nn.py 347.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24 25
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29 30
from .tensor import concat
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
65
    'sequence_unpad',
X
Xin Pan 已提交
66 67 68 69 70 71 72 73
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
74
    'sequence_slice',
X
Xin Pan 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
92
    'group_norm',
X
Xin Pan 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
106
    'roi_align',
X
Xin Pan 已提交
107 108 109 110
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
111
    'resize_nearest',
X
Xin Pan 已提交
112 113 114 115 116 117
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
118
    'selu',
X
Xin Pan 已提交
119 120 121
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
122
    'margin_rank_loss',
X
Xin Pan 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
166
    'space_to_depth',
W
whs 已提交
167
    'affine_grid',
S
sneaxiy 已提交
168
    'sequence_reverse',
169
    'affine_channel',
B
barrierye 已提交
170
    'similarity_focus',
M
minqiyang 已提交
171
    'hash',
D
dengkaipeng 已提交
172
    'grid_sampler',
G
gmcather 已提交
173 174
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
175
    'bilinear_tensor_product',
C
chengduo 已提交
176 177
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
178
    'lstm',
S
shippingwang 已提交
179
    'shuffle_channel',
S
sneaxiy 已提交
180
    'py_func',
181
    'psroi_pool',
M
minqiyang 已提交
182
    'huber_loss',
Y
Yu Yang 已提交
183 184
]

J
jerrywgz 已提交
185 186
kIgnoreIndex = -100

Y
Yu Yang 已提交
187 188 189 190 191 192 193

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
194
       is_test=False,
195
       name=None):
Y
Yu Yang 已提交
196
    """
197
    **Fully Connected Layer**
Y
Yu Yang 已提交
198

199 200 201 202 203 204 205 206
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
207
    to the output as well.
C
caoying03 已提交
208

C
caoying03 已提交
209
    This process can be formulated as follows:
210 211 212

    .. math::

213
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
214 215 216

    In the above equation:

C
caoying03 已提交
217 218 219 220
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
221
    * :math:`Act`: The activation function.
C
caoying03 已提交
222
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
223 224

    Args:
R
ranqiu 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
240 241
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
242
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
243
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
244
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
245

246
    Returns:
F
fengjiayi 已提交
247
        Variable: The transformation result.
248 249

    Raises:
C
caoying03 已提交
250
        ValueError: If rank of the input tensor is less than 2.
251 252 253 254

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
255
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
256
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
257
    """
C
caoying03 已提交
258

C
caoying03 已提交
259
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
260 261 262 263

    dtype = helper.input_dtype()

    mul_results = []
264 265
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
266 267 268
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
269

Y
Yu Yang 已提交
270
        w = helper.create_parameter(
271
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
272
        tmp = helper.create_variable_for_type_inference(dtype)
273
        helper.append_op(
274 275 276
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
277
            outputs={"Out": tmp},
M
mozga-intel 已提交
278 279
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
280 281 282 283
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
284
    else:
X
Xin Pan 已提交
285
        pre_bias = helper.create_variable_for_type_inference(dtype)
286
        helper.append_op(
287 288 289
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
290
            attrs={"use_mkldnn": False})
291 292 293 294
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
295 296


297 298 299
def embedding(input,
              size,
              is_sparse=False,
300
              is_distributed=False,
301 302 303
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
304
    """
305 306
    **Embedding Layer**

307
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
308 309
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
310 311 312

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
313 314

    Args:
315 316 317 318 319
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
320
        is_distributed(bool): Whether to run lookup table from remote parameter server.
321 322
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
323
            with zeros whenever lookup encounters it in :attr:`input`. If
324
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
325 326
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
327
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
328

329 330 331
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
332

333 334
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
335

C
chengduoZH 已提交
336
          dict_size = len(dataset.ids)
337
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
338
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
339 340 341
    """

    helper = LayerHelper('embedding', **locals())
342 343 344
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
345 346
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
347 348
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
349
    tmp = helper.create_variable_for_type_inference(dtype)
350 351
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
352 353 354 355 356
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
357 358 359
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
360
            'remote_prefetch': remote_prefetch,
361 362
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
363 364 365
    return tmp


W
wopeizl 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
382

W
wopeizl 已提交
383 384 385 386 387 388 389 390 391 392 393
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
394

W
wopeizl 已提交
395 396 397 398
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
399

W
wopeizl 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
486 487


P
phlrain 已提交
488 489 490 491 492 493
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
494
         dropout_prob=0.0,
P
phlrain 已提交
495 496 497 498 499
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
500
    """
P
phlrain 已提交
501
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
502 503

    A four-gate Long Short-Term Memory network with no peephole connections.
504
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
505 506
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
530

531
    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
L
liuhongyu 已提交
532 533 534 535 536
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
537
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
538 539 540 541 542
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
543
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
544 545
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
546 547
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
548 549 550 551 552 553
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
554
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
555

L
liuhongyu 已提交
556 557 558 559 560 561

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
562
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
563 564
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
565
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
581
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
582 583 584 585 586 587
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
588 589 590
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
650 651 652 653 654 655 656 657 658 659 660
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
661 662
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
663 664 665
    """
    **Dynamic LSTMP Layer**

666 667 668 669 670 671
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
672 673 674 675 676

    The formula is as follows:

    .. math::

677
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
678

679
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
680

681
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
682

683
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
684

685
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
686

687
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
688

689
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
690

Y
Yibing Liu 已提交
691 692 693 694 695 696
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
697
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
698
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
699
          bias vector).
Y
Yibing Liu 已提交
700 701 702
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
703
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
704
    * :math:`h`: The hidden state.
705
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
706 707
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
708
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
709
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
710
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
711 712
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
713 714 715 716

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
717

Y
Yibing Liu 已提交
718 719 720 721 722 723 724 725 726 727 728 729
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
730
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
731 732
                               hidden-hidden weight and projection weight.

733 734
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
735 736
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
737 738
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
739
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
740 741 742 743 744

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
745
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
746 747 748 749 750 751
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
752
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
753 754 755
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
756
                                - The shape is (1 x 7D).
C
chengduo 已提交
757 758 759 760 761

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
762 763 764 765 766 767 768 769 770
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
771
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
772 773
                              default "tanh".
        proj_activation(str): The activation for projection output.
774
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
775 776
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
777 778
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
779 780

    Returns:
781 782 783 784
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
785 786

    Examples:
787

Y
Yibing Liu 已提交
788 789
        .. code-block:: python

790 791 792 793
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
794
            hidden_dim, proj_dim = 512, 256
795
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
796
                                     act=None, bias_attr=None)
797 798 799
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
800 801 802 803
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
804
    """
805

C
chengduo 已提交
806
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
807
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
808
    size = size // 4
Y
Yibing Liu 已提交
809 810 811 812 813 814 815 816 817 818
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
819 820 821 822 823 824
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
853 854 855 856 857 858 859 860 861
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
862
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
863

864
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
865
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
866

G
guosheng 已提交
867 868 869 870 871 872 873 874 875
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
876

G
guosheng 已提交
877
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
878

G
guosheng 已提交
879
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
880 881
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
882 883 884 885
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
886
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
887 888

    Args:
889 890
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
891
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
892
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
893 894
            is the hidden size.
        size(int): The dimension of the gru cell.
895
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
896 897
            hidden-hidden weight matrix. Note:

898
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
899
              :math:`D` is the hidden size.
900
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
901
              The first part are weights of the update gate and reset gate with
902
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
903
              candidate hidden state with shape :math:`(D \\times D)`.
904 905 906 907 908

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
909
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
910
            the bias in the update gate, reset gate and candidate calculations.
911 912 913
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
914 915
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
916
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
917 918 919
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
920
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
921
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
922 923 924 925
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
926 927

    Returns:
G
guosheng 已提交
928
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
929
            and sequence length is the same with the input.
930

G
guosheng 已提交
931
    Examples:
932

G
guosheng 已提交
933 934
        .. code-block:: python

935 936 937 938
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
939
            hidden_dim = 512
940
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
941
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
942 943 944 945 946 947 948 949 950
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
951
    batch_size = input.shape[0]
G
guosheng 已提交
952
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
953
    if h_0:
G
guosheng 已提交
954
        assert h_0.shape == (
Y
Yancey 已提交
955 956 957
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
958

X
Xin Pan 已提交
959 960 961 962
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
981 982 983
def gru_unit(input,
             hidden,
             size,
984 985
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
986
             activation='tanh',
987
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
988
    """
989
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
990

991 992
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
993

994
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
995

996
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
997

998
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
999 1000

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1001 1002 1003
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1004 1005
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1006 1007
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1008 1009 1010
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1011 1012 1013

    Args:
        input (Variable): The fc transformed input value of current step.
1014
        hidden (Variable): The hidden value of gru unit from previous step.
1015
        size (integer): The input dimension value.
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1030
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1031
            the bias in the update gate, reset gate and candidate calculations.
1032 1033 1034
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1035 1036
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1037 1038 1039 1040
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1041

1042 1043 1044 1045 1046 1047
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1048

1049
             # assuming we have x_t_data and prev_hidden of size=10
1050
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1051 1052
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1065
    size = size // 3
Y
Yu Yang 已提交
1066 1067

    # create weight
1068 1069
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1070

X
Xin Pan 已提交
1071 1072 1073
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1074
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1075
    # create bias
1076
    if helper.bias_attr:
Y
Yu Yang 已提交
1077 1078 1079
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1080
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1081 1082 1083

    helper.append_op(
        type='gru_unit',
1084
        inputs=inputs,
Y
Yu Yang 已提交
1085 1086 1087 1088 1089 1090
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1091 1092
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1093 1094 1095 1096 1097
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1098
@templatedoc()
1099
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1100 1101 1102 1103 1104 1105 1106
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1107
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1108 1109 1110 1111
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1112 1113 1114
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1115 1116

    """
Y
Yu Yang 已提交
1117 1118 1119 1120 1121 1122
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1123 1124 1125 1126 1127 1128 1129 1130
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1146 1147 1148 1149
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1150

W
wopeizl 已提交
1151 1152
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1153

W
wopeizl 已提交
1154
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1155

W
wopeizl 已提交
1156
        label(${label_type}): ${label_comment}
1157

W
wopeizl 已提交
1158 1159
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1160

W
wopeizl 已提交
1161 1162
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1163

W
wopeizl 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1174
                "Transition": transition,
W
wopeizl 已提交
1175 1176
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1177

W
wopeizl 已提交
1178
    return viterbi_path
Y
Yu Yang 已提交
1179 1180


Y
yi.wu 已提交
1181
@templatedoc()
F
fengjiayi 已提交
1182
def cos_sim(X, Y):
Y
Yu Yang 已提交
1183
    """
Y
yi.wu 已提交
1184 1185 1186
    ${comment}

    Args:
1187 1188
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1189

Y
yi.wu 已提交
1190
    Returns:
1191
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1192
    """
F
fengjiayi 已提交
1193
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1194 1195 1196
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1207 1208 1209 1210 1211
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1212
            dropout_implementation="downgrade_in_infer"):
1213 1214 1215 1216 1217
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1218
    training. The dropout operator randomly sets (according to the given dropout
1219 1220 1221 1222
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1223 1224
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1225 1226 1227 1228 1229 1230 1231
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1243
                                           dropout op can be removed from the program.
P
phlrain 已提交
1244
                                           the program will be efficient
1245

P
phlrain 已提交
1246

1247 1248

    Returns:
1249
        Variable: A tensor variable is the shape with `x`.
1250 1251

    Examples:
1252

1253 1254
        .. code-block:: python

1255 1256
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1257 1258
    """

F
fengjiayi 已提交
1259
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1260 1261 1262
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1263 1264 1265 1266

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1267 1268 1269 1270 1271
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1272 1273 1274 1275
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1276 1277
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1278
        })
1279 1280 1281
    return out


J
jerrywgz 已提交
1282
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1283
    """
Y
Yibing Liu 已提交
1284 1285
    **Cross Entropy Layer**

1286 1287 1288
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1289 1290

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1291
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1292

Y
Yibing Liu 已提交
1293
        .. math::
Y
yangyaming 已提交
1294

Y
Yibing Liu 已提交
1295 1296 1297
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1298 1299
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1300 1301 1302 1303 1304

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1305
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1306 1307 1308
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1309 1310
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1311
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1312

Y
Yibing Liu 已提交
1313
    Args:
Y
yangyaming 已提交
1314
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1315 1316 1317 1318
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1319
        label (Variable|list): the ground truth which is a 2-D tensor. When
1320 1321 1322 1323
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1324
        soft_label (bool): a flag indicating whether to
1325
                                           interpretate the given labels as soft
1326
                                           labels. Default: `False`.
M
minqiyang 已提交
1327 1328
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1329
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1330 1331 1332 1333 1334

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1335 1336 1337 1338 1339
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1340 1341 1342 1343 1344 1345

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1346
    """
F
fengjiayi 已提交
1347
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1348
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1349 1350 1351 1352 1353
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1354 1355
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1356 1357 1358
    return out


F
frankwhzhang 已提交
1359
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1360 1361 1362
    """
    Bayesian Personalized Ranking Loss Operator.

