nn.py 332.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
44
    'bpr_loss',
X
Xin Pan 已提交
45 46 47 48 49 50 51 52 53 54
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
55 56
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
57 58 59 60 61 62 63
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
64
    'sequence_unpad',
X
Xin Pan 已提交
65 66 67 68 69 70 71 72
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
73
    'sequence_slice',
X
Xin Pan 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
91
    'group_norm',
X
Xin Pan 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
105
    'roi_align',
X
Xin Pan 已提交
106 107 108 109
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
110
    'resize_nearest',
X
Xin Pan 已提交
111 112 113 114 115 116
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
117
    'selu',
X
Xin Pan 已提交
118 119 120
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
121
    'margin_rank_loss',
X
Xin Pan 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
165
    'space_to_depth',
W
whs 已提交
166
    'affine_grid',
S
sneaxiy 已提交
167
    'sequence_reverse',
168
    'affine_channel',
B
barrierye 已提交
169
    'similarity_focus',
M
minqiyang 已提交
170
    'hash',
D
dengkaipeng 已提交
171
    'grid_sampler',
G
gmcather 已提交
172 173
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
174
    'bilinear_tensor_product',
C
chengduo 已提交
175 176
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
177
    'lstm',
Y
Yu Yang 已提交
178 179
]

J
jerrywgz 已提交
180 181
kIgnoreIndex = -100

Y
Yu Yang 已提交
182 183 184 185 186 187 188

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
189
       is_test=False,
190
       name=None):
Y
Yu Yang 已提交
191
    """
192
    **Fully Connected Layer**
Y
Yu Yang 已提交
193

194 195 196 197 198 199 200 201
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
202
    to the output as well.
C
caoying03 已提交
203

C
caoying03 已提交
204
    This process can be formulated as follows:
205 206 207

    .. math::

208
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
209 210 211

    In the above equation:

C
caoying03 已提交
212 213 214 215
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
216
    * :math:`Act`: The activation function.
C
caoying03 已提交
217
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
218 219

    Args:
R
ranqiu 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
235 236
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
237
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
238
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
239
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
240

241
    Returns:
F
fengjiayi 已提交
242
        Variable: The transformation result.
243 244

    Raises:
C
caoying03 已提交
245
        ValueError: If rank of the input tensor is less than 2.
246 247 248 249

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
250
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
251
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
252
    """
C
caoying03 已提交
253

C
caoying03 已提交
254
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
255 256 257 258

    dtype = helper.input_dtype()

    mul_results = []
259 260
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
261 262 263
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
264

Y
Yu Yang 已提交
265
        w = helper.create_parameter(
266
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
267
        tmp = helper.create_variable_for_type_inference(dtype)
268
        helper.append_op(
269 270 271
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
272
            outputs={"Out": tmp},
M
mozga-intel 已提交
273 274
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
275 276 277 278
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
279
    else:
X
Xin Pan 已提交
280
        pre_bias = helper.create_variable_for_type_inference(dtype)
281
        helper.append_op(
282 283 284
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
285
            attrs={"use_mkldnn": False})
286 287 288 289
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
290 291


292 293 294
def embedding(input,
              size,
              is_sparse=False,
295
              is_distributed=False,
296 297 298
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
299
    """
300 301
    **Embedding Layer**

302
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
303 304
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
305 306 307

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
308 309

    Args:
310 311 312 313 314
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
315
        is_distributed(bool): Whether to run lookup table from remote parameter server.
316 317
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
318
            with zeros whenever lookup encounters it in :attr:`input`. If
319
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
320 321
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
322
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
323

324 325 326
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
327

328 329
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
330

C
chengduoZH 已提交
331
          dict_size = len(dataset.ids)
332
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
333
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
334 335 336
    """

    helper = LayerHelper('embedding', **locals())
337 338 339
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
340 341
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
342 343
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
344
    tmp = helper.create_variable_for_type_inference(dtype)
345 346
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
347 348 349 350 351
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
352 353 354
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
355
            'remote_prefetch': remote_prefetch,
356 357
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
358 359 360
    return tmp


W
wopeizl 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
377

W
wopeizl 已提交
378 379 380 381 382 383 384 385 386 387 388
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
389

W
wopeizl 已提交
390 391 392 393
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
394

W
wopeizl 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
481 482


P
phlrain 已提交
483 484 485 486 487 488
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
489
         dropout_prob=0.0,
P
phlrain 已提交
490 491 492 493 494
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
495
    """
P
phlrain 已提交
496
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
497 498 499 500 501

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
541 542
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
543 544 545 546 547 548
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
549
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
550

L
liuhongyu 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
576
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
577 578 579 580 581 582
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
583 584 585
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
645 646 647 648 649 650 651 652 653 654 655
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
656 657
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
658 659 660
    """
    **Dynamic LSTMP Layer**

661 662 663 664 665 666
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
667 668 669 670 671

    The formula is as follows:

    .. math::

672
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
673

674
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
675

676
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
677

678
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
679

680
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
681

682
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
683

684
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
685

Y
Yibing Liu 已提交
686 687 688 689 690 691
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
692
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
693
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
694
          bias vector).
Y
Yibing Liu 已提交
695 696 697
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
698
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
699
    * :math:`h`: The hidden state.
700
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
701 702
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
703
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
704
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
705
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
706 707
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
708 709 710 711

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
712

Y
Yibing Liu 已提交
713 714 715 716 717 718 719 720 721 722 723 724
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
725
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
726 727
                               hidden-hidden weight and projection weight.

728 729
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
730 731
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
732 733
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
734
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
735 736 737 738 739

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
740
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
741 742 743 744 745 746
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
747
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
748 749 750
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
751
                                - The shape is (1 x 7D).
C
chengduo 已提交
752 753 754 755 756

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
757 758 759 760 761 762 763 764 765
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
766
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
767 768
                              default "tanh".
        proj_activation(str): The activation for projection output.
769
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
770 771
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
772 773
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
774 775

    Returns:
776 777 778 779
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
780 781

    Examples:
782

Y
Yibing Liu 已提交
783 784
        .. code-block:: python

785 786 787 788
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
789
            hidden_dim, proj_dim = 512, 256
790
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
791
                                     act=None, bias_attr=None)
792 793 794
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
795 796 797 798
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
799
    """
800

C
chengduo 已提交
801
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
802
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
803
    size = size // 4
Y
Yibing Liu 已提交
804 805 806 807 808 809 810 811 812 813
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
814 815 816 817 818 819
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
848 849 850 851 852 853 854 855 856
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
857
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
858

859
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
860
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
861

G
guosheng 已提交
862 863 864 865 866 867 868 869 870
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
871

G
guosheng 已提交
872
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
873

G
guosheng 已提交
874
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
875 876
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
877 878 879 880
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
881
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
882 883

    Args:
884 885
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
886
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
887
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
888 889
            is the hidden size.
        size(int): The dimension of the gru cell.
890
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
891 892
            hidden-hidden weight matrix. Note:

893
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
894
              :math:`D` is the hidden size.
895
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
896
              The first part are weights of the update gate and reset gate with
897
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
898
              candidate hidden state with shape :math:`(D \\times D)`.
899 900 901 902 903

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
904
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
905
            the bias in the update gate, reset gate and candidate calculations.
906 907 908
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
909 910
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
911
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
912 913 914
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
915
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
916
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
917 918 919 920
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
921 922

    Returns:
G
guosheng 已提交
923
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
924
            and sequence length is the same with the input.
925

G
guosheng 已提交
926
    Examples:
927

G
guosheng 已提交
928 929
        .. code-block:: python

930 931 932 933
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
934
            hidden_dim = 512
935
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
936
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
937 938 939 940 941 942 943 944 945
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
946
    batch_size = input.shape[0]
G
guosheng 已提交
947
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
948
    if h_0:
G
guosheng 已提交
949
        assert h_0.shape == (
Y
Yancey 已提交
950 951 952
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
953

X
Xin Pan 已提交
954 955 956 957
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
976 977 978
def gru_unit(input,
             hidden,
             size,
979 980
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
981
             activation='tanh',
982
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
983
    """
984
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
985

986 987
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
988

989
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
990

991
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
992

993
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
994 995

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
996 997 998
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
999 1000
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1001 1002
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1003 1004 1005
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1006 1007 1008

    Args:
        input (Variable): The fc transformed input value of current step.
1009
        hidden (Variable): The hidden value of gru unit from previous step.
1010
        size (integer): The input dimension value.
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1025
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1026
            the bias in the update gate, reset gate and candidate calculations.
1027 1028 1029
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1030 1031
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1032 1033 1034 1035
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1036

1037 1038 1039 1040 1041 1042
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1043

1044
             # assuming we have x_t_data and prev_hidden of size=10
1045
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1046 1047
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1060
    size = size // 3
Y
Yu Yang 已提交
1061 1062

    # create weight
1063 1064
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1065

X
Xin Pan 已提交
1066 1067 1068
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1069
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1070
    # create bias
1071
    if helper.bias_attr:
Y
Yu Yang 已提交
1072 1073 1074
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1075
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1076 1077 1078

    helper.append_op(
        type='gru_unit',
1079
        inputs=inputs,
Y
Yu Yang 已提交
1080 1081 1082 1083 1084 1085
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1086 1087
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1088 1089 1090 1091 1092
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1093
@templatedoc()
1094
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1095 1096 1097 1098 1099 1100 1101
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1102
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1103 1104 1105 1106
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1107 1108 1109
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1110 1111

    """
Y
Yu Yang 已提交
1112 1113 1114 1115 1116 1117
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1118 1119 1120 1121 1122 1123 1124 1125
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1141 1142 1143 1144
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1145

W
wopeizl 已提交
1146 1147
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1148

W
wopeizl 已提交
1149
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1150

W
wopeizl 已提交
1151
        label(${label_type}): ${label_comment}
1152

W
wopeizl 已提交
1153 1154
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1155

W
wopeizl 已提交
1156 1157
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1158

W
wopeizl 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1169
                "Transition": transition,
W
wopeizl 已提交
1170 1171
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1172

W
wopeizl 已提交
1173
    return viterbi_path
Y
Yu Yang 已提交
1174 1175


Y
yi.wu 已提交
1176
@templatedoc()
F
fengjiayi 已提交
1177
def cos_sim(X, Y):
Y
Yu Yang 已提交
1178
    """
Y
yi.wu 已提交
1179 1180 1181
    ${comment}

    Args:
1182 1183
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1184

Y
yi.wu 已提交
1185
    Returns:
1186
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1187
    """
F
fengjiayi 已提交
1188
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1189 1190 1191
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1202 1203 1204 1205 1206
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1207
            dropout_implementation="downgrade_in_infer"):
1208 1209 1210 1211 1212
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1213
    training. The dropout operator randomly sets (according to the given dropout
1214 1215 1216 1217
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1218 1219
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1220 1221 1222 1223 1224 1225 1226
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1238
                                           dropout op can be removed from the program.
P
phlrain 已提交
1239
                                           the program will be efficient
1240

