167 8168
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8169 8170 8171 8172 8173 8174 8175 8176

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8177
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8178
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8179 8180
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8181
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8182
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8183 8184
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8185
    return out
8186 8187


C
chengduo 已提交
8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8212 8213 8214 8215 8216 8217
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8233 8234 8235
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8236 8237 8238 8239
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8240
    .. math::
8241

H
haowang101779990 已提交
8242
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8243

8244
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8245 8246 8247 8248 8249
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8250
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8251
                           Its shape should be the same as input.
8252
        num_classes (int): The possible number of labels.
W
whs 已提交
8253 8254

    Returns:
M
minqiyang 已提交
8255 8256
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8257
                     Three variables:
M
minqiyang 已提交
8258

H
haowang101779990 已提交
8259 8260 8261
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8262 8263 8264 8265

    Examples:

        .. code-block:: python
8266

B
Bai Yifan 已提交
8267 8268 8269 8270 8271
            import paddle.fluid as fluid
            predict = fluid.layers.data(name='predict', shape=[3, 32, 32])
            label = fluid.layers.data(name='label', shape=[1])
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
                                                          num_classes=5)
W
whs 已提交
8272 8273 8274
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8275 8276 8277
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8278 8279
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8280 8281
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8282
        outputs={
W
whs 已提交
8283 8284 8285
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8286 8287 8288
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8331
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8332
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8333
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8351
            import paddle.fluid as fluid
8352 8353 8354 8355 8356 8357
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8358
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8359 8360 8361 8362 8363

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8364
            isinstance(shape, Variable)):
8365 8366 8367 8368 8369
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8370
    out = helper.create_variable_for_type_inference(x.dtype)
8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8388 8389


W
whs 已提交
8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8407

W
whs 已提交
8408
              out_shape = [2, 3, 5, 5]
8409

W
whs 已提交
8410
          Step 1:
8411

W
whs 已提交
8412 8413 8414
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8415

W
whs 已提交
8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8461
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8462
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8475

S
SunGaofeng 已提交
8476
            import paddle.fluid as fluid
W
whs 已提交
8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8488
            isinstance(out_shape, Variable)):
W
whs 已提交
8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8510 8511
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8512

8513 8514
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8515
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8516 8517 8518
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8519

8520 8521
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8522

H
haowang101779990 已提交
8523 8524
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8525 8526
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8527

H
haowang101779990 已提交
8528 8529 8530 8531 8532 8533 8534 8535
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8536 8537 8538

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8556 8557 8558
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8573
    out = helper.create_variable_for_type_inference("float32")
8574 8575 8576 8577 8578 8579 8580 8581

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8582 8583


M
minqiyang 已提交
8584 8585
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8586
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8587
    which compares left score and right score passed in.
M
minqiyang 已提交
8588
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8589 8590 8591

    .. math::

H
haowang101779990 已提交
8592
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8593 8594

    Args:
M
minqiyang 已提交
8595
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8596 8597
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8598
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8599 8600
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8601

M
minqiyang 已提交
8602
    Returns:
M
minqiyang 已提交
8603
       Variable: The ranking loss.
H
haowang101779990 已提交
8604

M
minqiyang 已提交
8605
    Raises:
M
minqiyang 已提交
8606
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8607

M
minqiyang 已提交
8608
    Examples:
H
haowang101779990 已提交
8609

M
minqiyang 已提交
8610
        .. code-block:: python
H
haowang101779990 已提交
8611

Y
Yibing Liu 已提交
8612 8613 8614
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8615 8616
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8617
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8618 8619 8620 8621 8622 8623
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8624 8625
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8649
        .. code-block:: text
W
whs 已提交
8650

T
Tink_Y 已提交
8651
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8652

T
Tink_Y 已提交
8653 8654
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8655

T
Tink_Y 已提交
8656
	      Case 0:
M
minqiyang 已提交
8657

T
Tink_Y 已提交
8658 8659 8660
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8661

T
Tink_Y 已提交
8662 8663 8664
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8665

T
Tink_Y 已提交
8666
	      Case 1:
M
minqiyang 已提交
8667

T
Tink_Y 已提交
8668 8669
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8670

T
Tink_Y 已提交
8671 8672 8673
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8674

