nn.py 267.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
99
    'roi_align',
X
Xin Pan 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
113
    'margin_rank_loss',
X
Xin Pan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
157
    'affine_channel',
M
minqiyang 已提交
158
    'hash',
Y
Yu Yang 已提交
159 160 161 162 163 164 165 166 167
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
168
       is_test=False,
169
       name=None):
Y
Yu Yang 已提交
170
    """
171
    **Fully Connected Layer**
Y
Yu Yang 已提交
172

173 174 175 176 177 178 179 180
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
181
    to the output as well.
C
caoying03 已提交
182

C
caoying03 已提交
183
    This process can be formulated as follows:
184 185 186

    .. math::

187
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
188 189 190

    In the above equation:

C
caoying03 已提交
191 192 193 194
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
195
    * :math:`Act`: The activation function.
C
caoying03 已提交
196
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
197 198

    Args:
R
ranqiu 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
214 215
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
216
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
217
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
218
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
219

220
    Returns:
F
fengjiayi 已提交
221
        Variable: The transformation result.
222 223

    Raises:
C
caoying03 已提交
224
        ValueError: If rank of the input tensor is less than 2.
225 226 227 228

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
229
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
230
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
231
    """
C
caoying03 已提交
232

C
caoying03 已提交
233
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
234 235 236 237

    dtype = helper.input_dtype()

    mul_results = []
238 239
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
240 241 242
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
243

Y
Yu Yang 已提交
244
        w = helper.create_parameter(
245
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
246
        tmp = helper.create_variable_for_type_inference(dtype)
247
        helper.append_op(
248 249 250
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
251
            outputs={"Out": tmp},
M
mozga-intel 已提交
252 253
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
254 255 256 257
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
258
    else:
X
Xin Pan 已提交
259
        pre_bias = helper.create_variable_for_type_inference(dtype)
260
        helper.append_op(
261 262 263
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
264
            attrs={"use_mkldnn": False})
265 266 267 268
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
269 270


271 272 273
def embedding(input,
              size,
              is_sparse=False,
274
              is_distributed=False,
275 276 277
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
278
    """
279 280
    **Embedding Layer**

281
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
282 283
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
284 285 286

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
287 288

    Args:
289 290 291 292 293
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
294
        is_distributed(bool): Whether to run lookup table from remote parameter server.
295 296
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
297
            with zeros whenever lookup encounters it in :attr:`input`. If
298
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
299 300
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
301
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
302

303 304 305
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
306

307 308
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
309

C
chengduoZH 已提交
310
          dict_size = len(dataset.ids)
311
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
312
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
313 314 315 316 317
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
318
    tmp = helper.create_variable_for_type_inference(dtype)
319 320
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
321 322 323 324 325
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
326 327 328 329 330
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
331 332 333
    return tmp


Y
yi.wu 已提交
334
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
335 336
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
337 338
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
339 340 341 342 343 344 345
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
346 347
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
348
    """
Y
yi.wu 已提交
349
    ${comment}
Y
Yibing Liu 已提交
350 351

    Args:
Y
yi.wu 已提交
352 353
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
354 355 356 357 358 359
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
360
        param_attr(ParamAttr|None): The parameter attribute for the learnable
361
                               hidden-hidden weights.
Y
Yibing Liu 已提交
362 363 364

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
365 366
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
367 368 369 370 371

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
372
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
373 374 375
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
376

377
                              1. `use_peepholes = False`
Y
yi.wu 已提交
378 379
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
380
                              2. `use_peepholes = True`
Y
yi.wu 已提交
381
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
382
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
383
                                 - The shape is (1 x 7D).
C
chengduo 已提交
384 385 386 387 388

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
389 390 391 392 393 394 395 396
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
397 398

    Returns:
Y
Yibing Liu 已提交
399 400
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
401

Y
Yibing Liu 已提交
402
    Examples:
Y
Yibing Liu 已提交
403 404
        .. code-block:: python

Y
Yibing Liu 已提交
405 406
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
407
                                           bias_attr=False)
Y
Yibing Liu 已提交
408 409
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
410
    """
C
chengduo 已提交
411
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
412
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
413
    size = size // 4
Y
Yu Yang 已提交
414 415 416 417 418 419 420 421
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
422 423 424 425
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
426 427 428 429 430 431 432 433 434 435
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
436 437 438

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
439
        inputs=inputs,
Y
Yu Yang 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
456 457 458 459 460 461 462 463 464 465 466
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
467 468
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
469 470 471
    """
    **Dynamic LSTMP Layer**

472 473 474 475 476 477
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
478 479 480 481 482

    The formula is as follows:

    .. math::

483
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
484

485
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
486

487
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
488

489
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
490

491
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
492

493
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
494

495
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
496

Y
Yibing Liu 已提交
497 498 499 500 501 502
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
503
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
504
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
505
          bias vector).
Y
Yibing Liu 已提交
506 507 508
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
509
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
510
    * :math:`h`: The hidden state.
511
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
512 513
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
514
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
515
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
516
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
517 518
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
519 520 521 522

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
523

Y
Yibing Liu 已提交
524 525 526 527 528 529 530 531 532 533 534 535
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
536
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
537 538
                               hidden-hidden weight and projection weight.

539 540
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
541 542
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
543 544
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
545
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
546 547 548 549 550

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
551
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
552 553 554 555 556 557
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
558
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
559 560 561
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
562
                                - The shape is (1 x 7D).
C
chengduo 已提交
563 564 565 566 567

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
568 569 570 571 572 573 574 575 576
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
577
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
578 579
                              default "tanh".
        proj_activation(str): The activation for projection output.
580
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
581 582
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
583 584
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
585 586

    Returns:
587 588 589 590
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
591 592

    Examples:
593

Y
Yibing Liu 已提交
594 595
        .. code-block:: python

596 597 598 599
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
600
            hidden_dim, proj_dim = 512, 256
601
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
602
                                     act=None, bias_attr=None)
603 604 605
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
606 607 608 609
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
610
    """
611

C
chengduo 已提交
612
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
613
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
614
    size = size // 4
Y
Yibing Liu 已提交
615 616 617 618 619 620 621 622 623 624
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
625 626 627 628 629 630
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
659 660 661 662 663 664 665 666 667
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
668
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
669

670
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
671
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
672

G
guosheng 已提交
673 674 675 676 677 678 679 680 681
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
682

G
guosheng 已提交
683
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
684

G
guosheng 已提交
685
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
686 687
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
688 689 690 691
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
692
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
693 694

    Args:
695 696
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
697
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
698
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
699 700
            is the hidden size.
        size(int): The dimension of the gru cell.
701
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
702 703
            hidden-hidden weight matrix. Note:

704
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
705
              :math:`D` is the hidden size.
706
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
707
              The first part are weights of the update gate and reset gate with
708
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
709
              candidate hidden state with shape :math:`(D \\times D)`.
710
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
711
            hidden-hidden bias.
712
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
713 714 715
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
716
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
717
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
718 719 720 721
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
722 723

    Returns:
G
guosheng 已提交
724
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
725
            and sequence length is the same with the input.
726

G
guosheng 已提交
727
    Examples:
728

G
guosheng 已提交
729 730
        .. code-block:: python

731 732 733 734
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
735
            hidden_dim = 512
736
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
737 738 739 740 741 742 743 744 745 746
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
747
    batch_size = input.shape[0]
G
guosheng 已提交
748 749 750
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
751 752 753
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
754

X
Xin Pan 已提交
755 756 757 758
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
777 778 779
def gru_unit(input,
             hidden,
             size,
780 781
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
782
             activation='tanh',
783
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
784
    """
785
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
786

787 788
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
789

790
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
791

792
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
793

794
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
795 796

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
797 798 799
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
800 801
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

802 803
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
804 805 806
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
807 808 809 810 811

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
812 813
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
814 815 816 817
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
818

819 820 821 822 823 824
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
825

826
             # assuming we have x_t_data and prev_hidden of size=10
827
             x_t = fluid.layers.fc(input=x_t_data, size=30)
828 829
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
830 831 832 833 834 835 836 837 838 839 840 841

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
842
    size = size // 3
Y
Yu Yang 已提交
843 844

    # create weight
845 846
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
847

X
Xin Pan 已提交
848 849 850
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
851
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
852
    # create bias
853
    if helper.bias_attr:
Y
Yu Yang 已提交
854 855 856
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
857
        inputs['Bias'] = bias
Y
Yu Yang 已提交
858 859 860

    helper.append_op(
        type='gru_unit',
861
        inputs=inputs,
Y
Yu Yang 已提交
862 863 864 865 866 867
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
868 869
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
870 871 872 873 874
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
875
@templatedoc()
876
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
877 878 879 880 881 882 883
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
884
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
885 886 887 888
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
889 890 891
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
892 893

    """
Y
Yu Yang 已提交
894 895 896 897 898 899
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
900 901 902 903 904 905 906 907
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
923
@templatedoc()
924
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
925 926 927 928 929
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
930