1363
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1364 1365 1366 1367 1368 1369
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1370 1371 1372 1373 1374 1375
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1376 1377
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1378 1379 1380
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1381 1382 1383
    Examples:
        .. code-block:: python

1384
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1385
    """
1386 1387 1388 1389 1390 1391

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1392
                'Label': [label]},
1393 1394 1395 1396
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1397
def square_error_cost(input, label):
Y
Yu Yang 已提交
1398
    """
1399 1400
    **Square error cost layer**

1401 1402
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1417 1418
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1419 1420

    Returns:
G
guosheng 已提交
1421
        Variable: The tensor variable storing the element-wise squared error \
1422
                  difference of input and label.
1423 1424 1425 1426 1427 1428 1429 1430

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1431
    """
F
fengjiayi 已提交
1432
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1433
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1434 1435 1436 1437 1438 1439
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1440
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1441
    helper.append_op(
F
fengjiayi 已提交
1442 1443
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1444 1445 1446
    return square_out


Y
yi.wu 已提交
1447
@templatedoc()
Y
Yu Yang 已提交
1448 1449 1450 1451
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1452
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1453
    """
Y
yi.wu 已提交
1454
    **Chunk Evaluator**
Y
yi.wu 已提交
1455

Y
yangyaming 已提交
1456
    This function computes and outputs the precision, recall and
1457
    F1-score of chunk detection.
Y
yi.wu 已提交
1458

Y
yi.wu 已提交
1459 1460 1461 1462 1463 1464 1465 1466
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1467

Y
yi.wu 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1493

Y
yi.wu 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1518
    Args:
1519 1520 1521 1522 1523
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1524

Y
yi.wu 已提交
1525
    Returns:
Y
update  
yi.wu 已提交
1526 1527 1528
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1529

Y
yi.wu 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1542
    """
F
fengjiayi 已提交
1543
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1544 1545

    # prepare output
X
Xin Pan 已提交
1546 1547 1548 1549 1550 1551 1552
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1553 1554 1555 1556 1557 1558 1559 1560

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1561 1562 1563 1564
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1565 1566 1567
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1568 1569
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1570
        })
1571 1572
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1573 1574


1575
@templatedoc()
Y
Yu Yang 已提交
1576 1577 1578 1579 1580 1581 1582
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1583 1584
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1585 1586 1587 1588
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1589 1590 1591 1592 1593 1594 1595

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1609

1610 1611
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1612 1613 1614 1615 1616 1617 1618
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1619
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1630
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1631 1632 1633 1634 1635 1636
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1637
def sequence_softmax(input, use_cudnn=False, name=None):
1638 1639 1640
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1641
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1658 1659 1660
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1661

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1673 1674
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1675
    softmax_out = helper.create_variable_for_type_inference(dtype)
1676 1677 1678 1679 1680 1681 1682 1683
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1684
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1685
    """
1686
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1687
    has the same shape as the input.
Q
qiaolongfei 已提交
1688

1689 1690 1691 1692 1693 1694
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1695
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1696 1697 1698 1699 1700 1701 1702

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1703
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1704 1705 1706 1707 1708 1709 1710 1711

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1712 1713 1714
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1727 1728
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1729
    softmax_out = helper.create_variable_for_type_inference(dtype)
1730 1731 1732 1733 1734 1735 1736 1737
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1738 1739 1740
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1741 1742
           stride=1,
           padding=0,
1743
           dilation=1,
Y
Yu Yang 已提交
1744 1745 1746
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1747
           use_cudnn=True,
1748 1749
           act=None,
           name=None):
Y
Yu Yang 已提交
1750
    """
C
chengduoZH 已提交
1751
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1752 1753
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1754
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1755 1756 1757 1758 1759 1760 1761
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1762 1763 1764
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1765

1766
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1767

C
chengduoZH 已提交
1768 1769
    .. math::

C
refine  
chengduoZH 已提交
1770
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1771

T
tensor-tang 已提交
1772
    Where:
C
chengduoZH 已提交
1773

1774 1775 1776 1777 1778
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1779
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1780 1781 1782

    Example:

1783 1784
        - Input:

W
weixing02 已提交
1785
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1786

W
weixing02 已提交
1787
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1788

1789
        - Output:
T
tensor-tang 已提交
1790

W
weixing02 已提交
1791
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1792

C
chengduoZH 已提交
1793
        Where
1794 1795

        .. math::
C
chengduoZH 已提交
1796

W
weixing02 已提交
1797 1798
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1799 1800

    Args:
1801
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1802
        num_filters(int): The number of filter. It is as same as the output
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1831 1832
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1833 1834
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1835
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1836
            will be named automatically. Default: None
C
chengduoZH 已提交
1837 1838

    Returns:
G
guosheng 已提交
1839
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1840 1841
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1842
    Raises:
1843 1844
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1845

C
chengduoZH 已提交
1846 1847 1848
    Examples:
        .. code-block:: python

1849 1850
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1851 1852 1853
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1854
    assert param_attr is not False, "param_attr should not be False here."
1855
    l_type = 'conv2d'
X
xzl 已提交
1856 1857
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1858
        l_type = 'depthwise_conv2d'
1859 1860 1861 1862

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1863 1864 1865 1866 1867
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1868
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1869

C
chengduoZH 已提交
1870 1871 1872
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1873
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1874

C
chengduoZH 已提交
1875 1876
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1877 1878

    input_shape = input.shape
M
minqiyang 已提交
1879
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1880 1881

    def _get_default_param_initializer():
C
chengduo 已提交
1882 1883
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1884 1885 1886 1887 1888 1889 1890 1891
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1892
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1893

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1908
    helper.append_op(
1909
        type=l_type,
Y
Yu Yang 已提交
1910 1911 1912 1913 1914
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1915 1916 1917
        attrs={
            'strides': stride,
            'paddings': padding,
1918
            'dilations': dilation,
C
chengduoZH 已提交
1919
            'groups': groups,
1920
            'use_cudnn': use_cudnn,
1921
            'use_mkldnn': False,
C
chengduoZH 已提交
1922
        })
Y
Yu Yang 已提交
1923 1924 1925 1926 1927 1928

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1946 1947 1948 1949 1950 1951
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1961 1962
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1963 1964 1965
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1966
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1992
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1993 1994
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1995
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1996 1997
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1998
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1999 2000
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2001
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2002 2003 2004 2005 2006 2007
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2018 2019
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2020 2021
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2022
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2023
            will be named automatically. Default: None.
C
chengduoZH 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2036 2037
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2038 2039 2040
    """

    l_type = 'conv3d'
C
chengduo 已提交
2041
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2052
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2066 2067 2068
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2069 2070 2071 2072 2073 2074 2075 2076
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2077
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2092
            'use_mkldnn': False
C
chengduoZH 已提交
2093 2094
        })

2095
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2096 2097 2098 2099

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2100
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2101
    """
Y
yangyaming 已提交
2102 2103 2104
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2116
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2117 2118 2119 2120 2121
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2122
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2123 2124 2125 2126 2127 2128 2129

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2130 2131
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2132

L
Luo Tao 已提交
2133 2134
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2135
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2136
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2137
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2138 2139 2140 2141 2142 2143 2144

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2145

Y
yangyaming 已提交
2146
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2147 2148 2149 2150 2151
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2152 2153
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2154
    """
F
fengjiayi 已提交
2155
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2156
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2157 2158
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2159 2160 2161 2162 2163 2164

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2165 2166
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2167

Y
yangyaming 已提交
2168 2169 2170 2171 2172
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2173 2174 2175
    return pool_out


C
add doc  
chengduoZH 已提交
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2195
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2196 2197 2198 2199 2200
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2201
def sequence_first_step(input):
L
Luo Tao 已提交
2202
    """
L
Luo Tao 已提交
2203
    This function gets the first step of sequence.
L
Luo Tao 已提交
2204 2205 2206 2207

    .. code-block:: text

       x is a 1-level LoDTensor:
2208
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2209 2210 2211 2212 2213
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2214
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2215
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2216

L
Luo Tao 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2226

Y
yangyaming 已提交
2227
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2228 2229 2230
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2231 2232 2233
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2234
def sequence_last_step(input):
L
Luo Tao 已提交
2235
    """
L
Luo Tao 已提交
2236
    This function gets the last step of sequence.
L
Luo Tao 已提交
2237 2238 2239 2240

    .. code-block:: text

       x is a 1-level LoDTensor:
2241
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2242 2243 2244 2245 2246
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2247
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2248
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2249

L
Luo Tao 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2259

Y
yangyaming 已提交
2260
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2261 2262 2263
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2264 2265 2266
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2267 2268 2269 2270
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2271
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2272 2273 2274 2275 2276
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2277

Y
Yibing Liu 已提交
2278 2279
	- Case:

2280
            Given the input Variable **input**:
2281

2282 2283 2284
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2285

2286
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2287

2288
            the output Variable will be
2289

2290 2291 2292
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2293 2294

    NOTE: The first dimension size of **input**, **offset** and **length**
2295
          should be equal. The **offset** should start from 0.
2296

Y
Yibing Liu 已提交
2297
    Args:
2298
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2299
                         sequences.
Y
Yibing Liu 已提交
2300 2301 2302 2303 2304 2305
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2306
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2317
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2318 2319 2320 2321
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2322
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2337
@templatedoc()
Y
Yu Yang 已提交
2338
def pool2d(input,
C
chengduoZH 已提交
2339 2340
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2341 2342
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2343
           global_pooling=False,
C
chengduoZH 已提交
2344
           use_cudnn=True,
2345
           ceil_mode=False,
2346 2347
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2348
    """
F
fengjiayi 已提交
2349
    ${comment}
2350 2351

    Args:
2352 2353 2354
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2355
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2356
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2357 2358
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2359
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2360 2361 2362 2363 2364 2365
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2366 2367 2368
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2369
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2370
                        layer will be named automatically.
2371
        exclusive (bool): Whether to exclude padding points in average pooling
2372
                          mode, default is true
F
fengjiayi 已提交
2373

2374
    Returns:
F
fengjiayi 已提交
2375
        Variable: The pooling result.
F
fengjiayi 已提交
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2389 2390 2391 2392
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2393
                            global_pooling=False)
Y
Yu Yang 已提交
2394 2395 2396 2397 2398
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2399

C
chengduoZH 已提交
2400 2401 2402 2403 2404
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2405 2406 2407 2408
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2409 2410
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2411

C
Add doc  
chengduoZH 已提交
2412
    l_type = 'pool2d'
2413 2414

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2415
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2416
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2417 2418

    helper.append_op(
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2430 2431
            "use_mkldnn": False,
            "exclusive": exclusive,
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2445 2446
           name=None,
           exclusive=True):
2447 2448
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2449
    pooling configurations mentioned in input parameters.
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2462
        exclusive (bool): Whether to exclude padding points in average pooling
2463
                          mode, default is true
2464

2465
    Returns:
2466
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2467 2468 2469 2470 2471
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2472

C
chengduoZH 已提交
2473 2474 2475 2476 2477
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2478 2479 2480
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2481

C
chengduoZH 已提交
2482 2483
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2484

2485 2486
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2487
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2488
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2489 2490

    helper.append_op(
2491
        type=l_type,
Y
Yu Yang 已提交
2492 2493 2494 2495 2496 2497 2498
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2499
            "paddings": pool_padding,
2500
            "use_cudnn": use_cudnn,
2501
            "ceil_mode": ceil_mode,
2502 2503
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2504 2505 2506 2507 2508
        })

    return pool_out


2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n], 
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
          # of input data into m * n grids averagely and performs poolings in each 
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          # 
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2556 2557
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2558
          pool_out = fluid.layers.adaptive_pool2d(
2559 2560
                            input=data,
                            pool_size=[3, 3],
2561
                            pool_type='avg')
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 2:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 2.")