T
Tink_Y 已提交
8675
	      Case 2:
M
minqiyang 已提交
8676

T
Tink_Y 已提交
8677 8678
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8679

T
Tink_Y 已提交
8680 8681 8682
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8683 8684


W
whs 已提交
8685 8686
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8687
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
8705 8706 8707 8708 8709
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8710 8711 8712 8713
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8714
    out = helper.create_variable_for_type_inference(dtype)
8715 8716 8717 8718 8719 8720 8721 8722 8723
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8724
    helper.append_op(
8725
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8726 8727 8728 8729

    return out


8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8742 8743 8744 8745 8746

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8747 8748
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8749 8750
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8751
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8772 8773 8774 8775 8776

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8777 8778
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8779 8780
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8781
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8802 8803 8804 8805 8806

    Examples:

        .. code-block:: python

8807
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8808 8809
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8810 8811
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8812
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8834 8835 8836 8837 8838

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8839
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8840
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8841 8842
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8843
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8866 8867 8868 8869 8870

    Examples:

        .. code-block:: python

8871
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8872 8873
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8874 8875
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8876
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8898 8899 8900 8901 8902

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8903 8904
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8905 8906
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8907
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8908 8909 8910 8911 8912 8913 8914 8915
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8916 8917 8918 8919
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8920 8921
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8922

J
jerrywgz 已提交
8923 8924 8925 8926 8927 8928 8929 8930
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
8931 8932
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8933
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
8934
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
8935
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
8936
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8937
          will be named automatically.
J
jerrywgz 已提交
8938 8939 8940 8941 8942 8943 8944 8945

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8946 8947 8948
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
8949
            mode = 'channel'
J
jerrywgz 已提交
8950 8951 8952
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8964
        attr=helper.param_attr,
J
jerrywgz 已提交
8965 8966 8967 8968
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8969
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8970 8971 8972 8973 8974 8975 8976 8977 8978
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8979 8980 8981 8982 8983 8984 8985 8986 8987 8988
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8989
    Returns:
8990
        output(${out_type}): ${out_comment}
8991 8992 8993

    Examples:

8994
    .. code-block:: python
8995

H
haowang101779990 已提交
8996 8997
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8998 8999
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9000
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9019
    Returns:
9020
        output(${out_type}): ${out_comment}
9021 9022 9023 9024 9025

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
9026 9027
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
9028 9029
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9030
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9048
    Returns:
9049
        output(${out_type}): ${out_comment}
9050 9051 9052

    Examples:

9053 9054 9055 9056 9057
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9058
            y = fluid.layers.soft_relu(x, threshold=20.0)
9059 9060
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9061
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9062 9063 9064 9065 9066 9067 9068 9069
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9070 9071 9072 9073
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9074

H
haowang101779990 已提交
9075
    For Example:
M
minqiyang 已提交
9076

H
haowang101779990 已提交
9077
    .. code-block:: text
9078

H
haowang101779990 已提交
9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9100 9101 9102

    Args:
        x (Variable): A tensor of rank >= axis.
9103 9104
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9105 9106 9107 9108 9109 9110 9111 9112
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9113 9114 9115
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9116 9117 9118 9119
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9120
        ValueError: If axis is not in range [0, rank(x)].
9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9137 9138
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9139
    helper.append_op(
9140
        type='flatten2',
9141
        inputs={"X": x},
9142 9143
        outputs={'Out': out,
                 'XShape': x_shape},
9144 9145
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9146 9147


C
chenweihang 已提交
9148
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9149
    """
C
chenweihang 已提交
9150
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9151
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9152 9153
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9154

H
haowang101779990 已提交
9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9172 9173

    Args:
C
chenweihang 已提交
9174 9175 9176
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9177 9178 9179 9180 9181 9182 9183

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9184 9185 9186
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9187 9188
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9189
    assert not in_dygraph_mode(), (
9190
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9191
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9192 9193
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9194 9195 9196 9197 9198 9199
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9200
    return out
9201

9202

S
sneaxiy 已提交
9203 9204 9205 9206 9207 9208 9209 9210 9211
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9212

S
sneaxiy 已提交
9213
    .. math::
9214

S
sneaxiy 已提交
9215 9216 9217
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9218
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9219 9220 9221 9222
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9223 9224 9225
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9226 9227
    Returns:
        Variable: The output sequence mask.
9228

9229 9230 9231 9232 9233 9234 9235 9236
    Examples:
        .. code-block:: python
	