Y
yuyang18 已提交
931
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
932

Y
yuyang18 已提交
933 934 935
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
936
        Variable: ${viterbi_path_comment}
937

Y
yi.wu 已提交
938 939 940 941 942
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
943
    """
Y
Yu Yang 已提交
944 945
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
946 947
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
948 949 950 951 952 953 954 955 956 957
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
958
@templatedoc()
F
fengjiayi 已提交
959
def cos_sim(X, Y):
Y
Yu Yang 已提交
960
    """
Y
yi.wu 已提交
961 962 963
    ${comment}

    Args:
964 965
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
966

Y
yi.wu 已提交
967
    Returns:
968
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
969
    """
F
fengjiayi 已提交
970
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
971 972 973
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
974 975 976 977 978 979 980 981 982 983
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


984
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
985 986 987 988 989
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
990
    training. The dropout operator randomly sets (according to the given dropout
991 992 993 994
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
995 996
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
997 998 999 1000 1001 1002 1003
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
1004 1005

    Returns:
1006
        Variable: A tensor variable is the shape with `x`.
1007 1008

    Examples:
1009

1010 1011
        .. code-block:: python

1012 1013
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1014 1015
    """

F
fengjiayi 已提交
1016
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1017 1018 1019
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1020 1021 1022 1023

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1024 1025 1026 1027 1028
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1029 1030 1031 1032 1033 1034
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
1035 1036 1037
    return out


1038
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1039
    """
Y
Yibing Liu 已提交
1040 1041
    **Cross Entropy Layer**

1042 1043 1044
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1045 1046

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1047
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1048

Y
Yibing Liu 已提交
1049
        .. math::
Y
yangyaming 已提交
1050

Y
Yibing Liu 已提交
1051 1052 1053
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1054 1055
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1056 1057 1058 1059 1060

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1061
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1062 1063 1064
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1065 1066
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1067
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1068

Y
Yibing Liu 已提交
1069
    Args:
Y
yangyaming 已提交
1070
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1071 1072 1073 1074
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1075
        label (Variable|list): the ground truth which is a 2-D tensor. When
1076 1077 1078 1079
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1080
        soft_label (bool): a flag indicating whether to
1081
                                           interpretate the given labels as soft
1082
                                           labels. Default: `False`.
M
minqiyang 已提交
1083 1084
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1085
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1086 1087 1088 1089 1090

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1091 1092 1093 1094 1095
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1096 1097 1098 1099 1100 1101

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1102
    """
F
fengjiayi 已提交
1103
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1104
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1105 1106 1107 1108 1109
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1110 1111
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1112 1113 1114
    return out


F
fengjiayi 已提交
1115
def square_error_cost(input, label):
Y
Yu Yang 已提交
1116
    """
1117 1118
    **Square error cost layer**

1119 1120
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1121

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1135 1136
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1137 1138

    Returns:
G
guosheng 已提交
1139
        Variable: The tensor variable storing the element-wise squared error \
1140
                  difference of input and label.
1141 1142 1143 1144 1145 1146 1147 1148

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1149
    """
F
fengjiayi 已提交
1150
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1151
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1152 1153 1154 1155 1156 1157
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1158
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1159
    helper.append_op(
F
fengjiayi 已提交
1160 1161
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1162 1163 1164
    return square_out


Y
yi.wu 已提交
1165
@templatedoc()
Y
Yu Yang 已提交
1166 1167 1168 1169
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1170
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1171
    """
Y
yi.wu 已提交
1172
    **Chunk Evaluator**
Y
yi.wu 已提交
1173

Y
yangyaming 已提交
1174
    This function computes and outputs the precision, recall and
1175
    F1-score of chunk detection.
Y
yi.wu 已提交
1176

Y
yi.wu 已提交
1177 1178 1179 1180 1181 1182 1183 1184
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1185

Y
yi.wu 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1211

Y
yi.wu 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1236
    Args:
1237 1238 1239 1240 1241
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1242

Y
yi.wu 已提交
1243
    Returns:
Y
update  
yi.wu 已提交
1244 1245 1246
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1247

Y
yi.wu 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1260
    """
F
fengjiayi 已提交
1261
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1262 1263

    # prepare output
X
Xin Pan 已提交
1264 1265 1266 1267 1268 1269 1270
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1271 1272 1273 1274 1275 1276 1277 1278

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1279 1280 1281 1282
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1283 1284 1285
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1286 1287
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1288
        })
1289 1290
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1291 1292


1293
@templatedoc()
Y
Yu Yang 已提交
1294 1295 1296 1297 1298 1299 1300
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1301 1302
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1303 1304 1305 1306
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1307 1308 1309 1310 1311 1312 1313

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1327

1328 1329
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1330 1331 1332 1333 1334 1335 1336
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1337
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1348
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1349 1350 1351 1352 1353 1354
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1355
def sequence_softmax(input, use_cudnn=False, name=None):
1356 1357 1358
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1359
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1376 1377 1378
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1379

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1391 1392
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1393
    softmax_out = helper.create_variable_for_type_inference(dtype)
1394 1395 1396 1397 1398 1399 1400 1401
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1402
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1403
    """
1404
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1405
    has the same shape as the input.
Q
qiaolongfei 已提交
1406

1407 1408 1409 1410 1411 1412
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1413
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1414 1415 1416 1417 1418 1419 1420

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1421
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1422 1423 1424 1425 1426 1427 1428 1429

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1430 1431 1432
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1445 1446
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1447
    softmax_out = helper.create_variable_for_type_inference(dtype)
1448 1449 1450 1451 1452 1453 1454 1455
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1456 1457 1458
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1459 1460
           stride=1,
           padding=0,
1461
           dilation=1,
Y
Yu Yang 已提交
1462 1463 1464
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1465
           use_cudnn=True,
1466 1467
           act=None,
           name=None):
Y
Yu Yang 已提交
1468
    """
C
chengduoZH 已提交
1469
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1470 1471
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1472
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1473 1474 1475 1476 1477 1478 1479
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1480 1481 1482
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1483

1484
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1485

C
chengduoZH 已提交
1486 1487
    .. math::

C
refine  
chengduoZH 已提交
1488
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1489

T
tensor-tang 已提交
1490
    Where:
C
chengduoZH 已提交
1491

1492 1493 1494 1495 1496
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1497
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1498 1499 1500

    Example:

1501 1502
        - Input:

W
weixing02 已提交
1503
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1504

W
weixing02 已提交
1505
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1506

1507
        - Output:
T
tensor-tang 已提交
1508

W
weixing02 已提交
1509
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1510

C
chengduoZH 已提交
1511
        Where
1512 1513

        .. math::
C
chengduoZH 已提交
1514

W
weixing02 已提交
1515 1516
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1517 1518

    Args:
1519
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1520
        num_filters(int): The number of filter. It is as same as the output
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1549 1550
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1551 1552
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1553
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1554
            will be named automatically. Default: None
C
chengduoZH 已提交
1555 1556

    Returns:
G
guosheng 已提交
1557
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1558 1559
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1560
    Raises:
1561 1562
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1563

C
chengduoZH 已提交
1564 1565 1566
    Examples:
        .. code-block:: python

1567 1568
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1569 1570 1571
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1572
    assert param_attr is not False, "param_attr should not be False here."
1573
    l_type = 'conv2d'
X
xzl 已提交
1574 1575
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1576
        l_type = 'depthwise_conv2d'
1577 1578 1579 1580

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1581 1582 1583 1584 1585
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1586
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1587

C
chengduoZH 已提交
1588 1589 1590
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1591
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1592

C
chengduoZH 已提交
1593 1594
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1595 1596

    input_shape = input.shape
M
minqiyang 已提交
1597
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1598 1599

    def _get_default_param_initializer():
C
chengduo 已提交
1600 1601
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1602 1603 1604 1605 1606 1607 1608 1609
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1610
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1611 1612

    helper.append_op(
1613
        type=l_type,
Y
Yu Yang 已提交
1614 1615 1616 1617 1618
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1619 1620 1621
        attrs={
            'strides': stride,
            'paddings': padding,
1622
            'dilations': dilation,
C
chengduoZH 已提交
1623
            'groups': groups,
1624
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1625
            'use_mkldnn': False
C
chengduoZH 已提交
1626
        })
Y
Yu Yang 已提交
1627 1628 1629 1630 1631 1632

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1650 1651 1652 1653 1654 1655
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1665 1666
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1667 1668 1669
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1670
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1696
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1697 1698
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1699
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1700 1701
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1702
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1703 1704
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1705
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1706 1707 1708 1709 1710 1711
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1722 1723
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1724 1725
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1726
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1727
            will be named automatically. Default: None.
C
chengduoZH 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1740 1741
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1742 1743 1744
    """

    l_type = 'conv3d'
C
chengduo 已提交
1745
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1756
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1770 1771 1772
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1773 1774 1775 1776 1777 1778 1779 1780
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1781
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1796
            'use_mkldnn': False
C
chengduoZH 已提交
1797 1798
        })