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2603
    return (pool_out, mask) if require_index else pool_out
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
          # of input data into l * m * n grids averagely and performs poolings in each 
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          # 
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] = 
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2657 2658
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2659
          pool_out, mask = fluid.layers.adaptive_pool3d(
2660 2661
                            input=data,
                            pool_size=[3, 3],
2662
                            pool_type='avg')
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 3:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 3.")

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2704
    return (pool_out, mask) if require_index else pool_out
2705 2706


Y
Yu Yang 已提交
2707 2708 2709 2710 2711 2712 2713
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2714
               data_layout='NCHW',
Y
Yang Yang 已提交
2715
               in_place=False,
2716 2717
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2718
               moving_variance_name=None,
2719
               do_model_average_for_mean_and_var=False,
2720 2721
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2722
    """
Q
qiaolongfei 已提交
2723 2724 2725 2726
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2727

Q
qiaolongfei 已提交
2728
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2729

Q
qiaolongfei 已提交
2730 2731
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2732 2733 2734
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2747

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2761
    Args:
Q
qiaolongfei 已提交
2762
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2763 2764 2765 2766
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2767 2768 2769 2770 2771 2772 2773 2774
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2775
        data_layout(string, default NCHW): NCHW|NHWC
2776
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2777 2778 2779 2780
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2781
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2782
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2783 2784 2785 2786 2787
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2788 2789

    Returns:
Q
qiaolongfei 已提交
2790
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2791 2792 2793 2794 2795 2796 2797

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2798
    """
C
chengduo 已提交
2799
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2820 2821 2822
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2823 2824

    bias = helper.create_parameter(
2825
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2826 2827 2828
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2829

2830 2831
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2832 2833 2834
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2835
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2836
        shape=param_shape,
2837 2838 2839 2840 2841 2842 2843
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2844
            trainable=False,
W
wanghaoshuang 已提交
2845
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2846
        shape=param_shape,
2847 2848
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2849 2850 2851 2852 2853 2854

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2855 2856 2857 2858
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2859

X
Xin Pan 已提交
2860 2861
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2879 2880 2881 2882
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2883
            "use_mkldnn": False,
2884 2885
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2886
        })
Y
Yu Yang 已提交
2887 2888 2889 2890

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2891
@templatedoc()
G
guosheng 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2902
    ${comment}
G
guosheng 已提交
2903 2904 2905

    The formula is as follows:

Y
yuyang18 已提交
2906
    ..  math::
G
guosheng 已提交
2907 2908 2909 2910 2911 2912 2913

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2914 2915 2916 2917 2918 2919 2920 2921
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2922

G
guosheng 已提交
2923 2924
    Args:
        input(Variable): The input tensor variable.
2925
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2926
            normalization. Default True.
2927
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2928 2929
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2930
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2931
            Default 1.
2932
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2933
            division by zero. Default 1e-05.
G
guosheng 已提交
2934
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2935 2936
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2937 2938
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2939
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2940 2941
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2942
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2943
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2944
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2945 2946 2947
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2948 2949

    Returns:
Y
yuyang18 已提交
2950
        ${y_comment}
G
guosheng 已提交
2951 2952 2953

    Examples:

Y
yuyang18 已提交
2954 2955 2956
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2972
    if shift:
G
guosheng 已提交
2973 2974 2975 2976 2977 2978
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2979 2980 2981 2982 2983
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3077 3078 3079 3080
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3081 3082 3083
                     padding=0,
                     stride=1,
                     dilation=1,
3084
                     groups=None,
C
caoying03 已提交
3085
                     param_attr=None,
3086
                     bias_attr=None,
C
chengduoZH 已提交
3087
                     use_cudnn=True,
3088
                     act=None,
C
caoying03 已提交
3089
                     name=None):
Y
Yu Yang 已提交
3090
    """
3091 3092 3093 3094 3095 3096 3097 3098
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3099 3100
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3101 3102 3103
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3104 3105 3106 3107 3108

    For each input :math:`X`, the equation is:

    .. math::

3109
        Out = \sigma (W \\ast X + b)
3110

3111
    Where:
3112 3113 3114

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3115 3116 3117 3118
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3119

3120 3121 3122 3123
    Example:

        - Input:

3124
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3125

3126
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3127 3128 3129

        - Output:

3130
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3131 3132

        Where
Y
Yu Yang 已提交
3133

3134 3135
        .. math::

3136 3137 3138 3139
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3140 3141

    Args:
3142 3143 3144 3145
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3146 3147 3148 3149
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3178
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3179 3180 3181
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3182
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3183
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3184 3185

    Returns:
3186
        Variable: The tensor variable storing the convolution transpose result.
3187 3188

    Raises:
3189 3190
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3191 3192 3193 3194

    Examples:
       .. code-block:: python

3195 3196
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3197
    """
C
chengduo 已提交
3198
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3199 3200 3201 3202 3203 3204 3205 3206
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3207 3208 3209
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3210 3211 3212
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3213

C
chengduoZH 已提交
3214 3215
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3216

Y
Yu Yang 已提交
3217 3218 3219 3220 3221
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3222

Y
Yu Yang 已提交
3223 3224
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3225

C
chengduoZH 已提交
3226
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3227
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3228
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3229
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3230
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3231 3232 3233
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3234

3235 3236 3237 3238 3239 3240 3241
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3242
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3243
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3244

Y
Yu Yang 已提交
3245 3246 3247
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3248
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3249
    helper.append_op(
3250
        type=op_type,
Y
Yu Yang 已提交
3251 3252
        inputs={'Input': [input],
                'Filter': [img_filter]},
3253
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3254
        attrs={
3255
            'output_size': output_size,
3256 3257 3258 3259 3260
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3261 3262
        })

3263 3264 3265
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3266 3267


3268
def conv3d_transpose(input,
Y
Yu Yang 已提交
3269 3270 3271
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3272 3273 3274
                     padding=0,
                     stride=1,
                     dilation=1,
3275
                     groups=None,
C
caoying03 已提交
3276
                     param_attr=None,
3277
                     bias_attr=None,
C
chengduoZH 已提交
3278
                     use_cudnn=True,
3279
                     act=None,
C
caoying03 已提交
3280
                     name=None):
Y
Yu Yang 已提交
3281
    """
3282
    **Convlution3D transpose layer**
3283

3284
    The convolution3D transpose layer calculates the output based on the input,
3285
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3286 3287 3288 3289 3290 3291
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3292 3293 3294
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3295 3296 3297 3298 3299

    For each input :math:`X`, the equation is:

    .. math::

3300
        Out = \sigma (W \\ast X + b)
3301 3302 3303

    In the above equation:

3304 3305
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3306 3307 3308 3309
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3310

3311 3312 3313 3314
    Example:

        - Input:

3315
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3316

3317
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3318 3319 3320

        - Output:

3321
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3322 3323

        Where
Y
Yu Yang 已提交
3324

3325 3326
        .. math::

3327 3328 3329
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3330 3331

    Args:
3332
        input(Variable): The input image with [N, C, D, H, W] format.
3333 3334 3335
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3336
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3337 3338
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3339
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3340 3341 3342
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3343 3344
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3345
        stride(int|tuple): The stride size. If stride is a tuple, it must
3346 3347
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3348
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3349 3350 3351
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3352 3353 3354 3355 3356
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3357 3358 3359 3360 3361 3362 3363 3364 3365
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3366 3367
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3368 3369
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3370 3371
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3372 3373

    Returns:
3374
        Variable: The tensor variable storing the convolution transpose result.
3375 3376

    Raises:
3377 3378
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3379 3380 3381 3382

    Examples:
       .. code-block:: python

3383 3384
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3385
    """
C
chengduo 已提交
3386
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3387 3388
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3389
    if not isinstance(input, Variable):
3390
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3391 3392
    input_channel = input.shape[1]

3393 3394 3395
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3396

C
chengduoZH 已提交
3397 3398 3399
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3400 3401 3402 3403 3404 3405
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3406 3407 3408
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3409

3410
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3411
                         padding[0] - 1) // dilation[0] + 1
3412
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3413
                         padding[1] - 1) // dilation[1] + 1
3414
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3415
                         padding[2] - 1) // dilation[2] + 1
3416
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3417
    else:
3418 3419
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3420

3421
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3422
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3423 3424 3425
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3426
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3427
    helper.append_op(
3428
        type=l_type,
Y
Yu Yang 已提交
3429 3430
        inputs={'Input': [input],
                'Filter': [img_filter]},
3431
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3432 3433 3434 3435
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3436
            'groups': groups,
C
chengduoZH 已提交
3437 3438
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3439

3440 3441
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3442
    return out
Y
yangyaming 已提交
3443 3444


Y
yangyaming 已提交
3445
def sequence_expand(x, y, ref_level=-1, name=None):
3446
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3447 3448 3449 3450
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3451 3452 3453 3454 3455

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3456
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3457
                x.data = [[a], [b], [c], [d]]
3458 3459 3460
                x.dims = [4, 1]

            y is a LoDTensor:
3461 3462
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3463

Y
yangyaming 已提交
3464
            ref_level: 0
3465

Y
yangyaming 已提交
3466
            then output is a 1-level LoDTensor:
3467
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3468
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3469 3470 3471 3472
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3473
                x.data = [[a], [b], [c]]
3474 3475 3476
                x.dims = [3, 1]

            y is a LoDTensor:
3477
                y.lod = [[2, 0, 3]]
3478

Y
yangyaming 已提交
3479
            ref_level: -1
3480

Y
yangyaming 已提交
3481 3482 3483
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3484 3485 3486
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3487 3488
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3489
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3490
                        will be named automatically.
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3501
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3502
    """
Y
yangyaming 已提交
3503
    helper = LayerHelper('sequence_expand', input=x, **locals())
3504
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3505
    tmp = helper.create_variable_for_type_inference(dtype)
3506
    helper.append_op(
Y
yangyaming 已提交
3507 3508 3509 3510 3511
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3512
    return tmp
3513 3514


C
chengduo 已提交
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3571
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3572 3573 3574 3575 3576 3577 3578 3579
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3580
@templatedoc()
3581
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3582 3583 3584 3585 3586
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3587 3588 3589
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3590
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3591 3592 3593 3594
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3595 3596 3597
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3598