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9237
    """
L
lujun 已提交
9238
    assert not in_dygraph_mode(), (
9239
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9240

Q
qingqing01 已提交
9241
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9242
    if name is None:
X
Xin Pan 已提交
9243
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9244
    else:
X
Xin Pan 已提交
9245
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9246

9247 9248 9249 9250 9251 9252 9253 9254
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
9255
    helper.append_op(
9256 9257 9258
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
9259
    return out
S
sneaxiy 已提交
9260 9261


X
Xin Pan 已提交
9262
def stack(x, axis=0):
S
sneaxiy 已提交
9263 9264 9265 9266
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9267 9268 9269 9270 9271 9272 9273

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9274
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9275
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9276

C
chengduozh 已提交
9277 9278
    For Example:

C
chengduozh 已提交
9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9317
    Args:
9318
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9319
        axis (int|None): The axis along which all inputs are stacked.
9320

S
sneaxiy 已提交
9321 9322
    Returns:
        Variable: The stacked variable.
9323

9324 9325 9326 9327
    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers
9328 9329
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9330 9331
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9332 9333
    """

X
Xin Pan 已提交
9334 9335 9336 9337 9338 9339
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9340
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9341
    helper.append_op(
S
sneaxiy 已提交
9342 9343
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9344

X
Xin Pan 已提交
9345
    return out
D
dzhwinter 已提交
9346 9347 9348 9349 9350 9351 9352


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9353

D
dzhwinter 已提交
9354 9355 9356
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9357
    raised.
D
dzhwinter 已提交
9358 9359

    Args:
M
minqiyang 已提交
9360
        x (Variable): Input variable.
D
dzhwinter 已提交
9361 9362
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9363

D
dzhwinter 已提交
9364 9365
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9366

9367 9368 9369 9370 9371 9372
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9373 9374 9375 9376 9377 9378 9379 9380 9381 9382
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9383
    for _ in range(num):
X
Xin Pan 已提交
9384
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9385 9386 9387 9388 9389 9390 9391 9392

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9405

W
whs 已提交
9406 9407 9408 9409
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9410

W
whs 已提交
9411
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9412

W
whs 已提交
9413
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9414

W
whs 已提交
9415 9416 9417 9418
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9419

W
whs 已提交
9420 9421 9422 9423 9424 9425 9426 9427 9428 9429
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
W
wangchaochaohu 已提交
9430 9431 9432
          
            import paddle.fluid as fluid
            x = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
W
whs 已提交
9433 9434 9435 9436
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9437
    out = helper.create_variable_for_type_inference(dtype)
9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
9455
                    ele.stop_gradient = True
9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
                    temp_out = helper.create_variable_for_type_inference(dtype)
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
9469
    helper.append_op(
9470
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9471
    return out
S
sneaxiy 已提交
9472 9473


G
fix  
gongweibao 已提交
9474 9475 9476
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9477
@templatedoc()
G
fix  
gongweibao 已提交
9478 9479 9480 9481 9482 9483 9484 9485 9486
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9487
    ${comment}
G
fix  
gongweibao 已提交
9488 9489

    Args:
G
gongweibao 已提交
9490 9491 9492
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9493
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9494 9495 9496
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9497 9498
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9499
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9500

9501 9502 9503
    Examples:
        .. code-block:: python

9504 9505
            import paddle.fluid.layers as layers 

9506 9507
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9508 9509 9510
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9511
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9528 9529


G
gongweibao 已提交
9530
@templatedoc()
X
Xin Pan 已提交
9531
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9532
    """
G
gongweibao 已提交
9533
    ${comment}
G
fix  
gongweibao 已提交
9534 9535

    Args:
G
gongweibao 已提交
9536 9537 9538 9539
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9540 9541 9542
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9543
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9544

9545 9546 9547
    Examples:
        .. code-block:: python

J
JesseyXujin 已提交
9548
            import paddle.fluid.layers as layers
9549
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9550 9551 9552
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9553
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9554 9555 9556 9557 9558 9559 9560 9561 9562 9563
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9564
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9565 9566 9567 9568 9569
        })

    return out


G
gongweibao 已提交
9570
@templatedoc()
G
fix  
gongweibao 已提交
9571
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9572
    """
G
gongweibao 已提交
9573
    ${comment}
G
fix  
gongweibao 已提交
9574 9575