1799
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1800 1801 1802 1803

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1804
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1805
    """
Y
yangyaming 已提交
1806 1807 1808
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1820
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1821 1822 1823 1824 1825
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1826
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1827 1828 1829 1830 1831 1832 1833

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1834 1835
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1836

L
Luo Tao 已提交
1837 1838
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1839
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1840 1841 1842 1843 1844 1845 1846 1847
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1848

Y
yangyaming 已提交
1849
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1850 1851 1852 1853 1854
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1855 1856
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1857
    """
F
fengjiayi 已提交
1858
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1859
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1860 1861
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1862 1863 1864 1865 1866 1867 1868 1869

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1870 1871 1872 1873 1874
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1875 1876 1877
    return pool_out


C
add doc  
chengduoZH 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1897
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1898 1899 1900 1901 1902
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1903
def sequence_first_step(input):
L
Luo Tao 已提交
1904
    """
L
Luo Tao 已提交
1905
    This function gets the first step of sequence.
L
Luo Tao 已提交
1906 1907 1908 1909

    .. code-block:: text

       x is a 1-level LoDTensor:
1910
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1911 1912 1913 1914 1915
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1916
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1917
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1918

L
Luo Tao 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1928

Y
yangyaming 已提交
1929
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1930 1931 1932
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1933 1934 1935
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1936
def sequence_last_step(input):
L
Luo Tao 已提交
1937
    """
L
Luo Tao 已提交
1938
    This function gets the last step of sequence.
L
Luo Tao 已提交
1939 1940 1941 1942

    .. code-block:: text

       x is a 1-level LoDTensor:
1943
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1944 1945 1946 1947 1948
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1949
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1950
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1951

L
Luo Tao 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1961

Y
yangyaming 已提交
1962
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1963 1964 1965
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1966 1967 1968
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
1969 1970 1971 1972
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

1973
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
1974 1975 1976 1977 1978
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
1979

Y
Yibing Liu 已提交
1980 1981
	- Case:

1982
            Given the input Variable **input**:
1983

1984 1985 1986
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
1987

1988
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
1989

1990
            the output Variable will be
1991

1992 1993 1994
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
1995 1996

    NOTE: The first dimension size of **input**, **offset** and **length**
1997
          should be equal. The **offset** should start from 0.
1998

Y
Yibing Liu 已提交
1999
    Args:
2000
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2001
                         sequences.
Y
Yibing Liu 已提交
2002 2003 2004 2005 2006 2007
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2008
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2019
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2020 2021 2022 2023
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2024
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2039
@templatedoc()
Y
Yu Yang 已提交
2040
def pool2d(input,
C
chengduoZH 已提交
2041 2042
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2043 2044
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2045
           global_pooling=False,
C
chengduoZH 已提交
2046
           use_cudnn=True,
2047
           ceil_mode=False,
C
caoying03 已提交
2048
           name=None):
Y
Yu Yang 已提交
2049
    """
F
fengjiayi 已提交
2050
    ${comment}
2051 2052

    Args:
2053 2054 2055
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2056
                          feature, and W is the width of the feature.
2057
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2058
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2059
        pool_type: ${pooling_type_comment}
2060 2061
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2062 2063 2064
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2065
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2066 2067
                        layer will be named automatically.

2068
    Returns:
F
fengjiayi 已提交
2069
        Variable: The pooling result.
F
fengjiayi 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2083 2084 2085 2086
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2087
                            global_pooling=False)
Y
Yu Yang 已提交
2088 2089 2090 2091 2092
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2093

C
chengduoZH 已提交
2094 2095 2096 2097 2098
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2099 2100 2101 2102
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2103 2104
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2105

C
Add doc  
chengduoZH 已提交
2106
    l_type = 'pool2d'
2107 2108

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2109
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2110
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2111 2112

    helper.append_op(
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2124
            "use_mkldnn": False
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2141
    pooling configurations mentioned in input parameters.
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2154

2155
    Returns:
2156
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2157 2158 2159 2160 2161
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2162

C
chengduoZH 已提交
2163 2164 2165 2166 2167
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2168 2169 2170
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2171

C
chengduoZH 已提交
2172 2173
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2174

2175 2176
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2177
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2178
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2179 2180

    helper.append_op(
2181
        type=l_type,
Y
Yu Yang 已提交
2182 2183 2184 2185 2186 2187 2188
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2189
            "paddings": pool_padding,
2190
            "use_cudnn": use_cudnn,
2191
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2192
            "use_mkldnn": False
Y
Yu Yang 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2205
               data_layout='NCHW',
Y
Yang Yang 已提交
2206
               in_place=False,
2207 2208
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2209
               moving_variance_name=None,
2210 2211
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2212
    """
Q
qiaolongfei 已提交
2213 2214 2215 2216
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2217

Q
qiaolongfei 已提交
2218
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2219

Q
qiaolongfei 已提交
2220 2221
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2222 2223 2224
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2237 2238

    Args:
Q
qiaolongfei 已提交
2239
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2240 2241 2242 2243
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2244 2245 2246 2247 2248 2249 2250 2251
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2252
        data_layout(string, default NCHW): NCHW|NHWC
2253
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2254 2255 2256 2257
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2258
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2259
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2260 2261

    Returns:
Q
qiaolongfei 已提交
2262
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2263 2264 2265 2266 2267 2268 2269

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2270
    """
C
chengduo 已提交
2271
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2294
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2295

2296 2297
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2298 2299 2300
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2301
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2302
        shape=param_shape,
2303 2304 2305 2306 2307 2308 2309
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2310
            trainable=False,
W
wanghaoshuang 已提交
2311
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2312
        shape=param_shape,
2313 2314
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2315 2316 2317 2318 2319 2320

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2321 2322 2323 2324
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2325

X
Xin Pan 已提交
2326 2327
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2345 2346 2347 2348
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2349
            "use_mkldnn": False,
2350
            "fuse_with_relu": fuse_with_relu
2351
        })
Y
Yu Yang 已提交
2352 2353 2354 2355

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2356
@templatedoc()
G
guosheng 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2367
    ${comment}
G
guosheng 已提交
2368 2369 2370

    The formula is as follows:

Y
yuyang18 已提交
2371
    ..  math::
G
guosheng 已提交
2372 2373 2374 2375 2376 2377 2378

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2379 2380 2381 2382 2383 2384 2385 2386
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2387

G
guosheng 已提交
2388 2389
    Args:
        input(Variable): The input tensor variable.
2390
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2391
            normalization. Default True.
2392
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2393 2394
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2395
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2396
            Default 1.
2397
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2398
            division by zero. Default 1e-05.
G
guosheng 已提交
2399
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2400 2401
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2402 2403
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2404
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2405 2406
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2407
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2408
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2409
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2410 2411 2412
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2413 2414

    Returns:
Y
yuyang18 已提交
2415
        ${y_comment}
G
guosheng 已提交
2416 2417 2418

    Examples:

Y
yuyang18 已提交
2419 2420 2421
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2437
    if shift:
G
guosheng 已提交
2438 2439 2440 2441 2442 2443
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2444 2445 2446 2447 2448
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2464 2465 2466 2467
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2468 2469 2470
                     padding=0,
                     stride=1,
                     dilation=1,
2471
                     groups=None,
C
caoying03 已提交
2472
                     param_attr=None,
2473
                     bias_attr=None,
C
chengduoZH 已提交
2474
                     use_cudnn=True,
2475
                     act=None,
C
caoying03 已提交
2476
                     name=None):
Y
Yu Yang 已提交
2477
    """
2478 2479 2480 2481 2482 2483 2484 2485
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2486 2487
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2488 2489 2490
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2491 2492 2493 2494 2495

    For each input :math:`X`, the equation is:

    .. math::

2496
        Out = \sigma (W \\ast X + b)
2497

2498
    Where:
2499 2500 2501

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2502 2503 2504 2505
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2506

2507 2508 2509 2510
    Example:

        - Input:

2511
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2512

2513
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2514 2515 2516

        - Output:

2517
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2518 2519

        Where
Y
Yu Yang 已提交
2520

2521 2522
        .. math::

2523 2524 2525 2526
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2527 2528

    Args:
2529 2530 2531 2532
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2533 2534 2535 2536
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2565
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2566 2567 2568
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2569
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2570
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2571 2572

    Returns:
2573
        Variable: The tensor variable storing the convolution transpose result.
2574 2575

    Raises:
2576 2577
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2578 2579 2580 2581

    Examples:
       .. code-block:: python

2582 2583
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2584
    """
C
chengduo 已提交
2585
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2586 2587 2588 2589 2590 2591 2592 2593
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2594 2595 2596
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2597 2598 2599
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2600

C
chengduoZH 已提交
2601 2602
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2603

Y
Yu Yang 已提交
2604 2605 2606 2607 2608
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2609

Y
Yu Yang 已提交
2610 2611
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2612

C
chengduoZH 已提交
2613
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2614
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2615
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2616
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2617
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2618 2619 2620
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2621

