nn.py 516.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant, zeros
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39
    'fc',
H
HaoRen 已提交
40
    'center_loss',
X
Xin Pan 已提交
41 42 43 44 45 46 47 48 49
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
50
    'bpr_loss',
X
Xin Pan 已提交
51 52 53 54 55 56 57 58 59 60
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
61 62
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
63
    'batch_norm',
H
heqiaozhi 已提交
64
    'data_norm',
X
Xin Pan 已提交
65 66 67 68 69 70
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
71
    'sequence_unpad',
X
Xin Pan 已提交
72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
78 79
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
80 81
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
82
    'sequence_slice',
X
Xin Pan 已提交
83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
95
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
96 97 98 99 100
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
101
    'group_norm',
D
dengkaipeng 已提交
102
    'spectral_norm',
X
Xin Pan 已提交
103 104 105 106 107 108 109 110
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
111
    'lod_append',
X
Xin Pan 已提交
112 113 114 115 116
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
117
    'roi_align',
X
Xin Pan 已提交
118 119 120 121
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
122
    'resize_trilinear',
123
    'resize_nearest',
X
Xin Pan 已提交
124
    'gather',
125
    'gather_nd',
X
Xin Pan 已提交
126
    'scatter',
127 128
    'scatter_nd_add',
    'scatter_nd',
X
Xin Pan 已提交
129 130 131 132
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
133
    'selu',
X
Xin Pan 已提交
134 135 136
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
137
    'margin_rank_loss',
X
Xin Pan 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
Z
zhoukunsheng 已提交
154
    'unique',
155
    'unique_with_counts',
X
Xin Pan 已提交
156 157 158 159 160 161 162 163 164 165
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
166 167
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
168 169 170 171 172 173
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
W
wangchaochaohu 已提交
174
    'strided_slice',
X
Xin Pan 已提交
175
    'shape',
Z
zhoukunsheng 已提交
176
    'rank',
Z
zhoukunsheng 已提交
177
    'size',
X
Xin Pan 已提交
178 179 180 181 182 183 184 185 186 187
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
188
    'space_to_depth',
W
whs 已提交
189
    'affine_grid',
S
sneaxiy 已提交
190
    'sequence_reverse',
191
    'sequence_topk_avg_pooling',
192
    'affine_channel',
B
barrierye 已提交
193
    'similarity_focus',
M
minqiyang 已提交
194
    'hash',
D
dengkaipeng 已提交
195
    'grid_sampler',
G
gmcather 已提交
196 197
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
198
    'bilinear_tensor_product',
C
chengduo 已提交
199 200
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
201
    'lstm',
S
shippingwang 已提交
202
    'shuffle_channel',
203
    'temporal_shift',
S
sneaxiy 已提交
204
    'py_func',
205
    'psroi_pool',
206
    'prroi_pool',
H
heqiaozhi 已提交
207
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
208
    'huber_loss',
D
dengkaipeng 已提交
209
    'kldiv_loss',
Z
zhaozhehao 已提交
210
    'tree_conv',
C
ceci3 已提交
211
    'npair_loss',
R
ruri 已提交
212
    'pixel_shuffle',
213
    'fsp_matrix',
H
heqiaozhi 已提交
214
    'continuous_value_model',
Z
zhoukunsheng 已提交
215
    'where',
Z
zhoukunsheng 已提交
216
    'sign',
217
    'deformable_conv',
218
    'unfold',
C
cjt222 已提交
219
    'deformable_roi_pooling',
A
Aurelius84 已提交
220
    'match_matrix_tensor',
J
Jiawei Wang 已提交
221
    'filter_by_instag',
K
Kevin 已提交
222
    'var_conv_2d',
223
    'shard_index',
H
huangjun12 已提交
224
    'hard_swish',
Y
Yu Yang 已提交
225 226
]

J
jerrywgz 已提交
227 228
kIgnoreIndex = -100

Y
Yu Yang 已提交
229 230 231 232 233 234 235

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
236
       name=None):
Y
Yu Yang 已提交
237
    """
238
    **Fully Connected Layer**
Y
Yu Yang 已提交
239

240
    This function creates a fully connected layer in the network. It can take
241
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
242
    Args in detail). It creates a variable called weights for each input tensor,
243 244 245 246
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
247
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
248 249
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
250

251
    When the input is single tensor:
C
caoying03 已提交
252

253 254 255 256 257
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
258 259 260

    .. math::

261
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
262 263 264

    In the above equation:

265 266 267
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
268
    * :math:`b`: The bias parameter created by this layer (if needed).
269
    * :math:`Act`: The activation function.
C
caoying03 已提交
270
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
271

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
290
    Args:
R
ranqiu 已提交
291 292 293 294 295 296 297 298 299 300
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
301
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
302 303 304 305
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
306 307
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
308 309
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
310

311
    Returns:
F
fengjiayi 已提交
312
        Variable: The transformation result.
313 314

    Raises:
C
caoying03 已提交
315
        ValueError: If rank of the input tensor is less than 2.
316 317 318 319

    Examples:
        .. code-block:: python

320
          import paddle.fluid as fluid
321
          # when input is single tensor
F
fengjiayi 已提交
322
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
323
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
324 325 326 327 328

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
329
    """
C
caoying03 已提交
330
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
331 332 333 334

    dtype = helper.input_dtype()

    mul_results = []
335 336
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
337 338 339
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
340

Y
Yu Yang 已提交
341
        w = helper.create_parameter(
342
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
343
        tmp = helper.create_variable_for_type_inference(dtype)
344
        helper.append_op(
345 346 347
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
348
            outputs={"Out": tmp},
M
mozga-intel 已提交
349 350
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
351 352 353 354
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
355
    else:
X
Xin Pan 已提交
356
        pre_bias = helper.create_variable_for_type_inference(dtype)
357
        helper.append_op(
358 359 360
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
361
            attrs={"use_mkldnn": False})
362 363 364 365
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
366 367


H
HaoRen 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
def center_loss(input,
                label,
                num_classes,
                alpha,
                param_attr,
                update_center=True):
    """
    **Center loss Cost layer**
    
    This layer accepts input (deep features,the output of the last hidden layer)
    and target label and return the center loss cost
    
    For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
    
    .. math::

        Out = \\frac{1}{2}(X - Y)^2

    Args:
        input (Variable): a 2-D tensor with shape[N x M].
        label (Variable): the groud truth which is a 2-D tensor
                         with shape[N x 1],where N is the batch size.
        num_classes (int): the number of classification categories.
        alpha (float|Variable): learning rate of centers.
        param_attr (ParamAttr): Attribute initializer of centers. 
        update_center (bool): whether to update value of center.

    Returns:
        Variable: 2-D tensor with shape [N * 1] 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid 

          input = fluid.layers.data(name='x',shape=[20,30],dtype='float32')
          label = fluid.layers.data(name='y',shape=[20,1],dtype='int64')
          num_classes = 1000
          alpha = 0.01
          param_attr = fluid.initializer.Xavier(uniform=False)
          center_loss=fluid.layers.center_loss(input=input,
                 label=label,
                 num_classes=1000,
                 alpha=alpha,
                 param_attr=fluid.initializer.Xavier(uniform=False),
                 update_center=True)
    """
    helper = LayerHelper('center_loss', **locals())
    dtype = helper.input_dtype()
    centers_shape = [num_classes, input.shape[1]]
    centers_param = helper.create_parameter(
        attr=param_attr, shape=centers_shape, dtype=dtype)
    centers_param.stop_gradient = True
    if isinstance(alpha, Variable):
        alpha_param = alpha
    else:
        assert isinstance(alpha, float)
        alpha_param = helper.create_variable(
            name="centerloss_alpha",
            shape=[1],
            dtype="float32",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True,
            stop_gradient=True,
            initializer=Constant(alpha))

    centersdiff = helper.create_variable_for_type_inference(dtype=input.dtype)
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='center_loss',
        inputs={
            'X': [input],
            'Label': [label],
            'Centers': [centers_param],
            'CenterUpdateRate': [alpha_param]
        },
        outputs={
            'SampleCenterDiff': [centersdiff],
            'Loss': [loss],
            'CentersOut': [centers_param]
        },
        attrs={'cluster_num': num_classes,
               'need_update': update_center})
    return loss


