nn.py 253.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
112
    'margin_rank_loss',
X
Xin Pan 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
156
    'affine_channel',
Y
Yu Yang 已提交
157 158 159 160 161 162 163 164 165
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
166
       is_test=False,
167
       name=None):
Y
Yu Yang 已提交
168
    """
169
    **Fully Connected Layer**
Y
Yu Yang 已提交
170

171 172 173 174 175 176 177 178
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
179
    to the output as well.
C
caoying03 已提交
180

C
caoying03 已提交
181
    This process can be formulated as follows:
182 183 184

    .. math::

185
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
186 187 188

    In the above equation:

C
caoying03 已提交
189 190 191 192
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
193
    * :math:`Act`: The activation function.
C
caoying03 已提交
194
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
195 196

    Args:
R
ranqiu 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
212 213
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
214
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
215
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
216
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
217

218
    Returns:
F
fengjiayi 已提交
219
        Variable: The transformation result.
220 221

    Raises:
C
caoying03 已提交
222
        ValueError: If rank of the input tensor is less than 2.
223 224 225 226

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
227
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
228
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
229
    """
C
caoying03 已提交
230

C
caoying03 已提交
231
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
232 233 234 235

    dtype = helper.input_dtype()

    mul_results = []
236 237
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
238 239 240
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
241

Y
Yu Yang 已提交
242
        w = helper.create_parameter(
243 244
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
245
        helper.append_op(
246 247 248
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
249
            outputs={"Out": tmp},
M
mozga-intel 已提交
250 251
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
252 253 254 255
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
256
    else:
257 258
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
259 260 261
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
262
            attrs={"use_mkldnn": False})
263 264 265 266
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
267 268


269 270 271
def embedding(input,
              size,
              is_sparse=False,
272
              is_distributed=False,
273 274 275
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
276
    """
277 278
    **Embedding Layer**

279
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
280 281
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
282 283 284

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
285 286

    Args:
287 288 289 290 291
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
292
        is_distributed(bool): Whether to run lookup table from remote parameter server.
293 294
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
295
            with zeros whenever lookup encounters it in :attr:`input`. If
296
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
297 298
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
299
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
300

301 302 303
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
304

305 306
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
307

C
chengduoZH 已提交
308
          dict_size = len(dataset.ids)
309
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
310
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
311 312 313 314 315 316
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
317 318
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
319 320 321 322 323
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
324 325 326 327 328
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
329 330 331
    return tmp


Y
yi.wu 已提交
332
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
333 334
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
335 336
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
337 338 339 340 341 342 343
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
344 345
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
346
    """
Y
yi.wu 已提交
347
    ${comment}
Y
Yibing Liu 已提交
348 349

    Args:
Y
yi.wu 已提交
350 351
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
352 353 354 355 356 357 358
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

359
        param_attr(ParamAttr|None): The parameter attribute for the learnable
360
                               hidden-hidden weights.
Y
Yibing Liu 已提交
361 362 363

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
364 365
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
366
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
367 368 369
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
370

371
                              1. `use_peepholes = False`
Y
yi.wu 已提交
372 373
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
374
                              2. `use_peepholes = True`
Y
yi.wu 已提交
375
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
376
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
377
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
378 379 380 381 382 383 384 385
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
386 387

    Returns:
Y
Yibing Liu 已提交
388 389
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
390

Y
Yibing Liu 已提交
391
    Examples:
Y
Yibing Liu 已提交
392 393
        .. code-block:: python

Y
Yibing Liu 已提交
394 395
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
396
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
397 398
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
399
    """
400

Y
Yu Yang 已提交
401
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
402
    size = size // 4
Y
Yu Yang 已提交
403 404 405 406 407 408 409 410 411 412 413 414
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
415 416 417 418 419 420 421 422 423 424
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
425 426 427

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
428
        inputs=inputs,
Y
Yu Yang 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
445 446 447 448 449 450 451 452 453 454 455
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
456 457
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
458 459 460
    """
    **Dynamic LSTMP Layer**

461 462 463 464 465 466
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
467 468 469 470 471

    The formula is as follows:

    .. math::

472
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
473

474
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
475

476
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
477

478
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
479

480
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
481

482
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
483

484
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
485

Y
Yibing Liu 已提交
486 487 488 489 490 491
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
492
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
493
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
494
          bias vector).
Y
Yibing Liu 已提交
495 496 497
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
498
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
499
    * :math:`h`: The hidden state.
500
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
501 502
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
503
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
504
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
505
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
506 507
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
508 509 510 511

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
512

Y
Yibing Liu 已提交
513 514 515 516 517 518 519 520 521 522 523 524
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
525
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
526 527
                               hidden-hidden weight and projection weight.

528 529
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
530 531
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
532 533
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
534 535
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
536 537 538 539 540 541
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
542
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
543 544 545
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
546
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
547 548 549 550 551 552 553 554 555
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
556
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
557 558
                              default "tanh".
        proj_activation(str): The activation for projection output.
559
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
560 561
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
562 563
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
564 565

    Returns:
566 567 568 569
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
570 571

    Examples:
572

Y
Yibing Liu 已提交
573 574
        .. code-block:: python

575 576 577 578
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
579
            hidden_dim, proj_dim = 512, 256
580
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
581
                                     act=None, bias_attr=None)
582 583 584
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
585 586 587 588
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
589
    """
590

Y
Yibing Liu 已提交
591
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
592
    size = size // 4
Y
Yibing Liu 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
637 638 639 640 641 642 643 644 645
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
646
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
647

648
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
649
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
650

G
guosheng 已提交
651 652 653 654 655 656 657 658 659
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
660

G
guosheng 已提交
661
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
662

G
guosheng 已提交
663
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
664 665
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
666 667 668 669
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
670
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
671 672

    Args:
673 674
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
675
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
676
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
677 678
            is the hidden size.
        size(int): The dimension of the gru cell.
679
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
680 681
            hidden-hidden weight matrix. Note:

682
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
683
              :math:`D` is the hidden size.
684
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
685
              The first part are weights of the update gate and reset gate with
686
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
687
              candidate hidden state with shape :math:`(D \\times D)`.
688
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
689
            hidden-hidden bias.
690
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
691 692 693
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
694
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
695
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
696 697 698 699
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
700 701

    Returns:
G
guosheng 已提交
702
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
703
            and sequence length is the same with the input.
704

G
guosheng 已提交
705
    Examples:
706

G
guosheng 已提交
707 708
        .. code-block:: python

709 710 711 712
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
713
            hidden_dim = 512
714
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
715 716 717 718 719 720 721 722 723 724
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
725
    batch_size = input.shape[0]
G
guosheng 已提交
726 727 728
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
729 730 731
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
755 756 757
def gru_unit(input,
             hidden,
             size,
758 759
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
760
             activation='tanh',
761
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
762
    """
763
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
764

765 766
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
767

768
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
769

770
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
771

772
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
773 774

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
775 776 777
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
778 779
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

780 781
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
782 783 784
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
785 786 787 788 789

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
790 791
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
792 793 794 795
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
796

797 798 799 800 801 802
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
803

804
             # assuming we have x_t_data and prev_hidden of size=10
805
             x_t = fluid.layers.fc(input=x_t_data, size=30)
806 807
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
808 809 810 811 812 813 814 815 816 817 818 819

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
820
    size = size // 3
Y
Yu Yang 已提交
821 822

    # create weight
823 824
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
825

826 827 828 829
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
830
    # create bias
831
    if helper.bias_attr:
Y
Yu Yang 已提交
832 833 834
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
835
        inputs['Bias'] = bias
Y
Yu Yang 已提交
836 837 838

    helper.append_op(
        type='gru_unit',
839
        inputs=inputs,
Y
Yu Yang 已提交
840 841 842 843 844 845
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
846 847
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
848 849 850 851 852
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
853
@templatedoc()
854
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
855 856 857 858 859 860 861
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
862
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
863 864 865 866
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
867 868 869
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
870 871

    """
Y
Yu Yang 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
897
@templatedoc()
898
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
899 900 901 902 903
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
904

Y
yuyang18 已提交
905
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
906

Y
yuyang18 已提交
907 908 909
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
910
        Variable: ${viterbi_path_comment}
911