2622 2623 2624 2625 2626 2627 2628
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2629
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2630
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2631

Y
Yu Yang 已提交
2632 2633 2634
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2635
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2636
    helper.append_op(
2637
        type=op_type,
Y
Yu Yang 已提交
2638 2639
        inputs={'Input': [input],
                'Filter': [img_filter]},
2640
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2641
        attrs={
2642
            'output_size': output_size,
2643 2644 2645 2646 2647
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2648 2649
        })

2650 2651 2652
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2653 2654


2655
def conv3d_transpose(input,
Y
Yu Yang 已提交
2656 2657 2658
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2659 2660 2661
                     padding=0,
                     stride=1,
                     dilation=1,
2662
                     groups=None,
C
caoying03 已提交
2663
                     param_attr=None,
2664
                     bias_attr=None,
C
chengduoZH 已提交
2665
                     use_cudnn=True,
2666
                     act=None,
C
caoying03 已提交
2667
                     name=None):
Y
Yu Yang 已提交
2668
    """
2669
    **Convlution3D transpose layer**
2670

2671
    The convolution3D transpose layer calculates the output based on the input,
2672
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2673 2674 2675 2676 2677 2678
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2679 2680 2681
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2682 2683 2684 2685 2686

    For each input :math:`X`, the equation is:

    .. math::

2687
        Out = \sigma (W \\ast X + b)
2688 2689 2690

    In the above equation:

2691 2692
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2693 2694 2695 2696
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2697

2698 2699 2700 2701
    Example:

        - Input:

2702
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2703

2704
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2705 2706 2707

        - Output:

2708
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2709 2710

        Where
Y
Yu Yang 已提交
2711

2712 2713
        .. math::

2714 2715 2716
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2717 2718

    Args:
2719
        input(Variable): The input image with [N, C, D, H, W] format.
2720 2721 2722
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2723
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2724 2725
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2726
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2727 2728 2729
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2730 2731
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2732
        stride(int|tuple): The stride size. If stride is a tuple, it must
2733 2734
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2735
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2736 2737 2738
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2739 2740 2741 2742 2743
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2753 2754
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2755 2756
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2757 2758
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2759 2760

    Returns:
2761
        Variable: The tensor variable storing the convolution transpose result.
2762 2763

    Raises:
2764 2765
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2766 2767 2768 2769

    Examples:
       .. code-block:: python

2770 2771
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2772
    """
C
chengduo 已提交
2773
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2774 2775
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2776
    if not isinstance(input, Variable):
2777
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2778 2779
    input_channel = input.shape[1]

2780 2781 2782
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2783

C
chengduoZH 已提交
2784 2785 2786
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2787 2788 2789 2790 2791 2792
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2793 2794 2795
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2796

2797
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2798
                         padding[0] - 1) // dilation[0] + 1
2799
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2800
                         padding[1] - 1) // dilation[1] + 1
2801
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2802
                         padding[2] - 1) // dilation[2] + 1
2803
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2804
    else:
2805 2806
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2807

2808
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2809
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2810 2811 2812
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2813
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2814
    helper.append_op(
2815
        type=l_type,
Y
Yu Yang 已提交
2816 2817
        inputs={'Input': [input],
                'Filter': [img_filter]},
2818
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2819 2820 2821 2822
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2823
            'groups': groups,
C
chengduoZH 已提交
2824 2825
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2826

2827 2828
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2829
    return out
Y
yangyaming 已提交
2830 2831


Y
yangyaming 已提交
2832
def sequence_expand(x, y, ref_level=-1, name=None):
2833
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2834 2835 2836 2837
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2838 2839 2840 2841 2842

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2843
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2844
                x.data = [[a], [b], [c], [d]]
2845 2846 2847
                x.dims = [4, 1]

            y is a LoDTensor:
2848 2849
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2850

Y
yangyaming 已提交
2851
            ref_level: 0
2852

Y
yangyaming 已提交
2853
            then output is a 1-level LoDTensor:
2854
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2855
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2856 2857 2858 2859
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2860
                x.data = [[a], [b], [c]]
2861 2862 2863
                x.dims = [3, 1]

            y is a LoDTensor:
2864
                y.lod = [[2, 0, 3]]
2865

Y
yangyaming 已提交
2866
            ref_level: -1
2867

Y
yangyaming 已提交
2868 2869 2870
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2871 2872 2873
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2874 2875
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2876
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2877
                        will be named automatically.
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2888
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2889
    """
Y
yangyaming 已提交
2890
    helper = LayerHelper('sequence_expand', input=x, **locals())
2891
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2892
    tmp = helper.create_variable_for_type_inference(dtype)
2893
    helper.append_op(
Y
yangyaming 已提交
2894 2895 2896 2897 2898
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2899
    return tmp
2900 2901


C
chengduo 已提交
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2958
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
2959 2960 2961 2962 2963 2964 2965 2966
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2967
@templatedoc()
2968
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2969 2970 2971 2972 2973
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2974 2975 2976
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2977
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2978 2979 2980 2981
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
2982 2983 2984
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
2985

F
fengjiayi 已提交
2986
    Returns:
M
minqiyang 已提交
2987
        Variable: The padded sequence batch and the original lengths before
2988
                  padding. All sequences has the same length.
M
minqiyang 已提交
2989

F
fengjiayi 已提交
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3003 3004
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3005 3006 3007 3008

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3009 3010 3011 3012 3013 3014
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3015 3016
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3017
        attrs={'padded_length': maxlen})
3018
    return out, length
F
fengjiayi 已提交
3019 3020


3021
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3022
    """
3023
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3024

3025 3026
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3027 3028 3029 3030 3031 3032 3033 3034 3035
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3036 3037 3038
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3039
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3040 3041 3042 3043 3044 3045

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3046
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3047 3048 3049 3050 3051 3052

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3053 3054
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3069
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3081 3082 3083 3084 3085 3086 3087 3088 3089
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3090 3091
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3092 3093 3094

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3095 3096

    This layer does the search in beams for one time step. Specifically, it
3097 3098 3099 3100 3101 3102
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3103

3104 3105 3106 3107 3108 3109 3110 3111
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3112

3113
    Args:
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3139

3140
    Returns:
3141 3142
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3143 3144 3145 3146

    Examples:
        .. code-block:: python

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3164 3165 3166 3167
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3168 3169 3170
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3171 3172 3173 3174 3175

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3176
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3194 3195 3196 3197 3198 3199 3200
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3201

3202 3203 3204 3205 3206 3207 3208 3209 3210
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3211

3212 3213 3214 3215 3216 3217
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3218

3219 3220 3221 3222 3223 3224 3225 3226
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3227 3228
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3244 3245 3246 3247
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3248
              param_attr=None,
C
caoying03 已提交
3249 3250
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3251 3252 3253 3254
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3255
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3256

3257
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3258

3259
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3260

3261
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3262 3263 3264

            h_t & = o_t tanh(c_t)

3265 3266 3267 3268 3269 3270
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3271 3272 3273

        .. math::

3274
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3275 3276 3277 3278 3279 3280 3281 3282

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3283
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3284 3285

    Args:
Y
yangyaming 已提交
3286 3287 3288 3289 3290 3291
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3292
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3305 3306
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3307 3308

    Returns:
Y
yangyaming 已提交
3309
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3310 3311

    Raises:
3312 3313 3314 3315
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3316 3317 3318 3319 3320 3321

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3322
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3323
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3324
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3341
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3342 3343 3344 3345
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3346 3347
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3348 3349 3350
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3351
    size = cell_t_prev.shape[1]
3352
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3353 3354
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3355
                param_attr=param_attr,
3356
                bias_attr=bias_attr)
Y
yangyaming 已提交
3357
    dtype = x_t.dtype
X
Xin Pan 已提交
3358 3359
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3360 3361 3362 3363 3364 3365 3366 3367 3368

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3369
    return h, c
G
guosheng 已提交
3370 3371


C
caoying03 已提交
3372
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3373
    """
Y
yangyaming 已提交
3374
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3375 3376 3377

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3378
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3379 3380
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3381 3382
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3383
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3384
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3385
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3386 3387
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3388 3389 3390

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3391

G
guosheng 已提交
3392 3393 3394 3395 3396 3397
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3398
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3399 3400 3401 3402
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3403 3404 3405 3406

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3407
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3408 3409 3410
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3411 3412
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3413
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3414 3415
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3416 3417 3418 3419 3420
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3421
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3422 3423 3424 3425
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3426 3427


C
caoying03 已提交
3428
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3429
    """
Y
Yibing Liu 已提交
3430
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3431 3432 3433

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3434 3435 3436
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3437
            must be in the range :math:`[-rank(input), rank(input))`. If
3438
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3439
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3440 3441
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3442
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3443
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3444
                       will be named automatically.
G
guosheng 已提交
3445 3446

    Returns:
Y
Yibing Liu 已提交
3447
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3448

G
guosheng 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3459 3460
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3461 3462 3463 3464 3465 3466 3467