454 455 456
def embedding(input,
              size,
              is_sparse=False,
457
              is_distributed=False,
458 459 460
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
461
    """
462 463
    **Embedding Layer**

464
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
465 466
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
467 468 469

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
470 471

    Args:
472
        input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
K
Kevin 已提交
473
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
474 475 476 477
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
478
        is_distributed(bool): Whether to run lookup table from remote parameter server.
K
Kevin 已提交
479 480 481 482 483 484 485 486
        padding_idx(int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        param_attr(ParamAttr): Parameters for this layer.
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
Y
Yu Yang 已提交
487

488 489 490
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
491

492 493
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
494

B
bdzhuxiaoning 已提交
495 496 497
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
498 499 500
    """

    helper = LayerHelper('embedding', **locals())
501
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
502 503
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
504 505
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
506
    tmp = helper.create_variable_for_type_inference(dtype)
507 508
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
509 510 511 512 513
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
514 515 516
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
517
            'remote_prefetch': remote_prefetch,
518 519
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
520 521 522
    return tmp


H
hutuxian 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
def _pull_box_sparse(input, size, dtype='float32'):
    """
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which 
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of 
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports 
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])    
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
            "BoxPS only support float type embedding now, and your type is: " +
            dtype)
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs},
        attrs={'size': size})
    if len(outs) == 1:
        return outs[0]
    return outs


W
wopeizl 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
587

W
wopeizl 已提交
588 589 590 591 592 593 594 595 596 597 598
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
599

W
wopeizl 已提交
600 601 602 603
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
604

W
wopeizl 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
641
            
642
            import paddle.fluid as fluid
643 644
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
645
            hidden_dim = 512
646 647 648 649 650 651
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
652
                                           bias_attr=False)
653

W
wopeizl 已提交
654 655 656
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
657
    assert in_dygraph_mode(
658
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
702 703


P
phlrain 已提交
704 705 706 707 708 709
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
710
         dropout_prob=0.0,
P
phlrain 已提交
711 712 713 714 715
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
716
    """
P
phlrain 已提交
717
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
718 719

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
720
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
721 722
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
723
    .. math::
M
minqiyang 已提交
724 725 726 727 728 729 730

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
731
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
732 733 734 735

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
736 737

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
738 739 740 741 742 743
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
744 745 746
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
747
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
748

M
minqiyang 已提交
749
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
750 751 752 753 754
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
755
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
756 757 758 759 760
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
761
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
762 763
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
764 765
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
766 767 768 769 770 771
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
772
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
773

L
liuhongyu 已提交
774 775

    Returns:
M
minqiyang 已提交
776 777
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
778
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
779

H
haowang101779990 已提交
780 781 782 783
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
784
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
785 786
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
787
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
788 789 790 791


    Examples:
        .. code-block:: python
792
            
793 794 795
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

796 797 798 799 800
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
801 802 803 804 805 806
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
807 808 809 810 811
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
812 813 814 815
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
816 817 818
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
878 879 880 881 882 883 884 885 886 887
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
888
                  proj_activation='tanh',
889
                  dtype='float32',
X
xuezhong 已提交
890 891 892 893 894
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
895 896 897
    """
    **Dynamic LSTMP Layer**

898 899 900 901 902 903
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
904 905 906 907 908

    The formula is as follows:

    .. math::

909
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
910

911
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
912

913
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
914

915
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
916

917
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
918

919
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
920

921
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
922

Y
Yibing Liu 已提交
923 924 925 926 927 928
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
929
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
930
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
931
          bias vector).
Y
Yibing Liu 已提交
932 933 934
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
935
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
936
    * :math:`h`: The hidden state.
937
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
938 939
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
940
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
941
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
942
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
943 944
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
945 946 947 948

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
949

Y
Yibing Liu 已提交
950 951 952 953 954 955 956 957 958 959 960 961
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
962
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
963 964
                               hidden-hidden weight and projection weight.

965 966
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
967 968
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
969 970
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
971
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
972 973 974 975 976

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
977
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
978 979 980 981 982 983
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
984
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
985 986 987
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
988
                                - The shape is (1 x 7D).
C
chengduo 已提交
989 990 991 992 993

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
994 995 996 997 998 999 1000 1001 1002
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
1003
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
1004 1005
                              default "tanh".
        proj_activation(str): The activation for projection output.
1006
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
1007
                              default "tanh".
Y
Yibing Liu 已提交
1008
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
1009 1010
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
1022 1023

    Returns:
1024 1025 1026 1027
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
1028 1029

    Examples:
1030

Y
Yibing Liu 已提交
1031 1032
        .. code-block:: python

1033
            import paddle.fluid as fluid
1034 1035 1036 1037
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
1038
            hidden_dim, proj_dim = 512, 256
1039
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
1040
                                     act=None, bias_attr=None)
1041 1042 1043
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
1044 1045 1046 1047
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
1048
    """
1049

L
lujun 已提交
1050
    assert in_dygraph_mode(
1051 1052
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
1053
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
1054
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
1055
    size = size // 4
Y
Yibing Liu 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
1066 1067 1068 1069 1070 1071
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
1087

X
xuezhong 已提交
1088 1089 1090 1091 1092
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
1093 1094
    helper.append_op(
        type='lstmp',
1095
        inputs=inputs,
Y
Yibing Liu 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
1105 1106
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
1116 1117 1118 1119 1120 1121 1122
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
1123 1124
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
1125
    """
1126
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
1127

1128 1129 1130
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
1131

G
guosheng 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
1141

G
guosheng 已提交
1142
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
1143

Q
Qiao Longfei 已提交
1144 1145 1146

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1159
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1160 1161
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1162 1163 1164 1165
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1166
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1167 1168

    Args:
1169 1170
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1171
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1172
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1173 1174
            is the hidden size.
        size(int): The dimension of the gru cell.
1175
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1176 1177
            hidden-hidden weight matrix. Note:

1178
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1179
              :math:`D` is the hidden size.
1180
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1181
              The first part are weights of the update gate and reset gate with
1182
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1183
              candidate hidden state with shape :math:`(D \\times D)`.
1184 1185 1186 1187 1188

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1189
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1190
            the bias in the update gate, reset gate and candidate calculations.
1191 1192 1193
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1194 1195
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1196
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1197 1198 1199
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1200
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1201
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1202 1203 1204 1205
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1206 1207

    Returns:
G
guosheng 已提交
1208
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1209
            and sequence length is the same with the input.
1210

G
guosheng 已提交
1211
    Examples:
1212

G
guosheng 已提交
1213 1214
        .. code-block:: python

1215 1216
            import paddle.fluid as fluid

1217 1218 1219 1220
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1221
            hidden_dim = 512
1222
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1223
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1224 1225
    """

L
lujun 已提交
1226
    assert in_dygraph_mode(
1227 1228
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1229 1230 1231 1232 1233 1234 1235
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1236
    batch_size = input.shape[0]
G
guosheng 已提交
1237
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1238
    if h_0:
G
guosheng 已提交
1239
        assert h_0.shape == (
Y
Yancey 已提交
1240 1241 1242
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1243

X
Xin Pan 已提交
1244 1245 1246 1247
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1261 1262
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1263 1264 1265 1266
        })
    return hidden


Y
Yu Yang 已提交
1267 1268 1269
def gru_unit(input,
             hidden,
             size,
1270 1271
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1272
             activation='tanh',
Q
Qiao Longfei 已提交
1273 1274
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1275
    """
1276 1277 1278
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1279
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1280
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1281

1282 1283
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1284

1285
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1286

1287
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1304 1305

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1306 1307 1308
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1309 1310
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1311 1312
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1313 1314 1315
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1316 1317 1318

    Args:
        input (Variable): The fc transformed input value of current step.
1319
        hidden (Variable): The hidden value of gru unit from previous step.
1320
        size (integer): The input dimension value.
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1335
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1336
            the bias in the update gate, reset gate and candidate calculations.
1337 1338 1339
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1340 1341
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1342 1343 1344 1345
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1346