    Args:
G
gongweibao 已提交
9576 9577 9578 9579
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9580
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9581 9582

    Returns:
G
gongweibao 已提交
9583
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9584

9585 9586 9587
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9588
            x = fluid.layers.data(
9589 9590 9591 9592 9593
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9594
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9595 9596 9597
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9598
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9610
@templatedoc()
G
fix  
gongweibao 已提交
9611 9612 9613 9614 9615 9616 9617 9618 9619
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9620
    ${comment}
G
fix  
gongweibao 已提交
9621 9622

    Args:
G
gongweibao 已提交
9623 9624
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9625
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9626 9627 9628 9629
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9630
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9631 9632

    Returns:
G
gongweibao 已提交
9633
        out (Variable): ${out_comment}
9634 9635 9636 9637

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9638
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9639

Y
Yibing Liu 已提交
9640
            out = fluid.layers.gaussian_random_batch_size_like(
9641
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9642 9643 9644
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9645
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9664
@templatedoc()
X
Xin Pan 已提交
9665
def sum(x):
G
fix  
gongweibao 已提交
9666
    """
G
gongweibao 已提交
9667
    ${comment}
G
fix  
gongweibao 已提交
9668 9669

    Args:
G
gongweibao 已提交
9670
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9671 9672

    Returns:
G
gongweibao 已提交
9673
        out (Variable): ${out_comment}
9674 9675 9676 9677

    Examples:
        .. code-block:: python

9678 9679 9680 9681
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
9682 9683 9684
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9685 9686
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9687 9688 9689 9690
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9691
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9692 9693 9694 9695

    return out


G
gongweibao 已提交
9696
@templatedoc()
G
fix  
gongweibao 已提交
9697 9698
def slice(input, axes, starts, ends):
    """
9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9714

9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
9732
    Args:
G
gongweibao 已提交
9733 9734 9735 9736
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9737 9738

    Returns:
G
gongweibao 已提交
9739
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9740

9741 9742 9743
    Examples:
        .. code-block:: python

9744 9745
            import paddle.fluid as fluid
 
9746 9747 9748 9749
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

9750
            input = fluid.layers.data(
9751 9752
                name="input", shape=[3, 4, 5, 6], dtype='float32')

9753
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9754 9755 9756
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9757 9758
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9772 9773
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9774
    Get the shape of the input.
G
fix  
gongweibao 已提交
9775 9776

    Args:
C
chengduozh 已提交
9777
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9778 9779

    Returns:
C
fix doc  
chengduozh 已提交
9780
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9781

9782 9783 9784
    Examples:
        .. code-block:: python

9785 9786 9787
            import paddle.fluid as fluid

            input = fluid.layers.data(
9788
                name="input", shape=[3, 100, 100], dtype="float32")
9789
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
9790 9791 9792
    """

    helper = LayerHelper('shape', **locals())
9793
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9794
    helper.append_op(
G
fix  
gongweibao 已提交
9795
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9796 9797

    return out
G
merge  
gongweibao 已提交
9798 9799


Z
zhoukunsheng 已提交
9800 9801 9802 9803
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9804
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9805 9806 9807 9808 9809 9810 9811 9812 9813 9814

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

9815 9816 9817 9818
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
9819 9820 9821 9822 9823 9824 9825 9826
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9827 9828 9829 9830
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9831
    if in_dygraph_mode():
X
Xin Pan 已提交
9832 9833 9834
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9835 9836 9837 9838
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9839 9840
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9841
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9842 9843 9844
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9845

S
sneaxiy 已提交
9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9857
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9858 9859 9860 9861 9862 9863 9864 9865
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9866
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9867
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9868 9869 9870

    Returns:
        out(${out_type}): ${out_comment}
9871 9872 9873 9874 9875 9876 9877 9878

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
9879 9880 9881
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9882
    if name is None:
X
Xin Pan 已提交
9883
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9884 9885 9886
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9887 9888 9889 9890 9891 9892 9893 9894 9895 9896

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9897
    return helper.append_activation(out)
S
sneaxiy 已提交
9898 9899