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3468 3469
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3470
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3471 3472
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3473 3474 3475 3476 3477
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3478
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3479 3480 3481 3482
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3483 3484


C
caoying03 已提交
3485
def reduce_max(input, dim=None, keep_dim=False, name=None):
3486
    """
Y
yangyaming 已提交
3487
    Computes the maximum of tensor elements over the given dimension.
3488 3489 3490

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3491
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3492 3493 3494
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3495
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3496 3497
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3498
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3499 3500
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3501 3502 3503

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3504

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3516 3517 3518 3519 3520 3521 3522

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3523 3524
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3525
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3526 3527
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3528 3529 3530 3531 3532
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3533
            'dim': dim if dim != None else [0],
3534 3535 3536 3537 3538 3539
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3540
def reduce_min(input, dim=None, keep_dim=False, name=None):
3541
    """
Y
yangyaming 已提交
3542
    Computes the minimum of tensor elements over the given dimension.
3543 3544 3545

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3546
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3547 3548 3549
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3550
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3551 3552
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3553
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3554 3555
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3556 3557 3558

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3559

3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3571 3572 3573 3574 3575 3576 3577

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3578 3579
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3580
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3581 3582
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3583 3584 3585 3586 3587
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3588
            'dim': dim if dim != None else [0],
3589 3590 3591 3592
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3593 3594


3595 3596 3597 3598 3599 3600
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3601
        dim (list|int|None): The dimensions along which the product is performed. If
3602 3603
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3604 3605
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3606 3607 3608
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3609
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3610
            layer will be named automatically.
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3625
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3626
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3627 3628 3629 3630 3631 3632 3633

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3634 3635
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3636
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3637 3638
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3639 3640 3641 3642 3643
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3644
            'dim': dim if dim != None else [0],
3645 3646 3647 3648 3649 3650
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3651
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3652
    """
C
caoying03 已提交
3653
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3654 3655 3656

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3657 3658 3659 3660 3661
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3662
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3663
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3664
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3665 3666
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3667 3668

    Returns:
D
dzhwinter 已提交
3669
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3670 3671 3672 3673 3674 3675 3676 3677 3678

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3679 3680
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3696
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3710 3711 3712 3713 3714 3715 3716 3717 3718


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3719
    .. math::
3720 3721

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3722 3723 3724 3725 3726

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3727
        x(Variable|list): The input tensor to l2_normalize layer.
3728
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3729 3730
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3731
        epsilon(float): The epsilon value is used to avoid division by zero, \
3732
            the defalut value is 1e-10.
3733
        name(str|None): A name for this layer(optional). If set None, the layer \
3734
            will be named automatically.
C
caoying03 已提交
3735 3736

    Returns:
3737
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3738 3739

    Examples:
3740

C
caoying03 已提交
3741 3742
        .. code-block:: python

3743 3744 3745 3746
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3747 3748
    """

F
fengjiayi 已提交
3749 3750
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3751 3752
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3753 3754
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3755
    helper.append_op(
3756 3757 3758 3759
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3760
        attrs={
3761 3762
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3763 3764
        })
    return out
3765 3766


S
sneaxiy 已提交
3767
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3768
    """
Y
ying 已提交
3769 3770 3771 3772
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3773

C
chengduoZH 已提交
3774
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3775
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3776

3777 3778 3779 3780 3781
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3782
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3783

C
chengduoZH 已提交
3784
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3785
      performs in the following way.
G
guosheng 已提交
3786

3787
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3788
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3789
        last two dimensions and a batched matrix multiply supporting broadcast
3790
        applies on the two tensors.
G
guosheng 已提交
3791

Y
ying 已提交
3792 3793
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3794
    removed after matrix multiplication.
G
guosheng 已提交
3795 3796 3797

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3798 3799 3800
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3801
        alpha (float): The scale of output. Default 1.0.
3802
        name(str|None): A name for this layer(optional). If set None, the layer
3803
            will be named automatically.
G
guosheng 已提交
3804 3805

    Returns:
3806
        Variable: The product Tensor variable.
G
guosheng 已提交
3807

G
guosheng 已提交
3808 3809 3810
    Examples:
        .. code-block:: python

3811
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3812 3813
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3814

3815 3816
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3817

3818 3819
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3820

3821 3822
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3823 3824 3825 3826

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3827 3828
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3829

Y
ying 已提交
3830
            # x: [M], y: [N]
3831
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3832
    """
Y
ying 已提交
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3845
            y_shape = y_shape + [1]
Y
ying 已提交
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3862
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3863
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3864
    helper.append_op(
3865 3866 3867 3868
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3869 3870 3871
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3872
            'alpha': float(alpha),
S
sneaxiy 已提交
3873
        })
3874
    return out
3875 3876


3877
def topk(input, k, name=None):
Q
qingqing01 已提交
3878 3879 3880 3881
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3882
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3883 3884 3885 3886 3887 3888
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3910 3911 3912
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3913
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3914
                 of input.
3915
        name(str|None): A name for this layer(optional). If set None, the layer
3916
                       will be named automatically.
F
fengjiayi 已提交
3917
                       Default: None
Q
qingqing01 已提交
3918 3919

    Returns:
3920 3921 3922
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3923
        within the last dimension of input.
Q
qingqing01 已提交
3924

F
fengjiayi 已提交
3925 3926
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3927 3928 3929 3930 3931 3932 3933

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
3934 3935
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3947
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3948
    """
Y
ying 已提交
3949 3950 3951 3952 3953 3954 3955 3956 3957
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3958

Y
ying 已提交
3959
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3960

3961
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3962 3963
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3964
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3965

3966
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3967 3968
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3969

3970 3971 3972
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3973
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3974
                          the length of reference string.
3975
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3976
                                     calculating edit distance.
3977
        name (str): The name of this layer. It is optional.
3978

W
wanghaoshuang 已提交
3979
    Returns:
W
wanghaoshuang 已提交
3980
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3981 3982 3983 3984 3985

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3986
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3987
            cost = fluid.layers.edit_distance(input=x,label=y)
3988
    """
3989
    helper = LayerHelper("edit_distance", **locals())
3990

3991
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3992
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
3993 3994
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
3995 3996 3997 3998 3999

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4000
            attrs={"tokens": ignored_tokens})
4001 4002 4003 4004 4005
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4006
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4007
            attrs={"tokens": ignored_tokens})
4008 4009
        label = erased_label

4010
    # edit distance op
X
Xin Pan 已提交
4011 4012
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4013 4014 4015 4016
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4017 4018
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4019 4020
        attrs={"normalized": normalized})

4021
    return edit_distance_out, sequence_num
4022 4023 4024 4025 4026


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4027

Y
ying 已提交
4028 4029 4030 4031
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4049
        input.lod = [[4, 4]]
4050 4051 4052 4053 4054 4055 4056

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4057
        output.lod = [[2, 1]]
4058 4059 4060

    Args:

Y
ying 已提交
4061 4062 4063 4064 4065 4066 4067 4068 4069
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4070
        name (str): The name of this layer. It is optional.
4071 4072

    Returns:
4073
        Variable: CTC greedy decode result. If all the sequences in result were
4074
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4075 4076 4077 4078 4079

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4080

4081
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4082
    """
4083
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4084
    _, topk_indices = topk(input, k=1)
4085 4086

    # ctc align op
X
Xin Pan 已提交
4087
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4088 4089 4090
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4091
        outputs={"Output": [ctc_out]},
4092 4093
        attrs={"merge_repeated": True,
               "blank": blank})
4094
    return ctc_out
4095 4096


F
fengjiayi 已提交
4097
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4098
    """
4099 4100
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4101
    to compute Connectionist Temporal Classification (CTC) loss.
4102 4103
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4104 4105 4106
    input tensor.