1347 1348 1349 1350 1351 1352
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1377
    size = size // 3
Y
Yu Yang 已提交
1378 1379

    # create weight
1380 1381
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1382

X
Xin Pan 已提交
1383 1384 1385
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1386
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1387
    # create bias
1388
    if helper.bias_attr:
Y
Yu Yang 已提交
1389 1390 1391
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1392
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1393 1394 1395

    helper.append_op(
        type='gru_unit',
1396
        inputs=inputs,
Y
Yu Yang 已提交
1397 1398 1399 1400 1401 1402
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1403 1404
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1405 1406 1407 1408 1409
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1410
@templatedoc()
1411
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
1412 1413 1414 1415 1416 1417 1418 1419
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        label(${label_type}): ${label_comment}
1420
        Length(${length_type}): ${length_comment}
1421
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
1422 1423

    Returns:
D
dzhwinter 已提交
1424 1425 1426
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1427

J
JesseyXujin 已提交
1428 1429 1430
    Examples:
        .. code-block:: python

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
            import paddle.fluid as fluid
            import numpy as np

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                input_data = fluid.layers.data(name='input_data', shape=[10], dtype='float32', lod_level=1)
                label = fluid.layers.data(name='label', shape=[1], dtype='int', lod_level=1)
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
                    learning_rate=0.01)) 
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)    
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
            print(loss) 

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                input_data2 = fluid.layers.data(name='input_data2', shape=[10,10], dtype='float32')
                label2 = fluid.layers.data(name='label2', shape=[10,1], dtype='int')
                label_length = fluid.layers.data(name='length', shape=[1], dtype='int')
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
1471
                     name='crfw',
1472 1473 1474 1475 1476 1477
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
1478

1479 1480 1481 1482 1483 1484 1485 1486
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
            ll=np.array([[3,3,4,2]])
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}

            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
            print(loss2) 
1487 1488 1489 1490
            
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
Y
yuyang18 已提交
1491
    """
Y
Yu Yang 已提交
1492 1493 1494 1495 1496 1497
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1498 1499 1500 1501 1502 1503 1504 1505
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
1506 1507 1508 1509 1510 1511 1512
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
        "Label": [label]
    }
    if length:
        this_inputs['length'] = [length]
Y
Yu Yang 已提交
1513 1514
    helper.append_op(
        type='linear_chain_crf',
1515
        inputs=this_inputs,
Y
Yu Yang 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1526 1527 1528 1529
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1530

W
wopeizl 已提交
1531 1532
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1533

W
wopeizl 已提交
1534
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1535

W
wopeizl 已提交
1536
        label(${label_type}): ${label_comment}
1537

W
wopeizl 已提交
1538 1539
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1540

W
wopeizl 已提交
1541 1542
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1543

1544
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1545 1546 1547 1548 1549 1550 1551
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1552 1553 1554 1555 1556 1557 1558 1559
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1560
                "Transition": transition,
W
wopeizl 已提交
1561 1562
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1563

W
wopeizl 已提交
1564
    return viterbi_path
Y
Yu Yang 已提交
1565 1566


Y
yi.wu 已提交
1567
@templatedoc()
F
fengjiayi 已提交
1568
def cos_sim(X, Y):
Y
Yu Yang 已提交
1569
    """
Y
yi.wu 已提交
1570 1571 1572
    ${comment}

    Args:
1573 1574
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1575

Y
yi.wu 已提交
1576
    Returns:
1577
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1578 1579 1580 1581

    Examples:
        .. code-block:: python

1582
            import paddle.fluid as fluid
L
lvmengsi 已提交
1583 1584 1585
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1586
    """
F
fengjiayi 已提交
1587
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1588 1589 1590
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1601 1602 1603 1604 1605
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1606
            dropout_implementation="downgrade_in_infer"):
1607 1608 1609 1610 1611
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1612
    training. The dropout operator randomly sets (according to the given dropout
1613 1614 1615
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1616 1617
    dropout op can be removed from the program to make the program more efficient.

1618
    Args:
1619 1620
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1621 1622 1623 1624 1625 1626 1627
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1628 1629
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1630
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1631 1632

                                           - train: out = input * mask
C
ceci3 已提交
1633
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1634 1635 1636

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1637
                                        2. upscale_in_train, upscale the outcome at training time
1638

H
haowang101779990 已提交
1639 1640
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1641

H
haowang101779990 已提交
1642 1643
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1644

M
minqiyang 已提交
1645

1646
    Returns:
1647
        Variable: A tensor variable is the shape with `x`.
1648 1649

    Examples:
1650

1651 1652
        .. code-block:: python

1653
            import paddle.fluid as fluid
1654 1655
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1656 1657
    """

F
fengjiayi 已提交
1658
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1659 1660
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1661
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1662 1663 1664 1665

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1666 1667 1668 1669 1670
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1671 1672 1673 1674
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
L
lvmengsi 已提交
1675
            'seed': seed if seed is not None else 0,
P
phlrain 已提交
1676
            'dropout_implementation': dropout_implementation,
1677
        })
1678 1679 1680
    return out


J
jerrywgz 已提交
1681
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1682
    """
Y
Yibing Liu 已提交
1683 1684
    **Cross Entropy Layer**

1685 1686 1687
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1688 1689

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1690
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1691

Y
Yibing Liu 已提交
1692
        .. math::
Y
yangyaming 已提交
1693

Y
Yibing Liu 已提交
1694 1695 1696
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1697 1698
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1699 1700 1701 1702 1703

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1704
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1705 1706 1707
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1708 1709
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1710
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1711

Y
Yibing Liu 已提交
1712
    Args:
Y
yangyaming 已提交
1713
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1714 1715 1716 1717
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1718
        label (Variable|list): the ground truth which is a 2-D tensor. When
1719 1720 1721 1722
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1723
        soft_label (bool): a flag indicating whether to
1724
                                           interpretate the given labels as soft
1725
                                           labels. Default: `False`.
M
minqiyang 已提交
1726 1727
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1728
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1729 1730 1731 1732 1733

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1734 1735 1736
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1737

H
haowang101779990 已提交
1738 1739
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1740

H
haowang101779990 已提交
1741 1742
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1743 1744 1745 1746

    Examples:
        .. code-block:: python

1747
          import paddle.fluid as fluid
L
lvmengsi 已提交
1748 1749 1750 1751
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1752
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1753
    """
S
sneaxiy 已提交
1754 1755
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1756
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1757
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1758 1759 1760 1761 1762
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1763 1764
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1765 1766 1767
    return out


S
sneaxiy 已提交
1768 1769 1770 1771
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1772
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1773 1774 1775 1776 1777
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1778
                 'MatchX': [match_x],
S
sneaxiy 已提交
1779 1780 1781 1782 1783
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1784
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1785
    """
1786
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1787

1788
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1789
    The loss at a given point in one session is defined as:
1790 1791 1792

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1793 1794

    Learn more details by reading paper <session-based recommendations with recurrent
1795
    neural networks>.
F
frankwhzhang 已提交
1796

1797 1798 1799 1800 1801 1802
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1803 1804
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1805 1806 1807
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1808 1809 1810
    Examples:
        .. code-block:: python

1811 1812 1813 1814 1815 1816 1817
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1818
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1819
    """
1820 1821 1822 1823 1824
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1825
                'Label': [label]},
1826 1827 1828 1829
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1830
def square_error_cost(input, label):
Y
Yu Yang 已提交
1831
    """
1832 1833
    **Square error cost layer**

1834 1835
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1836

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1850 1851
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1852 1853

    Returns:
G
guosheng 已提交
1854
        Variable: The tensor variable storing the element-wise squared error \
1855
                  difference of input and label.
1856 1857 1858 1859

    Examples:
        .. code-block:: python

1860
          import paddle.fluid as fluid
R
ruri 已提交
1861 1862 1863
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1864

Y
Yu Yang 已提交
1865
    """
F
fengjiayi 已提交
1866
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1867
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1868 1869 1870 1871 1872 1873
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1874
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1875
    helper.append_op(
F
fengjiayi 已提交
1876 1877
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1878 1879 1880
    return square_out