F
fengjiayi 已提交
3599
    Returns:
M
minqiyang 已提交
3600
        Variable: The padded sequence batch and the original lengths before
3601
                  padding. All sequences has the same length.
M
minqiyang 已提交
3602

F
fengjiayi 已提交
3603 3604 3605 3606 3607 3608 3609
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3610
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3611
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3612 3613 3614 3615 3616
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3617 3618
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3619 3620 3621 3622

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3623 3624 3625 3626 3627 3628
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3629 3630
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3631
        attrs={'padded_length': maxlen})
3632
    return out, length
F
fengjiayi 已提交
3633 3634


3635
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3636
    """
3637
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3638

3639 3640
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3641 3642 3643 3644 3645 3646 3647 3648 3649
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3650 3651 3652
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3653
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3654 3655 3656 3657 3658 3659

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3660
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3661 3662 3663 3664 3665 3666

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3667 3668
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3683
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3695 3696 3697 3698 3699 3700 3701 3702 3703
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3704 3705
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3706 3707 3708

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3709 3710

    This layer does the search in beams for one time step. Specifically, it
3711 3712 3713 3714 3715 3716
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3717

3718 3719 3720 3721 3722 3723 3724 3725
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3726

3727
    Args:
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3753

3754
    Returns:
3755 3756
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3757 3758 3759 3760

    Examples:
        .. code-block:: python

3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3778 3779 3780 3781
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3782 3783 3784
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3785 3786 3787 3788 3789

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3790
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3808 3809 3810 3811 3812 3813 3814
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3815

3816 3817 3818 3819 3820 3821 3822 3823 3824
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3825

3826 3827 3828 3829 3830 3831
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3832

3833 3834
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3835

3836 3837 3838 3839 3840 3841
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3842 3843
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3859 3860 3861 3862
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3863
              param_attr=None,
C
caoying03 已提交
3864 3865
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3866 3867 3868 3869
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3870
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3871

3872
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3873

3874
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3875

3876
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3877 3878 3879

            h_t & = o_t tanh(c_t)

3880 3881 3882 3883 3884 3885
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3886 3887 3888

        .. math::

3889
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3890 3891 3892 3893 3894 3895 3896 3897

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3898
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3899 3900

    Args:
Y
yangyaming 已提交
3901 3902 3903 3904 3905 3906
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3907
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3920 3921
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3922 3923

    Returns:
Y
yangyaming 已提交
3924
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3925 3926

    Raises:
3927 3928 3929 3930
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3931 3932 3933 3934 3935 3936

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3937
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3938
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3939
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3956
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3957 3958 3959 3960
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3961 3962
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3963 3964 3965
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3966
    size = cell_t_prev.shape[1]
3967
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3968 3969
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3970
                param_attr=param_attr,
3971
                bias_attr=bias_attr)
Y
yangyaming 已提交
3972
    dtype = x_t.dtype
X
Xin Pan 已提交
3973 3974
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3975 3976 3977 3978 3979 3980 3981 3982 3983

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3984
    return h, c
G
guosheng 已提交
3985 3986


C
caoying03 已提交
3987
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3988
    """
Y
yangyaming 已提交
3989
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3990 3991 3992

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3993
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3994 3995
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3996 3997
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3998
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3999
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4000
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4001 4002
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4003 4004 4005

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4006

G
guosheng 已提交
4007 4008 4009 4010 4011 4012
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4013
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4014 4015 4016 4017
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4018 4019 4020 4021

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4022
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4023 4024 4025
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4026 4027
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4028
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4029 4030
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4031 4032 4033 4034 4035
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4036
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4037 4038 4039 4040
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4041 4042


C
caoying03 已提交
4043
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4044
    """
Y
Yibing Liu 已提交
4045
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4046 4047 4048

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4049 4050 4051
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4052
            must be in the range :math:`[-rank(input), rank(input))`. If
4053
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4054
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4055 4056
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4057
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4058
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4059
                       will be named automatically.
G
guosheng 已提交
4060 4061

    Returns:
Y
Yibing Liu 已提交
4062
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4063

G
guosheng 已提交
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4074 4075
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4076 4077 4078 4079 4080 4081 4082

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4083 4084
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4085
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4086 4087
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4088 4089 4090 4091 4092
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4093
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4094 4095 4096 4097
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4098 4099


C
caoying03 已提交
4100
def reduce_max(input, dim=None, keep_dim=False, name=None):
4101
    """
Y
yangyaming 已提交
4102
    Computes the maximum of tensor elements over the given dimension.
4103 4104 4105

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4106
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4107 4108 4109
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4110
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4111 4112
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4113
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4114 4115
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4116 4117 4118

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4119

4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4131 4132 4133 4134 4135 4136 4137

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4138 4139
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4140
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4141 4142
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4143 4144 4145 4146 4147
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4148
            'dim': dim if dim != None else [0],
4149 4150 4151 4152 4153 4154
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4155
def reduce_min(input, dim=None, keep_dim=False, name=None):
4156
    """
Y
yangyaming 已提交
4157
    Computes the minimum of tensor elements over the given dimension.
4158 4159 4160

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4161
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4162 4163 4164
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4165
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4166 4167
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4168
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4169 4170
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4171 4172 4173

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4174

4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4186 4187 4188 4189 4190 4191 4192

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4193 4194
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4195
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4196 4197
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4198 4199 4200 4201 4202
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4203
            'dim': dim if dim != None else [0],
4204 4205 4206 4207
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4208 4209


4210 4211 4212 4213 4214 4215
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4216
        dim (list|int|None): The dimensions along which the product is performed. If
4217 4218
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4219 4220
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4221 4222 4223
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4224
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4225
            layer will be named automatically.
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4240
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4241
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4242 4243 4244 4245 4246 4247 4248

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4249 4250
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4251
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4252 4253
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4254 4255 4256 4257 4258
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4259
            'dim': dim if dim != None else [0],
4260 4261 4262 4263 4264 4265
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4266
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4267
    """
C
caoying03 已提交
4268
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4269 4270 4271

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4272 4273 4274 4275 4276
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4277
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4278
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4279
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4280 4281
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4282 4283

    Returns:
D
dzhwinter 已提交
4284
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4294 4295
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4311
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4325 4326 4327 4328 4329 4330 4331 4332 4333


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4334
    .. math::
4335 4336

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4337 4338 4339 4340 4341

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4342
        x(Variable|list): The input tensor to l2_normalize layer.
4343
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4344 4345
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4346
        epsilon(float): The epsilon value is used to avoid division by zero, \
4347
            the defalut value is 1e-10.
4348
        name(str|None): A name for this layer(optional). If set None, the layer \
4349
            will be named automatically.
C
caoying03 已提交
4350 4351

    Returns:
4352
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4353 4354

    Examples:
4355

C
caoying03 已提交
4356 4357
        .. code-block:: python

4358 4359 4360 4361
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4362 4363
    """

F
fengjiayi 已提交
4364 4365
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4366 4367
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4368 4369
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4370
    helper.append_op(
4371 4372 4373 4374
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4375
        attrs={
4376 4377
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4378 4379
        })
    return out
4380 4381


S
sneaxiy 已提交
4382
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4383
    """
Y
ying 已提交
4384 4385 4386 4387
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4388

C
chengduoZH 已提交
4389
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4390
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4391

4392 4393 4394 4395 4396
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4397
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4398

C
chengduoZH 已提交
4399
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4400
      performs in the following way.
G
guosheng 已提交
4401

4402
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4403
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4404
        last two dimensions and a batched matrix multiply supporting broadcast
4405
        applies on the two tensors.
G
guosheng 已提交
4406

Y
ying 已提交
4407 4408
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4409
    removed after matrix multiplication.
G
guosheng 已提交
4410 4411 4412

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4413 4414 4415
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4416
        alpha (float): The scale of output. Default 1.0.
4417
        name(str|None): A name for this layer(optional). If set None, the layer
4418
            will be named automatically.
G
guosheng 已提交
4419 4420

    Returns:
4421
        Variable: The product Tensor variable.
G
guosheng 已提交
4422

G
guosheng 已提交
4423 4424 4425
    Examples:
        .. code-block:: python

4426
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4427 4428
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4429

4430 4431
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4432

4433 4434
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4435

4436 4437
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4438 4439 4440 4441

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4442 4443
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4444

Y
ying 已提交
4445
            # x: [M], y: [N]
4446
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4447
    """
Y
ying 已提交
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4460
            y_shape = y_shape + [1]
Y
ying 已提交
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4477
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4478
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4479
    helper.append_op(
4480 4481 4482 4483
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4484 4485 4486
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4487
            'alpha': float(alpha),
S
sneaxiy 已提交
4488
        })
4489
    return out
4490 4491


4492
def topk(input, k, name=None):
Q
qingqing01 已提交
4493 4494 4495 4496
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4497
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4498 4499 4500 4501 4502 4503
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4525 4526 4527
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4528
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4529
                 of input.
4530
        name(str|None): A name for this layer(optional). If set None, the layer
4531
                       will be named automatically.
F
fengjiayi 已提交
4532
                       Default: None
Q
qingqing01 已提交
4533 4534

    Returns:
4535 4536 4537
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4538
        within the last dimension of input.
Q
qingqing01 已提交
4539

F
fengjiayi 已提交
4540 4541
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4542 4543 4544 4545 4546 4547 4548

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4549 4550
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4562
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4563
    """
Y
ying 已提交
4564 4565 4566 4567 4568 4569 4570 4571 4572
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4573

Y
ying 已提交
4574
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4575

4576
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4577 4578
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4579
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4580

4581
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4582 4583
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4584

4585 4586 4587
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4588
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4589
                          the length of reference string.
4590
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4591
                                     calculating edit distance.
4592
        name (str): The name of this layer. It is optional.
4593

W
wanghaoshuang 已提交
4594
    Returns:
W
wanghaoshuang 已提交
4595
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4596 4597 4598 4599

    Examples:
        .. code-block:: python

T
tink2123 已提交
4600 4601
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4602
            cost = fluid.layers.edit_distance(input=x,label=y)
4603
    """
4604
    helper = LayerHelper("edit_distance", **locals())
4605

4606
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4607
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4608 4609
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4610 4611 4612 4613 4614

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4615
            attrs={"tokens": ignored_tokens})
4616 4617 4618 4619 4620
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4621
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4622
            attrs={"tokens": ignored_tokens})
4623 4624
        label = erased_label

4625
    # edit distance op
X
Xin Pan 已提交
4626 4627
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4628 4629 4630 4631
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4632 4633
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4634 4635
        attrs={"normalized": normalized})

4636
    return edit_distance_out, sequence_num
4637 4638 4639 4640 4641


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4642

Y
ying 已提交
4643 4644 4645 4646
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4664
        input.lod = [[4, 4]]
4665

W
whs 已提交
4666
        Computation:
4667

W
whs 已提交
4668 4669 4670 4671 4672 4673
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4674 4675 4676 4677 4678

        output.data = [[2],
                       [1],
                       [3]]

4679
        output.lod = [[2, 1]]
4680

W
whs 已提交
4681

4682 4683
    Args:

Y
ying 已提交
4684 4685 4686 4687 4688 4689 4690 4691 4692
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4693
        name (str): The name of this layer. It is optional.
4694 4695

    Returns:
W
whs 已提交
4696 4697
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
4698
                  in result were empty, the result LoDTensor will be [-1] with
W
whs 已提交
4699
                  LoD [[]] and dims [1, 1].
4700 4701 4702 4703 4704

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4705

4706
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4707
    """
4708
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4709
    _, topk_indices = topk(input, k=1)
4710 4711

    # ctc align op
X
Xin Pan 已提交
4712
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4713 4714 4715
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4716
        outputs={"Output": [ctc_out]},
4717 4718
        attrs={"merge_repeated": True,
               "blank": blank})
4719
    return ctc_out
4720 4721


W
Wu Yi 已提交
4722
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4723
    """
4724 4725
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4726
    to compute Connectionist Temporal Classification (CTC) loss.
4727 4728
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4729 4730 4731
    input tensor.