P
phlrain 已提交
1241

1242 1243

    Returns:
1244
        Variable: A tensor variable is the shape with `x`.
1245 1246

    Examples:
1247

1248 1249
        .. code-block:: python

1250 1251
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1252 1253
    """

F
fengjiayi 已提交
1254
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1255 1256 1257
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1258 1259 1260 1261

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1262 1263 1264 1265 1266
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1267 1268 1269 1270
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1271 1272
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1273
        })
1274 1275 1276
    return out


J
jerrywgz 已提交
1277
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1278
    """
Y
Yibing Liu 已提交
1279 1280
    **Cross Entropy Layer**

1281 1282 1283
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1284 1285

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1286
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1287

Y
Yibing Liu 已提交
1288
        .. math::
Y
yangyaming 已提交
1289

Y
Yibing Liu 已提交
1290 1291 1292
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1293 1294
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1295 1296 1297 1298 1299

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1300
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1301 1302 1303
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1304 1305
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1306
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1307

Y
Yibing Liu 已提交
1308
    Args:
Y
yangyaming 已提交
1309
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1310 1311 1312 1313
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1314
        label (Variable|list): the ground truth which is a 2-D tensor. When
1315 1316 1317 1318
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1319
        soft_label (bool): a flag indicating whether to
1320
                                           interpretate the given labels as soft
1321
                                           labels. Default: `False`.
M
minqiyang 已提交
1322 1323
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1324
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1325 1326 1327 1328 1329

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1330 1331 1332 1333 1334
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1335 1336 1337 1338 1339 1340

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1341
    """
F
fengjiayi 已提交
1342
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1343
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1344 1345 1346 1347 1348
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1349 1350
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1351 1352 1353
    return out


F
frankwhzhang 已提交
1354
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1355 1356 1357
    """
    Bayesian Personalized Ranking Loss Operator.

1358
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1359 1360 1361 1362 1363 1364
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1365 1366 1367 1368 1369 1370
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1371 1372
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1373 1374 1375
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1376 1377 1378
    Examples:
        .. code-block:: python

1379
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1380
    """
1381 1382 1383 1384 1385 1386

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1387
                'Label': [label]},
1388 1389 1390 1391
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1392
def square_error_cost(input, label):
Y
Yu Yang 已提交
1393
    """
1394 1395
    **Square error cost layer**

1396 1397
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1398

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1412 1413
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1414 1415

    Returns:
G
guosheng 已提交
1416
        Variable: The tensor variable storing the element-wise squared error \
1417
                  difference of input and label.
1418 1419 1420 1421 1422 1423 1424 1425

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1426
    """
F
fengjiayi 已提交
1427
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1428
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1429 1430 1431 1432 1433 1434
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1435
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1436
    helper.append_op(
F
fengjiayi 已提交
1437 1438
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1439 1440 1441
    return square_out


Y
yi.wu 已提交
1442
@templatedoc()
Y
Yu Yang 已提交
1443 1444 1445 1446
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1447
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1448
    """
Y
yi.wu 已提交
1449
    **Chunk Evaluator**
Y
yi.wu 已提交
1450

Y
yangyaming 已提交
1451
    This function computes and outputs the precision, recall and
1452
    F1-score of chunk detection.
Y
yi.wu 已提交
1453

Y
yi.wu 已提交
1454 1455 1456 1457 1458 1459 1460 1461
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1462

Y
yi.wu 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1488

Y
yi.wu 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1513
    Args:
1514 1515 1516 1517 1518
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1519

Y
yi.wu 已提交
1520
    Returns:
Y
update  
yi.wu 已提交
1521 1522 1523
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1524

Y
yi.wu 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1537
    """
F
fengjiayi 已提交
1538
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1539 1540

    # prepare output
X
Xin Pan 已提交
1541 1542 1543 1544 1545 1546 1547
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1548 1549 1550 1551 1552 1553 1554 1555

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1556 1557 1558 1559
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1560 1561 1562
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1563 1564
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1565
        })
1566 1567
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1568 1569


1570
@templatedoc()
Y
Yu Yang 已提交
1571 1572 1573 1574 1575 1576 1577
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1578 1579
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1580 1581 1582 1583
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1584 1585 1586 1587 1588 1589 1590

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1604

1605 1606
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1607 1608 1609 1610 1611 1612 1613
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1614
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1625
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1626 1627 1628 1629 1630 1631
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1632
def sequence_softmax(input, use_cudnn=False, name=None):
1633 1634 1635
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1636
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1653 1654 1655
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1656

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1668 1669
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1670
    softmax_out = helper.create_variable_for_type_inference(dtype)
1671 1672 1673 1674 1675 1676 1677 1678
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1679
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1680
    """
1681
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1682
    has the same shape as the input.
Q
qiaolongfei 已提交
1683

1684 1685 1686 1687 1688 1689
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1690
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1691 1692 1693 1694 1695 1696 1697

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1698
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1699 1700 1701 1702 1703 1704 1705 1706

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1707 1708 1709
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1722 1723
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1724
    softmax_out = helper.create_variable_for_type_inference(dtype)
1725 1726 1727 1728 1729 1730 1731 1732
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1733 1734 1735
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1736 1737
           stride=1,
           padding=0,
1738
           dilation=1,
Y
Yu Yang 已提交
1739 1740 1741
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1742
           use_cudnn=True,
1743 1744
           act=None,
           name=None):
Y
Yu Yang 已提交
1745
    """
C
chengduoZH 已提交
1746
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1747 1748
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1749
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1750 1751 1752 1753 1754 1755 1756
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1757 1758 1759
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1760

1761
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1762

C
chengduoZH 已提交
1763 1764
    .. math::

C
refine  
chengduoZH 已提交
1765
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1766

T
tensor-tang 已提交
1767
    Where:
C
chengduoZH 已提交
1768

1769 1770 1771 1772 1773
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1774
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1775 1776 1777

    Example:

1778 1779
        - Input:

W
weixing02 已提交
1780
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1781

W
weixing02 已提交
1782
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1783

1784
        - Output:
T
tensor-tang 已提交
1785

W
weixing02 已提交
1786
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1787

C
chengduoZH 已提交
1788
        Where
1789 1790

        .. math::
C
chengduoZH 已提交
1791

W
weixing02 已提交
1792 1793
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1794 1795

    Args:
1796
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1797
        num_filters(int): The number of filter. It is as same as the output
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1826 1827
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1828 1829
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1830
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1831
            will be named automatically. Default: None
C
chengduoZH 已提交
1832 1833

    Returns:
G
guosheng 已提交
1834
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1835 1836
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1837
    Raises:
1838 1839
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1840

C
chengduoZH 已提交
1841 1842 1843
    Examples:
        .. code-block:: python

1844 1845
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1846 1847 1848
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1849
    assert param_attr is not False, "param_attr should not be False here."
1850
    l_type = 'conv2d'
X
xzl 已提交
1851 1852
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1853
        l_type = 'depthwise_conv2d'
1854 1855 1856 1857

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1858 1859 1860 1861 1862
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1863
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1864

C
chengduoZH 已提交
1865 1866 1867
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1868
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1869

C
chengduoZH 已提交
1870 1871
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1872 1873

    input_shape = input.shape
M
minqiyang 已提交
1874
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1875 1876

    def _get_default_param_initializer():
C
chengduo 已提交
1877 1878
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1879 1880 1881 1882 1883 1884 1885 1886
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1887
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1903
    helper.append_op(
1904
        type=l_type,
Y
Yu Yang 已提交
1905 1906 1907 1908 1909
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1910 1911 1912
        attrs={
            'strides': stride,
            'paddings': padding,
1913
            'dilations': dilation,
C
chengduoZH 已提交
1914
            'groups': groups,
1915
            'use_cudnn': use_cudnn,
1916
            'use_mkldnn': False,
C
chengduoZH 已提交
1917
        })
Y
Yu Yang 已提交
1918 1919 1920 1921 1922 1923

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1941 1942 1943 1944 1945 1946
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1956 1957
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1958 1959 1960
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1961
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1987
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1988 1989
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1990
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1991 1992
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1993
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1994 1995
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1996
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1997 1998 1999 2000 2001 2002
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2013 2014
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2015 2016
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2017
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2018
            will be named automatically. Default: None.
C
chengduoZH 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2031 2032
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2033 2034 2035
    """

    l_type = 'conv3d'
C
chengduo 已提交
2036
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2047
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2061 2062 2063
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2064 2065 2066 2067 2068 2069 2070 2071
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2072
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2087
            'use_mkldnn': False
C
chengduoZH 已提交
2088 2089
        })

2090
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2091 2092 2093 2094

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2095
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2096
    """
Y
yangyaming 已提交
2097 2098 2099
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2111
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2112 2113 2114 2115 2116
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2117
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2118 2119 2120 2121 2122 2123 2124

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2125 2126
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2127

L
Luo Tao 已提交
2128 2129
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2130
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2131
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2132
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2133 2134 2135 2136 2137 2138 2139

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2140

Y
yangyaming 已提交
2141
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2142 2143 2144 2145 2146
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2147 2148
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2149
    """
F
fengjiayi 已提交
2150
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2151
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2152 2153
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2154 2155 2156 2157 2158 2159

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2160 2161
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2162

Y
yangyaming 已提交
2163 2164 2165 2166 2167
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2168 2169 2170
    return pool_out


C
add doc  
chengduoZH 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2190
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2191 2192 2193 2194 2195
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2196
def sequence_first_step(input):
L
Luo Tao 已提交
2197
    """
L
Luo Tao 已提交
2198
    This function gets the first step of sequence.
L
Luo Tao 已提交
2199 2200 2201 2202

    .. code-block:: text

       x is a 1-level LoDTensor:
2203
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2204 2205 2206 2207 2208
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2209
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2210
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2211

L
Luo Tao 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2221

Y
yangyaming 已提交
2222
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2223 2224 2225
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2226 2227 2228
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2229
def sequence_last_step(input):
L
Luo Tao 已提交
2230
    """
L
Luo Tao 已提交
2231
    This function gets the last step of sequence.
L
Luo Tao 已提交
2232 2233 2234 2235

    .. code-block:: text

       x is a 1-level LoDTensor:
2236
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2237 2238 2239 2240 2241
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2242
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2243
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2244

L
Luo Tao 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2254

Y
yangyaming 已提交
2255
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2256 2257 2258
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2259 2260 2261
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2262 2263 2264 2265
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2266
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2267 2268 2269 2270 2271
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2272

Y
Yibing Liu 已提交
2273 2274
	- Case:

2275
            Given the input Variable **input**:
2276

2277 2278 2279
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2280

2281
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2282

2283
            the output Variable will be
2284

2285 2286 2287
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2288 2289

    NOTE: The first dimension size of **input**, **offset** and **length**
2290
          should be equal. The **offset** should start from 0.
2291