Y
yi.wu 已提交
912 913 914 915 916
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
917
    """
Y
Yu Yang 已提交
918 919 920 921 922 923 924 925 926 927 928 929 930
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
931
@templatedoc()
F
fengjiayi 已提交
932
def cos_sim(X, Y):
Y
Yu Yang 已提交
933
    """
Y
yi.wu 已提交
934 935 936
    ${comment}

    Args:
937 938
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
939

Y
yi.wu 已提交
940
    Returns:
941
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
942
    """
F
fengjiayi 已提交
943
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


957
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
958 959 960 961 962
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
963
    training. The dropout operator randomly sets (according to the given dropout
964 965 966 967
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
968 969
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
970 971 972 973 974 975 976
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
977 978

    Returns:
979
        Variable: A tensor variable is the shape with `x`.
980 981

    Examples:
982

983 984
        .. code-block:: python

985 986
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
987 988
    """

F
fengjiayi 已提交
989
    helper = LayerHelper('dropout', **locals())
990 991
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
992 993 994 995

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

996 997 998 999 1000
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1001 1002 1003 1004 1005 1006
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
1007 1008 1009
    return out


1010
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1011
    """
Y
Yibing Liu 已提交
1012 1013
    **Cross Entropy Layer**

1014 1015 1016
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1017 1018

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1019
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1020

Y
Yibing Liu 已提交
1021
        .. math::
Y
yangyaming 已提交
1022

Y
Yibing Liu 已提交
1023 1024 1025
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1026 1027
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1028 1029 1030 1031 1032

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1033
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1034 1035 1036
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1037 1038
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1039
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1040

Y
Yibing Liu 已提交
1041
    Args:
Y
yangyaming 已提交
1042
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1043 1044 1045 1046
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1047
        label (Variable|list): the ground truth which is a 2-D tensor. When
1048 1049 1050 1051
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1052
        soft_label (bool): a flag indicating whether to
1053
                                           interpretate the given labels as soft
1054
                                           labels. Default: `False`.
M
minqiyang 已提交
1055 1056
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1057
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1058 1059 1060 1061 1062

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1063 1064 1065 1066 1067
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1068 1069 1070 1071 1072 1073

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1074
    """
F
fengjiayi 已提交
1075
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1076 1077 1078 1079 1080 1081
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1082 1083
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1084 1085 1086
    return out


F
fengjiayi 已提交
1087
def square_error_cost(input, label):
Y
Yu Yang 已提交
1088
    """
1089 1090
    **Square error cost layer**

1091 1092
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1093

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1107 1108
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1109 1110

    Returns:
G
guosheng 已提交
1111
        Variable: The tensor variable storing the element-wise squared error \
1112
                  difference of input and label.
1113 1114 1115 1116 1117 1118 1119 1120

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1121
    """
F
fengjiayi 已提交
1122
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1132 1133
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1134 1135 1136
    return square_out


Y
yi.wu 已提交
1137
@templatedoc()
Y
Yu Yang 已提交
1138 1139 1140 1141
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1142
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1143
    """
Y
yi.wu 已提交
1144
    **Chunk Evaluator**
Y
yi.wu 已提交
1145

Y
yangyaming 已提交
1146
    This function computes and outputs the precision, recall and
1147
    F1-score of chunk detection.
Y
yi.wu 已提交
1148

Y
yi.wu 已提交
1149 1150 1151 1152 1153 1154 1155 1156
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1157

Y
yi.wu 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1183

Y
yi.wu 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1208
    Args:
1209 1210 1211 1212 1213
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1214

Y
yi.wu 已提交
1215
    Returns:
Y
update  
yi.wu 已提交
1216 1217 1218
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1219

Y
yi.wu 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1232
    """
F
fengjiayi 已提交
1233
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1234 1235 1236 1237 1238

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1239 1240 1241
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1242 1243 1244 1245 1246 1247 1248 1249

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1250 1251 1252 1253
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1254 1255 1256
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1257 1258
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1259
        })
1260 1261
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1262 1263


1264
@templatedoc()
Y
Yu Yang 已提交
1265 1266 1267 1268 1269 1270 1271
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1272
                  act=None):
Y
Yu Yang 已提交
1273 1274 1275 1276
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1287

1288 1289
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1308
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1309 1310 1311 1312 1313 1314
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1315
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1316 1317 1318
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1319
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1338
        library is installed. Default: False
1339

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1362
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1363
    """
1364
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1365
    has the same shape as the input.
Q
qiaolongfei 已提交
1366

1367 1368 1369 1370 1371 1372
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1373
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1374 1375 1376 1377 1378 1379 1380

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1381
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1416 1417 1418
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1419 1420
           stride=1,
           padding=0,
1421
           dilation=1,
Y
Yu Yang 已提交
1422 1423 1424
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1425
           use_cudnn=True,
1426 1427
           act=None,
           name=None):
Y
Yu Yang 已提交
1428
    """
C
chengduoZH 已提交
1429
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1430 1431
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1432
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1433 1434 1435 1436 1437 1438 1439
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1440 1441 1442
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1443

1444
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1445

C
chengduoZH 已提交
1446 1447
    .. math::

C
refine  
chengduoZH 已提交
1448
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1449

T
tensor-tang 已提交
1450
    Where:
C
chengduoZH 已提交
1451

1452 1453 1454 1455 1456
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1457
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1458 1459 1460

    Example:

1461 1462
        - Input:

W
weixing02 已提交
1463
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1464

W
weixing02 已提交
1465
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1466

1467
        - Output:
T
tensor-tang 已提交
1468

W
weixing02 已提交
1469
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1470

C
chengduoZH 已提交
1471
        Where
1472 1473

        .. math::
C
chengduoZH 已提交
1474

W
weixing02 已提交
1475 1476
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1477 1478

    Args:
1479
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1480
        num_filters(int): The number of filter. It is as same as the output
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1506 1507

    Returns:
G
guosheng 已提交
1508
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1509 1510
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1511
    Raises:
1512 1513
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1514

C
chengduoZH 已提交
1515 1516 1517
    Examples:
        .. code-block:: python

1518 1519
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1520 1521 1522
    """

    num_channels = input.shape[1]
1523 1524

    l_type = 'conv2d'
X
xzl 已提交
1525 1526
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1527
        l_type = 'depthwise_conv2d'
1528 1529 1530 1531

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1532 1533 1534 1535 1536
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1537
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1538

C
chengduoZH 已提交
1539 1540 1541
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1542
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1543

C
chengduoZH 已提交
1544 1545
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1546 1547

    input_shape = input.shape
M
minqiyang 已提交
1548
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1563
        type=l_type,
Y
Yu Yang 已提交
1564 1565 1566 1567 1568
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1569 1570 1571
        attrs={
            'strides': stride,
            'paddings': padding,
1572
            'dilations': dilation,
C
chengduoZH 已提交
1573
            'groups': groups,
1574
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1575
            'use_mkldnn': False
C
chengduoZH 已提交
1576
        })
Y
Yu Yang 已提交
1577 1578 1579 1580 1581 1582

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1600 1601 1602 1603 1604 1605
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1615 1616
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1617 1618 1619
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1620
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1646
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1647 1648
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1649
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1650 1651
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1652
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1653 1654
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1655
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1681 1682
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1697
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1735
            'use_mkldnn': False
C
chengduoZH 已提交
1736 1737
        })

1738
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1739 1740 1741 1742

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1743
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1744
    """
Y
yangyaming 已提交
1745 1746 1747
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1759
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1760 1761 1762 1763 1764
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1765
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1766 1767 1768 1769 1770 1771 1772

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1773 1774
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1775

L
Luo Tao 已提交
1776 1777
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1778
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1779 1780 1781 1782 1783 1784 1785 1786
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1787

Y
yangyaming 已提交
1788
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1789 1790 1791 1792 1793
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1794 1795
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1796
    """
F
fengjiayi 已提交
1797
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1809 1810 1811 1812 1813
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1814 1815 1816
    return pool_out


C
add doc  
chengduoZH 已提交
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1842
def sequence_first_step(input):
L
Luo Tao 已提交
1843
    """
L
Luo Tao 已提交
1844
    This function gets the first step of sequence.
L
Luo Tao 已提交
1845 1846 1847 1848