    Args:
4732
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4733 4734 4735 4736
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4737
       label (Variable): The ground truth of variable-length sequence,
4738 4739 4740
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4741 4742
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4743 4744 4745
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4746
         follewed by a mean_op.
W
Wu Yi 已提交
4747
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4748 4749

    Returns:
4750 4751
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4752 4753

    Examples:
4754

W
wanghaoshuang 已提交
4755
        .. code-block:: python
4756

4757 4758 4759
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4760 4761

    """
F
fengjiayi 已提交
4762
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4763 4764
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4765 4766 4767 4768 4769 4770
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4771 4772 4773 4774 4775
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4776
    return loss_out
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4792 4793 4794
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4795 4796 4797 4798 4799
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4800

4801
            out.lod  = [[0, 1, 3]]
4802 4803 4804 4805

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4806 4807 4808 4809 4810 4811 4812
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4813 4814 4815

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4816 4817

    Returns:
4818

4819 4820 4821 4822 4823
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4824
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4825
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4826 4827
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4828
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4829 4830 4831 4832 4833 4834
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4835 4836


4837 4838 4839 4840
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4841 4842 4843 4844 4845 4846
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4847
        num_neg_samples=None,
4848 4849 4850
        name=None,
        sampler="uniform",
        custom_dist=None,
4851 4852
        seed=0,
        is_sparse=False):
4853 4854 4855 4856 4857 4858 4859
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4860 4861
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4862
            sample is 1.0.
C
chengduo 已提交
4863 4864 4865 4866 4867 4868 4869 4870 4871
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4872
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4873 4874
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4875 4876 4877
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4878
        custom_dist (float[]): A float[] with size=num_total_classes.
4879 4880 4881 4882
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4883
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4884

4885
    Returns:
Y
Yibing Liu 已提交
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4913 4914 4915 4916 4917 4918 4919 4920 4921

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4922

4923
    """
Y
Yang Yu 已提交
4924 4925 4926
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4927 4928

    dim = input.shape[1]
Y
Yang Yu 已提交
4929 4930 4931 4932 4933 4934
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4935
    inputs = {}
C
chengduo 已提交
4936 4937 4938 4939 4940 4941 4942
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4943 4944 4945
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4946

4947 4948 4949 4950
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4951 4952 4953 4954 4955 4956 4957

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
5010 5011 5012 5013
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5014 5015 5016 5017 5018
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
5019 5020
    attrs = {
        'num_total_classes': int(num_total_classes),
5021 5022
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5023 5024
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
5025
    }
Y
Yang Yu 已提交
5026 5027 5028

    helper.append_op(
        type='nce',
C
chengduo 已提交
5029
        inputs=inputs,
Y
Yang Yu 已提交
5030 5031 5032 5033 5034 5035
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5036
    return cost / (num_neg_samples + 1)
5037 5038


C
chengduo 已提交
5039 5040
def hsigmoid(input,
             label,
5041
             num_classes,
C
chengduo 已提交
5042 5043
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5044
             name=None,
5045 5046 5047
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5048
             is_sparse=False):
W
weixing02 已提交
5049 5050
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5051
    process of language model. This operator organizes the classes into a
5052
    complete binary tree, or you can use is_custom to pass your own tree to
5053
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5054 5055 5056 5057 5058 5059
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5060
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5061
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5062

5063 5064 5065 5066 5067
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
5068
        4. now, each word should has its path and code along the path, you can pass a batch of path and code
5069 5070 5071
        related to the same batch of inputs.


W
weixing02 已提交
5072
    Args:
M
minqiyang 已提交
5073
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5074 5075 5076 5077
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
5078 5079
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5080
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5092
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5093
            it should be in leaf -> root order
5094 5095 5096
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5097
            each code consist with every code of parent nodes. it should be in leaf -> root order
5098
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5099
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
5100
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5101
             of W and input will be sparse.
W
weixing02 已提交
5102 5103

    Returns:
J
JiabinYang 已提交
5104
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5105 5106 5107 5108 5109

    Examples:

        .. code-block:: python

G
guosheng 已提交
5110 5111 5112
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5113 5114 5115 5116
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5117 5118
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5119
    dim = input.shape[1]
5120
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5121 5122 5123
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5124 5125 5126 5127
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5128 5129
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5130 5131 5132
    else:
        pass

J
JiabinYang 已提交
5133 5134
    weights = None

5135
    if not is_custom:
J
JiabinYang 已提交
5136 5137 5138 5139 5140 5141 5142 5143
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5144
            shape=[num_classes, dim],
J
JiabinYang 已提交
5145 5146
            is_bias=False,
            dtype=input.dtype)
5147 5148 5149
    inputs = {
        "X": input,
        "W": weights,
5150 5151
        "PTable": path_table,
        "PathCode": path_code,
5152 5153
        "Label": label
    }
W
weixing02 已提交
5154
    if helper.bias_attr:
5155
        if not is_custom:
J
JiabinYang 已提交
5156 5157
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5158
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5159 5160 5161 5162 5163 5164
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5165
                shape=[num_classes, 1],
J
JiabinYang 已提交
5166 5167 5168
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5169 5170
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5171
        inputs=inputs,
W
weixing02 已提交
5172 5173
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
5174 5175
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
5176 5177 5178
    return out


Y
fix ci.  
ying 已提交
5179
def transpose(x, perm, name=None):
Y
ying 已提交
5180 5181 5182 5183 5184 5185 5186
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5187 5188 5189
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5190 5191 5192 5193 5194 5195 5196

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5197
            # use append_batch_size=False to avoid prepending extra
5198
            # batch size in shape
5199
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5200
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5201
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5202 5203
    """

Y
fix ci.  
ying 已提交
5204
    if len(perm) != len(x.shape):
Y
ying 已提交
5205 5206 5207
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5208 5209 5210 5211 5212 5213
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5214 5215

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5216 5217
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5218
    helper.append_op(
5219
        type='transpose2',
Y
fix ci.  
ying 已提交
5220
        inputs={'X': [x]},
5221 5222
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5223 5224
        attrs={'axis': perm})
    return out
5225 5226


5227 5228 5229 5230 5231 5232 5233
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5234
    """
5235 5236 5237 5238 5239 5240 5241
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5270 5271 5272 5273 5274 5275 5276 5277 5278
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5279 5280 5281
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5282 5283 5284 5285 5286
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5314 5315 5316
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5329
            output.dims = {8, 8}
5330

5331
            output.lod = [[4, 4]]
5332

T
Tink_Y 已提交
5333
    Examples:
5334 5335 5336

        .. code-block:: python

5337 5338
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5339 5340

    """
W
wanghaoshuang 已提交
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5351 5352 5353 5354 5355 5356 5357
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5358
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5359
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5360
    helper.append_op(
5361
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5362
    return out
5363 5364


Y
yuyang18 已提交
5365
@templatedoc()
5366
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5367 5368
    """
    ${comment}
5369 5370

    Args:
Y
yuyang18 已提交
5371
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5372 5373
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5374 5375 5376 5377 5378
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5379
        ${out_comment}.
5380 5381

    Examples:
Y
yuyang18 已提交
5382 5383 5384 5385
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5386 5387 5388 5389 5390 5391
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5392
    out = helper.create_variable_for_type_inference(dtype)
5393 5394 5395 5396 5397
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5398
    return helper.append_activation(out)
5399 5400


Y
yuyang18 已提交
5401
@templatedoc()
5402 5403
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5404 5405 5406 5407 5408 5409 5410
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5411 5412

    Args:
Y
yuyang18 已提交
5413 5414
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5415 5416

    Returns:
Y
yuyang18 已提交
5417
        ${out_comment}.
5418 5419
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5420 5421 5422 5423 5424

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5425
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5426 5427 5428 5429 5430 5431
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5432 5433


5434 5435 5436
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5437
                               ignore_index=kIgnoreIndex,
5438 5439
                               numeric_stable_mode=False,
                               return_softmax=False):
5440 5441
    """
    **Softmax With Cross Entropy Operator.**
5442

5443 5444 5445 5446
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5447

5448 5449 5450
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5451

5452 5453 5454
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5455

5456
    The equation is as follows:
5457

5458
    1) Hard label (one-hot label, so every sample has exactly one class)
5459

5460 5461 5462 5463
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5464

5465 5466 5467
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5468

5469 5470 5471 5472
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5473 5474 5475
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5476

S
sneaxiy 已提交
5477 5478 5479 5480 5481 5482 5483 5484
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5485 5486 5487 5488 5489 5490 5491 5492
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5493 5494
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5495
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5496 5497 5498
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5499 5500 5501
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5502
                                    stable algorithm. Default: False
5503
        return_softmax (bool): A flag indicating whether to return the softmax
5504
                               along with the cross entropy loss. Default: False
5505

5506
    Returns:
5507 5508 5509 5510
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5511
                              2-D tensor with shape [N x K].
5512 5513 5514 5515 5516 5517 5518

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5519 5520
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5521 5522
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5523 5524
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5525 5526 5527 5528 5529 5530
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5531 5532 5533 5534 5535
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5536 5537 5538 5539

    if return_softmax:
        return loss, softmax

5540 5541 5542 5543 5544
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5545 5546
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5547
    For each instance, it computes the smooth L1 loss element by element first
5548
    and then sums all the losses. So the shape of ouput Variable is
5549
    [batch_size, 1].
5550

5551 5552
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5553
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5554
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5555
            L1 loss op with same shape as :attr:`x`.
5556
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5557 5558
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5559
            by this tensor element by element.
5560
        outside_weight (Variable|None): A tensor with rank at least 2. This
5561 5562
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5563
            element by element.
5564
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5565 5566
           scalar with default value 1.0.

5567
    Returns:
5568
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5569 5570 5571 5572 5573

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5574 5575
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5576
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5577
            out = fluid.layers.smooth_l1(x=fc, y=label)
5578
    """
5579

5580
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5581 5582
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5595 5596 5597 5598


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5599
    This layer creates the one-hot representations for input indices.
5600 5601

    Args:
Y
Yibing Liu 已提交
5602 5603
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5604 5605

    Returns:
Y
Yibing Liu 已提交
5606
        Variable: The one-hot representations of input.
5607 5608

    Examples:
C
caoying03 已提交
5609
        .. code-block:: python
5610

Y
Yibing Liu 已提交
5611 5612
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5613 5614
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5615
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5616 5617 5618 5619 5620 5621
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5622 5623


Y
Yu Yang 已提交
5624
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5625
    """
Y
yi.wu 已提交
5626 5627 5628
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5629 5630 5631 5632 5633 5634

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5635 5636
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5637 5638 5639 5640 5641 5642

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5643 5644
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5645 5646
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5647 5648 5649 5650 5651
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5652
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5653
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5654 5655
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5656 5657
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5658 5659 5660
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5661 5662


5663
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5664
    """
C
caoying03 已提交
5665 5666
    Gives a new shape to the input Tensor without changing its data.