Y
Yibing Liu 已提交
2292
    Args:
2293
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2294
                         sequences.
Y
Yibing Liu 已提交
2295 2296 2297 2298 2299 2300
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2301
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2312
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2313 2314 2315 2316
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2317
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2332
@templatedoc()
Y
Yu Yang 已提交
2333
def pool2d(input,
C
chengduoZH 已提交
2334 2335
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2336 2337
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2338
           global_pooling=False,
C
chengduoZH 已提交
2339
           use_cudnn=True,
2340
           ceil_mode=False,
2341 2342
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2343
    """
F
fengjiayi 已提交
2344
    ${comment}
2345 2346

    Args:
2347 2348 2349
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2350
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2351
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2352 2353
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2354
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2355 2356 2357 2358 2359 2360
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2361 2362 2363
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2364
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2365
                        layer will be named automatically.
2366
        exclusive (bool): Whether to exclude padding points in average pooling
2367
                          mode, default is true
F
fengjiayi 已提交
2368

2369
    Returns:
F
fengjiayi 已提交
2370
        Variable: The pooling result.
F
fengjiayi 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2384 2385 2386 2387
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2388
                            global_pooling=False)
Y
Yu Yang 已提交
2389 2390 2391 2392 2393
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2394

C
chengduoZH 已提交
2395 2396 2397 2398 2399
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2400 2401 2402 2403
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2404 2405
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2406

C
Add doc  
chengduoZH 已提交
2407
    l_type = 'pool2d'
2408 2409

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2410
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2411
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2412 2413

    helper.append_op(
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2425 2426
            "use_mkldnn": False,
            "exclusive": exclusive,
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2440 2441
           name=None,
           exclusive=True):
2442 2443
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2444
    pooling configurations mentioned in input parameters.
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2457
        exclusive (bool): Whether to exclude padding points in average pooling
2458
                          mode, default is true
2459

2460
    Returns:
2461
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2462 2463 2464 2465 2466
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2467

C
chengduoZH 已提交
2468 2469 2470 2471 2472
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2473 2474 2475
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2476

C
chengduoZH 已提交
2477 2478
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2479

2480 2481
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2482
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2483
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2484 2485

    helper.append_op(
2486
        type=l_type,
Y
Yu Yang 已提交
2487 2488 2489 2490 2491 2492 2493
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2494
            "paddings": pool_padding,
2495
            "use_cudnn": use_cudnn,
2496
            "ceil_mode": ceil_mode,
2497 2498
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2499 2500 2501 2502 2503
        })

    return pool_out


2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    use_cudnn=True,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        use_cudnn (bool): ${use_cudnn_comment}
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: 'use_cudnn' is not a bool value.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
                            input=data,
                            pool_size=[3, 3],
                            pool_type='max',
                            require_index=True)
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 2:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 2.")

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False.")

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "use_cudnn": use_cudnn,
            "adaptive": True,
        })

    return pool_out


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    use_cudnn=True,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        use_cudnn (bool): ${use_cudnn_comment}
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: 'use_cudnn' is not a bool value.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
                            input=data,
                            pool_size=[3, 3],
                            pool_type='max',
                            require_index=True)
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 3:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 3.")

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False.")

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "use_cudnn": use_cudnn,
            "adaptive": True,
        })

    return pool_out


Y
Yu Yang 已提交
2688 2689 2690 2691 2692 2693 2694
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2695
               data_layout='NCHW',
Y
Yang Yang 已提交
2696
               in_place=False,
2697 2698
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2699
               moving_variance_name=None,
2700
               do_model_average_for_mean_and_var=False,
2701 2702
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2703
    """
Q
qiaolongfei 已提交
2704 2705 2706 2707
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2708

Q
qiaolongfei 已提交
2709
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2710

Q
qiaolongfei 已提交
2711 2712
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2713 2714 2715
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2728

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2742
    Args:
Q
qiaolongfei 已提交
2743
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2744 2745 2746 2747
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2748 2749 2750 2751 2752 2753 2754 2755
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2756
        data_layout(string, default NCHW): NCHW|NHWC
2757
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2758 2759 2760 2761
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2762
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2763
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2764 2765 2766 2767 2768
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2769 2770

    Returns:
Q
qiaolongfei 已提交
2771
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2772 2773 2774 2775 2776 2777 2778

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2779
    """
C
chengduo 已提交
2780
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2801 2802 2803
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2804 2805

    bias = helper.create_parameter(
2806
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2807 2808 2809
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2810

2811 2812
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2813 2814 2815
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2816
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2817
        shape=param_shape,
2818 2819 2820 2821 2822 2823 2824
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2825
            trainable=False,
W
wanghaoshuang 已提交
2826
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2827
        shape=param_shape,
2828 2829
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2830 2831 2832 2833 2834 2835

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2836 2837 2838 2839
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2840

X
Xin Pan 已提交
2841 2842
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2860 2861 2862 2863
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2864
            "use_mkldnn": False,
2865 2866
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2867
        })
Y
Yu Yang 已提交
2868 2869 2870 2871

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2872
@templatedoc()
G
guosheng 已提交
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2883
    ${comment}
G
guosheng 已提交
2884 2885 2886

    The formula is as follows:

Y
yuyang18 已提交
2887
    ..  math::
G
guosheng 已提交
2888 2889 2890 2891 2892 2893 2894

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2895 2896 2897 2898 2899 2900 2901 2902
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2903

G
guosheng 已提交
2904 2905
    Args:
        input(Variable): The input tensor variable.
2906
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2907
            normalization. Default True.
2908
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2909 2910
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2911
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2912
            Default 1.
2913
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2914
            division by zero. Default 1e-05.
G
guosheng 已提交
2915
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2916 2917
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2918 2919
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2920
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2921 2922
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2923
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2924
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2925
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2926 2927 2928
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2929 2930

    Returns:
Y
yuyang18 已提交
2931
        ${y_comment}
G
guosheng 已提交
2932 2933 2934

    Examples:

Y
yuyang18 已提交
2935 2936 2937
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2953
    if shift:
G
guosheng 已提交
2954 2955 2956 2957 2958 2959
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2960 2961 2962 2963 2964
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3058 3059 3060 3061
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3062 3063 3064
                     padding=0,
                     stride=1,
                     dilation=1,
3065
                     groups=None,
C
caoying03 已提交
3066
                     param_attr=None,
3067
                     bias_attr=None,
C
chengduoZH 已提交
3068
                     use_cudnn=True,
3069
                     act=None,
C
caoying03 已提交
3070
                     name=None):
Y
Yu Yang 已提交
3071
    """
3072 3073 3074 3075 3076 3077 3078 3079
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3080 3081
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3082 3083 3084
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3085 3086 3087 3088 3089

    For each input :math:`X`, the equation is:

    .. math::

3090
        Out = \sigma (W \\ast X + b)
3091

3092
    Where:
3093 3094 3095

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3096 3097 3098 3099
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3100

3101 3102 3103 3104
    Example:

        - Input:

3105
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3106

3107
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3108 3109 3110

        - Output:

3111
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3112 3113

        Where
Y
Yu Yang 已提交
3114

3115 3116
        .. math::

3117 3118 3119 3120
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3121 3122

    Args:
3123 3124 3125 3126
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3127 3128 3129 3130
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3159
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3160 3161 3162
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3163
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3164
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3165 3166

    Returns:
3167
        Variable: The tensor variable storing the convolution transpose result.
3168 3169

    Raises:
3170 3171
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3172 3173 3174 3175

    Examples:
       .. code-block:: python

3176 3177
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3178
    """
C
chengduo 已提交
3179
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3180 3181 3182 3183 3184 3185 3186 3187
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3188 3189 3190
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3191 3192 3193
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3194

C
chengduoZH 已提交
3195 3196
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3197

Y
Yu Yang 已提交
3198 3199 3200 3201 3202
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3203

Y
Yu Yang 已提交
3204 3205
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3206

C
chengduoZH 已提交
3207
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3208
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3209
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3210
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3211
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3212 3213 3214
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3215

3216 3217 3218 3219 3220 3221 3222
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3223
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3224
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3225

Y
Yu Yang 已提交
3226 3227 3228
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3229
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3230
    helper.append_op(
3231
        type=op_type,
Y
Yu Yang 已提交
3232 3233
        inputs={'Input': [input],
                'Filter': [img_filter]},
3234
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3235
        attrs={
3236
            'output_size': output_size,
3237 3238 3239 3240 3241
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3242 3243
        })

3244 3245 3246
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3247 3248


3249
def conv3d_transpose(input,
Y
Yu Yang 已提交
3250 3251 3252
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3253 3254 3255
                     padding=0,
                     stride=1,
                     dilation=1,
3256
                     groups=None,
C
caoying03 已提交
3257
                     param_attr=None,
3258
                     bias_attr=None,
C
chengduoZH 已提交
3259
                     use_cudnn=True,
3260
                     act=None,
C
caoying03 已提交
3261
                     name=None):
Y
Yu Yang 已提交
3262
    """
3263
    **Convlution3D transpose layer**
3264

3265
    The convolution3D transpose layer calculates the output based on the input,
3266
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3267 3268 3269 3270 3271 3272
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3273 3274 3275
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3276 3277 3278 3279 3280

    For each input :math:`X`, the equation is:

    .. math::

3281
        Out = \sigma (W \\ast X + b)
3282 3283 3284

    In the above equation:

3285 3286
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3287 3288 3289 3290
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3291

3292 3293 3294 3295
    Example:

        - Input:

3296
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3297

3298
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3299 3300 3301

        - Output:

3302
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3303 3304

        Where
Y
Yu Yang 已提交
3305

3306 3307
        .. math::

3308 3309 3310
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3311 3312

    Args:
3313
        input(Variable): The input image with [N, C, D, H, W] format.
3314 3315 3316
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3317
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3318 3319
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3320
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3321 3322 3323
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3324 3325
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3326
        stride(int|tuple): The stride size. If stride is a tuple, it must
3327 3328
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3329
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3330 3331 3332
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3333 3334 3335 3336 3337
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3338 3339 3340 3341 3342 3343 3344 3345 3346
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3347 3348
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3349 3350
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3351 3352
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3353 3354

    Returns:
3355
        Variable: The tensor variable storing the convolution transpose result.
3356 3357

    Raises:
3358 3359
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3360 3361 3362 3363

    Examples:
       .. code-block:: python

3364 3365
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3366
    """
C
chengduo 已提交
3367
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3368 3369
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3370
    if not isinstance(input, Variable):
3371
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3372 3373
    input_channel = input.shape[1]

3374 3375 3376
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3377

C
chengduoZH 已提交
3378 3379 3380
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3381 3382 3383 3384 3385 3386
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3387 3388 3389
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3390