    .. code-block:: text

       x is a 1-level LoDTensor:
1849
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1850 1851 1852 1853 1854
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1855
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1856
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1857

L
Luo Tao 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1867

Y
yangyaming 已提交
1868
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1869 1870 1871
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1872 1873 1874
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1875
def sequence_last_step(input):
L
Luo Tao 已提交
1876
    """
L
Luo Tao 已提交
1877
    This function gets the last step of sequence.
L
Luo Tao 已提交
1878 1879 1880 1881

    .. code-block:: text

       x is a 1-level LoDTensor:
1882
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1883 1884 1885 1886 1887
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1888
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1889
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1890

L
Luo Tao 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1900

Y
yangyaming 已提交
1901
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1902 1903 1904
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1905 1906 1907
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

    The layer crops a subsequence from given sequence with given start 
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
    
	- Case:

1921 1922 1923 1924 1925
            Given the input Variable **input**:
                
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
1926

1927
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
1928

1929 1930 1931 1932 1933
            the output Variable will be
                
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
Y
Yibing Liu 已提交
1934
	
1935 1936
    NOTE: The first dimension size of **input**, **offset** and **length** 
          should be equal. The **offset** should start from 0.
Y
Yibing Liu 已提交
1937 1938 1939
    
    Args:
        input(Variable): The input Variable which consists of the complete 
Y
Yibing Liu 已提交
1940
                         sequences.
Y
Yibing Liu 已提交
1941 1942 1943 1944 1945 1946
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
1947
        Variable: The output subsequences.
Y
Yibing Liu 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, 
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
1978
@templatedoc()
Y
Yu Yang 已提交
1979
def pool2d(input,
C
chengduoZH 已提交
1980 1981
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1982 1983
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1984
           global_pooling=False,
C
chengduoZH 已提交
1985
           use_cudnn=True,
1986
           ceil_mode=False,
C
caoying03 已提交
1987
           name=None):
Y
Yu Yang 已提交
1988
    """
F
fengjiayi 已提交
1989
    ${comment}
1990 1991

    Args:
1992 1993 1994
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1995
                          feature, and W is the width of the feature.
1996
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1997
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1998
        pool_type: ${pooling_type_comment}
1999 2000
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2001 2002 2003
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2004
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2005 2006
                        layer will be named automatically.

2007
    Returns:
F
fengjiayi 已提交
2008
        Variable: The pooling result.
F
fengjiayi 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2022 2023 2024 2025
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2026
                            global_pooling=False)
Y
Yu Yang 已提交
2027 2028 2029 2030 2031
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2032

C
chengduoZH 已提交
2033 2034 2035 2036 2037
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2038 2039 2040 2041
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2042 2043
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2044

C
Add doc  
chengduoZH 已提交
2045
    l_type = 'pool2d'
2046 2047

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2048 2049 2050 2051
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2063
            "use_mkldnn": False
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2080
    pooling configurations mentioned in input parameters.
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2093

2094
    Returns:
2095
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2096 2097 2098 2099 2100
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2101

C
chengduoZH 已提交
2102 2103 2104 2105 2106
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2107 2108 2109
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2110

C
chengduoZH 已提交
2111 2112
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2113

2114 2115
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2116 2117 2118 2119
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2120
        type=l_type,
Y
Yu Yang 已提交
2121 2122 2123 2124 2125 2126 2127
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2128
            "paddings": pool_padding,
2129
            "use_cudnn": use_cudnn,
2130
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2131
            "use_mkldnn": False
Y
Yu Yang 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2144
               data_layout='NCHW',
Y
Yang Yang 已提交
2145
               in_place=False,
2146 2147
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2148
               moving_variance_name=None,
2149 2150
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2151
    """
Q
qiaolongfei 已提交
2152 2153 2154 2155
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2156

Q
qiaolongfei 已提交
2157
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2158

Q
qiaolongfei 已提交
2159 2160
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2161 2162 2163
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2176 2177

    Args:
Q
qiaolongfei 已提交
2178
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2179 2180 2181 2182
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2183 2184 2185
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2186
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2187 2188 2189 2190
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2191
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2192
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2193 2194

    Returns:
Q
qiaolongfei 已提交
2195
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2196 2197 2198 2199 2200 2201 2202

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2226
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2227

2228 2229
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2230 2231 2232
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2233
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2234
        shape=param_shape,
2235 2236 2237 2238 2239 2240 2241
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2242
            trainable=False,
W
wanghaoshuang 已提交
2243
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2244
        shape=param_shape,
2245 2246
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2247 2248 2249 2250 2251 2252

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2253 2254
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2255

2256
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2274 2275 2276 2277
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2278
            "use_mkldnn": False,
2279
            "fuse_with_relu": fuse_with_relu
2280
        })
Y
Yu Yang 已提交
2281 2282 2283 2284

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2285
@templatedoc()
G
guosheng 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2296
    ${comment}
G
guosheng 已提交
2297 2298 2299

    The formula is as follows:

Y
yuyang18 已提交
2300
    ..  math::
G
guosheng 已提交
2301 2302 2303 2304 2305 2306 2307

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2308 2309 2310 2311 2312 2313 2314 2315
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2316

G
guosheng 已提交
2317 2318
    Args:
        input(Variable): The input tensor variable.
2319
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2320
            normalization. Default True.
2321
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2322 2323
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2324
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2325
            Default 1.
2326
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2327
            division by zero. Default 1e-05.
G
guosheng 已提交
2328
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2329 2330 2331 2332
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The 
            :attr:`param_attr` is initialized as 1 if it is added. Default None. 
G
guosheng 已提交
2333
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2334 2335 2336 2337
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The 
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2338
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2339 2340 2341
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2342 2343

    Returns:
Y
yuyang18 已提交
2344
        ${y_comment}
G
guosheng 已提交
2345 2346 2347

    Examples:

Y
yuyang18 已提交
2348 2349 2350
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2366
    if shift:
G
guosheng 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2391 2392 2393 2394
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2395 2396 2397
                     padding=0,
                     stride=1,
                     dilation=1,
2398
                     groups=None,
C
caoying03 已提交
2399
                     param_attr=None,
2400
                     bias_attr=None,
C
chengduoZH 已提交
2401
                     use_cudnn=True,
2402
                     act=None,
C
caoying03 已提交
2403
                     name=None):
Y
Yu Yang 已提交
2404
    """
2405 2406 2407 2408 2409 2410 2411 2412
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2413 2414
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2415 2416 2417
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2418 2419 2420 2421 2422

    For each input :math:`X`, the equation is:

    .. math::

2423
        Out = \sigma (W \\ast X + b)
2424

2425
    Where:
2426 2427 2428

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2429 2430 2431 2432
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2433

2434 2435 2436 2437
    Example:

        - Input:

2438
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2439

2440
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2441 2442 2443

        - Output:

2444
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2445 2446

        Where
Y
Yu Yang 已提交
2447

2448 2449
        .. math::

2450 2451 2452 2453
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2454 2455

    Args:
2456 2457 2458 2459
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2460 2461 2462 2463
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2491 2492

    Returns:
2493
        Variable: The tensor variable storing the convolution transpose result.
2494 2495

    Raises:
2496 2497
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2498 2499 2500 2501

    Examples:
       .. code-block:: python

2502 2503
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2504
    """
2505 2506 2507 2508 2509 2510 2511 2512 2513

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2514 2515 2516
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2517 2518 2519
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2520

C
chengduoZH 已提交
2521 2522
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2523

Y
Yu Yang 已提交
2524 2525 2526 2527 2528
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2529

Y
Yu Yang 已提交
2530 2531
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2532

C
chengduoZH 已提交
2533
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2534
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2535
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2536
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2537
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2538 2539 2540
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2541 2542 2543 2544 2545 2546 2547
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2548
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2549
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2550 2551 2552
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2553
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2554
    helper.append_op(
2555
        type=op_type,
Y
Yu Yang 已提交
2556 2557
        inputs={'Input': [input],
                'Filter': [img_filter]},
2558
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2559
        attrs={
2560
            'output_size': output_size,
2561 2562 2563 2564 2565
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2566 2567
        })