Y
yi.wu 已提交
1881
@templatedoc()
Y
Yu Yang 已提交
1882 1883 1884 1885
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1886 1887
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1888
    """
Y
yi.wu 已提交
1889
    **Chunk Evaluator**
Y
yi.wu 已提交
1890

Y
yangyaming 已提交
1891
    This function computes and outputs the precision, recall and
1892
    F1-score of chunk detection.
Y
yi.wu 已提交
1893

M
minqiyang 已提交
1894
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1895
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1896 1897 1898 1899 1900 1901

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1902

Y
yi.wu 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1928

Y
yi.wu 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1953
    Args:
1954 1955 1956 1957 1958
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
1959
        seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
F
fengjiayi 已提交
1960

Y
yi.wu 已提交
1961
    Returns:
Y
update  
yi.wu 已提交
1962 1963 1964
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1965

Y
yi.wu 已提交
1966 1967 1968
    Examples:
        .. code-block:: python

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1980
            crf = fluid.layers.linear_chain_crf(
1981
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1982
            crf_decode = fluid.layers.crf_decoding(
1983
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1984 1985 1986 1987 1988
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1989
    """
F
fengjiayi 已提交
1990
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1991 1992

    # prepare output
X
Xin Pan 已提交
1993 1994 1995 1996 1997 1998 1999
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
2000

2001 2002 2003 2004 2005
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
2006 2007
    helper.append_op(
        type="chunk_eval",
2008
        inputs=this_input,
Y
Yu Yang 已提交
2009 2010 2011
        outputs={
            "Precision": [precision],
            "Recall": [recall],
2012 2013 2014 2015
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
2016 2017 2018
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
2019 2020
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
2021
        })
2022 2023
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
2024 2025


2026
@templatedoc()
Y
Yu Yang 已提交
2027 2028 2029 2030
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
2031 2032
                  padding=True,
                  padding_start=None,
Y
Yu Yang 已提交
2033 2034
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
2035 2036
                  act=None,
                  name=None):
Y
Yu Yang 已提交
2037
    """
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
    The sequence_conv receives input sequences with variable length and other convolutional
    configuration parameters for the filter and stride to apply the convolution operation.
    It fills all-zero padding data on both sides of the sequence by default to ensure that
    the output is the same length as the input. You can customize the padding behavior by
    configuring the parameter :attr:`padding\_start`.
    
    **Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future.

    .. code-block:: text

            Here we'll illustrate the details of the padding operation:
            For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
            Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, 4].
            Besides, for the sake of simplicity, we assume M=1 and N=2.
            X = [[a1, a2;
                  b1, b2;
                  c1, c2]
                 [d1, d2]]

            This is to say that input (X) has 4 words and the dimension of each word
            representation is 2.

            * Case1:

                If padding_start is -1 and filter_size is 3.
                The length of padding data is calculated as follows:
                up_pad_len = max(0, -padding_start) = 1
                down_pad_len = max(0, filter_size + padding_start - 1) = 1

                The output of the input sequence after padding is:
                data_aftet_padding = [[0,  0,  a1, a2, b1, b2;
                                       a1, a2, b1, b2, c1, c2;
                                       b1, b2, c1, c2, 0,  0 ]
                                      [0,  0,  d1, d2, 0,  0 ]]

                It will be multiplied by the filter weight to get the final output.
2074 2075 2076

    Args:
        input (Variable): ${x_comment}
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
        num_filters (int): the number of filters.
        filter_size (int): the height of filter, the width is hidden size by default.
        filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1.
        padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the
            future. Currently, it will always pad input to make sure the length of the output is
            the same as input whether :attr:`padding` is set true or false. Because the length of
            input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution
            result to not be computed correctly. These padding data will not be trainable or updated
            while trainnig. 
        padding_start (int|None): It is used to indicate the start index for padding the input
            sequence, which can be negative. The negative number means to pad
            :attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance.
            The positive number means to skip :attr:`padding_start` time-steps of each instance,
            and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data
            at the end of the sequence to ensure that the output is the same length as the input.
            If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled
            on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data
            is padded at the end of each input sequence.
C
chengduo 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
2108

2109 2110
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
2111 2112

    Examples:
2113

B
bdzhuxiaoning 已提交
2114 2115 2116
        .. code-block:: python

             import paddle.fluid as fluid
2117

B
bdzhuxiaoning 已提交
2118
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
2119
             x_conved = fluid.layers.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1)
Y
Yu Yang 已提交
2120 2121
    """

L
lujun 已提交
2122
    assert not in_dygraph_mode(), (
2123
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
2124 2125 2126 2127 2128
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
2129
    pre_bias = helper.create_variable_for_type_inference(dtype)
2130 2131
    if padding_start is None:
        padding_start = -int(filter_size // 2)
Y
Yu Yang 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
2142 2143
            'contextStart': padding_start,
            'contextLength': filter_size,
Y
Yu Yang 已提交
2144 2145 2146 2147 2148
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
2149
def sequence_softmax(input, use_cudnn=False, name=None):
2150 2151 2152
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
2153
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
2170 2171 2172
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
2173

2174 2175 2176 2177 2178 2179 2180
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

2181
             import paddle.fluid as fluid
2182 2183 2184 2185
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
2186
    assert not in_dygraph_mode(), (
2187
        "sequence layer is not supported in dygraph mode yet.")
2188 2189
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2190
    softmax_out = helper.create_variable_for_type_inference(dtype)
2191 2192 2193 2194 2195 2196 2197 2198
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
2199
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
2200
    """
2201
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
2202
    has the same shape as the input.
Q
qiaolongfei 已提交
2203

D
dengkaipeng 已提交
2204
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
2205
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
2206
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
2207 2208 2209
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
2210
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
2211
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
2212 2213 2214 2215 2216 2217 2218

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
2219
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
2220 2221 2222 2223 2224 2225 2226 2227

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
2228 2229
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
2230 2231
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
2232 2233 2234
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
2235 2236 2237 2238 2239 2240 2241 2242

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
2243 2244
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
2245
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
2246
             # perform softmax in the second dimension
D
dengkaipeng 已提交
2247
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
2248 2249
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
2250 2251

    """
2252 2253
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2254
    softmax_out = helper.create_variable_for_type_inference(dtype)
2255 2256 2257 2258
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
2259 2260
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
2261 2262 2263
    return softmax_out


Y
Yu Yang 已提交
2264 2265 2266
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2267 2268
           stride=1,
           padding=0,
2269
           dilation=1,
Y
Yu Yang 已提交
2270 2271 2272
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2273
           use_cudnn=True,
2274 2275
           act=None,
           name=None):
Y
Yu Yang 已提交
2276
    """
C
chengduoZH 已提交
2277
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2278 2279
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2280
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2281 2282 2283 2284 2285 2286
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
2287
    for more details.
2288 2289 2290
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2291

2292
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2293

C
chengduoZH 已提交
2294 2295
    .. math::

C
refine  
chengduoZH 已提交
2296
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2297

T
tensor-tang 已提交
2298
    Where:
C
chengduoZH 已提交
2299

2300 2301 2302 2303 2304
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2305
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2306 2307 2308

    Example:

2309 2310
        - Input:

W
weixing02 已提交
2311
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2312

W
weixing02 已提交
2313
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2314

2315
        - Output:
T
tensor-tang 已提交
2316

W
weixing02 已提交
2317
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2318

C
chengduoZH 已提交
2319
        Where
2320 2321

        .. math::
C
chengduoZH 已提交
2322

W
weixing02 已提交
2323 2324
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2325 2326

    Args:
2327
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2328
        num_filters(int): The number of filter. It is as same as the output
2329
            image channel.
2330
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2346 2347 2348 2349 2350
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2351
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2352 2353 2354 2355 2356
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2357 2358
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2359 2360
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2361
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2362
            will be named automatically. Default: None
C
chengduoZH 已提交
2363 2364

    Returns:
G
guosheng 已提交
2365
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2366 2367
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2368
    Raises:
2369 2370
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2371