3391
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3392
                         padding[0] - 1) // dilation[0] + 1
3393
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3394
                         padding[1] - 1) // dilation[1] + 1
3395
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3396
                         padding[2] - 1) // dilation[2] + 1
3397
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3398
    else:
3399 3400
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3401

3402
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3403
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3404 3405 3406
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3407
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3408
    helper.append_op(
3409
        type=l_type,
Y
Yu Yang 已提交
3410 3411
        inputs={'Input': [input],
                'Filter': [img_filter]},
3412
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3413 3414 3415 3416
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3417
            'groups': groups,
C
chengduoZH 已提交
3418 3419
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3420

3421 3422
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3423
    return out
Y
yangyaming 已提交
3424 3425


Y
yangyaming 已提交
3426
def sequence_expand(x, y, ref_level=-1, name=None):
3427
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3428 3429 3430 3431
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3432 3433 3434 3435 3436

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3437
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3438
                x.data = [[a], [b], [c], [d]]
3439 3440 3441
                x.dims = [4, 1]

            y is a LoDTensor:
3442 3443
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3444

Y
yangyaming 已提交
3445
            ref_level: 0
3446

Y
yangyaming 已提交
3447
            then output is a 1-level LoDTensor:
3448
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3449
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3450 3451 3452 3453
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3454
                x.data = [[a], [b], [c]]
3455 3456 3457
                x.dims = [3, 1]

            y is a LoDTensor:
3458
                y.lod = [[2, 0, 3]]
3459

Y
yangyaming 已提交
3460
            ref_level: -1
3461

Y
yangyaming 已提交
3462 3463 3464
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3465 3466 3467
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3468 3469
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3470
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3471
                        will be named automatically.
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3482
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3483
    """
Y
yangyaming 已提交
3484
    helper = LayerHelper('sequence_expand', input=x, **locals())
3485
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3486
    tmp = helper.create_variable_for_type_inference(dtype)
3487
    helper.append_op(
Y
yangyaming 已提交
3488 3489 3490 3491 3492
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3493
    return tmp
3494 3495


C
chengduo 已提交
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3552
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3553 3554 3555 3556 3557 3558 3559 3560
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3561
@templatedoc()
3562
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3563 3564 3565 3566 3567
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3568 3569 3570
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3571
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3572 3573 3574 3575
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3576 3577 3578
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3579

F
fengjiayi 已提交
3580
    Returns:
M
minqiyang 已提交
3581
        Variable: The padded sequence batch and the original lengths before
3582
                  padding. All sequences has the same length.
M
minqiyang 已提交
3583

F
fengjiayi 已提交
3584 3585 3586 3587 3588 3589 3590
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3591
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3592
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3593 3594 3595 3596 3597
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3598 3599
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3600 3601 3602 3603

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3604 3605 3606 3607 3608 3609
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3610 3611
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3612
        attrs={'padded_length': maxlen})
3613
    return out, length
F
fengjiayi 已提交
3614 3615


3616
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3617
    """
3618
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3619

3620 3621
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3622 3623 3624 3625 3626 3627 3628 3629 3630
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3631 3632 3633
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3634
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3635 3636 3637 3638 3639 3640

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3641
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3642 3643 3644 3645 3646 3647

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3648 3649
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3664
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3676 3677 3678 3679 3680 3681 3682 3683 3684
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3685 3686
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3687 3688 3689

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3690 3691

    This layer does the search in beams for one time step. Specifically, it
3692 3693 3694 3695 3696 3697
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3698

3699 3700 3701 3702 3703 3704 3705 3706
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3707

3708
    Args:
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3734

3735
    Returns:
3736 3737
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3738 3739 3740 3741

    Examples:
        .. code-block:: python

3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3759 3760 3761 3762
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3763 3764 3765
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3766 3767 3768 3769 3770

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3771
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3789 3790 3791 3792 3793 3794 3795
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3796

3797 3798 3799 3800 3801 3802 3803 3804 3805
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3806

3807 3808 3809 3810 3811 3812
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3813

3814 3815
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3816

3817 3818 3819 3820 3821 3822
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3823 3824
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3840 3841 3842 3843
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3844
              param_attr=None,
C
caoying03 已提交
3845 3846
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3847 3848 3849 3850
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3851
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3852

3853
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3854

3855
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3856

3857
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3858 3859 3860

            h_t & = o_t tanh(c_t)

3861 3862 3863 3864 3865 3866
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3867 3868 3869

        .. math::

3870
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3871 3872 3873 3874 3875 3876 3877 3878

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3879
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3880 3881

    Args:
Y
yangyaming 已提交
3882 3883 3884 3885 3886 3887
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3888
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3901 3902
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3903 3904

    Returns:
Y
yangyaming 已提交
3905
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3906 3907

    Raises:
3908 3909 3910 3911
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3912 3913 3914 3915 3916 3917

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3918
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3919
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3920
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3937
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3938 3939 3940 3941
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3942 3943
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3944 3945 3946
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3947
    size = cell_t_prev.shape[1]
3948
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3949 3950
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3951
                param_attr=param_attr,
3952
                bias_attr=bias_attr)
Y
yangyaming 已提交
3953
    dtype = x_t.dtype
X
Xin Pan 已提交
3954 3955
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3956 3957 3958 3959 3960 3961 3962 3963 3964

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3965
    return h, c
G
guosheng 已提交
3966 3967


C
caoying03 已提交
3968
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3969
    """
Y
yangyaming 已提交
3970
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3971 3972 3973

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3974
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3975 3976
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3977 3978
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3979
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3980
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3981
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3982 3983
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3984 3985 3986

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3987

G
guosheng 已提交
3988 3989 3990 3991 3992 3993
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3994
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3995 3996 3997 3998
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3999 4000 4001 4002

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4003
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4004 4005 4006
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4007 4008
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4009
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4010 4011
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4012 4013 4014 4015 4016
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4017
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4018 4019 4020 4021
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4022 4023


C
caoying03 已提交
4024
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4025
    """
Y
Yibing Liu 已提交
4026
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4027 4028 4029

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4030 4031 4032
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4033
            must be in the range :math:`[-rank(input), rank(input))`. If
4034
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4035
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4036 4037
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4038
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4039
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4040
                       will be named automatically.
G
guosheng 已提交
4041 4042

    Returns:
Y
Yibing Liu 已提交
4043
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4044

G
guosheng 已提交
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4055 4056
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4057 4058 4059 4060 4061 4062 4063

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4064 4065
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4066
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4067 4068
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4069 4070 4071 4072 4073
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4074
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4075 4076 4077 4078
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4079 4080


C
caoying03 已提交
4081
def reduce_max(input, dim=None, keep_dim=False, name=None):
4082
    """
Y
yangyaming 已提交
4083
    Computes the maximum of tensor elements over the given dimension.
4084 4085 4086

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4087
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4088 4089 4090
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4091
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4092 4093
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4094
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4095 4096
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4097 4098 4099

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4100

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4112 4113 4114 4115 4116 4117 4118

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4119 4120
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4121
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4122 4123
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4124 4125 4126 4127 4128
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4129
            'dim': dim if dim != None else [0],
4130 4131 4132 4133 4134 4135
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4136
def reduce_min(input, dim=None, keep_dim=False, name=None):
4137
    """
Y
yangyaming 已提交
4138
    Computes the minimum of tensor elements over the given dimension.
4139 4140 4141

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4142
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4143 4144 4145
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4146
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4147 4148
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4149
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4150 4151
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4152 4153 4154

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4155

4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4167 4168 4169 4170 4171 4172 4173

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4174 4175
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4176
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4177 4178
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4179 4180 4181 4182 4183
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4184
            'dim': dim if dim != None else [0],
4185 4186 4187 4188
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4189 4190


4191 4192 4193 4194 4195 4196
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4197
        dim (list|int|None): The dimensions along which the product is performed. If
4198 4199
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4200 4201
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4202 4203 4204
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4205
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4206
            layer will be named automatically.
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4221
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4222
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4223 4224 4225 4226 4227 4228 4229

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4230 4231
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4232
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4233 4234
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4235 4236 4237 4238 4239
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4240
            'dim': dim if dim != None else [0],
4241 4242 4243 4244 4245 4246
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4247
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4248
    """
C
caoying03 已提交
4249
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4250 4251 4252

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4253 4254 4255 4256 4257
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4258
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4259
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4260
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4261 4262
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4263 4264

    Returns:
D
dzhwinter 已提交
4265
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4266 4267 4268 4269 4270 4271 4272 4273 4274

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4275 4276
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4292
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4306 4307 4308 4309 4310 4311 4312 4313 4314


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4315
    .. math::
4316 4317

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4318 4319 4320 4321 4322

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4323
        x(Variable|list): The input tensor to l2_normalize layer.
4324
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4325 4326
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4327
        epsilon(float): The epsilon value is used to avoid division by zero, \
4328
            the defalut value is 1e-10.
4329
        name(str|None): A name for this layer(optional). If set None, the layer \
4330
            will be named automatically.
C
caoying03 已提交
4331 4332

    Returns:
4333
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4334 4335

    Examples:
4336

C
caoying03 已提交
4337 4338
        .. code-block:: python

4339 4340 4341 4342
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4343 4344
    """

F
fengjiayi 已提交
4345 4346
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4347 4348
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4349 4350
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4351
    helper.append_op(
4352 4353 4354 4355
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4356
        attrs={
4357 4358
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4359 4360
        })
    return out
4361 4362


S
sneaxiy 已提交
4363
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4364
    """
Y
ying 已提交
4365 4366 4367 4368
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4369

C
chengduoZH 已提交
4370
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4371
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4372

4373 4374 4375 4376 4377
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4378
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4379

C
chengduoZH 已提交
4380
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4381
      performs in the following way.
G
guosheng 已提交
4382

4383
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4384
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4385
        last two dimensions and a batched matrix multiply supporting broadcast
4386
        applies on the two tensors.
G
guosheng 已提交
4387

Y
ying 已提交
4388 4389
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4390
    removed after matrix multiplication.
G
guosheng 已提交
4391 4392 4393

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4394 4395 4396
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4397
        alpha (float): The scale of output. Default 1.0.
4398
        name(str|None): A name for this layer(optional). If set None, the layer
4399
            will be named automatically.
G
guosheng 已提交
4400 4401

    Returns:
4402
        Variable: The product Tensor variable.
G
guosheng 已提交
4403

G
guosheng 已提交
4404 4405 4406
    Examples:
        .. code-block:: python

4407
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4408 4409
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4410

4411 4412
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4413

4414 4415
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4416

4417 4418
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4419 4420 4421 4422

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4423 4424
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4425

Y
ying 已提交
4426
            # x: [M], y: [N]
4427
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4428
    """
Y
ying 已提交
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4441
            y_shape = y_shape + [1]
Y
ying 已提交
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4458
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4459
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4460
    helper.append_op(
4461 4462 4463 4464
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4465 4466 4467
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4468
            'alpha': float(alpha),
S
sneaxiy 已提交
4469
        })
4470
    return out
4471 4472