    Args:
4107
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4108 4109 4110 4111
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4112
       label (Variable): The ground truth of variable-length sequence,
4113 4114 4115
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4116 4117
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4118 4119 4120
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4121
         follewed by a mean_op.
W
wanghaoshuang 已提交
4122 4123

    Returns:
4124 4125
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4126 4127

    Examples:
4128

W
wanghaoshuang 已提交
4129
        .. code-block:: python
4130

4131 4132 4133
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4134 4135

    """
F
fengjiayi 已提交
4136
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4137 4138
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4139 4140 4141 4142 4143 4144 4145 4146 4147
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4163 4164 4165
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4166 4167 4168 4169 4170
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4171

4172
            out.lod  = [[0, 1, 3]]
4173 4174 4175 4176

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4177 4178 4179 4180 4181 4182 4183
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4184 4185 4186

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4187 4188

    Returns:
4189

4190 4191 4192 4193 4194
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4195
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4196
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4197 4198
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4199
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4200 4201 4202 4203 4204 4205
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4206 4207


4208 4209 4210 4211
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4212 4213 4214 4215 4216 4217
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4218 4219
        num_neg_samples=None,
        name=None):
4220 4221 4222 4223 4224 4225 4226
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4227 4228
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4229
            sample is 1.0.
C
chengduo 已提交
4230 4231 4232 4233 4234 4235 4236 4237 4238
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4239
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4240 4241
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4242

4243
    Returns:
Y
Yibing Liu 已提交
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4271
    """
Y
Yang Yu 已提交
4272 4273 4274
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4275 4276

    dim = input.shape[1]
Y
Yang Yu 已提交
4277 4278 4279 4280 4281 4282
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4296 4297 4298
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4299

Y
Yang Yu 已提交
4300 4301 4302 4303 4304 4305 4306 4307 4308
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4309 4310 4311

    helper.append_op(
        type='nce',
C
chengduo 已提交
4312
        inputs=inputs,
Y
Yang Yu 已提交
4313 4314 4315 4316 4317 4318
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4319
    return cost / (num_neg_samples + 1)
4320 4321


C
chengduo 已提交
4322 4323 4324 4325 4326 4327
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4328 4329
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4330
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4331 4332 4333 4334 4335 4336 4337 4338 4339
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4340

W
weixing02 已提交
4341
    Args:
M
minqiyang 已提交
4342
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4343 4344 4345 4346 4347
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4359 4360 4361 4362 4363 4364 4365 4366

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4367 4368 4369
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4370 4371 4372 4373
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4374 4375
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4376 4377
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4378
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4379 4380 4381 4382 4383
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4384 4385 4386 4387 4388 4389 4390 4391
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4392 4393
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4394
        inputs=inputs,
W
weixing02 已提交
4395 4396 4397 4398 4399 4400
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4401
def transpose(x, perm, name=None):
Y
ying 已提交
4402 4403 4404 4405 4406 4407 4408
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4409 4410 4411
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4412 4413 4414 4415 4416 4417 4418 4419

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4420
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4421 4422
    """

Y
fix ci.  
ying 已提交
4423
    if len(perm) != len(x.shape):
Y
ying 已提交
4424 4425 4426
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4427 4428 4429 4430 4431 4432
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4433 4434

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4435 4436
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4437
    helper.append_op(
4438
        type='transpose2',
Y
fix ci.  
ying 已提交
4439
        inputs={'X': [x]},
4440 4441
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4442 4443
        attrs={'axis': perm})
    return out
4444 4445


4446 4447 4448 4449 4450 4451 4452
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4453
    """
4454 4455 4456 4457 4458 4459 4460
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4489 4490 4491 4492 4493 4494 4495 4496 4497
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4498 4499 4500
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4501 4502 4503 4504 4505
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4533 4534 4535
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4548
            output.dims = {8, 8}
4549

4550
            output.lod = [[4, 4]]
4551

D
dzhwinter 已提交
4552
     Examples:
4553 4554 4555

        .. code-block:: python

4556 4557
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4558 4559

    """
W
wanghaoshuang 已提交
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4570 4571 4572 4573 4574 4575 4576
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4577
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4578
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4579
    helper.append_op(
4580
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4581
    return out
4582 4583


Y
yuyang18 已提交
4584
@templatedoc()
4585
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4586 4587
    """
    ${comment}
4588 4589

    Args:
Y
yuyang18 已提交
4590
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4591 4592
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4593 4594 4595 4596 4597
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4598
        ${out_comment}.
4599 4600

    Examples:
Y
yuyang18 已提交
4601 4602 4603 4604
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4605 4606 4607 4608 4609 4610
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4611
    out = helper.create_variable_for_type_inference(dtype)
4612 4613 4614 4615 4616
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4617
    return helper.append_activation(out)
4618 4619


Y
yuyang18 已提交
4620
@templatedoc()
4621 4622
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4623 4624 4625 4626 4627 4628 4629
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4630 4631

    Args:
Y
yuyang18 已提交
4632 4633
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4634 4635

    Returns:
Y
yuyang18 已提交
4636
        ${out_comment}.
4637 4638
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4639 4640 4641 4642 4643

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4644
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4645 4646 4647 4648 4649 4650
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4651 4652


4653 4654 4655 4656
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4657 4658
    """
    **Softmax With Cross Entropy Operator.**
4659

4660 4661 4662 4663
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4664

4665 4666 4667
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4668

4669 4670 4671
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4672

4673
    The equation is as follows:
4674

4675
    1) Hard label (one-hot label, so every sample has exactly one class)
4676

4677 4678 4679 4680
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4681

4682 4683 4684
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4685

4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4698 4699
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4700 4701
                            if soft_label is set to False. Default: -100

4702 4703 4704 4705 4706 4707 4708 4709 4710
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4711 4712
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4713 4714
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4715 4716
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4717 4718 4719 4720 4721 4722
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4723 4724
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4725 4726 4727 4728 4729
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4730 4731
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4732
    For each instance, it computes the smooth L1 loss element by element first
4733
    and then sums all the losses. So the shape of ouput Variable is
4734
    [batch_size, 1].
4735

4736 4737
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4738
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4739
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4740
            L1 loss op with same shape as :attr:`x`.
4741
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4742 4743
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4744
            by this tensor element by element.
4745
        outside_weight (Variable|None): A tensor with rank at least 2. This
4746 4747
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4748
            element by element.
4749
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4750 4751
           scalar with default value 1.0.

4752
    Returns:
4753
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4754 4755 4756 4757 4758

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4759 4760
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4761
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4762
            out = fluid.layers.smooth_l1(x=fc, y=label)
4763
    """
4764

4765
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4766 4767
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4780 4781 4782 4783


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4784
    This layer creates the one-hot representations for input indices.
4785 4786

    Args:
Y
Yibing Liu 已提交
4787 4788
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4789 4790

    Returns:
Y
Yibing Liu 已提交
4791
        Variable: The one-hot representations of input.
4792 4793

    Examples:
C
caoying03 已提交
4794
        .. code-block:: python
4795

Y
Yibing Liu 已提交
4796 4797
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4798 4799
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4800
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4801 4802 4803 4804 4805 4806
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4807 4808


Y
Yu Yang 已提交
4809
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4810
    """
Y
yi.wu 已提交
4811 4812 4813
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4814 4815 4816 4817 4818 4819

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4820 4821
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4822 4823 4824 4825 4826 4827

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4828 4829
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4830 4831
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4832 4833 4834 4835 4836
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4837
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4838
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4839 4840
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4841 4842
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4843 4844 4845
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4846 4847


4848
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4849
    """
C
caoying03 已提交
4850 4851
    Gives a new shape to the input Tensor without changing its data.

4852 4853 4854 4855 4856
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4857

4858
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4859

4860 4861 4862 4863
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4864
    2. 0 means the actual dimension value is going to be copied from the
4865 4866 4867 4868
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4869 4870

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4871
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4872
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4873

4874
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4875 4876
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4877 4878
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4879
    dimensions.
C
caoying03 已提交
4880

4881
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4882 4883 4884 4885
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4886 4887

    Args:
4888
        x(variable): The input tensor.
C
caoying03 已提交
4889 4890
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4891 4892 4893 4894 4895
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4896
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4897 4898 4899 4900
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4901
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4902

4903 4904
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4905

X
Xin Pan 已提交
4906 4907 4908
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4909 4910
    Examples:
        .. code-block:: python
G
guosheng 已提交
4911

4912
            data = fluid.layers.data(
4913
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4914
            reshaped = fluid.layers.reshape(
4915
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4916 4917 4918
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4919
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4920 4921 4922 4923 4924
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4925

4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4941
    helper = LayerHelper("reshape2", **locals())
X
Xin Pan 已提交
4942 4943
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4944
    helper.append_op(
4945
        type="reshape2",
X
Xin Pan 已提交
4946
        inputs=inputs,
D
dzhwinter 已提交
4947
        attrs={"shape": shape},
4948 4949
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4950

D
dzhwinter 已提交
4951
    return helper.append_activation(out)
4952

4953

4954
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4955
    """
M
minqiyang 已提交
4956 4957 4958
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4959
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4960

Y
Yibing Liu 已提交
4961 4962
    Examples:
    Case 1:
M
minqiyang 已提交
4963
      Given
Y
Yibing Liu 已提交
4964 4965 4966 4967 4968 4969 4970 4971
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4972
        and
Y
Yibing Liu 已提交
4973 4974 4975
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4976

Y
Yibing Liu 已提交
4977
    Args:
4978
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4979
        axes (list): List of integers, indicating the dimensions to be squeezed.
4980
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4981 4982 4983 4984 4985 4986 4987 4988

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4989
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4990 4991
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
4992 4993
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
4994
    helper.append_op(
4995
        type="squeeze2",
4996
        inputs={"X": input},
Y
Yibing Liu 已提交
4997
        attrs={"axes": axes},
4998 4999
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5000

5001 5002 5003
    return out


5004
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5005
    """
M
minqiyang 已提交
5006 5007 5008
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5009

M
minqiyang 已提交
5010 5011
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5012
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5013

Y
Yibing Liu 已提交
5014
    Args:
5015
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5016
        axes (list): List of integers, indicating the dimensions to be inserted.
5017
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5018 5019 5020 5021 5022 5023 5024 5025