X
Xin Pan 已提交
9900
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9901 9902 9903
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9904
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9905 9906 9907
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9908
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9909 9910 9911
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9912
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9913 9914 9915
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9916
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9917 9918 9919
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9920
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9921 9922 9923
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9924
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9925 9926 9927
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9928 9929 9930 9931 9932 9933 9934 9935
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9936
for func in [
9937 9938 9939 9940 9941 9942 9943 9944 9945
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9946 9947 9948 9949 9950
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9951 9952
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9953
        ])
9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
9991 9992


9993
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9994 9995
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9996 9997
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9998 9999 10000

    if out is None:
        if name is None:
X
Xin Pan 已提交
10001
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
10017
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10029 10030 10031 10032 10033 10034 10035 10036 10037

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
10038 10039 10040 10041 10042 10043 10044
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10045
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10057 10058 10059 10060 10061 10062 10063 10064 10065

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10066 10067 10068 10069 10070 10071 10072
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10073
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10085 10086 10087 10088 10089 10090 10091 10092 10093

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10094 10095 10096 10097 10098 10099 10100
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10101
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10102 10103 10104 10105 10106 10107 10108 10109 10110 10111
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10112 10113 10114 10115 10116 10117 10118

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10119 10120 10121 10122
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10138 10139 10140 10141

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10142
            import paddle.fluid as fluid
10143 10144 10145
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10146 10147 10148 10149 10150
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10151 10152
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10153 10154 10155

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10179 10180 10181 10182 10183 10184 10185

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10186 10187 10188 10189 10190
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10191 10192
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10193 10194 10195

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10196 10197 10198 10199 10200 10201 10202 10203

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10217 10218 10219 10220 10221 10222 10223

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10224 10225 10226 10227 10228
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10229
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10230 10231 10232 10233 10234 10235 10236 10237 10238 10239
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10251 10252 10253 10254 10255 10256 10257 10258 10259

    Examples:
        .. code-block:: python

            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10298 10299 10300 10301 10302
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10303
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10304 10305 10306 10307 10308 10309 10310 10311 10312
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10313 10314
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10315 10316 10317 10318 10319 10320
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10321 10322 10323
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10324 10325
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10326 10327 10328 10329 10330 10331
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10332
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10333
        name(basestring|None): Name of the output.
10334 10335
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10336 10337 10338

    Returns:
        out(${out_type}): ${out_comment}
10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10353 10354 10355 10356 10357
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10358
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10359 10360 10361 10362 10363 10364 10365 10366
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10367 10368
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10385 10386 10387 10388 10389 10390 10391 10392 10393

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10394 10395 10396 10397
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10398
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10399 10400 10401 10402 10403 10404 10405 10406 10407 10408
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10409 10410


J
JiabinYang 已提交
10411
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10412
    """
J
JiabinYang 已提交
10413
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10414 10415 10416

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10417
    The attr blocksize indicates the input block size.
10418 10419

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10420
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10421 10422

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10423
    (but keeping all data)
J
JiabinYang 已提交
10424

J
JiabinYang 已提交
10425
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10426
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10427 10428 10429 10430 10431
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10432
    Args:
J
JiabinYang 已提交
10433
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10434
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10435 10436

    Returns:
J
JiabinYang 已提交
10437
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10438 10439

    Raises:
J
JiabinYang 已提交
10440
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10441 10442 10443

    Examples:
        .. code-block:: python
10444 10445 10446
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
10447 10448

            data = fluid.layers.data(
10449
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10450
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10451
                x=data, blocksize=2)
10452

10453
            exe = fluid.Executor(fluid.CPUPlace())
10454 10455 10456 10457
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
10458

J
JiabinYang 已提交
10459 10460
    """

J
JiabinYang 已提交
10461
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10462

J
JiabinYang 已提交
10463 10464
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10465 10466

    if name is None:
J
JiabinYang 已提交
10467 10468
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10469 10470 10471 10472 10473
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10474
        type="space_to_depth",
J
JiabinYang 已提交
10475
        inputs={"X": x},
J
JiabinYang 已提交
10476
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10477
        outputs={"Out": out})
J
JiabinYang 已提交
10478 10479
    return out

J
JiabinYang 已提交
10480

S
sneaxiy 已提交
10481 10482
@templatedoc()
def sequence_reverse(x, name=None):
10483
    """
S
sneaxiy 已提交
10484 10485 10486 10487 10488 10489 10490 10491
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
10492 10493 10494 10495 10496 10497 10498