C
chengduoZH 已提交
2372 2373 2374
    Examples:
        .. code-block:: python

2375
          import paddle.fluid as fluid
2376 2377
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2378 2379 2380
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2381
    assert param_attr is not False, "param_attr should not be False here."
2382
    l_type = 'conv2d'
X
xzl 已提交
2383 2384
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2385
        l_type = 'depthwise_conv2d'
2386 2387 2388 2389

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2390 2391 2392 2393 2394
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2395
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2396

C
chengduoZH 已提交
2397 2398 2399
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2400
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2401

C
chengduoZH 已提交
2402 2403
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2404 2405

    input_shape = input.shape
M
minqiyang 已提交
2406
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2407 2408

    def _get_default_param_initializer():
C
chengduo 已提交
2409 2410
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2411 2412 2413 2414 2415 2416 2417 2418
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2419
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2420 2421

    helper.append_op(
2422
        type=l_type,
Y
Yu Yang 已提交
2423 2424 2425 2426 2427
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2428 2429 2430
        attrs={
            'strides': stride,
            'paddings': padding,
2431
            'dilations': dilation,
C
chengduoZH 已提交
2432
            'groups': groups,
2433
            'use_cudnn': use_cudnn,
2434
            'use_mkldnn': False,
2435
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2436
        })
Y
Yu Yang 已提交
2437 2438 2439 2440 2441 2442

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2460 2461 2462 2463 2464 2465
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2475 2476
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2477 2478 2479
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2480
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2503
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2504 2505
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2506
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2507 2508
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2509
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2510 2511
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2512
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2513 2514
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2515
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2516 2517 2518 2519 2520 2521
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2532 2533
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2534 2535
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2536
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2537
            will be named automatically. Default: None.
C
chengduoZH 已提交
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2550
          import paddle.fluid as fluid
2551 2552
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2553 2554 2555
    """

    l_type = 'conv3d'
C
chengduo 已提交
2556
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2567
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2581 2582 2583
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2584 2585 2586 2587 2588 2589 2590 2591
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2592
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2607
            'use_mkldnn': False
C
chengduoZH 已提交
2608 2609
        })

2610
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2611 2612 2613 2614

    return helper.append_activation(pre_act)


2615
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2616
    """
Y
yangyaming 已提交
2617 2618 2619
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2630 2631
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2632 2633 2634 2635
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2636
         out.dim = [4, 1]
2637
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2638 2639

       for different pool_type:
2640 2641 2642
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2643
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2644 2645 2646 2647 2648
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2649

L
Luo Tao 已提交
2650
    Args:
2651
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2652
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2653
            It supports average, sum, sqrt and max.
2654 2655
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2656 2657 2658 2659 2660 2661 2662

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2663

2664 2665
             import paddle.fluid as fluid

Y
yangyaming 已提交
2666
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2667 2668 2669 2670 2671
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2672 2673
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2674
    """
L
lujun 已提交
2675
    assert not in_dygraph_mode(), (
2676
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2677
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2678
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2679 2680
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2681 2682 2683 2684 2685 2686

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2687 2688 2689 2690 2691
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2692

Y
yangyaming 已提交
2693 2694 2695 2696 2697
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2698 2699 2700
    return pool_out


C
add doc  
chengduoZH 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2717 2718 2719 2720
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2721
    """
L
lujun 已提交
2722
    assert not in_dygraph_mode(), (
2723
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2724
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2725
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2726 2727 2728 2729 2730
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2731
def sequence_first_step(input):
L
Luo Tao 已提交
2732
    """
L
Luo Tao 已提交
2733
    This function gets the first step of sequence.
L
Luo Tao 已提交
2734 2735 2736 2737

    .. code-block:: text

       x is a 1-level LoDTensor:
2738
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2739 2740 2741 2742 2743
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2744
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2745
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2746

L
Luo Tao 已提交
2747 2748 2749 2750 2751 2752 2753 2754 2755
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2756

2757
             import paddle.fluid as fluid
Y
yangyaming 已提交
2758
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2759 2760 2761
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2762 2763 2764
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2765
def sequence_last_step(input):
L
Luo Tao 已提交
2766
    """
L
Luo Tao 已提交
2767
    This function gets the last step of sequence.
L
Luo Tao 已提交
2768 2769 2770 2771

    .. code-block:: text

       x is a 1-level LoDTensor:
2772
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2773 2774 2775 2776 2777
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2778
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2779
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2780

L
Luo Tao 已提交
2781 2782 2783 2784 2785 2786 2787 2788 2789
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2790

2791
             import paddle.fluid as fluid
Y
yangyaming 已提交
2792
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2793 2794 2795
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2796 2797 2798
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2799 2800 2801 2802
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2803
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2804 2805 2806 2807 2808
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2809

H
haowang101779990 已提交
2810
              - Case:
Y
Yibing Liu 已提交
2811

2812
            Given the input Variable **input**:
2813

2814 2815 2816
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2817

2818
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2819

2820
            the output Variable will be
2821

2822 2823 2824
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2825

M
minqiyang 已提交
2826
    Note:
H
haowang101779990 已提交
2827
          The first dimension size of **input**, **offset** and **length**
2828
          should be equal. The **offset** should start from 0.
2829

Y
Yibing Liu 已提交
2830
    Args:
2831
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2832
                         sequences.
Y
Yibing Liu 已提交
2833 2834 2835 2836 2837 2838
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2839
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2840 2841 2842 2843 2844

    Examples:

        .. code-block:: python

2845
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2846 2847 2848 2849 2850
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2851
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2852 2853
                                                   length=length)
    """
L
lujun 已提交
2854
    assert not in_dygraph_mode(), (
2855
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2856 2857
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2858
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2873
@templatedoc()
Y
Yu Yang 已提交
2874
def pool2d(input,
C
chengduoZH 已提交
2875 2876
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2877 2878
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2879
           global_pooling=False,
C
chengduoZH 已提交
2880
           use_cudnn=True,
2881
           ceil_mode=False,
2882 2883
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2884
    """
F
fengjiayi 已提交
2885
    ${comment}
2886 2887

    Args:
2888 2889 2890
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2891
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2892
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2893 2894
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2895
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2896 2897 2898 2899 2900 2901
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2902 2903 2904
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2905
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2906
                        layer will be named automatically.
2907
        exclusive (bool): Whether to exclude padding points in average pooling
2908
                          mode, default is true
F
fengjiayi 已提交
2909

2910
    Returns:
F
fengjiayi 已提交
2911
        Variable: The pooling result.
F
fengjiayi 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2922
          import paddle.fluid as fluid
F
fengjiayi 已提交
2923 2924
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2925
          pool2d = fluid.layers.pool2d(
2926 2927 2928 2929
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2930
                            global_pooling=False)
Y
Yu Yang 已提交
2931 2932 2933 2934 2935
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2936

C
chengduoZH 已提交
2937 2938 2939 2940 2941
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2942 2943 2944 2945
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2946 2947
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2948

C
Add doc  
chengduoZH 已提交
2949
    l_type = 'pool2d'
2950 2951

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2952
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2953
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2954 2955

    helper.append_op(
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2967 2968
            "use_mkldnn": False,
            "exclusive": exclusive,
2969 2970 2971 2972 2973
        })

    return pool_out


D
dengkaipeng 已提交
2974
@templatedoc()
2975 2976 2977 2978 2979 2980 2981 2982
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2983 2984
           name=None,
           exclusive=True):
2985
    """
2986
    ${comment}
2987 2988

    Args:
D
dengkaipeng 已提交
2989 2990 2991 2992 2993
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2994 2995 2996 2997 2998
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2999 3000 3001 3002 3003 3004 3005
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
3006
        exclusive (bool): Whether to exclude padding points in average pooling
3007
                          mode, default is true
3008

3009
    Returns:
3010
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
3011 3012 3013 3014 3015

    Examples:

        .. code-block:: python

3016
          import paddle.fluid as fluid
D
dengkaipeng 已提交
3017 3018 3019 3020 3021 3022 3023 3024
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
3025 3026 3027 3028 3029
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
3030