2568 2569 2570
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2571 2572


2573
def conv3d_transpose(input,
Y
Yu Yang 已提交
2574 2575 2576
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2577 2578 2579
                     padding=0,
                     stride=1,
                     dilation=1,
2580
                     groups=None,
C
caoying03 已提交
2581
                     param_attr=None,
2582
                     bias_attr=None,
C
chengduoZH 已提交
2583
                     use_cudnn=True,
2584
                     act=None,
C
caoying03 已提交
2585
                     name=None):
Y
Yu Yang 已提交
2586
    """
2587
    **Convlution3D transpose layer**
2588

2589
    The convolution3D transpose layer calculates the output based on the input,
2590
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2591 2592 2593 2594 2595 2596
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2597 2598 2599
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2600 2601 2602 2603 2604

    For each input :math:`X`, the equation is:

    .. math::

2605
        Out = \sigma (W \\ast X + b)
2606 2607 2608

    In the above equation:

2609 2610
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2611 2612 2613 2614
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2615

2616 2617 2618 2619
    Example:

        - Input:

2620
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2621

2622
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2623 2624 2625

        - Output:

2626
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2627 2628

        Where
Y
Yu Yang 已提交
2629

2630 2631
        .. math::

2632 2633 2634
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2635 2636

    Args:
2637
        input(Variable): The input image with [N, C, D, H, W] format.
2638 2639 2640
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2641
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2642 2643
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2644
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2645 2646 2647
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2648 2649
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2650
        stride(int|tuple): The stride size. If stride is a tuple, it must
2651 2652
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2653
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2654 2655 2656
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2657 2658 2659 2660 2661
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2662 2663 2664
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2665 2666 2667 2668 2669
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2670 2671

    Returns:
2672
        Variable: The tensor variable storing the convolution transpose result.
2673 2674

    Raises:
2675 2676
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2677 2678 2679 2680

    Examples:
       .. code-block:: python

2681 2682
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2683
    """
2684 2685
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2686
    if not isinstance(input, Variable):
2687
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2688 2689
    input_channel = input.shape[1]

2690 2691 2692
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2693

C
chengduoZH 已提交
2694 2695 2696
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2697 2698 2699 2700 2701 2702
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2703 2704 2705
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2706

2707
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2708
                         padding[0] - 1) // dilation[0] + 1
2709
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2710
                         padding[1] - 1) // dilation[1] + 1
2711
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2712
                         padding[2] - 1) // dilation[2] + 1
2713
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2714
    else:
2715 2716
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2717

2718
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2719
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2720 2721 2722
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2723
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2724
    helper.append_op(
2725
        type=l_type,
Y
Yu Yang 已提交
2726 2727
        inputs={'Input': [input],
                'Filter': [img_filter]},
2728
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2729 2730 2731 2732
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2733
            'groups': groups,
C
chengduoZH 已提交
2734 2735
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2736

2737 2738
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2739
    return out
Y
yangyaming 已提交
2740 2741


Y
yangyaming 已提交
2742
def sequence_expand(x, y, ref_level=-1, name=None):
2743
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2744 2745 2746 2747
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2748 2749 2750 2751 2752

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2753
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2754
                x.data = [[a], [b], [c], [d]]
2755 2756 2757
                x.dims = [4, 1]

            y is a LoDTensor:
2758 2759
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2760

Y
yangyaming 已提交
2761
            ref_level: 0
2762

Y
yangyaming 已提交
2763
            then output is a 1-level LoDTensor:
2764
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2765
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2766 2767 2768 2769
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2770
                x.data = [[a], [b], [c]]
2771 2772 2773
                x.dims = [3, 1]

            y is a LoDTensor:
2774
                y.lod = [[2, 0, 3]]
2775

Y
yangyaming 已提交
2776
            ref_level: -1
2777

Y
yangyaming 已提交
2778 2779 2780
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2781 2782 2783
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2784 2785
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2786
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2787
                        will be named automatically.
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2798
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2799
    """
Y
yangyaming 已提交
2800
    helper = LayerHelper('sequence_expand', input=x, **locals())
2801 2802 2803
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2804 2805 2806 2807 2808
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2809
    return tmp
2810 2811


C
chengduo 已提交
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2877
@templatedoc()
2878
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2879 2880 2881 2882 2883
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2884 2885 2886
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2887
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2888 2889 2890 2891
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
2892 2893 2894
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
2895

F
fengjiayi 已提交
2896
    Returns:
M
minqiyang 已提交
2897
        Variable: The padded sequence batch and the original lengths before
2898
                  padding. All sequences has the same length.
M
minqiyang 已提交
2899

F
fengjiayi 已提交
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2914 2915 2916 2917 2918
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2919 2920 2921 2922 2923 2924
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2925 2926
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2927
        attrs={'padded_length': maxlen})
2928
    return out, length
F
fengjiayi 已提交
2929 2930


2931
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
2932
    """
2933
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948

    This layer removes the padding data in the input sequences and convert 
    them into sequences with actual length as output, identitied by lod 
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
		      [11.0, 12.0, 13.0, 14.0, 15.0]], 
     
	in which there are 3 sequences padded to length 5, and the acutal length 
2949
	specified by input Variable **length**:
Y
Yibing Liu 已提交
2950 2951 2952 2953 2954 2955

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
2956
	    out.lod = [[2, 3, 4]]      
Y
Yibing Liu 已提交
2957 2958 2959 2960 2961 2962

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
2963 2964
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


2991 2992 2993 2994 2995 2996 2997 2998 2999
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3000 3001
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3002 3003 3004

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3005 3006

    This layer does the search in beams for one time step. Specifically, it
3007 3008 3009 3010 3011 3012
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3013

3014 3015 3016 3017 3018 3019 3020 3021
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3022

3023
    Args:
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3049

3050
    Returns:
3051 3052
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3053 3054 3055 3056

    Examples:
        .. code-block:: python

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3085
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3103 3104 3105 3106 3107 3108 3109
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3110

3111 3112 3113 3114 3115 3116 3117 3118 3119
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3120

3121 3122 3123 3124 3125 3126
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3127

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3153 3154 3155 3156
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3157
              param_attr=None,
C
caoying03 已提交
3158 3159
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3160 3161 3162 3163
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3164
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3165

3166
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3167

3168
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3169

3170
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3171 3172 3173

            h_t & = o_t tanh(c_t)

3174 3175 3176 3177 3178 3179
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3180 3181 3182

        .. math::

3183
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3184 3185 3186 3187 3188 3189 3190 3191

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3192
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3193 3194

    Args:
Y
yangyaming 已提交
3195 3196 3197 3198 3199 3200
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3201
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3202 3203
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3204 3205
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3206 3207
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3208 3209

    Returns:
Y
yangyaming 已提交
3210
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3211 3212

    Raises:
3213 3214 3215 3216
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3217 3218 3219 3220 3221 3222

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3223
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3224
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3225
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3242
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3243 3244 3245 3246
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3247 3248
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3249 3250 3251
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3252
    size = cell_t_prev.shape[1]
3253
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3254 3255
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3256
                param_attr=param_attr,
3257
                bias_attr=bias_attr)
Y
yangyaming 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3270
    return h, c
G
guosheng 已提交
3271 3272


C
caoying03 已提交
3273
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3274
    """
Y
yangyaming 已提交
3275
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3276 3277 3278

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3279
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3280 3281
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3282 3283
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3284
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3285
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3286
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3287 3288
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3289 3290 3291

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3292

G
guosheng 已提交
3293 3294 3295 3296 3297 3298
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3299
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3300 3301 3302 3303
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3304 3305 3306 3307

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3308
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3309 3310 3311
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3312 3313 3314
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3315 3316
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3317 3318 3319 3320 3321
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3322
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3323 3324 3325 3326
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3327 3328


C
caoying03 已提交
3329
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3330
    """
Y
Yibing Liu 已提交
3331
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3332 3333 3334

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3335 3336 3337
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3338
            must be in the range :math:`[-rank(input), rank(input))`. If
3339
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3340
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3341 3342
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3343
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3344
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3345
                       will be named automatically.
G
guosheng 已提交
3346 3347