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
10499
    """
L
lujun 已提交
10500
    assert not in_dygraph_mode(), (
10501
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10502 10503
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10504
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10505 10506 10507 10508 10509 10510 10511 10512 10513 10514
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10515 10516


10517 10518 10519 10520 10521 10522
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10523 10524 10525 10526 10527
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10528

10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10541
        act (str, default None): Activation to be applied to the output of this layer.
10542 10543 10544

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

10559 10560 10561 10562
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10563
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10575
    return helper.append_activation(out)
10576 10577


B
barrierye 已提交
10578
def similarity_focus(input, axis, indexes, name=None):
10579
    """
B
barrierye 已提交
10580
    SimilarityFocus Operator
B
barrierye 已提交
10581 10582

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10583

10584 10585 10586
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10587
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10588 10589 10590 10591 10592 10593 10594
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10595
       each index.
B
barrierye 已提交
10596 10597 10598 10599
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10649
    Args:
10650
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10651
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10652
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10653
            1, 2 or 3.
B
barrierye 已提交
10654
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10655 10656

    Returns:
H
haowang101779990 已提交
10657 10658
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10659

B
barrierye 已提交
10660 10661
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10662

B
barrierye 已提交
10663
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10664 10665
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10678 10679 10680 10681 10682
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10683 10684 10685 10686 10687 10688 10689
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10690 10691


M
minqiyang 已提交
10692 10693
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10694 10695
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10696 10697
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10698 10699 10700 10701 10702 10703 10704 10705 10706

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
10707 10708
            [[1, 2],
             [3, 4]],
M
minqiyang 已提交
10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
10725 10726
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
10727 10728 10729 10730 10731 10732 10733 10734 10735
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10736
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10737
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10738 10739 10740 10741 10742 10743

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10744

10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np

            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=1, hash_size=1000)

            place = fluid.core.CPUPlace()
            exece = fluid.Executor(place)
            exece.run(fluid.default_startup_program()) 

            # Init Tensor
            tensor = fluid.core.LoDTensor() 
            tensor.set(np.random.randint(0, 10, (3, 1)).astype("int32"), place)
            # Set LoD
            tensor.set_recursive_sequence_lengths([[1, 1, 1]])

            out = exece.run(feed={'titles': tensor}, fetch_list=[hash_r], return_numpy=False)
M
minqiyang 已提交
10763 10764
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10765 10766
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10767 10768 10769 10770 10771 10772 10773
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10774 10775


D
dengkaipeng 已提交
10776
@templatedoc()
10777 10778
def grid_sampler(x, grid, name=None):
    """
10779
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10780
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10781 10782 10783 10784
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10785
    interpolation value of 4 nearest corner points.
10786

H
haowang101779990 已提交
10787
    .. code-block:: text
10788

H
haowang101779990 已提交
10789 10790
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10791

H
haowang101779990 已提交
10792 10793
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10794

H
haowang101779990 已提交
10795 10796 10797
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10798

H
haowang101779990 已提交
10799 10800 10801 10802 10803 10804 10805 10806 10807
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10808

H
haowang101779990 已提交
10809 10810 10811 10812
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10813

H
haowang101779990 已提交
10814 10815 10816 10817
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10818

H
haowang101779990 已提交
10819 10820 10821 10822
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10823

H
haowang101779990 已提交
10824 10825
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10826 10827

    Args:
10828 10829 10830
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10831 10832

    Returns:
H
haowang101779990 已提交
10833
        Variable: Output of shape [N, C, H, W] data samples input X
10834 10835
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10836 10837 10838 10839
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
10840 10841 10842 10843 10844
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
10845
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10846

D
dengkaipeng 已提交
10847 10848 10849 10850 10851 10852 10853 10854 10855
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10856
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10857 10858
    ipts = {'X': x, 'Grid': grid}

10859
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10860 10861 10862
    return out


G
gmcather 已提交
10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10890 10891
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10930
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10931 10932 10933 10934 10935 10936 10937
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
10938 10939
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
10940

10941 10942 10943 10944 10945
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
10946
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
10947

H
heqiaozhi 已提交
10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10961 10962 10963 10964
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10965
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10966 10967
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10968
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10969 10970

    .. math::
H
haowang101779990 已提交
10971 10972 10973
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10974 10975

    Where:
H
haowang101779990 已提交
10976 10977
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