C
chengduoZH 已提交
3031 3032 3033 3034 3035
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

3036 3037 3038
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
3039

C
chengduoZH 已提交
3040 3041
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
3042

3043 3044
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3045
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3046
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
3047 3048

    helper.append_op(
3049
        type=l_type,
Y
Yu Yang 已提交
3050 3051 3052 3053 3054 3055 3056
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
3057
            "paddings": pool_padding,
3058
            "use_cudnn": use_cudnn,
3059
            "ceil_mode": ceil_mode,
3060 3061
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
3062 3063 3064 3065 3066
        })

    return pool_out


3067 3068 3069 3070 3071 3072 3073
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3074 3075 3076 3077 3078 3079 3080
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
3081

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
3095 3096 3097 3098 3099 3100 3101 3102 3103

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3104 3105
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
3120
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
3121
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
3122
          # of input data into m * n grids averagely and performs poolings in each
3123 3124
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3125
          #
3126 3127 3128 3129 3130 3131 3132 3133
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
3134
          import paddle.fluid as fluid
3135 3136
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
3137
          pool_out = fluid.layers.adaptive_pool2d(
3138 3139
                            input=data,
                            pool_size=[3, 3],
3140
                            pool_type='avg')
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3151
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3177
    return (pool_out, mask) if require_index else pool_out
3178 3179 3180 3181 3182 3183 3184 3185 3186


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3187 3188 3189 3190 3191 3192 3193
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
3194

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
3212 3213 3214

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
3215 3216 3217
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
3218
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
3219
            it must contain three integers, (Depth, Height, Width).
3220
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3221 3222
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

3237 3238
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
3239
          # of input data into l * m * n grids averagely and performs poolings in each
3240 3241
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3242
          #
3243 3244 3245 3246 3247 3248 3249 3250 3251
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3252
          #                 output[:, :, i, j, k] =
3253 3254
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3255 3256 3257

          import paddle.fluid as fluid

3258
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3259 3260
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3261
                            input=data,
D
dengkaipeng 已提交
3262
                            pool_size=[3, 3, 3],
3263
                            pool_type='avg')
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3274
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3300
    return (pool_out, mask) if require_index else pool_out
3301 3302


Y
Yu Yang 已提交
3303 3304 3305 3306 3307 3308 3309
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3310
               data_layout='NCHW',
Y
Yang Yang 已提交
3311
               in_place=False,
3312 3313
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3314
               moving_variance_name=None,
3315
               do_model_average_for_mean_and_var=False,
3316 3317
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3318
    """
Q
qiaolongfei 已提交
3319 3320 3321 3322
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3323

Q
qiaolongfei 已提交
3324
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3325

Q
qiaolongfei 已提交
3326 3327
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3328 3329 3330
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3343

3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
3357 3358 3359 3360
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.

3361
    Args:
Q
qingqing01 已提交
3362
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3363
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3364 3365 3366 3367 3368 3369 3370 3371 3372
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3373 3374
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3375 3376 3377
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3378 3379
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3380 3381 3382
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3383
        data_layout(string, default NCHW): NCHW|NHWC
3384
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3385 3386
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3387 3388 3389
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3390
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3391 3392
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3393
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3394
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3395 3396 3397 3398 3399
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3400 3401

    Returns:
Q
qiaolongfei 已提交
3402
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3403 3404 3405 3406 3407

    Examples:

        .. code-block:: python

3408
            import paddle.fluid as fluid
L
lvmengsi 已提交
3409
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3410 3411
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3412
    """
C
chengduo 已提交
3413
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3414 3415 3416
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3417 3418 3419 3420
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3439
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3440

3441 3442
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3443 3444 3445
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3446
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3447
        shape=param_shape,
W
Wu Yi 已提交
3448
        dtype=dtype)
3449 3450 3451 3452 3453 3454
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3455
            trainable=False,
W
wanghaoshuang 已提交
3456
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3457
        shape=param_shape,
W
Wu Yi 已提交
3458
        dtype=dtype)
3459
    variance.stop_gradient = True
Y
Yu Yang 已提交
3460 3461 3462 3463 3464 3465

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3466 3467 3468 3469
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3470

X
Xin Pan 已提交
3471 3472
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3490 3491 3492 3493
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3494
            "data_layout": data_layout,
X
Xin Pan 已提交
3495
            "use_mkldnn": False,
3496 3497
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3498
        })
Y
Yu Yang 已提交
3499 3500 3501 3502

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3554 3555
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3556

3557 3558
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3624
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3625 3626 3627 3628

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3629
@templatedoc()
G
guosheng 已提交
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3640
    ${comment}
G
guosheng 已提交
3641 3642 3643

    The formula is as follows:

Y
yuyang18 已提交
3644
    ..  math::
G
guosheng 已提交
3645 3646 3647 3648 3649 3650 3651

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3652 3653 3654 3655 3656 3657 3658 3659
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3660

G
guosheng 已提交
3661 3662
    Args:
        input(Variable): The input tensor variable.
3663
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3664
            normalization. Default True.
3665
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3666 3667
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3668
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3669
            Default 1.
3670
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3671
            division by zero. Default 1e-05.
G
guosheng 已提交
3672
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3673 3674
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3675 3676
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3677
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3678 3679
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3680
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3681
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3682
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3683 3684 3685
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3686 3687

    Returns:
Y
yuyang18 已提交
3688
        ${y_comment}
G
guosheng 已提交
3689 3690 3691

    Examples:

3692
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3693 3694 3695
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3696
    """
L
lujun 已提交
3697
    assert in_dygraph_mode(
L
lujun 已提交
3698
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3713
    if shift:
G
guosheng 已提交
3714 3715 3716 3717 3718 3719
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3720 3721 3722 3723 3724
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3752
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3774
        >>> import paddle.fluid as fluid
D
Dun 已提交
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3801 3802
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3820
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3821 3822 3823
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3824
    This layer calculates the spectral normalization value of weight parameters of
3825
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3826
    Parameters. Calculations are showed as follows.
3827

D
dengkaipeng 已提交
3828 3829 3830
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3831
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3844
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3845 3846 3847 3848

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3849

D
dengkaipeng 已提交
3850
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3851 3852
                

D
dengkaipeng 已提交
3853 3854 3855 3856
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3857 3858 3859
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3860 3861 3862
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3863
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3864 3865

    Examples:
K
Kaipeng Deng 已提交
3866
       .. code-block:: python
D
dengkaipeng 已提交
3867

K
Kaipeng Deng 已提交
3868 3869 3870 3871 3872
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3873 3874
    """
    helper = LayerHelper('spectral_norm', **locals())
3875
    dtype = weight.dtype
D
dengkaipeng 已提交
3876 3877 3878

    # create intput and parameters
    inputs = {'Weight': weight}
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3897 3898

    # create output
3899
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3900 3901

    helper.append_op(
3902
        type="spectral_norm",
D
Dun 已提交
3903
        inputs=inputs,
3904 3905 3906 3907 3908 3909
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3910

3911
    return out
D
Dun 已提交
3912 3913


Y
Yu Yang 已提交
3914 3915 3916 3917
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3918 3919 3920
                     padding=0,
                     stride=1,
                     dilation=1,
3921
                     groups=None,
C
caoying03 已提交
3922
                     param_attr=None,
3923
                     bias_attr=None,
C
chengduoZH 已提交
3924
                     use_cudnn=True,
3925
                     act=None,
C
caoying03 已提交
3926
                     name=None):
Y
Yu Yang 已提交
3927
    """
3928 3929 3930 3931 3932 3933 3934 3935
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3936
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3937
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3938 3939 3940
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3941 3942 3943 3944 3945

    For each input :math:`X`, the equation is:

    .. math::

3946
        Out = \sigma (W \\ast X + b)
3947

3948
    Where:
3949 3950 3951

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3952 3953 3954 3955
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3956

3957 3958 3959 3960
    Example:

        - Input:

3961
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3962

3963
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3964 3965 3966

        - Output:

3967
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3968 3969

        Where
Y
Yu Yang 已提交
3970

3971 3972
        .. math::