4473
def topk(input, k, name=None):
Q
qingqing01 已提交
4474 4475 4476 4477
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4478
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4479 4480 4481 4482 4483 4484
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4506 4507 4508
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4509
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4510
                 of input.
4511
        name(str|None): A name for this layer(optional). If set None, the layer
4512
                       will be named automatically.
F
fengjiayi 已提交
4513
                       Default: None
Q
qingqing01 已提交
4514 4515

    Returns:
4516 4517 4518
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4519
        within the last dimension of input.
Q
qingqing01 已提交
4520

F
fengjiayi 已提交
4521 4522
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4523 4524 4525 4526 4527 4528 4529

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4530 4531
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4543
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4544
    """
Y
ying 已提交
4545 4546 4547 4548 4549 4550 4551 4552 4553
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4554

Y
ying 已提交
4555
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4556

4557
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4558 4559
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4560
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4561

4562
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4563 4564
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4565

4566 4567 4568
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4569
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4570
                          the length of reference string.
4571
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4572
                                     calculating edit distance.
4573
        name (str): The name of this layer. It is optional.
4574

W
wanghaoshuang 已提交
4575
    Returns:
W
wanghaoshuang 已提交
4576
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4577 4578 4579 4580

    Examples:
        .. code-block:: python

T
tink2123 已提交
4581 4582
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4583
            cost = fluid.layers.edit_distance(input=x,label=y)
4584
    """
4585
    helper = LayerHelper("edit_distance", **locals())
4586

4587
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4588
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4589 4590
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4591 4592 4593 4594 4595

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4596
            attrs={"tokens": ignored_tokens})
4597 4598 4599 4600 4601
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4602
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4603
            attrs={"tokens": ignored_tokens})
4604 4605
        label = erased_label

4606
    # edit distance op
X
Xin Pan 已提交
4607 4608
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4609 4610 4611 4612
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4613 4614
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4615 4616
        attrs={"normalized": normalized})

4617
    return edit_distance_out, sequence_num
4618 4619 4620 4621 4622


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4623

Y
ying 已提交
4624 4625 4626 4627
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4645
        input.lod = [[4, 4]]
W
whs 已提交
4646 4647
      
        Computation:
4648

W
whs 已提交
4649 4650 4651 4652 4653 4654
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4655 4656 4657 4658 4659

        output.data = [[2],
                       [1],
                       [3]]

4660
        output.lod = [[2, 1]]
4661

W
whs 已提交
4662

4663 4664
    Args:

Y
ying 已提交
4665 4666 4667 4668 4669 4670 4671 4672 4673
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4674
        name (str): The name of this layer. It is optional.
4675 4676

    Returns:
W
whs 已提交
4677 4678 4679 4680
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
                  in result were empty, the result LoDTensor will be [-1] with 
                  LoD [[]] and dims [1, 1].
4681 4682 4683 4684 4685

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4686

4687
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4688
    """
4689
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4690
    _, topk_indices = topk(input, k=1)
4691 4692

    # ctc align op
X
Xin Pan 已提交
4693
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4694 4695 4696
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4697
        outputs={"Output": [ctc_out]},
4698 4699
        attrs={"merge_repeated": True,
               "blank": blank})
4700
    return ctc_out
4701 4702


W
Wu Yi 已提交
4703
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4704
    """
4705 4706
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4707
    to compute Connectionist Temporal Classification (CTC) loss.
4708 4709
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4710 4711 4712
    input tensor.

    Args:
4713
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4714 4715 4716 4717
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4718
       label (Variable): The ground truth of variable-length sequence,
4719 4720 4721
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4722 4723
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4724 4725 4726
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4727
         follewed by a mean_op.
W
Wu Yi 已提交
4728
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4729 4730

    Returns:
4731 4732
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4733 4734

    Examples:
4735

W
wanghaoshuang 已提交
4736
        .. code-block:: python
4737

4738 4739 4740
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4741 4742

    """
F
fengjiayi 已提交
4743
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4744 4745
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4746 4747 4748 4749 4750 4751
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4752 4753 4754 4755 4756
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4757
    return loss_out
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4773 4774 4775
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4776 4777 4778 4779 4780
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4781

4782
            out.lod  = [[0, 1, 3]]
4783 4784 4785 4786

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4787 4788 4789 4790 4791 4792 4793
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4794 4795 4796

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4797 4798

    Returns:
4799

4800 4801 4802 4803 4804
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4805
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4806
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4807 4808
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4809
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4810 4811 4812 4813 4814 4815
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4816 4817


4818 4819 4820 4821
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4822 4823 4824 4825 4826 4827
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4828
        num_neg_samples=None,
4829 4830 4831
        name=None,
        sampler="uniform",
        custom_dist=None,
4832 4833
        seed=0,
        is_sparse=False):
4834 4835 4836 4837 4838 4839 4840
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4841 4842
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4843
            sample is 1.0.
C
chengduo 已提交
4844 4845 4846 4847 4848 4849 4850 4851 4852
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4853
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4854 4855
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4856 4857 4858
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4859
        custom_dist (float[]): A float[] with size=num_total_classes.
4860 4861 4862 4863
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4864
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4865

4866
    Returns:
Y
Yibing Liu 已提交
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4894 4895 4896 4897 4898 4899 4900 4901 4902

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4903

4904
    """
Y
Yang Yu 已提交
4905 4906 4907
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4908 4909

    dim = input.shape[1]
Y
Yang Yu 已提交
4910 4911 4912 4913 4914 4915
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4916
    inputs = {}
C
chengduo 已提交
4917 4918 4919 4920 4921 4922 4923
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4924 4925 4926
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4927

4928 4929 4930 4931
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4932 4933 4934 4935 4936 4937 4938

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4991 4992 4993 4994
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4995 4996 4997 4998 4999
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
5000 5001
    attrs = {
        'num_total_classes': int(num_total_classes),
5002 5003
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5004 5005
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
5006
    }
Y
Yang Yu 已提交
5007 5008 5009

    helper.append_op(
        type='nce',
C
chengduo 已提交
5010
        inputs=inputs,
Y
Yang Yu 已提交
5011 5012 5013 5014 5015 5016
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5017
    return cost / (num_neg_samples + 1)
5018 5019


C
chengduo 已提交
5020 5021
def hsigmoid(input,
             label,
5022
             num_classes,
C
chengduo 已提交
5023 5024
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5025
             name=None,
5026 5027 5028
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5029
             is_sparse=False):
W
weixing02 已提交
5030 5031
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5032
    process of language model. This operator organizes the classes into a
5033 5034
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5035 5036 5037 5038 5039 5040
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5041
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5042
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5043

5044 5045 5046 5047 5048 5049 5050 5051 5052
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
5053
    Args:
M
minqiyang 已提交
5054
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5055 5056 5057 5058
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
5059 5060 5061
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5073 5074 5075 5076 5077 5078 5079
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
5080
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
5081 5082
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
5083 5084

    Returns:
J
JiabinYang 已提交
5085
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5086 5087 5088 5089 5090

    Examples:

        .. code-block:: python

G
guosheng 已提交
5091 5092 5093
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5094 5095 5096 5097
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5098 5099
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5100
    dim = input.shape[1]
5101
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5102 5103 5104
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5105 5106 5107 5108
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5109 5110
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5111 5112 5113
    else:
        pass

J
JiabinYang 已提交
5114 5115
    weights = None

5116
    if not is_custom:
J
JiabinYang 已提交
5117 5118 5119 5120 5121 5122 5123 5124
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5125
            shape=[num_classes, dim],
J
JiabinYang 已提交
5126 5127
            is_bias=False,
            dtype=input.dtype)
5128 5129 5130
    inputs = {
        "X": input,
        "W": weights,
5131 5132
        "PTable": path_table,
        "PathCode": path_code,
5133 5134
        "Label": label
    }
W
weixing02 已提交
5135
    if helper.bias_attr:
5136
        if not is_custom:
J
JiabinYang 已提交
5137 5138
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5139
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5140 5141 5142 5143 5144 5145
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5146
                shape=[num_classes, 1],
J
JiabinYang 已提交
5147 5148 5149
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5150 5151
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5152
        inputs=inputs,
W
weixing02 已提交
5153 5154
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
5155 5156
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
5157 5158 5159
    return out


Y
fix ci.  
ying 已提交
5160
def transpose(x, perm, name=None):
Y
ying 已提交
5161 5162 5163 5164 5165 5166 5167
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5168 5169 5170
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5171 5172 5173 5174 5175 5176 5177

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5178
            # use append_batch_size=False to avoid prepending extra
5179
            # batch size in shape
5180
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5181
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5182
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5183 5184
    """

Y
fix ci.  
ying 已提交
5185
    if len(perm) != len(x.shape):
Y
ying 已提交
5186 5187 5188
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5189 5190 5191 5192 5193 5194
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5195 5196

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5197 5198
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5199
    helper.append_op(
5200
        type='transpose2',
Y
fix ci.  
ying 已提交
5201
        inputs={'X': [x]},
5202 5203
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5204 5205
        attrs={'axis': perm})
    return out
5206 5207


5208 5209 5210 5211 5212 5213 5214
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5215
    """
5216 5217 5218 5219 5220 5221 5222
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5251 5252 5253 5254 5255 5256 5257 5258 5259
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5260 5261 5262
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5263 5264 5265 5266 5267
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5295 5296 5297
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5310
            output.dims = {8, 8}
5311

5312
            output.lod = [[4, 4]]
5313

T
Tink_Y 已提交
5314
    Examples:
5315 5316 5317

        .. code-block:: python

5318 5319
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5320 5321

    """
W
wanghaoshuang 已提交
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5332 5333 5334 5335 5336 5337 5338
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5339
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5340
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5341
    helper.append_op(
5342
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5343
    return out
5344 5345


Y
yuyang18 已提交
5346
@templatedoc()
5347
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5348 5349
    """
    ${comment}
5350 5351

    Args:
Y
yuyang18 已提交
5352
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5353 5354
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5355 5356 5357 5358 5359
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5360
        ${out_comment}.
5361 5362

    Examples:
Y
yuyang18 已提交
5363 5364 5365 5366
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5367 5368 5369 5370 5371 5372
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5373
    out = helper.create_variable_for_type_inference(dtype)
5374 5375 5376 5377 5378
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5379
    return helper.append_activation(out)
5380 5381


Y
yuyang18 已提交
5382
@templatedoc()
5383 5384
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5385 5386 5387 5388 5389 5390 5391
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5392 5393

    Args:
Y
yuyang18 已提交
5394 5395
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5396 5397

    Returns:
Y
yuyang18 已提交
5398
        ${out_comment}.
5399 5400
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5401 5402 5403 5404 5405

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5406
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5407 5408 5409 5410 5411 5412
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5413 5414