10991 10992 10993 10994 10995 10996 10997 10998 10999
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
11000

G
gmcather 已提交
11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
11017 11018 11019 11020 11021 11022 11023 11024 11025 11026


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
11027
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
11028

Q
Qiao Longfei 已提交
11029
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
11030 11031 11032
    For example:

    .. math::
H
haowang101779990 已提交
11033
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
11034

Q
Qiao Longfei 已提交
11035
    In this formula:
11036 11037
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
11038
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
11039
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
11040 11041 11042
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
11043 11044
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
11045 11046 11047
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
11048
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
11049
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
11050
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
11051 11052 11053 11054
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
11055
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
11056 11057 11058 11059

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
11060 11061 11062
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11063 11064
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11065
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11066 11067 11068 11069

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11070
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11101 11102 11103 11104 11105 11106 11107 11108

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11109 11110 11111 11112 11113 11114 11115 11116 11117 11118
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11119 11120


S
shippingwang 已提交
11121
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11122 11123
    """
    **Shuffle Channel Operator**
11124

S
shippingwang 已提交
11125 11126 11127 11128 11129 11130
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11131
    
S
shippingwang 已提交
11132
    .. code-block:: text
11133

S
shippingwang 已提交
11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11162
    Args: 
S
shippingwang 已提交
11163 11164
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11165 11166

    Returns:
S
shippingwang 已提交
11167 11168
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11169 11170

    Raises:
S
shippingwang 已提交
11171
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11172 11173 11174

    Examples:
        .. code-block:: python
11175 11176

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11177
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11178 11179 11180
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11181
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11182 11183 11184 11185 11186 11187 11188 11189 11190

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11191
    return out
S
Add  
shippingwang 已提交
11192 11193


11194
@templatedoc()
D
dengkaipeng 已提交
11195
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11196 11197 11198 11199 11200 11201 11202 11203
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11204
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11205
        name (str, default None): The name of this layer.
11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11218
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11231 11232
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11233 11234 11235
    return out


S
sneaxiy 已提交
11236
class PyFuncRegistry(object):
S
sneaxiy 已提交
11237 11238 11239
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11240
        if func is None or not callable(func):
S
sneaxiy 已提交
11241 11242 11243
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11244
        # find named args using reflection
S
sneaxiy 已提交
11245 11246 11247 11248 11249 11250 11251
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11252 11253 11254
        '''
        Why record self here?

M
minqiyang 已提交
11255 11256
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11257
           to find the registered function corresponding
M
minqiyang 已提交
11258
           to :code:`idx`.
S
sneaxiy 已提交
11259

M
minqiyang 已提交
11260 11261
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11262
           whose reference count is 1 would cause
M
minqiyang 已提交
11263
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11264 11265
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11266
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11281 11282 11283 11284 11285 11286 11287 11288 11289
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11290

S
sneaxiy 已提交
11291 11292
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11293 11294

        ret = []
S
sneaxiy 已提交
11295 11296 11297
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11298 11299
                continue

S
sneaxiy 已提交
11300 11301
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11302

S
sneaxiy 已提交
11303 11304 11305
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11306

S
sneaxiy 已提交
11307
        return tuple(ret)
S
sneaxiy 已提交
11308 11309


S
sneaxiy 已提交
11310 11311 11312 11313
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11314

S
sneaxiy 已提交
11315 11316 11317 11318 11319 11320 11321 11322
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11323
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11324

S
sneaxiy 已提交
11325 11326
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11327 11328 11329 11330
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11331
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11332
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11333 11334
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11335 11336 11337 11338 11339
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11340
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11341
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11342
                                       None means no backward. Default None.
S
sneaxiy 已提交
11343
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11344
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11345 11346
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11347
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11348 11349 11350

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11351 11352

    Examples:
M
minqiyang 已提交
11353

S
sneaxiy 已提交
11354 11355 11356 11357 11358
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11359
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11360 11361
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11362
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11363 11364 11365
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11366
        >>>
S
sneaxiy 已提交
11367 11368 11369 11370 11371
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11372
        >>>     print(x)
S
sneaxiy 已提交
11373 11374 11375 11376 11377 11378
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11379
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11380 11381
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11382 11383
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11384 11385 11386 11387 11388 11389 11390 11391
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11392
    """
S
sneaxiy 已提交
11393
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11394 11395 11396
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11397
        x = [x]
S
sneaxiy 已提交
11398 11399
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11400