    Returns:
Y
Yibing Liu 已提交
3348
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3349

G
guosheng 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3360 3361
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3362 3363 3364 3365 3366 3367 3368

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3369 3370 3371
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3372 3373
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3374 3375 3376 3377 3378
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3379
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3380 3381 3382 3383
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3384 3385


C
caoying03 已提交
3386
def reduce_max(input, dim=None, keep_dim=False, name=None):
3387
    """
Y
yangyaming 已提交
3388
    Computes the maximum of tensor elements over the given dimension.
3389 3390 3391

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3392
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3393 3394 3395
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3396
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3397 3398
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3399
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3400 3401
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3402 3403 3404

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3405

3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3417 3418 3419 3420 3421 3422 3423

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3424 3425 3426
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3427 3428
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3429 3430 3431 3432 3433
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3434
            'dim': dim if dim != None else [0],
3435 3436 3437 3438 3439 3440
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3441
def reduce_min(input, dim=None, keep_dim=False, name=None):
3442
    """
Y
yangyaming 已提交
3443
    Computes the minimum of tensor elements over the given dimension.
3444 3445 3446

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3447
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3448 3449 3450
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3451
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3452 3453
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3454
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3455 3456
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3457 3458 3459

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3460

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3472 3473 3474 3475 3476 3477 3478

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3479 3480 3481
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3482 3483
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3484 3485 3486 3487 3488
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3489
            'dim': dim if dim != None else [0],
3490 3491 3492 3493
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3494 3495


3496 3497 3498 3499 3500 3501
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3502
        dim (list|int|None): The dimensions along which the product is performed. If
3503 3504
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3505 3506
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3507 3508 3509
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3510
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3511
            layer will be named automatically.
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3526
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3527
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3528 3529 3530 3531 3532 3533 3534

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3535 3536 3537
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3538 3539
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3540 3541 3542 3543 3544
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3545
            'dim': dim if dim != None else [0],
3546 3547 3548 3549 3550 3551
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3552
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3553
    """
C
caoying03 已提交
3554
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3555 3556 3557

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3558 3559 3560 3561 3562
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3563
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3564
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3565
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3566 3567
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3568 3569

    Returns:
D
dzhwinter 已提交
3570
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3571 3572 3573 3574 3575 3576 3577 3578 3579

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3580 3581
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3620
    .. math::
3621 3622

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3623 3624 3625 3626 3627

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3628
        x(Variable|list): The input tensor to l2_normalize layer.
3629
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3630 3631
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3632
        epsilon(float): The epsilon value is used to avoid division by zero, \
3633
            the defalut value is 1e-10.
3634
        name(str|None): A name for this layer(optional). If set None, the layer \
3635
            will be named automatically.
C
caoying03 已提交
3636 3637

    Returns:
3638
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3639 3640

    Examples:
3641

C
caoying03 已提交
3642 3643
        .. code-block:: python

3644 3645 3646 3647
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3648 3649
    """

F
fengjiayi 已提交
3650 3651
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3652 3653
    helper = LayerHelper("l2_normalize", **locals())

3654 3655
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3656
    helper.append_op(
3657 3658 3659 3660
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3661
        attrs={
3662 3663
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3664 3665
        })
    return out
3666 3667


S
sneaxiy 已提交
3668
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3669
    """
Y
ying 已提交
3670 3671 3672 3673
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3674

C
chengduoZH 已提交
3675
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3676
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3677

3678 3679 3680 3681 3682
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3683
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3684

C
chengduoZH 已提交
3685
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3686
      performs in the following way.
G
guosheng 已提交
3687

3688
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3689
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3690
        last two dimensions and a batched matrix multiply supporting broadcast
3691
        applies on the two tensors.
G
guosheng 已提交
3692

Y
ying 已提交
3693 3694
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3695
    removed after matrix multiplication.
G
guosheng 已提交
3696 3697 3698

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3699 3700 3701
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3702
        alpha (float): The scale of output. Default 1.0.
3703
        name(str|None): A name for this layer(optional). If set None, the layer
3704
            will be named automatically.
G
guosheng 已提交
3705 3706

    Returns:
3707
        Variable: The product Tensor variable.
G
guosheng 已提交
3708

G
guosheng 已提交
3709 3710 3711
    Examples:
        .. code-block:: python

3712
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3713 3714
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3715

3716 3717
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3718

3719 3720
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3721

3722 3723
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3724 3725 3726 3727

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3728 3729
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3730

Y
ying 已提交
3731
            # x: [M], y: [N]
3732
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3733
    """
Y
ying 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3746
            y_shape = y_shape + [1]
Y
ying 已提交
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3763
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3764
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3765
    helper.append_op(
3766 3767 3768 3769
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3770 3771 3772
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3773
            'alpha': float(alpha),
S
sneaxiy 已提交
3774
        })
3775
    return out
3776 3777


3778
def topk(input, k, name=None):
Q
qingqing01 已提交
3779 3780 3781 3782
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3783
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3784 3785 3786 3787 3788 3789
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3811 3812 3813
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3814
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3815
                 of input.
3816
        name(str|None): A name for this layer(optional). If set None, the layer
3817
                       will be named automatically.
F
fengjiayi 已提交
3818
                       Default: None
Q
qingqing01 已提交
3819 3820

    Returns:
3821 3822 3823
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3824
        within the last dimension of input.
Q
qingqing01 已提交
3825

F
fengjiayi 已提交
3826 3827
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3848
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3849
    """
Y
ying 已提交
3850 3851 3852 3853 3854 3855 3856 3857 3858
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3859

Y
ying 已提交
3860
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3861

3862
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3863 3864
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3865
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3866

3867
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3868 3869
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3870

3871 3872 3873
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3874
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3875
                          the length of reference string.
3876
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3877
                                     calculating edit distance.
3878
        name (str): The name of this layer. It is optional.
3879

W
wanghaoshuang 已提交
3880
    Returns:
W
wanghaoshuang 已提交
3881
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3882 3883 3884 3885 3886

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3887
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3888
            cost = fluid.layers.edit_distance(input=x,label=y)
3889
    """
3890
    helper = LayerHelper("edit_distance", **locals())
3891

3892
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3893
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3894 3895 3896 3897 3898 3899 3900
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3901
            attrs={"tokens": ignored_tokens})
3902 3903 3904 3905 3906
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3907
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3908
            attrs={"tokens": ignored_tokens})
3909 3910
        label = erased_label

3911 3912
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3913
    sequence_num = helper.create_tmp_variable(dtype="int64")
3914 3915 3916 3917
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3918 3919
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3920 3921
        attrs={"normalized": normalized})

3922
    return edit_distance_out, sequence_num
3923 3924 3925 3926 3927


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3928

Y
ying 已提交
3929 3930 3931 3932
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3950
        input.lod = [[4, 4]]
3951 3952 3953 3954 3955 3956 3957

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3958
        output.lod = [[2, 1]]
3959 3960 3961

    Args:

Y
ying 已提交
3962 3963 3964 3965 3966 3967 3968 3969 3970
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3971
        name (str): The name of this layer. It is optional.
3972 3973

    Returns:
3974
        Variable: CTC greedy decode result. If all the sequences in result were
3975
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3976 3977 3978 3979 3980

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3981

3982
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3983
    """
3984
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3985
    _, topk_indices = topk(input, k=1)
3986 3987 3988 3989 3990 3991

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3992
        outputs={"Output": [ctc_out]},
3993 3994
        attrs={"merge_repeated": True,
               "blank": blank})
3995
    return ctc_out
3996 3997


F
fengjiayi 已提交
3998
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3999
    """
4000 4001
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4002
    to compute Connectionist Temporal Classification (CTC) loss.
4003 4004
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4005 4006 4007
    input tensor.