5415 5416 5417
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5418
                               ignore_index=kIgnoreIndex,
5419 5420
                               numeric_stable_mode=False,
                               return_softmax=False):
5421 5422
    """
    **Softmax With Cross Entropy Operator.**
5423

5424 5425 5426 5427
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5428

5429 5430 5431
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5432

5433 5434 5435
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5436

5437
    The equation is as follows:
5438

5439
    1) Hard label (one-hot label, so every sample has exactly one class)
5440

5441 5442 5443 5444
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5445

5446 5447 5448
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5449

5450 5451 5452 5453
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5454 5455 5456
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5457

S
sneaxiy 已提交
5458 5459 5460 5461 5462 5463 5464 5465
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5466 5467 5468 5469 5470 5471 5472 5473
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5474 5475
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5476
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5477 5478 5479
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5480 5481 5482
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5483
                                    stable algorithm. Default: False
5484
        return_softmax (bool): A flag indicating whether to return the softmax
5485
                               along with the cross entropy loss. Default: False
5486

5487
    Returns:
5488 5489 5490 5491
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5492
                              2-D tensor with shape [N x K].
5493 5494 5495 5496 5497 5498 5499

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5500 5501
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5502 5503
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5504 5505
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5506 5507 5508 5509 5510 5511
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5512 5513 5514 5515 5516
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5517 5518 5519 5520

    if return_softmax:
        return loss, softmax

5521 5522 5523 5524 5525
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5526 5527
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5528
    For each instance, it computes the smooth L1 loss element by element first
5529
    and then sums all the losses. So the shape of ouput Variable is
5530
    [batch_size, 1].
5531

5532 5533
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5534
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5535
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5536
            L1 loss op with same shape as :attr:`x`.
5537
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5538 5539
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5540
            by this tensor element by element.
5541
        outside_weight (Variable|None): A tensor with rank at least 2. This
5542 5543
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5544
            element by element.
5545
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5546 5547
           scalar with default value 1.0.

5548
    Returns:
5549
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5550 5551 5552 5553 5554

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5555 5556
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5557
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5558
            out = fluid.layers.smooth_l1(x=fc, y=label)
5559
    """
5560

5561
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5562 5563
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5576 5577 5578 5579


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5580
    This layer creates the one-hot representations for input indices.
5581 5582

    Args:
Y
Yibing Liu 已提交
5583 5584
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5585 5586

    Returns:
Y
Yibing Liu 已提交
5587
        Variable: The one-hot representations of input.
5588 5589

    Examples:
C
caoying03 已提交
5590
        .. code-block:: python
5591

Y
Yibing Liu 已提交
5592 5593
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5594 5595
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5596
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5597 5598 5599 5600 5601 5602
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5603 5604


Y
Yu Yang 已提交
5605
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5606
    """
Y
yi.wu 已提交
5607 5608 5609
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5610 5611 5612 5613 5614 5615

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5616 5617
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5618 5619 5620 5621 5622 5623

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5624 5625
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5626 5627
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5628 5629 5630 5631 5632
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5633
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5634
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5635 5636
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5637 5638
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5639 5640 5641
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5642 5643


5644
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5645
    """
C
caoying03 已提交
5646 5647
    Gives a new shape to the input Tensor without changing its data.

5648 5649 5650 5651 5652
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5653

5654
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5655

5656 5657 5658 5659
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5660
    2. 0 means the actual dimension value is going to be copied from the
5661 5662 5663 5664
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5665 5666

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5667
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5668
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5669

5670
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5671 5672
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5673 5674
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5675
    dimensions.
C
caoying03 已提交
5676

5677
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5678 5679 5680 5681
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5682 5683

    Args:
5684
        x(variable): The input tensor.
C
caoying03 已提交
5685 5686
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5687 5688 5689 5690 5691
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5692 5693
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5694 5695 5696 5697 5698 5699 5700
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5701
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5702

5703
    Returns:
G
guosheng 已提交
5704 5705 5706 5707
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5708

X
Xin Pan 已提交
5709 5710 5711
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5712 5713
    Examples:
        .. code-block:: python
G
guosheng 已提交
5714

5715
            data = fluid.layers.data(
5716
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5717
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5718
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5719 5720 5721
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5722
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5723 5724 5725 5726 5727
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5728

5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5744
    helper = LayerHelper("reshape2", **locals())
5745 5746
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5747
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5748
    helper.append_op(
5749
        type="reshape2",
X
Xin Pan 已提交
5750
        inputs=inputs,
D
dzhwinter 已提交
5751
        attrs={"shape": shape},
5752 5753
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5754

D
dzhwinter 已提交
5755
    return helper.append_activation(out)
5756

5757

5758
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5759
    """
M
minqiyang 已提交
5760 5761 5762
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5763
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5764

Y
Yibing Liu 已提交
5765 5766
    Examples:
    Case 1:
M
minqiyang 已提交
5767
      Given
Y
Yibing Liu 已提交
5768 5769 5770 5771 5772 5773 5774 5775
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5776
        and
Y
Yibing Liu 已提交
5777 5778 5779
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5780

Y
Yibing Liu 已提交
5781
    Args:
5782
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5783
        axes (list): List of integers, indicating the dimensions to be squeezed.
5784
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5785 5786 5787 5788 5789 5790 5791 5792

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5793
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5794 5795
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5796 5797
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5798
    helper.append_op(
5799
        type="squeeze2",
5800
        inputs={"X": input},
Y
Yibing Liu 已提交
5801
        attrs={"axes": axes},
5802 5803
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5804

5805 5806 5807
    return out


5808
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5809
    """
M
minqiyang 已提交
5810 5811 5812
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5813

M
minqiyang 已提交
5814 5815
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5816
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5817

Y
Yibing Liu 已提交
5818
    Args:
5819
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5820
        axes (list): List of integers, indicating the dimensions to be inserted.
5821
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5822 5823 5824 5825 5826 5827 5828 5829

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5830
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5831 5832
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5833 5834
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5835
    helper.append_op(
5836
        type="unsqueeze2",
5837
        inputs={"X": input},
Y
Yibing Liu 已提交
5838
        attrs={"axes": axes},
5839 5840
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5841

5842 5843
    return out

5844

Y
yangyaming 已提交
5845
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5846
    """
Y
Yibing Liu 已提交
5847
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5848 5849 5850 5851
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5852
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5853 5854 5855 5856 5857 5858

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5859
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5860 5861 5862
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5863
            target_lod: [4, 2]
Y
yangyaming 已提交
5864 5865

            then we get a 1-level LoDTensor:
5866
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5867 5868 5869 5870 5871 5872
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5873
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5874 5875 5876 5877
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5878
                y.data = [[2, 4]]
Y
yangyaming 已提交
5879 5880 5881
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5882
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5883 5884 5885 5886 5887 5888
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5889
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5890 5891 5892 5893
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5894
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5895 5896 5897 5898
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5899
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5900 5901 5902 5903 5904
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5905
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5906
                           from :attr:`y`.
Y
yangyaming 已提交
5907
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5908
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5909 5910

    Returns:
Y
Yibing Liu 已提交
5911
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5912 5913

    Raises:
Y
Yibing Liu 已提交
5914
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5915 5916 5917 5918 5919 5920 5921 5922 5923

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5924
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5950
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5979 5980
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5993 5994 5995
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6009 6010 6011 6012


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6013
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6014
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6015

G
guosheng 已提交
6016 6017 6018 6019
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6042
                         The length of :attr:paddings must be
G
guosheng 已提交
6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6053

G
guosheng 已提交
6054 6055 6056 6057 6058 6059
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6060
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6061 6062 6063 6064 6065 6066 6067
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6068 6069


C
chengduo 已提交
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6101 6102
		And
            pad_value = -1,
C
chengduo 已提交
6103

T
Tink_Y 已提交
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6139
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6140 6141 6142 6143 6144 6145 6146 6147 6148
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6149 6150 6151 6152 6153 6154 6155
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6156 6157
    called label-smoothing regularization (LSR).

6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6181
                              be :math:`(1, class\_num)`.
6182 6183
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6184
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6204
    smooth_label = helper.create_variable_for_type_inference(dtype)
6205 6206 6207 6208 6209 6210 6211
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6212 6213


W
wopeizl 已提交
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6250 6251


J
jerrywgz 已提交
6252 6253 6254 6255 6256 6257
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6258 6259
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6276 6277 6278
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6279 6280 6281 6282 6283 6284
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6285
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6326 6327
        .. code-block:: python

W
whs 已提交
6328 6329 6330 6331
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6332
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6333 6334 6335 6336 6337 6338
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6339 6340


6341 6342 6343 6344
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6345 6346
                 resample='BILINEAR',
                 actual_shape=None):
6347
    """
Q
qiaolongfei 已提交
6348
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6349

6350
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6351 6352 6353
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6354

6355
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6356

6357
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6358

6359
    Args:
6360
        input (Variable): The input tensor of image resize layer,
6361 6362
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6363
        out_shape(list|tuple|Variable|None): Output shape of image resize
6364 6365
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6366
        scale(float|None): The multiplier for the input height or width.
6367 6368 6369
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6370 6371
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6372
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6373
                       currently.
6374
                       Default: 'BILINEAR'
6375 6376 6377
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6378
                                :attr:`out_shape` and :attr:`scale` specifying
6379 6380 6381 6382 6383 6384 6385
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6386 6387
                                constructing stage.
                                Default: None
6388 6389

    Returns:
Q
update  
qiaolongfei 已提交
6390 6391
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6392

6393 6394 6395
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6396
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6397 6398 6399 6400
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6401 6402 6403
    Examples:
        .. code-block:: python

6404
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6405
    """
6406 6407 6408 6409
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6410 6411
    if resample not in resample_methods:
        raise ValueError(
6412
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6413
        )
6414
    resample_type = resample_methods[resample]
6415
    if out_shape is None and scale is None:
6416
        raise ValueError("One of out_shape and scale must not be None.")
6417
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6418
    dtype = helper.input_dtype()
6419 6420 6421 6422

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6423 6424 6425
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6426
    if out_shape is not None:
6427 6428 6429 6430
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6431
            inputs['OutSize'] = out_shape
6432 6433 6434 6435 6436 6437 6438 6439
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6440 6441 6442 6443
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6444 6445 6446 6447 6448
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6449
    out = helper.create_variable_for_type_inference(dtype)
6450
    helper.append_op(
6451
        type='{}_interp'.format(resample_type),
6452
        inputs=inputs,
6453
        outputs={"Out": out},
6454 6455 6456
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6457
    return out
F
stash  
fengjiayi 已提交
6458 6459


6460
@templatedoc(op_type="bilinear_interp")
6461 6462 6463 6464 6465
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6466
    """
6467 6468
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6469 6470
    in priority order.

6471 6472 6473 6474
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6475 6476
    again in the other direction.