S
sneaxiy 已提交
11401 11402 11403
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11404
        out_list = [out]
S
sneaxiy 已提交
11405
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11406
        out_list = out
S
sneaxiy 已提交
11407 11408 11409
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11410

S
sneaxiy 已提交
11411 11412
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11413
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11414 11415

    for each_out in out_list:
S
sneaxiy 已提交
11416 11417
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11418 11419
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11420

S
sneaxiy 已提交
11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11436 11437 11438 11439

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11440 11441
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11442 11443 11444
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11445
        })
S
sneaxiy 已提交
11446
    return out
S
sneaxiy 已提交
11447 11448 11449


# For debug usage
S
sneaxiy 已提交
11450 11451 11452 11453
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11467 11468 11469 11470 11471
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11484 11485 11486 11487
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11513

M
minqiyang 已提交
11514

M
minqiyang 已提交
11515
def huber_loss(input, label, delta):
11516
    """
M
minqiyang 已提交
11517 11518 11519
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11520 11521 11522 11523

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11524
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11525 11526 11527 11528

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11529
        huber\_loss = 0.5 * (label - input) * (label - input)
11530 11531 11532 11533 11534 11535 11536


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11537
        delta (float): The parameter of huber loss, which controls
11538 11539 11540
                       the range of outliers

    Returns:
M
minqiyang 已提交
11541
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11542 11543 11544 11545

    Examples:
        .. code-block:: python

11546 11547 11548 11549 11550 11551 11552 11553 11554
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11555
    """
M
minqiyang 已提交
11556
    helper = LayerHelper('huber_loss', **locals())
11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11568 11569


D
dengkaipeng 已提交
11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

T
Tao Luo 已提交
11632 11633 11634
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11635
          # edges must be directional
T
Tao Luo 已提交
11636 11637 11638 11639
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11640
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11641 11642
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11643
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11644
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11668 11669


C
ceci3 已提交
11670
from .ops import square
C
ceci3 已提交
11671
from .control_flow import equal
C
ceci3 已提交
11672 11673


C
ceci3 已提交
11674 11675 11676
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11677

C
ceci3 已提交
11678
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11679 11680

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11681
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11682 11683 11684 11685 11686
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11687 11688
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11689 11690 11691 11692 11693 11694 11695

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11696 11697 11698 11699 11700 11701 11702 11703
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11704 11705 11706 11707 11708 11709 11710
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11711
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11712 11713
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11714 11715
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11716 11717 11718 11719
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11720 11721 11722
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11723 11724 11725
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11726 11727


R
ruri 已提交
11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11757
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11758 11759 11760 11761 11762 11763 11764 11765 11766

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11767
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
11818 11819 11820 11821 11822 11823
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
11824 11825 11826 11827 11828 11829 11830 11831
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11832 11833 11834 11835


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11836

H
heqiaozhi 已提交
11837
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11838

H
fix doc  
heqiaozhi 已提交
11839
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11840 11841 11842
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11843
    
H
fix doc  
heqiaozhi 已提交
11844
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11845

H
heqiaozhi 已提交
11846
    Args:
H
fix doc  
heqiaozhi 已提交
11847 11848

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11849 11850
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11851
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
11852
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11853

H
heqiaozhi 已提交
11854
    Returns:
H
fix doc  
heqiaozhi 已提交
11855 11856 11857

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11858
    Examples:
H
fix doc  
heqiaozhi 已提交
11859

H
heqiaozhi 已提交
11860
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11861

H
heqiaozhi 已提交
11862 11863 11864 11865 11866 11867 11868 11869 11870 11871
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11872

H
heqiaozhi 已提交
11873 11874 11875 11876 11877 11878 11879 11880 11881
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11882
    return out
Z
zhoukunsheng 已提交
11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

11901 11902 11903
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
11904
             # condition is a tensor [True, False, True]
11905 11906 11907
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
11908 11909

             # condition is a tensor [[True, False], [False, True]]
11910 11911 11912
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
11913 11914

             # condition is a tensor [False, False, False]
11915 11916 11917 11918
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
11919 11920 11921 11922 11923 11924 11925 11926 11927
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

11945 11946 11947
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
11948
          # [1, 0, -1]
11949 11950
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134


def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output