    Args:
4008
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4009 4010 4011 4012
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4013
       label (Variable): The ground truth of variable-length sequence,
4014 4015 4016
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4017 4018
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4019 4020 4021
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4022
         follewed by a mean_op.
W
wanghaoshuang 已提交
4023 4024

    Returns:
4025 4026
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4027 4028

    Examples:
4029

W
wanghaoshuang 已提交
4030
        .. code-block:: python
4031

4032 4033 4034
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4035 4036

    """
F
fengjiayi 已提交
4037
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4064 4065 4066
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4067 4068 4069 4070 4071
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4072

4073
            out.lod  = [[0, 1, 3]]
4074 4075 4076 4077

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4078 4079 4080 4081 4082 4083 4084
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4085 4086 4087

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4088 4089

    Returns:
4090

4091 4092 4093 4094 4095
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4096
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4097
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4098 4099 4100 4101 4102 4103 4104 4105 4106
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4107 4108


4109 4110 4111 4112
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4113 4114 4115 4116 4117 4118 4119
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
4120 4121 4122 4123 4124 4125 4126
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4127 4128
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4129
            sample is 1.0.
4130 4131 4132
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
4133

4134
    Returns:
Y
Yibing Liu 已提交
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4162
    """
Y
Yang Yu 已提交
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4207
    return cost / (num_neg_samples + 1)
4208 4209


G
guosheng 已提交
4210
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4211 4212
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4213
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4214 4215 4216 4217 4218 4219 4220 4221 4222
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4223

W
weixing02 已提交
4224
    Args:
M
minqiyang 已提交
4225
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4226 4227 4228 4229 4230
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4231 4232
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4233
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4234 4235
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4236 4237 4238 4239 4240 4241 4242 4243

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4244 4245 4246
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4247 4248 4249 4250 4251 4252 4253 4254
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4255
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4256 4257 4258 4259 4260
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4261 4262 4263 4264 4265 4266 4267 4268
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4269 4270
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4271
        inputs=inputs,
W
weixing02 已提交
4272 4273 4274 4275 4276 4277
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4278
def transpose(x, perm, name=None):
Y
ying 已提交
4279 4280 4281 4282 4283 4284 4285
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4286 4287 4288
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4289 4290 4291 4292 4293 4294 4295 4296

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4297
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4298 4299
    """

Y
fix ci.  
ying 已提交
4300
    if len(perm) != len(x.shape):
Y
ying 已提交
4301 4302 4303
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4304 4305 4306 4307 4308 4309
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4310 4311

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4312
    out = helper.create_tmp_variable(x.dtype)
4313
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4314
    helper.append_op(
4315
        type='transpose2',
Y
fix ci.  
ying 已提交
4316
        inputs={'X': [x]},
4317 4318
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4319 4320
        attrs={'axis': perm})
    return out
4321 4322


4323 4324 4325 4326 4327 4328 4329
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4330
    """
4331 4332 4333 4334 4335 4336 4337
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4366 4367 4368 4369 4370 4371 4372 4373 4374
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4375 4376 4377
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4378 4379 4380 4381 4382
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4410 4411 4412
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4425
            output.dims = {8, 8}
4426

4427
            output.lod = [[4, 4]]
4428

D
dzhwinter 已提交
4429
     Examples:
4430 4431 4432

        .. code-block:: python

4433 4434
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4435 4436

    """
W
wanghaoshuang 已提交
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4447 4448 4449 4450 4451 4452 4453
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4454
    helper = LayerHelper('im2sequence', **locals())
4455 4456
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4457
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4458
    return out
4459 4460


Y
yuyang18 已提交
4461
@templatedoc()
4462
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4463 4464
    """
    ${comment}
4465 4466

    Args:
Y
yuyang18 已提交
4467
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4468 4469
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4470 4471 4472 4473 4474
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4475
        ${out_comment}.
4476 4477

    Examples:
Y
yuyang18 已提交
4478 4479 4480 4481
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4494
    return helper.append_activation(out)
4495 4496


Y
yuyang18 已提交
4497
@templatedoc()
4498 4499
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4500 4501 4502 4503 4504 4505 4506
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4507 4508

    Args:
Y
yuyang18 已提交
4509 4510
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4511 4512

    Returns:
Y
yuyang18 已提交
4513
        ${out_comment}.
4514 4515
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4516 4517 4518 4519 4520 4521

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4522 4523 4524 4525 4526 4527
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4528 4529


4530 4531 4532 4533
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4534 4535
    """
    **Softmax With Cross Entropy Operator.**
4536

4537 4538 4539 4540
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4541

4542 4543 4544
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4545

4546 4547 4548
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4549

4550
    The equation is as follows:
4551

4552
    1) Hard label (one-hot label, so every sample has exactly one class)
4553

4554 4555 4556 4557
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4558

4559 4560 4561
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4562

4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4575 4576
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4577 4578
                            if soft_label is set to False. Default: -100

4579 4580 4581 4582 4583 4584 4585 4586 4587
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4588 4589
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4600 4601
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4602 4603 4604 4605 4606
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4607 4608
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4609
    For each instance, it computes the smooth L1 loss element by element first
4610
    and then sums all the losses. So the shape of ouput Variable is
4611
    [batch_size, 1].
4612

4613 4614
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4615
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4616
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4617
            L1 loss op with same shape as :attr:`x`.
4618
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4619 4620
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4621
            by this tensor element by element.
4622
        outside_weight (Variable|None): A tensor with rank at least 2. This
4623 4624
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4625
            element by element.
4626
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4627 4628
           scalar with default value 1.0.

4629
    Returns:
4630
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4631 4632 4633 4634 4635

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4636 4637
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4638
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4639
            out = fluid.layers.smooth_l1(x=fc, y=label)
4640
    """
4641

4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4657 4658 4659 4660


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4661
    This layer creates the one-hot representations for input indices.
4662 4663

    Args:
Y
Yibing Liu 已提交
4664 4665
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4666 4667

    Returns:
Y
Yibing Liu 已提交
4668
        Variable: The one-hot representations of input.
4669 4670

    Examples:
C
caoying03 已提交
4671
        .. code-block:: python
4672

Y
Yibing Liu 已提交
4673 4674
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4675 4676 4677 4678 4679 4680 4681 4682 4683
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4684 4685


Y
Yu Yang 已提交
4686
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4687
    """
Y
yi.wu 已提交
4688 4689 4690
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4691 4692 4693 4694 4695 4696

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4697 4698
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4699 4700 4701 4702 4703 4704

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4705 4706
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4707 4708
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4709 4710 4711 4712 4713
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4714
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4715
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4716 4717
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4718 4719
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4720 4721 4722
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4723 4724


4725
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4726
    """
C
caoying03 已提交
4727 4728
    Gives a new shape to the input Tensor without changing its data.

4729 4730 4731 4732 4733
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4734

4735
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4736

4737 4738 4739 4740
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4741
    2. 0 means the actual dimension value is going to be copied from the
4742 4743 4744 4745
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4746 4747

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4748
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4749
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4750

4751
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4752 4753
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4754 4755
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4756
    dimensions.
C
caoying03 已提交
4757

4758
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4759 4760 4761 4762
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4763 4764

    Args:
4765
        x(variable): The input tensor.
C
caoying03 已提交
4766 4767
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4768 4769 4770 4771 4772
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4773
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4774 4775 4776 4777
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4778
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4779

4780 4781
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4782

X
Xin Pan 已提交
4783 4784 4785
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4786 4787
    Examples:
        .. code-block:: python
G
guosheng 已提交
4788

4789
            data = fluid.layers.data(
4790
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4791
            reshaped = fluid.layers.reshape(
4792
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4793 4794 4795
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4796
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4797 4798 4799 4800 4801
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4802

4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4818
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4819
    out = helper.create_tmp_variable(dtype=x.dtype)
4820
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4821
    helper.append_op(
4822
        type="reshape2",
X
Xin Pan 已提交
4823
        inputs=inputs,
D
dzhwinter 已提交
4824
        attrs={"shape": shape},
4825 4826
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4827

D
dzhwinter 已提交
4828
    return helper.append_activation(out)
4829

4830

4831
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4832
    """
M
minqiyang 已提交
4833 4834 4835
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4836
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4837

Y
Yibing Liu 已提交
4838 4839
    Examples:
    Case 1:
M
minqiyang 已提交
4840
      Given
Y
Yibing Liu 已提交
4841 4842 4843 4844 4845 4846 4847 4848
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4849
        and
Y
Yibing Liu 已提交
4850 4851 4852
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4853