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5026
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5027 5028
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5029 5030
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5031
    helper.append_op(
5032
        type="unsqueeze2",
5033
        inputs={"X": input},
Y
Yibing Liu 已提交
5034
        attrs={"axes": axes},
5035 5036
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5037

5038 5039
    return out

5040

Y
yangyaming 已提交
5041
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5042
    """
Y
Yibing Liu 已提交
5043
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5044 5045 5046 5047
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5048
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5049 5050 5051 5052 5053 5054

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5055
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5056 5057 5058
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5059
            target_lod: [4, 2]
Y
yangyaming 已提交
5060 5061

            then we get a 1-level LoDTensor:
5062
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5063 5064 5065 5066 5067 5068
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5069
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5070 5071 5072 5073
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5074
                y.data = [[2, 4]]
Y
yangyaming 已提交
5075 5076 5077
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5078
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5079 5080 5081 5082 5083 5084
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5085
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5086 5087 5088 5089
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5090
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5091 5092 5093 5094
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5095
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5096 5097 5098 5099 5100
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5101
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5102
                           from :attr:`y`.
Y
yangyaming 已提交
5103
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5104
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5105 5106

    Returns:
Y
Yibing Liu 已提交
5107
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5108 5109

    Raises:
Y
Yibing Liu 已提交
5110
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5111 5112 5113 5114 5115 5116 5117 5118 5119

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5120
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5146
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5175 5176
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5189 5190 5191
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5205 5206 5207 5208


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5209
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5210
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5211

G
guosheng 已提交
5212 5213 5214 5215
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5238
                         The length of :attr:paddings must be
G
guosheng 已提交
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5249

G
guosheng 已提交
5250 5251 5252 5253 5254 5255
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5256
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5257 5258 5259 5260 5261 5262 5263
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5264 5265


C
chengduo 已提交
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5336
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5337 5338 5339 5340 5341 5342 5343 5344 5345
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5346 5347 5348 5349 5350 5351 5352
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5353 5354
    called label-smoothing regularization (LSR).

5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5378
                              be :math:`(1, class\_num)`.
5379 5380
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5381
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5401
    smooth_label = helper.create_variable_for_type_inference(dtype)
5402 5403 5404 5405 5406 5407 5408
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5409 5410


Y
yi.wu 已提交
5411
@templatedoc()
5412 5413
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5414
    ${comment}
5415 5416

    Args:
Y
yi.wu 已提交
5417 5418
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5419 5420 5421
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5422 5423

    Returns:
Y
update  
yi.wu 已提交
5424
        Variable: ${out_comment}.
5425 5426

    Examples:
5427 5428
        .. code-block:: python

5429
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5430 5431 5432
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5433 5434
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5447 5448


J
jerrywgz 已提交
5449 5450 5451 5452 5453 5454
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5455 5456
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5473 5474 5475
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5476 5477 5478 5479 5480 5481
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5482
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5523 5524
        .. code-block:: python

W
whs 已提交
5525 5526 5527 5528
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5529
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5530 5531 5532 5533 5534 5535
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5536 5537


5538 5539 5540 5541 5542
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5543
    """
Q
qiaolongfei 已提交
5544
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5545

5546
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5547 5548 5549
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5550

5551
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5552

5553
    Args:
5554
        input (Variable): The input tensor of image resize layer,
5555 5556
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5557
        out_shape(list|tuple|Variable|None): Output shape of image resize
5558 5559
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5560
        scale(float|None): The multiplier for the input height or width.
5561 5562 5563
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5564 5565
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5566 5567
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5568 5569

    Returns:
Q
update  
qiaolongfei 已提交
5570 5571
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5572

5573 5574 5575
    Examples:
        .. code-block:: python

5576
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5577
    """
5578 5579 5580 5581
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5582 5583
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5584 5585
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5586 5587 5588 5589

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5590 5591 5592
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5593
    if out_shape is not None:
B
baiyf 已提交
5594 5595 5596
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5597 5598 5599 5600 5601 5602
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5603 5604 5605 5606
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

X
Xin Pan 已提交
5607
    out = helper.create_variable_for_type_inference(dtype)
5608
    helper.append_op(
5609
        type=resample_methods[resample],
5610
        inputs=inputs,
5611 5612 5613 5614
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5615 5616


Y
yuyang18 已提交
5617
@templatedoc(op_type="bilinear_interp")
5618 5619
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5620 5621 5622 5623 5624 5625
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5626

Y
yuyang18 已提交
5627 5628 5629 5630 5631 5632 5633 5634
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5635 5636 5637 5638 5639 5640 5641
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5642 5643 5644
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5645 5646 5647 5648 5649 5650 5651
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5652
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5653

5654
    Returns:
Q
update  
qiaolongfei 已提交
5655
        Variable: The output is a 4-D tensor of the shape
5656
        (num_batches, channls, out_h, out_w).
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5667 5668 5669
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5670 5671 5672
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5673 5674
def gather(input, index):
    """
Q
qiaolongfei 已提交
5675 5676
    **Gather Layer**

5677
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5678 5679 5680 5681
    of X indexed by `index` and concatenate them together.

    .. math::

5682
        Out = X[Index]
W
whs 已提交
5683 5684 5685 5686 5687 5688 5689


    .. code-block:: text


                Given:

5690 5691
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5702
        input (Variable): The source input with rank>=1.
W
whs 已提交
5703 5704 5705 5706 5707 5708
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5709

W
whs 已提交
5710 5711 5712 5713 5714 5715
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5716
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5717 5718 5719 5720 5721 5722 5723 5724
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5756
    out = helper.create_variable_for_type_inference(dtype)
5757 5758 5759 5760 5761 5762 5763 5764 5765
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5816
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
5817 5818 5819 5820 5821 5822 5823 5824 5825
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5839

5840 5841 5842
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5843
    """
F
stash  
fengjiayi 已提交
5844
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5845
    dtype = x.dtype
X
Xin Pan 已提交
5846
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
5847
    if seed is None:
5848
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5849
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5850
    if isinstance(seed, int):
F
fengjiayi 已提交
5851 5852 5853 5854 5855
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5856 5857 5858 5859
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5860
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5861 5862
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5863 5864
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5865
    return out
W
whs 已提交
5866 5867


5868
def log(x, name=None):
W
wanghaoshuang 已提交
5869 5870 5871 5872 5873
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5874
        Out = \\ln(x)
W
wanghaoshuang 已提交
5875 5876

    Args:
5877
        x (Variable): Input tensor.
5878 5879
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5880 5881 5882 5883 5884 5885 5886 5887

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5888
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5889 5890
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5891
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5892
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5893
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5894 5895 5896
    return out


5897
def relu(x, name=None):
W
wanghaoshuang 已提交
5898 5899
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5900
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5901 5902 5903 5904
    the tensor elementwise.

    .. math::

5905
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5906 5907

    Args:
5908
        x (Variable): The input tensor.
5909 5910
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5911 5912 5913 5914 5915 5916 5917 5918

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5919
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5920 5921
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5922
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5923
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5924
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5925
    return out
5926 5927


W
whs 已提交
5928 5929 5930
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5931 5932 5933 5934
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5935
    .. math::
5936 5937

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5938

5939
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5940 5941 5942 5943 5944
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5945
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5946
                           Its shape should be the same as input.
5947
        num_classes (int): The possible number of labels.
W
whs 已提交
5948 5949 5950 5951

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5952
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5953 5954 5955 5956

    Examples:

        .. code-block:: python
5957

W
whs 已提交
5958 5959 5960 5961
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5962 5963 5964
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
5965 5966
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5967 5968
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5969
        outputs={
W
whs 已提交
5970 5971 5972
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5973 5974 5975
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6050
                    isinstance(shape, Variable)):
6051 6052 6053 6054 6055
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6056
    out = helper.create_variable_for_type_inference(x.dtype)
6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6084

6085 6086
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6087

6088 6089 6090 6091
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6092

6093 6094 6095 6096 6097
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6098 6099 6100

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6136
    out = helper.create_variable_for_type_inference("float32")
6137 6138 6139 6140 6141 6142 6143 6144

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6145 6146


M
minqiyang 已提交
6147 6148
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6149
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6150
    which compares left score and right score passed in.
M
minqiyang 已提交
6151
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6152 6153 6154 6155 6156 6157

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6158
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6159 6160
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6161
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6162 6163 6164
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6165
       Variable: The ranking loss.
M
minqiyang 已提交
6166
    Raises:
M
minqiyang 已提交
6167
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6168 6169 6170 6171 6172 6173 6174
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6175
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6176 6177 6178 6179 6180 6181
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6182 6183
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6209

W
whs 已提交
6210 6211
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6212

W
whs 已提交
6213
      Case 0:
M
minqiyang 已提交
6214

W
whs 已提交
6215 6216 6217
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6218

W
whs 已提交
6219 6220 6221
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6222

W
whs 已提交
6223
      Case 1:
M
minqiyang 已提交
6224

W
whs 已提交
6225 6226
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6227

W
whs 已提交
6228 6229 6230
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6231