3973 3974
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3975 3976 3977 3978 3979 3980 3981 3982 3983
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] 

    Note:
          if output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3984 3985

    Args:
3986 3987 3988 3989
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3990 3991 3992 3993
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4022
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
4023 4024 4025
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4026
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
4027
            will be named automatically. Default: True.
Y
Yu Yang 已提交
4028 4029

    Returns:
4030
        Variable: The tensor variable storing the convolution transpose result.
4031 4032

    Raises:
4033 4034
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4035 4036 4037 4038

    Examples:
       .. code-block:: python

4039
          import paddle.fluid as fluid
4040 4041
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4042
    """
C
chengduo 已提交
4043
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
4044 4045 4046 4047 4048 4049 4050 4051
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
4052 4053 4054
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
4055 4056 4057
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
4058

C
chengduoZH 已提交
4059 4060
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
4061

Y
Yu Yang 已提交
4062 4063 4064 4065 4066
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
4067

Y
Yu Yang 已提交
4068 4069
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
4070

C
chengduoZH 已提交
4071
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4072
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
4073
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4074
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
4075
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
4076 4077 4078
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
4079

4080 4081 4082 4083 4084 4085 4086
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
4087
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4088
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
4089

Y
Yu Yang 已提交
4090 4091 4092
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4093
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4094
    helper.append_op(
4095
        type=op_type,
Y
Yu Yang 已提交
4096 4097
        inputs={'Input': [input],
                'Filter': [img_filter]},
4098
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4099
        attrs={
4100
            'output_size': output_size,
4101 4102 4103 4104 4105
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
4106 4107
        })

4108 4109 4110
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
4111 4112


4113
def conv3d_transpose(input,
Y
Yu Yang 已提交
4114 4115 4116
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
4117 4118 4119
                     padding=0,
                     stride=1,
                     dilation=1,
4120
                     groups=None,
C
caoying03 已提交
4121
                     param_attr=None,
4122
                     bias_attr=None,
C
chengduoZH 已提交
4123
                     use_cudnn=True,
4124
                     act=None,
C
caoying03 已提交
4125
                     name=None):
Y
Yu Yang 已提交
4126
    """
4127
    **Convlution3D transpose layer**
4128

4129
    The convolution3D transpose layer calculates the output based on the input,
4130
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
4131 4132 4133 4134 4135
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
4136
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
4137 4138 4139
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
4140 4141 4142 4143 4144

    For each input :math:`X`, the equation is:

    .. math::

4145
        Out = \sigma (W \\ast X + b)
4146 4147 4148

    In the above equation:

4149 4150
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
4151 4152 4153 4154
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4155

4156 4157 4158 4159
    Example:

        - Input:

4160
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
4161

4162
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
4163 4164 4165

        - Output:

4166
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
4167 4168

        Where
Y
Yu Yang 已提交
4169

4170 4171
        .. math::

4172 4173 4174
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
4175 4176

    Args:
4177
        input(Variable): The input image with [N, C, D, H, W] format.
4178 4179 4180
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
4181
            tuple, it must contain three integers, (image_D, image_H, image_W). This
4182 4183
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
4184
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
4185 4186 4187
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
4188 4189
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
4190
        stride(int|tuple): The stride size. If stride is a tuple, it must
4191 4192
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
4193
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
4194 4195 4196
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
4197 4198 4199 4200 4201
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
4202 4203 4204 4205 4206 4207 4208 4209 4210
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4211 4212
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
4213 4214
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4215 4216
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
4217 4218

    Returns:
4219
        Variable: The tensor variable storing the convolution transpose result.
4220 4221

    Raises:
4222 4223
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4224 4225 4226 4227

    Examples:
       .. code-block:: python

4228
          import paddle.fluid as fluid
4229 4230
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4231
    """
C
chengduo 已提交
4232
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4233 4234
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4235
    if not isinstance(input, Variable):
4236
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
4237 4238
    input_channel = input.shape[1]

4239 4240 4241
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4242

C
chengduoZH 已提交
4243 4244 4245
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
4246 4247 4248 4249 4250 4251
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

4252 4253 4254
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
4255

4256
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4257
                         padding[0] - 1) // dilation[0] + 1
4258
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4259
                         padding[1] - 1) // dilation[1] + 1
4260
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
4261
                         padding[2] - 1) // dilation[2] + 1
4262
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4263
    else:
4264 4265
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4266

4267
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4268
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4269 4270 4271
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4272
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4273
    helper.append_op(
4274
        type=l_type,
Y
Yu Yang 已提交
4275 4276
        inputs={'Input': [input],
                'Filter': [img_filter]},
4277
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4278 4279 4280 4281
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4282
            'groups': groups,
C
chengduoZH 已提交
4283 4284
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4285

4286 4287
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4288
    return out
Y
yangyaming 已提交
4289 4290


Y
yangyaming 已提交
4291
def sequence_expand(x, y, ref_level=-1, name=None):
4292
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4293 4294 4295 4296
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4297 4298 4299 4300 4301

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4302
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4303
                x.data = [[a], [b], [c], [d]]
4304 4305 4306
                x.dims = [4, 1]

            y is a LoDTensor:
4307 4308
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4309

Y
yangyaming 已提交
4310
            ref_level: 0
4311

Y
yangyaming 已提交
4312
            then output is a 1-level LoDTensor:
4313
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4314
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4315 4316 4317 4318
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4319
                x.data = [[a], [b], [c]]
4320 4321 4322
                x.dims = [3, 1]

            y is a LoDTensor:
4323
                y.lod = [[2, 0, 3]]
4324

Y
yangyaming 已提交
4325
            ref_level: -1
4326

Y
yangyaming 已提交
4327 4328 4329
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4330 4331 4332
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4333 4334
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4335
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4336
                        will be named automatically.
4337 4338 4339 4340 4341 4342

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4343
	
4344
            import paddle.fluid as fluid
4345
            import paddle.fluid.layers as layers
4346 4347 4348
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4349
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4350
    """
L
lujun 已提交
4351
    assert not in_dygraph_mode(), (
4352
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4353
    helper = LayerHelper('sequence_expand', input=x, **locals())
4354
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4355
    tmp = helper.create_variable_for_type_inference(dtype)
4356
    helper.append_op(
Y
yangyaming 已提交
4357 4358 4359 4360 4361
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4362
    return tmp
4363 4364


C
chengduo 已提交
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4413 4414
            
            import paddle.fluid as fluid
4415
            import paddle.fluid.layers as layers
C
chengduo 已提交
4416 4417 4418 4419 4420 4421

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4422
    assert not in_dygraph_mode(), (
4423
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4424 4425
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4426
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4427 4428 4429 4430 4431 4432 4433 4434
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4435
@templatedoc()
4436
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4437 4438 4439 4440 4441
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4442 4443 4444
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4445
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4446 4447 4448 4449
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4450 4451 4452
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4453

F
fengjiayi 已提交
4454
    Returns:
M
minqiyang 已提交
4455
        Variable: The padded sequence batch and the original lengths before
4456
                  padding. All sequences has the same length.
M
minqiyang 已提交
4457

F
fengjiayi 已提交
4458 4459 4460
    Examples:
        .. code-block:: python

4461
            import paddle.fluid as fluid
F
fengjiayi 已提交
4462 4463 4464 4465
            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4466
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4467
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4468 4469 4470
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4471
    assert not in_dygraph_mode(), (
4472
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4473 4474
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4475 4476
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4477 4478 4479 4480

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4481 4482 4483 4484 4485 4486
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4487 4488
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4489
        attrs={'padded_length': maxlen})
4490
    return out, length
F
fengjiayi 已提交
4491 4492


4493
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4494
    """
4495
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4496

4497 4498
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4499 4500 4501 4502 4503 4504 4505 4506 4507
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4508 4509 4510
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4511
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4512 4513 4514 4515 4516 4517

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4518
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4519 4520 4521 4522 4523 4524

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4525 4526
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4527 4528 4529 4530 4531 4532 4533