Y
Yibing Liu 已提交
4854
    Args:
4855
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4856
        axes (list): List of integers, indicating the dimensions to be squeezed.
4857
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4858 4859 4860 4861 4862 4863 4864 4865

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4866
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4867 4868
    """
    helper = LayerHelper("squeeze", **locals())
4869
    out = helper.create_tmp_variable(dtype=input.dtype)
4870
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4871
    helper.append_op(
4872
        type="squeeze2",
4873
        inputs={"X": input},
Y
Yibing Liu 已提交
4874
        attrs={"axes": axes},
4875 4876
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4877

4878 4879 4880
    return out


4881
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4882
    """
M
minqiyang 已提交
4883 4884 4885
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
4886

M
minqiyang 已提交
4887 4888
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
4889
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
4890

Y
Yibing Liu 已提交
4891
    Args:
4892
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4893
        axes (list): List of integers, indicating the dimensions to be inserted.
4894
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4895 4896 4897 4898 4899 4900 4901 4902

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4903
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4904 4905
    """
    helper = LayerHelper("unsqueeze", **locals())
4906
    out = helper.create_tmp_variable(dtype=input.dtype)
4907
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4908
    helper.append_op(
4909
        type="unsqueeze2",
4910
        inputs={"X": input},
Y
Yibing Liu 已提交
4911
        attrs={"axes": axes},
4912 4913
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4914

4915 4916
    return out

4917

Y
yangyaming 已提交
4918
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4919
    """
Y
Yibing Liu 已提交
4920
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4921 4922 4923 4924
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4925
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4926 4927 4928 4929 4930 4931

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4932
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4933 4934 4935
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4936
            target_lod: [4, 2]
Y
yangyaming 已提交
4937 4938

            then we get a 1-level LoDTensor:
4939
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4940 4941 4942 4943 4944 4945
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4946
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4947 4948 4949 4950
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4951
                y.data = [[2, 4]]
Y
yangyaming 已提交
4952 4953 4954
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4955
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4956 4957 4958 4959 4960 4961
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4962
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4963 4964 4965 4966
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4967
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4968 4969 4970 4971
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4972
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4973 4974 4975 4976 4977
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4978
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4979
                           from :attr:`y`.
Y
yangyaming 已提交
4980
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4981
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4982 4983

    Returns:
Y
Yibing Liu 已提交
4984
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4985 4986

    Raises:
Y
Yibing Liu 已提交
4987
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5023
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5052 5053
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5081 5082 5083 5084


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5085
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5086
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5087

G
guosheng 已提交
5088 5089 5090 5091
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5114
                         The length of :attr:paddings must be
G
guosheng 已提交
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5125

G
guosheng 已提交
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5140 5141


C
chengduo 已提交
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5222 5223 5224 5225 5226 5227 5228
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5229 5230
    called label-smoothing regularization (LSR).

5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5254
                              be :math:`(1, class\_num)`.
5255 5256
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5257
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5285 5286


Y
yi.wu 已提交
5287
@templatedoc()
5288 5289
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5290
    ${comment}
5291 5292

    Args:
Y
yi.wu 已提交
5293 5294
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5295 5296 5297
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5298 5299

    Returns:
Y
update  
yi.wu 已提交
5300
        Variable: ${out_comment}.
5301 5302

    Examples:
5303 5304
        .. code-block:: python

5305
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5351 5352
        .. code-block:: python

W
whs 已提交
5353 5354 5355 5356
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5357
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5358 5359 5360 5361 5362 5363
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5364 5365


5366 5367 5368 5369 5370
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5371
    """
Q
qiaolongfei 已提交
5372
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5373

5374
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5375 5376 5377
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5378

5379
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5380

5381
    Args:
5382
        input (Variable): The input tensor of image resize layer,
5383 5384
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5385
        out_shape(list|tuple|Variable|None): Output shape of image resize
5386 5387
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5388
        scale(float|None): The multiplier for the input height or width.
5389 5390 5391
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5392 5393
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5394 5395
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5396 5397

    Returns:
Q
update  
qiaolongfei 已提交
5398 5399
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5400

5401 5402 5403
    Examples:
        .. code-block:: python

5404
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5405
    """
5406 5407 5408 5409
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5410 5411
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5412 5413
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5414 5415 5416 5417

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5418 5419 5420
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5421
    if out_shape is not None:
B
baiyf 已提交
5422 5423 5424
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5425 5426 5427 5428 5429 5430
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5431 5432 5433 5434
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5435 5436
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5437
        type=resample_methods[resample],
5438
        inputs=inputs,
5439 5440 5441 5442
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5443 5444


Y
yuyang18 已提交
5445
@templatedoc(op_type="bilinear_interp")
5446 5447
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5448 5449 5450 5451 5452 5453
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5454

Y
yuyang18 已提交
5455 5456 5457 5458 5459 5460 5461 5462
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5463 5464 5465 5466 5467 5468 5469
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5470 5471 5472
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5473 5474 5475 5476 5477 5478 5479
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5480
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5481

5482
    Returns:
Q
update  
qiaolongfei 已提交
5483
        Variable: The output is a 4-D tensor of the shape
5484
        (num_batches, channls, out_h, out_w).
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5495 5496 5497
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5498 5499 5500
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5501 5502
def gather(input, index):
    """
Q
qiaolongfei 已提交
5503 5504
    **Gather Layer**

5505
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5506 5507 5508 5509
    of X indexed by `index` and concatenate them together.

    .. math::

5510
        Out = X[Index]
W
whs 已提交
5511 5512 5513 5514 5515 5516 5517


    .. code-block:: text


                Given:

5518 5519
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5530
        input (Variable): The source input with rank>=1.
W
whs 已提交
5531 5532 5533 5534 5535 5536
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5537

W
whs 已提交
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5667

5668 5669 5670
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5671
    """
F
stash  
fengjiayi 已提交
5672
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5673
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5674
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5675
    if seed is None:
5676
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5677
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5678
    if isinstance(seed, int):
F
fengjiayi 已提交
5679 5680 5681 5682 5683
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5684 5685 5686 5687
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5688
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5689 5690
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5691 5692
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5693
    return out
W
whs 已提交
5694 5695


5696
def log(x, name=None):
W
wanghaoshuang 已提交
5697 5698 5699 5700 5701
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5702
        Out = \\ln(x)
W
wanghaoshuang 已提交
5703 5704

    Args:
5705
        x (Variable): Input tensor.
5706 5707
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5708 5709 5710 5711 5712 5713 5714 5715

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5716
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5717 5718
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5719
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5720
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5721
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5722 5723 5724
    return out


5725
def relu(x, name=None):
W
wanghaoshuang 已提交
5726 5727
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5728
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5729 5730 5731 5732
    the tensor elementwise.

    .. math::

5733
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5734 5735

    Args:
5736
        x (Variable): The input tensor.
5737 5738
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5739 5740 5741 5742 5743 5744 5745 5746

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5747
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5748 5749
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5750
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5751
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5752
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5753
    return out
5754 5755


W
whs 已提交
5756 5757 5758
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5759 5760 5761 5762
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5763
    .. math::
5764 5765

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5766

5767
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5768 5769 5770 5771 5772
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5773
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5774
                           Its shape should be the same as input.
5775
        num_classes (int): The possible number of labels.
W
whs 已提交
5776 5777 5778 5779

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5780
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5781 5782 5783 5784

    Examples:

        .. code-block:: python
5785

W
whs 已提交
5786 5787 5788 5789 5790 5791 5792 5793 5794
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5795 5796
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5797
        outputs={
W
whs 已提交
5798 5799 5800
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5801 5802 5803
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5878
                    isinstance(shape, Variable)):
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5902 5903 5904 5905 5906 5907 5908 5909 5910 5911


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5912

5913 5914
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5915

5916 5917 5918 5919
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5920

5921 5922 5923 5924 5925
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5926 5927 5928

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5973 5974


M
minqiyang 已提交
5975 5976
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
5977
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
5978
    which compares left score and right score passed in.
M
minqiyang 已提交
5979
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
5980 5981 5982 5983 5984 5985