6477
    For details of bilinear interpolation, please refer to Wikipedia:
6478
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6479 6480 6481 6482 6483

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6484

Y
yuyang18 已提交
6485 6486 6487 6488 6489
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6490 6491 6492
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6493
                                :attr:`out_shape` and :attr:`scale` specifying
6494 6495 6496 6497 6498 6499 6500
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6501 6502
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6503 6504 6505

    Returns:
        ${out_comment}.
6506 6507 6508 6509 6510

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6511 6512
    """

6513
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6514 6515


6516
@templatedoc(op_type="nearest_interp")
6517 6518 6519 6520 6521
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6522
    """
6523
    Resize input by performing nearest neighbor interpolation in both the
6524 6525
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6526 6527
    out_shape and scale in priority order.

6528
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6529
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6530 6531 6532 6533 6534

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6535

Y
yuyang18 已提交
6536 6537 6538 6539 6540
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6541 6542 6543
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6544
                                :attr:`out_shape` and :attr:`scale` specifying
6545 6546 6547 6548 6549 6550 6551
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6552 6553
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6554 6555 6556

    Returns:
        ${out_comment}.
6557 6558 6559 6560 6561

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6562 6563
    """

6564
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6565 6566 6567 6568


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6569 6570 6571
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6572 6573 6574 6575 6576 6577 6578
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6579
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6580

6581
    Returns:
Q
update  
qiaolongfei 已提交
6582
        Variable: The output is a 4-D tensor of the shape
6583
        (num_batches, channls, out_h, out_w).
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6594 6595 6596
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6597 6598 6599
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6600 6601
def gather(input, index):
    """
Q
qiaolongfei 已提交
6602 6603
    **Gather Layer**

6604
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6605 6606 6607 6608
    of X indexed by `index` and concatenate them together.

    .. math::

6609
        Out = X[Index]
W
whs 已提交
6610 6611 6612 6613 6614 6615 6616


    .. code-block:: text


                Given:

6617 6618
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6629
        input (Variable): The source input with rank>=1.
W
whs 已提交
6630 6631 6632 6633 6634 6635
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6636

W
whs 已提交
6637 6638 6639 6640 6641 6642
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6643
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6644 6645 6646 6647 6648 6649 6650 6651
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6683
    out = helper.create_variable_for_type_inference(dtype)
6684 6685 6686 6687 6688 6689 6690 6691 6692
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6743
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6744 6745 6746 6747 6748 6749 6750 6751 6752
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6766

6767 6768 6769
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6770
    """
F
stash  
fengjiayi 已提交
6771
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6772
    dtype = x.dtype
X
Xin Pan 已提交
6773
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6774
    if seed is None:
6775
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6776
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6777
    if isinstance(seed, int):
F
fengjiayi 已提交
6778 6779 6780 6781 6782
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6783 6784 6785 6786
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6787
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6788 6789
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6790 6791
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6792
    return out
W
whs 已提交
6793 6794


6795
def log(x, name=None):
W
wanghaoshuang 已提交
6796 6797 6798 6799 6800
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6801
        Out = \\ln(x)
W
wanghaoshuang 已提交
6802 6803

    Args:
6804
        x (Variable): Input tensor.
6805 6806
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6807 6808 6809 6810 6811 6812 6813 6814

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6815
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6816 6817
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6818
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6819
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6820
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6821 6822 6823
    return out


6824
def relu(x, name=None):
W
wanghaoshuang 已提交
6825 6826
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6827
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6828 6829 6830 6831
    the tensor elementwise.

    .. math::

6832
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6833 6834

    Args:
6835
        x (Variable): The input tensor.
6836 6837
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6838 6839 6840 6841 6842 6843 6844 6845

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6846
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6847 6848
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6849
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6850
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6851 6852
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6853
    return out
6854 6855


C
chengduo 已提交
6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6897 6898 6899
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6900 6901 6902 6903
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6904
    .. math::
6905 6906

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6907

6908
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6909 6910 6911 6912 6913
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6914
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6915
                           Its shape should be the same as input.
6916
        num_classes (int): The possible number of labels.
W
whs 已提交
6917 6918 6919 6920

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6921
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6922 6923 6924 6925

    Examples:

        .. code-block:: python
6926

W
whs 已提交
6927 6928 6929 6930
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6931 6932 6933
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6934 6935
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6936 6937
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6938
        outputs={
W
whs 已提交
6939 6940 6941
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6942 6943 6944
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7013
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7014 7015 7016 7017 7018

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7019
            isinstance(shape, Variable)):
7020 7021 7022 7023 7024
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7025
    out = helper.create_variable_for_type_inference(x.dtype)
7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7043 7044


W
whs 已提交
7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7062

W
whs 已提交
7063
              out_shape = [2, 3, 5, 5]
7064

W
whs 已提交
7065
          Step 1:
7066

W
whs 已提交
7067 7068 7069
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7070

W
whs 已提交
7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7141
            isinstance(out_shape, Variable)):
W
whs 已提交
7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7163 7164 7165 7166 7167 7168 7169 7170
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7171

7172 7173
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7174

7175 7176 7177 7178
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7179

7180 7181 7182 7183 7184
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
7185 7186 7187

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7223
    out = helper.create_variable_for_type_inference("float32")
7224 7225 7226 7227 7228 7229 7230 7231

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7232 7233


M
minqiyang 已提交
7234 7235
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7236
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7237
    which compares left score and right score passed in.
M
minqiyang 已提交
7238
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7239 7240 7241 7242 7243 7244

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7245
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7246 7247
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7248
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7249 7250 7251
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7252
       Variable: The ranking loss.
M
minqiyang 已提交
7253
    Raises:
M
minqiyang 已提交
7254
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7255 7256 7257 7258 7259 7260 7261
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7262
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7263 7264 7265 7266 7267 7268
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7269 7270
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7294
        .. code-block:: text
W
whs 已提交
7295

T
Tink_Y 已提交
7296
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7297

T
Tink_Y 已提交
7298 7299
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7300

T
Tink_Y 已提交
7301
	      Case 0:
M
minqiyang 已提交
7302

T
Tink_Y 已提交
7303 7304 7305
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7306

T
Tink_Y 已提交
7307 7308 7309
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7310

T
Tink_Y 已提交
7311
	      Case 1:
M
minqiyang 已提交
7312

T
Tink_Y 已提交
7313 7314
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7315

T
Tink_Y 已提交
7316 7317 7318
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7319

T
Tink_Y 已提交
7320
	      Case 2:
M
minqiyang 已提交
7321

T
Tink_Y 已提交
7322 7323
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7324

T
Tink_Y 已提交
7325 7326 7327
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7328 7329


W
whs 已提交
7330 7331
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7332
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7356
    out = helper.create_variable_for_type_inference(dtype)
7357 7358 7359 7360 7361 7362 7363 7364 7365
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7366
    helper.append_op(
7367
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7368 7369 7370 7371

    return out


7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7384 7385 7386 7387 7388

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7389 7390
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7391 7392
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7393
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7414 7415 7416 7417 7418

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7419 7420
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7421 7422
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7423
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7444 7445 7446 7447 7448

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7449 7450
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7451 7452
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7453
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7475 7476 7477 7478 7479

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7480
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7481
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7482 7483
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7484
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7507 7508 7509 7510 7511

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7512 7513
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7514 7515
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7516
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7538 7539 7540 7541 7542

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7543 7544
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7545 7546
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7547
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7548 7549 7550 7551 7552 7553 7554 7555
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7556 7557 7558 7559
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7560
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7561 7562 7563

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7564
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7565
          weight (alpha).
J
jerrywgz 已提交
7566
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7567 7568 7569
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7570
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7571
          will be named automatically.
J
jerrywgz 已提交
7572 7573 7574 7575 7576 7577 7578 7579

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7580
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7594
        attr=helper.param_attr,
J
jerrywgz 已提交
7595 7596 7597 7598
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7599
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7600 7601 7602 7603 7604 7605 7606 7607 7608
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7609 7610 7611 7612 7613 7614 7615 7616 7617 7618
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7619
    Returns:
7620
        output(${out_type}): ${out_comment}
7621 7622 7623 7624 7625 7626 7627

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7628 7629
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7630
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7649
    Returns:
7650
        output(${out_type}): ${out_comment}
7651 7652 7653 7654 7655 7656 7657

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7658 7659
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7660
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7678
    Returns:
7679
        output(${out_type}): ${out_comment}
7680 7681 7682 7683 7684 7685 7686

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7687 7688
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7689
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7690 7691 7692 7693 7694 7695 7696 7697
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7711

7712 7713 7714 7715 7716 7717 7718 7719 7720 7721
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7722 7723
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7739
        ValueError: If axis is not in range [0, rank(x)].
7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7756 7757
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7758
    helper.append_op(
7759
        type='flatten2',
7760
        inputs={"X": x},
7761 7762
        outputs={'Out': out,
                 'XShape': x_shape},
7763 7764
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7765 7766


C
chenweihang 已提交
7767
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7768
    """
C
chenweihang 已提交
7769
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7770
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7771 7772
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7773

C
chenweihang 已提交
7774 7775 7776 7777
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7778
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7779 7780 7781 7782 7783 7784
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7785
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7786 7787 7788
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7789 7790 7791
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7803 7804
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7805 7806 7807 7808 7809 7810
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7811
    return out
7812

7813

S
sneaxiy 已提交
7814 7815 7816 7817 7818 7819 7820 7821 7822
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7823

S
sneaxiy 已提交
7824
    .. math::
7825

S
sneaxiy 已提交
7826 7827 7828
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7829
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7830 7831 7832 7833
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7834 7835 7836
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7837 7838
    Returns:
        Variable: The output sequence mask.
7839

S
sneaxiy 已提交
7840 7841
    """

Q
qingqing01 已提交
7842
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7843
    if name is None:
X
Xin Pan 已提交
7844
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7845
    else:
X
Xin Pan 已提交
7846
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7847

Q
qingqing01 已提交
7848 7849 7850
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7851 7852
        outputs={'Y': out},
        attrs={
7853
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7854 7855 7856
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7857 7858


X
Xin Pan 已提交
7859
def stack(x, axis=0):
S
sneaxiy 已提交
7860 7861 7862 7863
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7864 7865 7866 7867 7868 7869 7870

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7871
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7872
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7873 7874

    Args:
7875
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7876
        axis (int|None): The axis along which all inputs are stacked.
7877

S
sneaxiy 已提交
7878 7879
    Returns:
        Variable: The stacked variable.
7880

S
sneaxiy 已提交
7881 7882
    """

X
Xin Pan 已提交
7883 7884 7885 7886 7887 7888
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7889
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7890
    helper.append_op(
S
sneaxiy 已提交
7891 7892
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7893

X
Xin Pan 已提交
7894
    return out
D
dzhwinter 已提交
7895 7896 7897 7898 7899 7900 7901


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7902

D
dzhwinter 已提交
7903 7904 7905
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7906
    raised.
D
dzhwinter 已提交
7907 7908