5667 5668 5669 5670 5671
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5672

5673
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5674

5675 5676 5677 5678
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5679
    2. 0 means the actual dimension value is going to be copied from the
5680 5681 5682 5683
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5684 5685

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5686
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5687
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5688

5689
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5690 5691
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5692 5693
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5694
    dimensions.
C
caoying03 已提交
5695

5696
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5697 5698 5699 5700
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5701 5702

    Args:
5703
        x(variable): The input tensor.
C
caoying03 已提交
5704 5705
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5706 5707 5708 5709 5710
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5711 5712
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5713 5714 5715 5716 5717 5718 5719
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5720
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5721

5722
    Returns:
G
guosheng 已提交
5723 5724 5725 5726
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5727

X
Xin Pan 已提交
5728 5729 5730
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5731 5732
    Examples:
        .. code-block:: python
G
guosheng 已提交
5733

5734
            data = fluid.layers.data(
5735
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5736
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5737
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5738 5739 5740
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5741
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5742 5743 5744 5745 5746
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5747

5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5763
    helper = LayerHelper("reshape2", **locals())
5764 5765
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5766
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5767
    helper.append_op(
5768
        type="reshape2",
X
Xin Pan 已提交
5769
        inputs=inputs,
D
dzhwinter 已提交
5770
        attrs={"shape": shape},
5771 5772
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5773

D
dzhwinter 已提交
5774
    return helper.append_activation(out)
5775

5776

5777
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5778
    """
M
minqiyang 已提交
5779 5780 5781
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5782
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5783

Y
Yibing Liu 已提交
5784 5785
    Examples:
    Case 1:
M
minqiyang 已提交
5786
      Given
Y
Yibing Liu 已提交
5787 5788 5789 5790 5791 5792 5793 5794
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5795
        and
Y
Yibing Liu 已提交
5796 5797 5798
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5799

Y
Yibing Liu 已提交
5800
    Args:
5801
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5802
        axes (list): List of integers, indicating the dimensions to be squeezed.
5803
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5804 5805 5806 5807 5808 5809 5810 5811

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5812
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5813 5814
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5815 5816
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5817
    helper.append_op(
5818
        type="squeeze2",
5819
        inputs={"X": input},
Y
Yibing Liu 已提交
5820
        attrs={"axes": axes},
5821 5822
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5823

5824 5825 5826
    return out


5827
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5828
    """
M
minqiyang 已提交
5829 5830 5831
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5832

M
minqiyang 已提交
5833 5834
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5835
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5836

Y
Yibing Liu 已提交
5837
    Args:
5838
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5839
        axes (list): List of integers, indicating the dimensions to be inserted.
5840
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5841 5842 5843 5844 5845 5846 5847 5848

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5849
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5850 5851
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5852 5853
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5854
    helper.append_op(
5855
        type="unsqueeze2",
5856
        inputs={"X": input},
Y
Yibing Liu 已提交
5857
        attrs={"axes": axes},
5858 5859
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5860

5861 5862
    return out

5863

Y
yangyaming 已提交
5864
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5865
    """
Y
Yibing Liu 已提交
5866
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5867 5868 5869 5870
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5871
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5872 5873 5874 5875 5876 5877

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5878
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5879 5880 5881
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5882
            target_lod: [4, 2]
Y
yangyaming 已提交
5883 5884

            then we get a 1-level LoDTensor:
5885
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5886 5887 5888 5889 5890 5891
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5892
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5893 5894 5895 5896
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5897
                y.data = [[2, 4]]
Y
yangyaming 已提交
5898 5899 5900
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5901
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5902 5903 5904 5905 5906 5907
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5908
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5909 5910 5911 5912
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5913
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5914 5915 5916 5917
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5918
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5919 5920 5921 5922 5923
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5924
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5925
                           from :attr:`y`.
Y
yangyaming 已提交
5926
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5927
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5928 5929

    Returns:
Y
Yibing Liu 已提交
5930
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5931 5932

    Raises:
Y
Yibing Liu 已提交
5933
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5934 5935 5936 5937 5938 5939 5940 5941 5942

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5943
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5969
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5998 5999
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6012 6013 6014
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6028 6029 6030 6031


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6032
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6033
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6034

G
guosheng 已提交
6035 6036 6037 6038
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6061
                         The length of :attr:paddings must be
G
guosheng 已提交
6062 6063 6064 6065 6066 6067 6068 6069 6070 6071
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6072

G
guosheng 已提交
6073 6074 6075 6076 6077 6078
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6079
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6080 6081 6082 6083 6084 6085 6086
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6087 6088


C
chengduo 已提交
6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6120 6121
		And
            pad_value = -1,
C
chengduo 已提交
6122

T
Tink_Y 已提交
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6158
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6159 6160 6161 6162 6163 6164 6165 6166 6167
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6168 6169 6170 6171 6172 6173 6174
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6175 6176
    called label-smoothing regularization (LSR).

6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6200
                              be :math:`(1, class\_num)`.
6201 6202
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6203
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6223
    smooth_label = helper.create_variable_for_type_inference(dtype)
6224 6225 6226 6227 6228 6229 6230
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6231 6232


W
wopeizl 已提交
6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6269 6270


J
jerrywgz 已提交
6271 6272 6273 6274 6275 6276
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6277 6278
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6295 6296 6297
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6298 6299 6300 6301 6302 6303
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6304
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6345 6346
        .. code-block:: python

W
whs 已提交
6347 6348 6349 6350
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6351
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6352 6353 6354 6355 6356 6357
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6358 6359


6360 6361 6362 6363
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6364 6365
                 resample='BILINEAR',
                 actual_shape=None):
6366
    """
Q
qiaolongfei 已提交
6367
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6368

6369
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6370 6371 6372
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6373

6374
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6375

6376
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6377

6378
    Args:
6379
        input (Variable): The input tensor of image resize layer,
6380 6381
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6382
        out_shape(list|tuple|Variable|None): Output shape of image resize
6383 6384
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6385
        scale(float|None): The multiplier for the input height or width.
6386 6387 6388
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6389 6390
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6391
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6392
                       currently.
6393
                       Default: 'BILINEAR'
6394 6395 6396
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6397
                                :attr:`out_shape` and :attr:`scale` specifying
6398 6399 6400 6401 6402 6403 6404
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6405 6406
                                constructing stage.
                                Default: None
6407 6408

    Returns:
Q
update  
qiaolongfei 已提交
6409 6410
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6411

6412 6413 6414
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6415
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6416 6417 6418 6419
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6420 6421 6422
    Examples:
        .. code-block:: python

6423
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6424
    """
6425 6426 6427 6428
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6429 6430
    if resample not in resample_methods:
        raise ValueError(
6431
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6432
        )
6433
    resample_type = resample_methods[resample]
6434
    if out_shape is None and scale is None:
6435
        raise ValueError("One of out_shape and scale must not be None.")
6436
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6437
    dtype = helper.input_dtype()
6438 6439 6440 6441

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6442 6443 6444
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6445
    if out_shape is not None:
6446 6447 6448 6449
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6450
            inputs['OutSize'] = out_shape
6451 6452 6453 6454 6455 6456 6457 6458
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6459 6460 6461 6462
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6463 6464 6465 6466 6467
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6468
    out = helper.create_variable_for_type_inference(dtype)
6469
    helper.append_op(
6470
        type='{}_interp'.format(resample_type),
6471
        inputs=inputs,
6472
        outputs={"Out": out},
6473 6474 6475
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6476
    return out
F
stash  
fengjiayi 已提交
6477 6478


6479
@templatedoc(op_type="bilinear_interp")
6480 6481 6482 6483 6484
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6485
    """
6486 6487
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6488 6489
    in priority order.

6490 6491 6492 6493
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6494 6495
    again in the other direction.

6496
    For details of bilinear interpolation, please refer to Wikipedia:
6497
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6498 6499 6500 6501 6502

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6503

Y
yuyang18 已提交
6504 6505 6506 6507 6508
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6509 6510 6511
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6512
                                :attr:`out_shape` and :attr:`scale` specifying
6513 6514 6515 6516 6517 6518 6519
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6520 6521
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6522 6523 6524

    Returns:
        ${out_comment}.
6525 6526 6527 6528 6529

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6530 6531
    """

6532
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6533 6534


6535
@templatedoc(op_type="nearest_interp")
6536 6537 6538 6539 6540
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6541
    """
6542
    Resize input by performing nearest neighbor interpolation in both the
6543 6544
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6545 6546
    out_shape and scale in priority order.

6547
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6548
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6549 6550 6551 6552 6553

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6554

Y
yuyang18 已提交
6555 6556 6557 6558 6559
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6560 6561 6562
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6563
                                :attr:`out_shape` and :attr:`scale` specifying
6564 6565 6566 6567 6568 6569 6570
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6571 6572
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6573 6574 6575

    Returns:
        ${out_comment}.
6576 6577 6578 6579 6580

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6581 6582
    """

6583
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6584 6585 6586 6587


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6588 6589 6590
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6591 6592 6593 6594 6595 6596 6597
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6598
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6599

6600
    Returns:
Q
update  
qiaolongfei 已提交
6601
        Variable: The output is a 4-D tensor of the shape
6602
        (num_batches, channls, out_h, out_w).
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6613 6614 6615
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6616 6617 6618
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6619 6620
def gather(input, index):
    """
Q
qiaolongfei 已提交
6621 6622
    **Gather Layer**

6623
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6624 6625 6626 6627
    of X indexed by `index` and concatenate them together.

    .. math::

6628
        Out = X[Index]
W
whs 已提交
6629 6630 6631 6632 6633 6634 6635


    .. code-block:: text


                Given:

6636 6637
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6638 6639 6640 6641 6642 6643 6644 6645 6646 6647
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6648
        input (Variable): The source input with rank>=1.
W
whs 已提交
6649 6650 6651 6652 6653 6654
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6655

W
whs 已提交
6656 6657 6658 6659 6660 6661
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6662
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6663 6664 6665 6666 6667 6668 6669 6670
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6702
    out = helper.create_variable_for_type_inference(dtype)
6703 6704 6705 6706 6707 6708 6709 6710 6711
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6762
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6763 6764 6765 6766 6767 6768 6769 6770 6771
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6785

6786 6787 6788
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6789
    """
F
stash  
fengjiayi 已提交
6790
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6791
    dtype = x.dtype
X
Xin Pan 已提交
6792
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6793
    if seed is None:
6794
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6795
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6796
    if isinstance(seed, int):
F
fengjiayi 已提交
6797 6798 6799 6800 6801
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6802 6803 6804 6805
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6806
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6807 6808
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6809 6810
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6811
    return out
W
whs 已提交
6812 6813


6814
def log(x, name=None):
W
wanghaoshuang 已提交
6815 6816 6817 6818 6819
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6820
        Out = \\ln(x)
W
wanghaoshuang 已提交
6821 6822

    Args:
6823
        x (Variable): Input tensor.
6824 6825
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6826 6827 6828 6829 6830 6831 6832 6833

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6834
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6835 6836
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6837
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6838
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6839
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6840 6841 6842
    return out


6843
def relu(x, name=None):
W
wanghaoshuang 已提交
6844 6845
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6846
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6847 6848 6849 6850
    the tensor elementwise.