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
5986
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
5987 5988
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
5989
       margin (float): Indicates the given margin.
M
minqiyang 已提交
5990 5991 5992
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
5993
       Variable: The ranking loss.
M
minqiyang 已提交
5994
    Raises:
M
minqiyang 已提交
5995
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
5996 5997 5998 5999 6000 6001 6002
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6003
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6004 6005 6006 6007 6008 6009
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
M
minqiyang 已提交
6010 6011
    out = helper.create_tmp_variable(left.dtype)
    act = helper.create_tmp_variable(left.dtype)
M
minqiyang 已提交
6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6037

W
whs 已提交
6038 6039
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6040

W
whs 已提交
6041
      Case 0:
M
minqiyang 已提交
6042

W
whs 已提交
6043 6044 6045
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6046

W
whs 已提交
6047 6048 6049
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6050

W
whs 已提交
6051
      Case 1:
M
minqiyang 已提交
6052

W
whs 已提交
6053 6054
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6055

W
whs 已提交
6056 6057 6058
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6059

W
whs 已提交
6060
      Case 2:
M
minqiyang 已提交
6061

W
whs 已提交
6062 6063
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6064

W
whs 已提交
6065 6066 6067
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6068 6069


W
whs 已提交
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6267
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6268
                        will be named automatically.
J
jerrywgz 已提交
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6387

6388 6389 6390 6391 6392 6393 6394 6395 6396 6397
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6398 6399
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6415
        ValueError: If axis is not in range [0, rank(x)].
6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6433
    x_shape = helper.create_tmp_variable(x.dtype)
6434
    helper.append_op(
6435
        type='flatten2',
6436
        inputs={"X": x},
6437 6438
        outputs={'Out': out,
                 'XShape': x_shape},
6439 6440
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6441 6442


C
chenweihang 已提交
6443
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6444
    """
C
chenweihang 已提交
6445
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6446
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6447 6448
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6449

C
chenweihang 已提交
6450 6451 6452 6453
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6454
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6455 6456 6457 6458 6459 6460
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6461
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6462 6463 6464
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6465 6466 6467
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6479
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6480 6481 6482 6483 6484 6485
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6486
    return out
6487

6488

S
sneaxiy 已提交
6489 6490 6491 6492 6493 6494 6495 6496 6497
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6498

S
sneaxiy 已提交
6499
    .. math::
6500

S
sneaxiy 已提交
6501 6502 6503
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6504
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6505 6506 6507 6508
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6509 6510 6511
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6512 6513
    Returns:
        Variable: The output sequence mask.
6514

S
sneaxiy 已提交
6515 6516
    """

Q
qingqing01 已提交
6517
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6518 6519 6520 6521 6522
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6523 6524 6525
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6526 6527
        outputs={'Y': out},
        attrs={
6528
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6529 6530 6531
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6532 6533


X
Xin Pan 已提交
6534
def stack(x, axis=0):
S
sneaxiy 已提交
6535 6536 6537 6538
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6539 6540 6541 6542 6543 6544 6545

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6546
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6547
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6548 6549

    Args:
6550
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6551
        axis (int|None): The axis along which all inputs are stacked.
6552

S
sneaxiy 已提交
6553 6554
    Returns:
        Variable: The stacked variable.
6555

S
sneaxiy 已提交
6556 6557
    """

X
Xin Pan 已提交
6558 6559 6560 6561 6562 6563 6564 6565
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6566 6567
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6568

X
Xin Pan 已提交
6569
    return out
D
dzhwinter 已提交
6570 6571 6572 6573 6574 6575 6576


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6577

D
dzhwinter 已提交
6578 6579 6580
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6581
    raised.
D
dzhwinter 已提交
6582 6583

    Args:
M
minqiyang 已提交
6584
        x (Variable): Input variable.
D
dzhwinter 已提交
6585 6586
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6587

D
dzhwinter 已提交
6588 6589
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6590

D
dzhwinter 已提交
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6623

W
whs 已提交
6624 6625 6626 6627
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6628

W
whs 已提交
6629
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6630

W
whs 已提交
6631
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6632

W
whs 已提交
6633 6634 6635 6636
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6637

W
whs 已提交
6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6661 6662


G
fix  
gongweibao 已提交
6663 6664 6665
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6666
@templatedoc()
G
fix  
gongweibao 已提交
6667 6668 6669 6670 6671 6672 6673 6674 6675
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6676
    ${comment}
G
fix  
gongweibao 已提交
6677 6678

    Args:
G
gongweibao 已提交
6679 6680 6681
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6682
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6683 6684 6685
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6686 6687
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6688
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6710 6711


G
gongweibao 已提交
6712
@templatedoc()
X
Xin Pan 已提交
6713
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6714
    """
G
gongweibao 已提交
6715
    ${comment}
G
fix  
gongweibao 已提交
6716 6717

    Args:
G
gongweibao 已提交
6718 6719 6720 6721
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6722 6723 6724
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6725
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6741
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6742 6743 6744 6745 6746
        })

    return out


G
gongweibao 已提交
6747
@templatedoc()
G
fix  
gongweibao 已提交
6748
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6749
    """
G
gongweibao 已提交
6750
    ${comment}
G
fix  
gongweibao 已提交
6751 6752

    Args:
G
gongweibao 已提交
6753 6754 6755 6756
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6757
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6758 6759

    Returns:
G
gongweibao 已提交
6760
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6761 6762 6763 6764

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6765
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6777
@templatedoc()
G
fix  
gongweibao 已提交
6778 6779 6780 6781 6782 6783 6784 6785 6786
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6787
    ${comment}
G
fix  
gongweibao 已提交
6788 6789

    Args:
G
gongweibao 已提交
6790 6791
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6792
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6793 6794 6795 6796
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6797
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6798 6799

    Returns:
G
gongweibao 已提交
6800
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
6823
@templatedoc()
X
Xin Pan 已提交
6824
def sum(x):
G
fix  
gongweibao 已提交
6825
    """
G
gongweibao 已提交
6826
    ${comment}
G
fix  
gongweibao 已提交
6827 6828

    Args:
G
gongweibao 已提交
6829
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
6830 6831

    Returns:
G
gongweibao 已提交
6832
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6833 6834 6835
    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6836
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6837 6838 6839 6840
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
6841
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
6842 6843 6844 6845

    return out


G
gongweibao 已提交
6846
@templatedoc()
G
fix  
gongweibao 已提交
6847 6848
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
6849
    ${comment}
G
fix  
gongweibao 已提交
6850 6851

    Args:
G
gongweibao 已提交
6852 6853 6854 6855
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
6856 6857

    Returns:
G
gongweibao 已提交
6858
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6859 6860 6861 6862

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6863
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
6875
@templatedoc()
G
fix  
gongweibao 已提交
6876 6877
def shape(input):
    """
G
gongweibao 已提交
6878
    ${comment}
G
fix  
gongweibao 已提交
6879 6880

    Args:
G
gongweibao 已提交
6881
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
6882 6883

    Returns:
G
gongweibao 已提交
6884
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6885 6886 6887 6888

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
6889
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6890
    helper.append_op(
G
fix  
gongweibao 已提交
6891
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
6892 6893

    return out
G
merge  
gongweibao 已提交
6894 6895


S
sneaxiy 已提交
6896 6897 6898 6899 6900 6901 6902 6903
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
6904 6905 6906 6907 6908 6909
    name = helper.kwargs.get('name', None)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6910

S
sneaxiy 已提交
6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
6922
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
6923 6924 6925 6926 6927 6928 6929 6930
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
6931
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
6932
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
6933 6934 6935 6936 6937 6938

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
6939 6940 6941 6942 6943
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
6954
    return helper.append_activation(out)
S
sneaxiy 已提交
6955 6956


X
Xin Pan 已提交
6957
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6958 6959 6960
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
6961
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6962 6963 6964
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
6965
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6966 6967 6968
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
6969
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6970 6971 6972
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
6973
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6974 6975 6976
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
6977
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6978 6979 6980
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
6981
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
6993 6994
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
6995
        ])
M
minqiyang 已提交
6996 6997


6998
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
6999 7000
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7001 7002
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021

    if out is None:
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7022
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7041
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7060
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7079
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7216 7217
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321


def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
    
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out