    Args:
M
minqiyang 已提交
7909
        x (Variable): Input variable.
D
dzhwinter 已提交
7910 7911
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7912

D
dzhwinter 已提交
7913 7914
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7915

D
dzhwinter 已提交
7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7927
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7928 7929 7930 7931 7932 7933 7934 7935

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7948

W
whs 已提交
7949 7950 7951 7952
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7953

W
whs 已提交
7954
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7955

W
whs 已提交
7956
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7957

W
whs 已提交
7958 7959 7960 7961
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7962

W
whs 已提交
7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7979
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7980 7981 7982 7983 7984 7985
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7986 7987


G
fix  
gongweibao 已提交
7988 7989 7990
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7991
@templatedoc()
G
fix  
gongweibao 已提交
7992 7993 7994 7995 7996 7997 7998 7999 8000
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8001
    ${comment}
G
fix  
gongweibao 已提交
8002 8003

    Args:
G
gongweibao 已提交
8004 8005 8006
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8007
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8008 8009 8010
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8011 8012
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8013
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8014

8015 8016 8017 8018 8019
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8020 8021 8022
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8023
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8040 8041


G
gongweibao 已提交
8042
@templatedoc()
X
Xin Pan 已提交
8043
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8044
    """
G
gongweibao 已提交
8045
    ${comment}
G
fix  
gongweibao 已提交
8046 8047

    Args:
G
gongweibao 已提交
8048 8049 8050 8051
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8052 8053 8054
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8055
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8056

8057 8058 8059 8060
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8061 8062 8063
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8064
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8065 8066 8067 8068 8069 8070 8071 8072 8073 8074
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8075
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8076 8077 8078 8079 8080
        })

    return out


G
gongweibao 已提交
8081
@templatedoc()
G
fix  
gongweibao 已提交
8082
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8083
    """
G
gongweibao 已提交
8084
    ${comment}
G
fix  
gongweibao 已提交
8085 8086

    Args:
G
gongweibao 已提交
8087 8088 8089 8090
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8091
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8092 8093

    Returns:
G
gongweibao 已提交
8094
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8095

8096 8097 8098 8099 8100 8101 8102 8103 8104 8105
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8106 8107 8108
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8109
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8121
@templatedoc()
G
fix  
gongweibao 已提交
8122 8123 8124 8125 8126 8127 8128 8129 8130
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8131
    ${comment}
G
fix  
gongweibao 已提交
8132 8133

    Args:
G
gongweibao 已提交
8134 8135
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8136
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8137 8138 8139 8140
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8141
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8142 8143

    Returns:
G
gongweibao 已提交
8144
        out (Variable): ${out_comment}
8145 8146 8147 8148 8149 8150 8151 8152

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8153 8154 8155
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8156
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8175
@templatedoc()
X
Xin Pan 已提交
8176
def sum(x):
G
fix  
gongweibao 已提交
8177
    """
G
gongweibao 已提交
8178
    ${comment}
G
fix  
gongweibao 已提交
8179 8180

    Args:
G
gongweibao 已提交
8181
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8182 8183

    Returns:
G
gongweibao 已提交
8184
        out (Variable): ${out_comment}
8185 8186 8187 8188 8189 8190

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8191 8192 8193
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8194 8195
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8196 8197 8198 8199
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8200
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8201 8202 8203 8204

    return out


G
gongweibao 已提交
8205
@templatedoc()
G
fix  
gongweibao 已提交
8206 8207
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8208
    ${comment}
G
fix  
gongweibao 已提交
8209 8210

    Args:
G
gongweibao 已提交
8211 8212 8213 8214
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8215 8216

    Returns:
G
gongweibao 已提交
8217
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8218

8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8230 8231 8232
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8233 8234
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8246
@templatedoc()
G
fix  
gongweibao 已提交
8247 8248
def shape(input):
    """
G
gongweibao 已提交
8249
    ${comment}
G
fix  
gongweibao 已提交
8250 8251

    Args:
G
gongweibao 已提交
8252
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8253 8254

    Returns:
G
gongweibao 已提交
8255
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8256

8257 8258 8259 8260 8261 8262
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8263 8264 8265
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8266 8267
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8268
    helper.append_op(
G
fix  
gongweibao 已提交
8269
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8270 8271

    return out
G
merge  
gongweibao 已提交
8272 8273


S
sneaxiy 已提交
8274 8275 8276 8277 8278 8279 8280 8281
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8282 8283
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8284
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8285 8286 8287
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8288

S
sneaxiy 已提交
8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8300
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8301 8302 8303 8304 8305 8306 8307 8308
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8309
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8310
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8311 8312 8313 8314 8315 8316

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8317
    if name is None:
X
Xin Pan 已提交
8318
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8319 8320 8321
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8322 8323 8324 8325 8326 8327 8328 8329 8330 8331

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8332
    return helper.append_activation(out)
S
sneaxiy 已提交
8333 8334


X
Xin Pan 已提交
8335
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8336 8337 8338
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8339
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8340 8341 8342
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8343
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8344 8345 8346
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8347
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8348 8349 8350
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8351
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8352 8353 8354
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8355
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8356 8357 8358
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8359
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8371 8372
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8373
        ])
M
minqiyang 已提交
8374 8375


8376
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8377 8378
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8379 8380
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8381 8382 8383

    if out is None:
        if name is None:
X
Xin Pan 已提交
8384
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8400
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8412 8413 8414 8415 8416 8417 8418 8419 8420

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8421 8422 8423 8424 8425 8426 8427
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8428
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8440 8441 8442 8443 8444 8445 8446 8447 8448

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8449 8450 8451 8452 8453 8454 8455
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8456
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8468 8469 8470 8471 8472 8473 8474 8475 8476

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8477 8478 8479 8480 8481 8482 8483
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8484
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8485 8486 8487 8488 8489 8490 8491 8492 8493 8494
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8495 8496 8497 8498 8499 8500 8501

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8502 8503 8504 8505
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8521 8522 8523 8524 8525 8526 8527

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8528 8529 8530 8531 8532
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8533 8534 8535 8536
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8560 8561 8562 8563 8564 8565 8566

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8567 8568 8569 8570 8571
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8572 8573 8574 8575
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8576 8577 8578 8579 8580 8581 8582 8583

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8602
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8603 8604 8605 8606 8607 8608 8609 8610 8611 8612
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8655
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8656 8657 8658 8659 8660 8661 8662 8663 8664
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8665 8666
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8667 8668 8669 8670 8671 8672
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8673 8674 8675 8676
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8677 8678 8679 8680 8681 8682
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8683
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8684 8685 8686 8687 8688 8689 8690 8691 8692
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8693
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8694 8695 8696 8697 8698 8699 8700 8701
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8702
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8723
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8724 8725 8726 8727 8728 8729 8730 8731 8732 8733
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8734 8735


J
JiabinYang 已提交
8736
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8737
    """
J
JiabinYang 已提交
8738
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8739 8740 8741

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8742
    The attr blocksize indicates the input block size.
8743 8744

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8745
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8746 8747

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8748
    (but keeping all data)
J
JiabinYang 已提交
8749

J
JiabinYang 已提交
8750
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8751
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8752 8753 8754 8755 8756
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8757
    Args:
J
JiabinYang 已提交
8758
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8759
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8760 8761

    Returns:
J
JiabinYang 已提交
8762
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8763 8764

    Raises:
J
JiabinYang 已提交
8765
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8766 8767 8768 8769 8770 8771

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8772
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8773
                x=data, blocksize=2)
J
JiabinYang 已提交
8774 8775
    """

J
JiabinYang 已提交
8776
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8777

J
JiabinYang 已提交
8778 8779
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8780 8781

    if name is None:
J
JiabinYang 已提交
8782 8783
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8784 8785 8786 8787 8788
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8789
        type="space_to_depth",
J
JiabinYang 已提交
8790
        inputs={"X": x},
J
JiabinYang 已提交
8791
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8792
        outputs={"Out": out})
J
JiabinYang 已提交
8793 8794
    return out

J
JiabinYang 已提交
8795

S
sneaxiy 已提交
8796 8797
@templatedoc()
def sequence_reverse(x, name=None):
8798
    """
S
sneaxiy 已提交
8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8810
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8811 8812 8813 8814 8815 8816 8817 8818 8819 8820
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8821 8822


8823 8824 8825 8826 8827 8828
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8829

8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8849
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8862 8863


B
barrierye 已提交
8864
def similarity_focus(input, axis, indexes, name=None):
8865
    """
B
barrierye 已提交
8866
    SimilarityFocus Operator
B
barrierye 已提交
8867 8868

    Generate a similarity focus mask with the same shape of input using the following method:
8869 8870 8871
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8872
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8873 8874 8875 8876 8877 8878 8879
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8880
       each index.
B
barrierye 已提交
8881 8882 8883 8884
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8934
    Args:
8935
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8936
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8937
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8938
            1, 2 or 3.
B
barrierye 已提交
8939
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8940 8941

    Returns:
8942
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8943
            as the input.
8944

B
barrierye 已提交
8945 8946 8947
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8948 8949
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8962 8963 8964 8965 8966
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8967 8968 8969 8970 8971 8972 8973
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8974 8975


M
minqiyang 已提交
8976 8977
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8978 8979
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8980 8981
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9020
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9021
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9022 9023 9024 9025 9026 9027 9028 9029 9030

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9031 9032
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9033 9034
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9035 9036 9037 9038 9039 9040 9041
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9042 9043


D
dengkaipeng 已提交
9044
@templatedoc()
9045 9046
def grid_sampler(x, grid, name=None):
    """
9047
    This operation samples input X by using bilinear interpolation based on
9048
    flow field grid, which is usually gennerated by affine_grid. The grid of
9049 9050 9051 9052
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9053
    interpolation value of 4 nearest corner points.
9054 9055 9056 9057 9058 9059 9060 9061

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
9062
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9092 9093

    Args:
9094 9095 9096
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9097 9098

    Returns:
9099
        out(Variable): Output of shape [N, C, H, W] data samples input X
9100 9101 9102 9103 9104 9105 9106 9107 9108
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
9109 9110 9111 9112 9113 9114 9115 9116 9117
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9118
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9119 9120
    ipts = {'X': x, 'Grid': grid}

9121
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9122 9123 9124
    return out


G
gmcather 已提交
9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9219 9220 9221 9222 9223 9224 9225 9226 9227 9228


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9229
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9230

Q
Qiao Longfei 已提交
9231
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9232 9233 9234
    For example:

    .. math::
9235
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9236

Q
Qiao Longfei 已提交
9237
    In this formula:
9238 9239
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9240
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9241
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9242 9243 9244
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9245 9246
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9247 9248 9249
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9250
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9251
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9252
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9253 9254 9255 9256
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9257
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9258 9259 9260 9261

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9262
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9263 9264
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9265
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9266 9267 9268 9269

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9270
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out