W
whs 已提交
6232
      Case 2:
M
minqiyang 已提交
6233

W
whs 已提交
6234 6235
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6236

W
whs 已提交
6237 6238 6239
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6240 6241


W
whs 已提交
6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6268
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6297
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6320
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6343
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6367
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6392
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6416
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6417 6418 6419 6420 6421 6422 6423 6424
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6439
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6440
                        will be named automatically.
J
jerrywgz 已提交
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6468
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6469 6470 6471 6472 6473 6474 6475 6476 6477
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6492
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6515
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6537
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6538 6539 6540 6541 6542 6543 6544 6545
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6559

6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6570 6571
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6587
        ValueError: If axis is not in range [0, rank(x)].
6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6604 6605
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6606
    helper.append_op(
6607
        type='flatten2',
6608
        inputs={"X": x},
6609 6610
        outputs={'Out': out,
                 'XShape': x_shape},
6611 6612
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6613 6614


C
chenweihang 已提交
6615
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6616
    """
C
chenweihang 已提交
6617
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6618
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6619 6620
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6621

C
chenweihang 已提交
6622 6623 6624 6625
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6626
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6627 6628 6629 6630 6631 6632
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6633
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6634 6635 6636
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6637 6638 6639
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
6651 6652
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6653 6654 6655 6656 6657 6658
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6659
    return out
6660

6661

S
sneaxiy 已提交
6662 6663 6664 6665 6666 6667 6668 6669 6670
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6671

S
sneaxiy 已提交
6672
    .. math::
6673

S
sneaxiy 已提交
6674 6675 6676
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6677
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6678 6679 6680 6681
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6682 6683 6684
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6685 6686
    Returns:
        Variable: The output sequence mask.
6687

S
sneaxiy 已提交
6688 6689
    """

Q
qingqing01 已提交
6690
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6691
    if name is None:
X
Xin Pan 已提交
6692
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
6693
    else:
X
Xin Pan 已提交
6694
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
6695

Q
qingqing01 已提交
6696 6697 6698
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6699 6700
        outputs={'Y': out},
        attrs={
6701
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6702 6703 6704
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6705 6706


X
Xin Pan 已提交
6707
def stack(x, axis=0):
S
sneaxiy 已提交
6708 6709 6710 6711
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6712 6713 6714 6715 6716 6717 6718

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6719
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6720
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6721 6722

    Args:
6723
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6724
        axis (int|None): The axis along which all inputs are stacked.
6725

S
sneaxiy 已提交
6726 6727
    Returns:
        Variable: The stacked variable.
6728

S
sneaxiy 已提交
6729 6730
    """

X
Xin Pan 已提交
6731 6732 6733 6734 6735 6736
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
6737
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
6738
    helper.append_op(
S
sneaxiy 已提交
6739 6740
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6741

X
Xin Pan 已提交
6742
    return out
D
dzhwinter 已提交
6743 6744 6745 6746 6747 6748 6749


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6750

D
dzhwinter 已提交
6751 6752 6753
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6754
    raised.
D
dzhwinter 已提交
6755 6756

    Args:
M
minqiyang 已提交
6757
        x (Variable): Input variable.
D
dzhwinter 已提交
6758 6759
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6760

D
dzhwinter 已提交
6761 6762
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6763

D
dzhwinter 已提交
6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
6775
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
6776 6777 6778 6779 6780 6781 6782 6783

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6796

W
whs 已提交
6797 6798 6799 6800
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6801

W
whs 已提交
6802
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6803

W
whs 已提交
6804
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6805

W
whs 已提交
6806 6807 6808 6809
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6810

W
whs 已提交
6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6827
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6828 6829 6830 6831 6832 6833
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6834 6835


G
fix  
gongweibao 已提交
6836 6837 6838
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6839
@templatedoc()
G
fix  
gongweibao 已提交
6840 6841 6842 6843 6844 6845 6846 6847 6848
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6849
    ${comment}
G
fix  
gongweibao 已提交
6850 6851

    Args:
G
gongweibao 已提交
6852 6853 6854
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6855
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6856 6857 6858
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6859 6860
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6861
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6862 6863 6864 6865

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
6866
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6883 6884


G
gongweibao 已提交
6885
@templatedoc()
X
Xin Pan 已提交
6886
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6887
    """
G
gongweibao 已提交
6888
    ${comment}
G
fix  
gongweibao 已提交
6889 6890

    Args:
G
gongweibao 已提交
6891 6892 6893 6894
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6895 6896 6897
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6898
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6899 6900 6901 6902

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
6903
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6904 6905 6906 6907 6908 6909 6910 6911 6912 6913
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6914
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6915 6916 6917 6918 6919
        })

    return out


G
gongweibao 已提交
6920
@templatedoc()
G
fix  
gongweibao 已提交
6921
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6922
    """
G
gongweibao 已提交
6923
    ${comment}
G
fix  
gongweibao 已提交
6924 6925

    Args:
G
gongweibao 已提交
6926 6927 6928 6929
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6930
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6931 6932

    Returns:
G
gongweibao 已提交
6933
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6934 6935 6936 6937

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
6938
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6950
@templatedoc()
G
fix  
gongweibao 已提交
6951 6952 6953 6954 6955 6956 6957 6958 6959
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6960
    ${comment}
G
fix  
gongweibao 已提交
6961 6962

    Args:
G
gongweibao 已提交
6963 6964
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6965
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6966 6967 6968 6969
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6970
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6971 6972

    Returns:
G
gongweibao 已提交
6973
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6974 6975 6976
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
6977
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
6996
@templatedoc()
X
Xin Pan 已提交
6997
def sum(x):
G
fix  
gongweibao 已提交
6998
    """
G
gongweibao 已提交
6999
    ${comment}
G
fix  
gongweibao 已提交
7000 7001

    Args:
G
gongweibao 已提交
7002
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7003 7004

    Returns:
G
gongweibao 已提交
7005
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7006 7007 7008
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7009 7010
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7011 7012 7013 7014
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7015
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7016 7017 7018 7019

    return out


G
gongweibao 已提交
7020
@templatedoc()
G
fix  
gongweibao 已提交
7021 7022
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7023
    ${comment}
G
fix  
gongweibao 已提交
7024 7025

    Args:
G
gongweibao 已提交
7026 7027 7028 7029
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7030 7031

    Returns:
G
gongweibao 已提交
7032
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7033 7034 7035 7036

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7037 7038
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7050
@templatedoc()
G
fix  
gongweibao 已提交
7051 7052
def shape(input):
    """
G
gongweibao 已提交
7053
    ${comment}
G
fix  
gongweibao 已提交
7054 7055

    Args:
G
gongweibao 已提交
7056
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7057 7058

    Returns:
G
gongweibao 已提交
7059
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7060 7061 7062 7063

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7064 7065
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7066
    helper.append_op(
G
fix  
gongweibao 已提交
7067
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7068 7069

    return out
G
merge  
gongweibao 已提交
7070 7071


S
sneaxiy 已提交
7072 7073 7074 7075 7076 7077 7078 7079
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7080 7081
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7082
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7083 7084 7085
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7086

S
sneaxiy 已提交
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7098
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7099 7100 7101 7102 7103 7104 7105 7106
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7107
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7108
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7109 7110 7111 7112 7113 7114

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7115
    if name is None:
X
Xin Pan 已提交
7116
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7117 7118 7119
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7120 7121 7122 7123 7124 7125 7126 7127 7128 7129

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7130
    return helper.append_activation(out)
S
sneaxiy 已提交
7131 7132


X
Xin Pan 已提交
7133
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7134 7135 7136
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7137
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7138 7139 7140
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7141
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7142 7143 7144
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7145
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7146 7147 7148
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7149
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7150 7151 7152
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7153
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7154 7155 7156
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7157
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7169 7170
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7171
        ])
M
minqiyang 已提交
7172 7173


7174
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7175 7176
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7177 7178
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7179 7180 7181

    if out is None:
        if name is None:
X
Xin Pan 已提交
7182
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7198
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7217
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7236
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7255
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
X
Xin Pan 已提交
7290
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
X
Xin Pan 已提交
7322
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7352
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7382
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7383 7384 7385 7386 7387 7388 7389 7390 7391
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7392 7393
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7416
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7446
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7447 7448 7449 7450 7451 7452 7453 7454 7455 7456
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
M
minqiyang 已提交
7457 7458


7459 7460 7461 7462 7463 7464
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7465

7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7485
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7498 7499


M
minqiyang 已提交
7500 7501
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543
    Hash the input to an integer whose value is less than the given hash size.

    The hash algorithm was implemented in here:
    https://github.com/Cyan4973/xxHash/tree/v0.6.5

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
7544
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
7545
        name (str, default None): The name of this layer.
M
minqiyang 已提交
7546 7547 7548 7549 7550 7551 7552 7553 7554

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
7555 7556
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
7557 7558
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
7559 7560 7561 7562 7563 7564 7565
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out