    .. math::

6851
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6852 6853

    Args:
6854
        x (Variable): The input tensor.
6855 6856
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6857 6858 6859 6860 6861 6862 6863 6864

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6865
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6866 6867
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6868
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6869
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6870 6871
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6872
    return out
6873 6874


C
chengduo 已提交
6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6916 6917 6918
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6919 6920 6921 6922
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6923
    .. math::
6924 6925

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6926

6927
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6928 6929 6930 6931 6932
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6933
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6934
                           Its shape should be the same as input.
6935
        num_classes (int): The possible number of labels.
W
whs 已提交
6936 6937 6938 6939

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6940
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6941 6942 6943 6944

    Examples:

        .. code-block:: python
6945

W
whs 已提交
6946 6947 6948 6949
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6950 6951 6952
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6953 6954
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6955 6956
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6957
        outputs={
W
whs 已提交
6958 6959 6960
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6961 6962 6963
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7032
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7033 7034 7035 7036 7037

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7038
            isinstance(shape, Variable)):
7039 7040 7041 7042 7043
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7044
    out = helper.create_variable_for_type_inference(x.dtype)
7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7062 7063


W
whs 已提交
7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7081

W
whs 已提交
7082
              out_shape = [2, 3, 5, 5]
7083

W
whs 已提交
7084
          Step 1:
7085

W
whs 已提交
7086 7087 7088
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7089

W
whs 已提交
7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7160
            isinstance(out_shape, Variable)):
W
whs 已提交
7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7182 7183 7184 7185 7186 7187 7188 7189
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7190

7191 7192
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7193

7194 7195 7196 7197
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7198

7199 7200 7201 7202 7203
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
7204 7205 7206

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7242
    out = helper.create_variable_for_type_inference("float32")
7243 7244 7245 7246 7247 7248 7249 7250

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7251 7252


M
minqiyang 已提交
7253 7254
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7255
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7256
    which compares left score and right score passed in.
M
minqiyang 已提交
7257
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7258 7259 7260 7261 7262 7263

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7264
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7265 7266
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7267
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7268 7269 7270
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7271
       Variable: The ranking loss.
M
minqiyang 已提交
7272
    Raises:
M
minqiyang 已提交
7273
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7274 7275 7276 7277 7278 7279 7280
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7281
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7282 7283 7284 7285 7286 7287
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7288 7289
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7313
        .. code-block:: text
W
whs 已提交
7314

T
Tink_Y 已提交
7315
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7316

T
Tink_Y 已提交
7317 7318
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7319

T
Tink_Y 已提交
7320
	      Case 0:
M
minqiyang 已提交
7321

T
Tink_Y 已提交
7322 7323 7324
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7325

T
Tink_Y 已提交
7326 7327 7328
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7329

T
Tink_Y 已提交
7330
	      Case 1:
M
minqiyang 已提交
7331

T
Tink_Y 已提交
7332 7333
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7334

T
Tink_Y 已提交
7335 7336 7337
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7338

T
Tink_Y 已提交
7339
	      Case 2:
M
minqiyang 已提交
7340

T
Tink_Y 已提交
7341 7342
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7343

T
Tink_Y 已提交
7344 7345 7346
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7347 7348


W
whs 已提交
7349 7350
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7351
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7375
    out = helper.create_variable_for_type_inference(dtype)
7376 7377 7378 7379 7380 7381 7382 7383 7384
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7385
    helper.append_op(
7386
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7387 7388 7389 7390

    return out


7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7403 7404 7405 7406 7407

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7408 7409
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7410 7411
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7412
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7433 7434 7435 7436 7437

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7438 7439
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7440 7441
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7442
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7463 7464 7465 7466 7467

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7468 7469
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7470 7471
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7472
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7494 7495 7496 7497 7498

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7499
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7500
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7501 7502
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7503
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7526 7527 7528 7529 7530

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7531 7532
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7533 7534
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7535
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7557 7558 7559 7560 7561

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7562 7563
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7564 7565
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7566
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7567 7568 7569 7570 7571 7572 7573 7574
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7575 7576 7577 7578
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7579
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7580 7581 7582

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7583
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7584
          weight (alpha).
J
jerrywgz 已提交
7585
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7586 7587 7588
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7589
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7590
          will be named automatically.
J
jerrywgz 已提交
7591 7592 7593 7594 7595 7596 7597 7598

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7599
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7613
        attr=helper.param_attr,
J
jerrywgz 已提交
7614 7615 7616 7617
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7618
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7619 7620 7621 7622 7623 7624 7625 7626 7627
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7628 7629 7630 7631 7632 7633 7634 7635 7636 7637
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7638
    Returns:
7639
        output(${out_type}): ${out_comment}
7640 7641 7642 7643 7644 7645 7646

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7647 7648
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7649
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7668
    Returns:
7669
        output(${out_type}): ${out_comment}
7670 7671 7672 7673 7674 7675 7676

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7677 7678
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7679
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7697
    Returns:
7698
        output(${out_type}): ${out_comment}
7699 7700 7701 7702 7703 7704 7705

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7706 7707
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7708
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7709 7710 7711 7712 7713 7714 7715 7716
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7730

7731 7732 7733 7734 7735 7736 7737 7738 7739 7740
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7741 7742
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7758
        ValueError: If axis is not in range [0, rank(x)].
7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7775 7776
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7777
    helper.append_op(
7778
        type='flatten2',
7779
        inputs={"X": x},
7780 7781
        outputs={'Out': out,
                 'XShape': x_shape},
7782 7783
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7784 7785


C
chenweihang 已提交
7786
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7787
    """
C
chenweihang 已提交
7788
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7789
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7790 7791
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7792

C
chenweihang 已提交
7793 7794 7795 7796
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7797
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7798 7799 7800 7801 7802 7803
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7804
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7805 7806 7807
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7808 7809 7810
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7822 7823
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7824 7825 7826 7827 7828 7829
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7830
    return out
7831

7832

S
sneaxiy 已提交
7833 7834 7835 7836 7837 7838 7839 7840 7841
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7842

S
sneaxiy 已提交
7843
    .. math::
7844

S
sneaxiy 已提交
7845 7846 7847
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7848
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7849 7850 7851 7852
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7853 7854 7855
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7856 7857
    Returns:
        Variable: The output sequence mask.
7858

S
sneaxiy 已提交
7859 7860
    """

Q
qingqing01 已提交
7861
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7862
    if name is None:
X
Xin Pan 已提交
7863
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7864
    else:
X
Xin Pan 已提交
7865
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7866

Q
qingqing01 已提交
7867 7868 7869
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7870 7871
        outputs={'Y': out},
        attrs={
7872
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7873 7874 7875
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7876 7877


X
Xin Pan 已提交
7878
def stack(x, axis=0):
S
sneaxiy 已提交
7879 7880 7881 7882
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7883 7884 7885 7886 7887 7888 7889

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7890
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7891
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7892 7893

    Args:
7894
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7895
        axis (int|None): The axis along which all inputs are stacked.
7896

S
sneaxiy 已提交
7897 7898
    Returns:
        Variable: The stacked variable.
7899

S
sneaxiy 已提交
7900 7901
    """

X
Xin Pan 已提交
7902 7903 7904 7905 7906 7907
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7908
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7909
    helper.append_op(
S
sneaxiy 已提交
7910 7911
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7912

X
Xin Pan 已提交
7913
    return out
D
dzhwinter 已提交
7914 7915 7916 7917 7918 7919 7920


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7921

D
dzhwinter 已提交
7922 7923 7924
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7925
    raised.
D
dzhwinter 已提交
7926 7927

    Args:
M
minqiyang 已提交
7928
        x (Variable): Input variable.
D
dzhwinter 已提交
7929 7930
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7931

D
dzhwinter 已提交
7932 7933
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7934

D
dzhwinter 已提交
7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7946
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7947 7948 7949 7950 7951 7952 7953 7954

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7967

W
whs 已提交
7968 7969 7970 7971
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7972

W
whs 已提交
7973
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7974

W
whs 已提交
7975
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7976

W
whs 已提交
7977 7978 7979 7980
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7981

W
whs 已提交
7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7998
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7999 8000 8001 8002 8003 8004
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8005 8006


G
fix  
gongweibao 已提交
8007 8008 8009
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8010
@templatedoc()
G
fix  
gongweibao 已提交
8011 8012 8013 8014 8015 8016 8017 8018 8019
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8020
    ${comment}
G
fix  
gongweibao 已提交
8021 8022

    Args:
G
gongweibao 已提交
8023 8024 8025
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8026
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8027 8028 8029
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8030 8031
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8032
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8033

8034 8035 8036 8037 8038
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8039 8040 8041
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8042
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8059 8060


G
gongweibao 已提交
8061
@templatedoc()
X
Xin Pan 已提交
8062
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8063
    """
G
gongweibao 已提交
8064
    ${comment}
G
fix  
gongweibao 已提交
8065 8066

    Args:
G
gongweibao 已提交
8067 8068 8069 8070
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8071 8072 8073
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8074
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8075

8076 8077 8078 8079
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8080 8081 8082
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8083
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8084 8085 8086 8087 8088 8089 8090 8091 8092 8093
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8094
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8095 8096 8097 8098 8099
        })

    return out


G
gongweibao 已提交
8100
@templatedoc()
G
fix  
gongweibao 已提交
8101
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8102
    """
G
gongweibao 已提交
8103
    ${comment}
G
fix  
gongweibao 已提交
8104 8105

    Args:
G
gongweibao 已提交
8106 8107 8108 8109
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8110
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8111 8112

    Returns:
G
gongweibao 已提交
8113
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8114

8115 8116 8117 8118 8119 8120 8121 8122 8123 8124
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8125 8126 8127
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8128
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8140
@templatedoc()
G
fix  
gongweibao 已提交
8141 8142 8143 8144 8145 8146 8147 8148 8149
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8150
    ${comment}
G
fix  
gongweibao 已提交
8151 8152

    Args:
G
gongweibao 已提交
8153 8154
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8155
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8156 8157 8158 8159
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8160
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8161 8162

    Returns:
G
gongweibao 已提交
8163
        out (Variable): ${out_comment}
8164 8165 8166 8167 8168 8169 8170 8171

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8172 8173 8174
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8175
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8194
@templatedoc()
X
Xin Pan 已提交
8195
def sum(x):
G
fix  
gongweibao 已提交
8196
    """
G
gongweibao 已提交
8197
    ${comment}
G
fix  
gongweibao 已提交
8198 8199

    Args:
G
gongweibao 已提交
8200
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8201 8202

    Returns:
G
gongweibao 已提交
8203
        out (Variable): ${out_comment}
8204 8205 8206 8207 8208 8209

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8210 8211 8212
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8213 8214
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8215 8216 8217 8218
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8219
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8220 8221 8222 8223

    return out


G
gongweibao 已提交
8224
@templatedoc()
G
fix  
gongweibao 已提交
8225 8226
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8227
    ${comment}
G
fix  
gongweibao 已提交
8228 8229

    Args:
G
gongweibao 已提交
8230 8231 8232 8233
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8234 8235

    Returns:
G
gongweibao 已提交
8236
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8237

8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8249 8250 8251
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8252 8253
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8265
@templatedoc()
G
fix  
gongweibao 已提交
8266 8267
def shape(input):
    """
G
gongweibao 已提交
8268
    ${comment}
G
fix  
gongweibao 已提交
8269 8270

    Args:
G
gongweibao 已提交
8271
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8272 8273

    Returns:
G
gongweibao 已提交
8274
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8275

8276 8277 8278 8279 8280 8281
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8282 8283 8284
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8285 8286
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8287
    helper.append_op(
G
fix  
gongweibao 已提交
8288
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8289 8290

    return out
G
merge  
gongweibao 已提交
8291 8292


S
sneaxiy 已提交
8293 8294 8295 8296 8297 8298 8299 8300
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8301 8302
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8303
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8304 8305 8306
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8307

S
sneaxiy 已提交
8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8319
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8320 8321 8322 8323 8324 8325 8326 8327
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8328
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8329
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8330 8331 8332 8333 8334 8335

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8336
    if name is None:
X
Xin Pan 已提交
8337
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8338 8339 8340
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8341 8342 8343 8344 8345 8346 8347 8348 8349 8350

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8351
    return helper.append_activation(out)
S
sneaxiy 已提交
8352 8353


X
Xin Pan 已提交
8354
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8355 8356 8357
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8358
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8359 8360 8361
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8362
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8363 8364 8365
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8366
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8367 8368 8369
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8370
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8371 8372 8373
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8374
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8375 8376 8377
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8378
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8390 8391
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8392
        ])
M
minqiyang 已提交
8393 8394


8395
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8396 8397
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8398 8399
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8400 8401 8402

    if out is None:
        if name is None:
X
Xin Pan 已提交
8403
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8419
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8431 8432 8433 8434 8435 8436 8437 8438 8439

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8440 8441 8442 8443 8444 8445 8446
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8447
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8459 8460 8461 8462 8463 8464 8465 8466 8467

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8468 8469 8470 8471 8472 8473 8474
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8475
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8487 8488 8489 8490 8491 8492 8493 8494 8495

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8496 8497 8498 8499 8500 8501 8502
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8503
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8504 8505 8506 8507 8508 8509 8510 8511 8512 8513
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8514 8515 8516 8517 8518 8519 8520

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8521 8522 8523 8524
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8540 8541 8542 8543 8544 8545 8546

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8547 8548 8549 8550 8551
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8552 8553 8554 8555
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8579 8580 8581 8582 8583 8584 8585

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8586 8587 8588 8589 8590
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8591 8592 8593 8594
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8595 8596 8597 8598 8599 8600 8601 8602

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8621
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8622 8623 8624 8625 8626 8627 8628 8629 8630 8631
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8674
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8675 8676 8677 8678 8679 8680 8681 8682 8683
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8684 8685
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8686 8687 8688 8689 8690 8691
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8692 8693 8694 8695
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8696 8697 8698 8699 8700 8701
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8702
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8703 8704 8705 8706 8707 8708 8709 8710 8711
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8712
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8713 8714 8715 8716 8717 8718 8719 8720
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8721
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8742
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8743 8744 8745 8746 8747 8748 8749 8750 8751 8752
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8753 8754


J
JiabinYang 已提交
8755
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8756
    """
J
JiabinYang 已提交
8757
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8758 8759 8760

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8761
    The attr blocksize indicates the input block size.
8762 8763

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8764
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8765 8766

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8767
    (but keeping all data)
J
JiabinYang 已提交
8768

J
JiabinYang 已提交
8769
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8770
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8771 8772 8773 8774 8775
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8776
    Args:
J
JiabinYang 已提交
8777
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8778
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8779 8780

    Returns:
J
JiabinYang 已提交
8781
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8782 8783

    Raises:
J
JiabinYang 已提交
8784
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8785 8786 8787 8788 8789 8790

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8791
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8792
                x=data, blocksize=2)
J
JiabinYang 已提交
8793 8794
    """

J
JiabinYang 已提交
8795
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8796

J
JiabinYang 已提交
8797 8798
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8799 8800

    if name is None:
J
JiabinYang 已提交
8801 8802
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8803 8804 8805 8806 8807
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8808
        type="space_to_depth",
J
JiabinYang 已提交
8809
        inputs={"X": x},
J
JiabinYang 已提交
8810
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8811
        outputs={"Out": out})
J
JiabinYang 已提交
8812 8813
    return out

J
JiabinYang 已提交
8814

S
sneaxiy 已提交
8815 8816
@templatedoc()
def sequence_reverse(x, name=None):
8817
    """
S
sneaxiy 已提交
8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8829
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8830 8831 8832 8833 8834 8835 8836 8837 8838 8839
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8840 8841


8842 8843 8844 8845 8846 8847
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8848

8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8868
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8881 8882


B
barrierye 已提交
8883
def similarity_focus(input, axis, indexes, name=None):
8884
    """
B
barrierye 已提交
8885
    SimilarityFocus Operator
B
barrierye 已提交
8886 8887

    Generate a similarity focus mask with the same shape of input using the following method:
8888 8889 8890
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8891
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8892 8893 8894 8895 8896 8897 8898
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8899
       each index.
B
barrierye 已提交
8900 8901 8902 8903
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8953
    Args:
8954
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8955
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8956
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8957
            1, 2 or 3.
B
barrierye 已提交
8958
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8959 8960

    Returns:
8961
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8962
            as the input.
8963

B
barrierye 已提交
8964 8965 8966
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8967 8968
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8981 8982 8983 8984 8985
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8986 8987 8988 8989 8990 8991 8992
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8993 8994


M
minqiyang 已提交
8995 8996
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8997 8998
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8999 9000
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9039
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9040
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9041 9042 9043 9044 9045 9046 9047 9048 9049

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9050 9051
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9052 9053
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9054 9055 9056 9057 9058 9059 9060
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9061 9062


D
dengkaipeng 已提交
9063
@templatedoc()
9064 9065
def grid_sampler(x, grid, name=None):
    """
9066
    This operation samples input X by using bilinear interpolation based on
9067
    flow field grid, which is usually gennerated by affine_grid. The grid of
9068 9069 9070 9071
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9072
    interpolation value of 4 nearest corner points.
9073 9074 9075 9076 9077 9078 9079 9080

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
9081
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9111 9112

    Args:
9113 9114 9115
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9116 9117

    Returns:
9118
        out(Variable): Output of shape [N, C, H, W] data samples input X
9119 9120 9121 9122 9123 9124 9125 9126 9127
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
9128 9129 9130 9131 9132 9133 9134 9135 9136
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9137
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9138 9139
    ipts = {'X': x, 'Grid': grid}

9140
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9141 9142 9143
    return out


G
gmcather 已提交
9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9238 9239 9240 9241 9242 9243 9244 9245 9246 9247


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9248
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9249

Q
Qiao Longfei 已提交
9250
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9251 9252 9253
    For example:

    .. math::
9254
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9255

Q
Qiao Longfei 已提交
9256
    In this formula:
9257 9258
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9259
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9260
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9261 9262 9263
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9264 9265
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9266 9267 9268
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9269
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9270
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9271
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9272 9273 9274 9275
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9276
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9277 9278 9279 9280

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9281
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9282 9283
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9284
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9285 9286 9287 9288

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9289
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
S
shippingwang 已提交
9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341


def shuffle_channel(x, group=1, name=None):
    """
    **Shuffle Channel Operator**
    This operator obtains the group convolutional layer with channels shuffled.
    First, divide the input channels in each group into several subgroups,
    then, feed each group in the next layer with different subgroups.
    Shuffle channel operation makes it possible to build more powerful structures
    with multiple group convolutional layers.
    
    Args: 
S
shippingwang 已提交
9342 9343
        x: The input tensor variable..
        group: The num of group
S
shippingwang 已提交
9344 9345 9346 9347 9348 9349


    Returns:
        Variable: channel shuffled tensor variable.

    Raises:
S
shippingwang 已提交
9350
        ValueError: If group in not an int type variable.
S
shippingwang 已提交
9351 9352 9353

    Examples:
        .. code-block:: python
S
shippingwang 已提交
9354 9355

        out = fluid.layers.shuffle_channel(x=group_conv,group=4)
S
shippingwang 已提交
9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371
    

    """
    helper = LayerHelper("shuffle_channel", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=helper.intput_dtype('x'))

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
9372
    return out
S
Add  
shippingwang 已提交
9373 9374


S
sneaxiy 已提交
9375
class PyFuncRegistry(object):
S
sneaxiy 已提交
9376 9377 9378
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9379
        if func is None or not callable(func):
S
sneaxiy 已提交
9380 9381 9382 9383
            raise TypeError('func must be a Python function')

        self._func = func
        # find named args using reflection 
S
sneaxiy 已提交
9384 9385 9386 9387 9388 9389 9390
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
9391 9392 9393 9394 9395
        '''
        Why record self here?

        1. For debug usage. Users can call 
           :code:`py_func.registered_func(idx)` method 
S
sneaxiy 已提交
9396
           to find the registered function corresponding
S
sneaxiy 已提交
9397 9398 9399 9400 9401 9402 9403 9404
           to :code:`idx`. 

        2. For increasing reference count of self. 
           It seems that to release Python object 
           whose reference count is 1 would cause
           segmentation fault error in C++ side. 
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
9405
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
9420 9421 9422 9423 9424 9425 9426 9427 9428
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
9429

S
sneaxiy 已提交
9430 9431
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
9432 9433

        ret = []
S
sneaxiy 已提交
9434 9435 9436
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
9437 9438
                continue

S
sneaxiy 已提交
9439 9440
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
9441

S
sneaxiy 已提交
9442 9443 9444
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
9445

S
sneaxiy 已提交
9446
        return tuple(ret)
S
sneaxiy 已提交
9447 9448


S
sneaxiy 已提交
9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
    
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
9462
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
9463

S
sneaxiy 已提交
9464 9465
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
9466 9467 9468 9469
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
9470 9471 9472 9473
    This function can also be used to debug the running network. User can
    add a :code:`py_func` operator without output, and print input 
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
            should create :code:`out` beforehand. 
        backward_func (callable|None): backward Python function.
                                       None means no backward. Default None. 
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
            Variables that are not needed in :code:`backward_func` inputs. 
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
            Only useful when :code:`backward_func` is not None. Default None. 

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530

    Examples:
    
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
        >>>         name=name, dtype=dtype, shape=shape) 
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
        >>> # Here, we only use tanh to be an example to show the usage 
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
        >>> 
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
        >>>     print(x) 
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
        >>>             dtype=hidden.dtype, shape=hidden.shape)    
        >>>
        >>>         # user-defined layers with forward and backward
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden, 
        >>>             out=new_hidden, backward_func=tanh_grad, 
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
9531
    """
S
sneaxiy 已提交
9532
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
9533 9534 9535
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
9536
        x = [x]
S
sneaxiy 已提交
9537 9538
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9539

S
sneaxiy 已提交
9540 9541 9542
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
9543
        out_list = [out]
S
sneaxiy 已提交
9544
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
9545
        out_list = out
S
sneaxiy 已提交
9546 9547 9548
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9549

S
sneaxiy 已提交
9550 9551
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
9552
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
9553 9554

    for each_out in out_list:
S
sneaxiy 已提交
9555 9556
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
9557 9558
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
9559

S
sneaxiy 已提交
9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
9575 9576 9577 9578

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
9579 9580
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
9581 9582 9583
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
9584
        })
S
sneaxiy 已提交
9585
    return out
S
sneaxiy 已提交
9586 9587 9588


# For debug usage
S
sneaxiy 已提交
9589 9590 9591 9592
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
S
shippingwang 已提交
9644
    return out
9645

M
minqiyang 已提交
9646

M
minqiyang 已提交
9647
def huber_loss(input, label, delta):
9648
    """
M
minqiyang 已提交
9649 9650 9651
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
9652 9653 9654 9655

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
9656
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
9657 9658 9659 9660

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
9661
        huber\_loss = 0.5 * (label - input) * (label - input)
9662 9663 9664 9665 9666 9667 9668


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
9669
        delta (float): The parameter of huber loss, which controls
9670 9671 9672
                       the range of outliers

    Returns:
M
minqiyang 已提交
9673
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
9674 9675 9676 9677 9678

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
9679
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
9680
    """
M
minqiyang 已提交
9681
    helper = LayerHelper('huber_loss', **locals())
9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
X
Xin Pan 已提交
9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736


class FC(layers.PyLayer):
    def __init__(self,
                 size,
                 param_attr=None,
                 num_flatten_dims=1,
                 dtype=core.VarDesc.VarType.FP32):
        super(FC, self).__init__()
        self._size = size
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
        self._helper = LayerHelper('FC', param_attr=param_attr)

    def _build_once(self, inputs):
        input_shape = inputs[0].shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
        ] + [self._size]
        self._w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, inputs):
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="mul",
            inputs={"X": inputs[0],
                    "Y": self._w},
            outputs={"Out": tmp},
            attrs={
                "x_num_col_dims": self._num_flatten_dims,
                "y_num_col_dims": 1
            })

        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="sum",
            inputs={"X": [tmp]},
            outputs={"Out": out},
            attrs={"use_mkldnn": False})
        return out