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4534
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4535 4536 4537 4538 4539
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4540
    assert not in_dygraph_mode(), (
4541
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4542 4543
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4544
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4556 4557 4558 4559 4560 4561 4562
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4563
                is_accumulated=True,
4564 4565
                name=None,
                return_parent_idx=False):
4566
    """
4567 4568
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4569 4570 4571

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4572 4573

    This layer does the search in beams for one time step. Specifically, it
4574 4575 4576
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4588 4589 4590 4591

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4592

4593
    Args:
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4617 4618
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4619 4620
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4621 4622 4623 4624
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4625

4626
    Returns:
4627 4628 4629 4630
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4631 4632 4633 4634

    Examples:
        .. code-block:: python

4635 4636
            import paddle.fluid as fluid

4637 4638 4639
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4652
                axis=0)
4653
            selected_ids, selected_scores = fluid.layers.beam_search(
4654 4655 4656 4657 4658 4659 4660
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4661
    helper = LayerHelper('beam_search', **locals())
4662 4663 4664 4665 4666 4667
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4668

X
Xin Pan 已提交
4669 4670 4671
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4672 4673 4674 4675 4676
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4677 4678 4679

    helper.append_op(
        type='beam_search',
4680
        inputs=inputs,
Q
Qiao Longfei 已提交
4681 4682 4683
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4684
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4685 4686 4687 4688 4689 4690
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4691
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4692
        })
4693 4694 4695 4696
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4697 4698


4699 4700 4701 4702 4703 4704 4705
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4706

4707 4708 4709 4710 4711 4712 4713 4714 4715
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4716

4717 4718 4719 4720 4721 4722
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4723

4724 4725
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4726

4727 4728
            import paddle.fluid as fluid

4729 4730
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4731 4732 4733
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4734 4735 4736
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4737 4738
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4754 4755 4756 4757
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4758
              param_attr=None,
C
caoying03 已提交
4759 4760
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4761 4762 4763 4764
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4765
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4766

4767
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4768

4769
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4770

4771
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4772 4773 4774

            h_t & = o_t tanh(c_t)

4775 4776 4777 4778 4779 4780
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4781 4782 4783

        .. math::

4784
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4785 4786 4787 4788 4789 4790 4791 4792

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4793
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4794 4795

    Args:
Y
yangyaming 已提交
4796 4797 4798 4799 4800 4801
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4802
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4815 4816
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4817 4818

    Returns:
Y
yangyaming 已提交
4819
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4820 4821

    Raises:
4822 4823 4824 4825
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4826 4827 4828 4829 4830

    Examples:

        .. code-block:: python

4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4858
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4859 4860 4861 4862
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4863 4864
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4865 4866 4867
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4868
    size = cell_t_prev.shape[1]
4869
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4870 4871
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4872
                param_attr=param_attr,
4873
                bias_attr=bias_attr)
Y
yangyaming 已提交
4874
    dtype = x_t.dtype
X
Xin Pan 已提交
4875 4876
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4877 4878 4879 4880 4881 4882 4883 4884 4885

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4886
    return h, c
G
guosheng 已提交
4887 4888


C
caoying03 已提交
4889
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4890
    """
Y
yangyaming 已提交
4891
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4892 4893 4894

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4895
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4896 4897
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4898 4899
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4900
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4901
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4902
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4903 4904
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4905 4906 4907

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4908

G
guosheng 已提交
4909 4910 4911
    Examples:
        .. code-block:: python

4912
            import paddle.fluid as fluid
G
guosheng 已提交
4913 4914 4915
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4916
            # Each example is followed by the corresponding output tensor.
4917
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4918 4919 4920 4921
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4922

4923
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4924 4925
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4926
            # Each example is followed by the corresponding output tensor.
4927 4928 4929
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4930

G
guosheng 已提交
4931 4932
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4933
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4934 4935
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4936 4937 4938 4939 4940
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4941
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4942 4943 4944 4945
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4946 4947


C
caoying03 已提交
4948
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4949
    """
Y
Yibing Liu 已提交
4950
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4951 4952 4953

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4954 4955 4956
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4957
            must be in the range :math:`[-rank(input), rank(input))`. If
4958
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4959
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4960 4961
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4962
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4963
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4964
                       will be named automatically.
G
guosheng 已提交
4965 4966

    Returns:
Y
Yibing Liu 已提交
4967
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4968

G
guosheng 已提交
4969 4970 4971
    Examples:
        .. code-block:: python

4972
            import paddle.fluid as fluid
G
guosheng 已提交
4973 4974 4975 4976
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4977
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4978 4979 4980
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4981
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4982

4983
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4984 4985 4986
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4987 4988 4989
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4990 4991
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4992
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4993 4994
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4995 4996 4997 4998 4999
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5000
            'dim': dim if dim != None else [0],
G
guosheng 已提交
5001 5002 5003 5004
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
5005 5006


C
caoying03 已提交
5007
def reduce_max(input, dim=None, keep_dim=False, name=None):
5008
    """
Y
yangyaming 已提交
5009
    Computes the maximum of tensor elements over the given dimension.
5010 5011 5012

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5013
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
5014 5015 5016
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
5017
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
5018 5019
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
5020
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
5021 5022
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
5023 5024 5025

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
5026

5027 5028 5029
    Examples:
        .. code-block:: python

5030
            import paddle.fluid as fluid
5031 5032 5033 5034
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5035
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5036 5037 5038 5039
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
5040

5041
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5042 5043 5044
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5045 5046 5047
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
5048 5049
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
5050
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5051 5052
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5053 5054 5055 5056 5057
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5058
            'dim': dim if dim != None else [0],
5059 5060 5061 5062 5063 5064
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5065
def reduce_min(input, dim=None, keep_dim=False, name=None):
5066
    """
Y
yangyaming 已提交
5067
    Computes the minimum of tensor elements over the given dimension.
5068 5069 5070

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5071
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
5072 5073 5074
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
5075
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
5076 5077
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
5078
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
5079 5080
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
5081 5082 5083

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
5084

5085 5086 5087
    Examples:
        .. code-block:: python

5088
            import paddle.fluid as fluid
5089 5090 5091 5092
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5093
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5094 5095 5096 5097
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
5098

5099
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5100 5101 5102
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5103 5104 5105
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
5106 5107
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
5108
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5109 5110
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5111 5112 5113 5114 5115
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5116
            'dim': dim if dim != None else [0],
5117 5118 5119 5120
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
5121 5122


5123 5124 5125 5126 5127 5128
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5129
        dim (list|int|None): The dimensions along which the product is performed. If
5130 5131
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
5132 5133
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
5134 5135 5136
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
5137
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
5138
            layer will be named automatically.
5139 5140 5141 5142 5143 5144 5145

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

5146
            import paddle.fluid as fluid
5147 5148 5149 5150
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5151
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5152 5153 5154
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
5155
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
5156
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
5157

5158
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5159 5160 5161
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5162 5163 5164
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
5165 5166
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
5167
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5168 5169
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5170 5171 5172 5173 5174
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5175
            'dim': dim if dim != None else [0],
5176 5177 5178 5179 5180 5181
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
5182 5183
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5184
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5204
        
5205
            import paddle.fluid as fluid
5206 5207 5208
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5209 5210 5211
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
5212 5213 5214 5215 5216 5217 5218
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5239
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5259

5260
            import paddle.fluid as fluid
5261 5262 5263
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5264 5265 5266
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5267 5268 5269 5270 5271 5272 5273
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5288 5289 5290 5291 5292
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5293
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5294
    """
C
caoying03 已提交
5295
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5296 5297 5298

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5299 5300 5301 5302 5303
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5304
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5305
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5306
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5307 5308
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5309 5310

    Returns:
D
dzhwinter 已提交
5311
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5312 5313 5314 5315

    Examples:
        .. code-block:: python

5316 5317 5318 5319 5320 5321
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5322
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5323 5324 5325 5326 5327 5328 5329 5330
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5331 5332 5333 5334 5335 5336 5337 5338
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5339
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5340 5341 5342
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5343
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5357 5358 5359 5360 5361 5362 5363 5364 5365


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5366
    .. math::
5367 5368

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5369 5370 5371 5372 5373

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5374
        x(Variable|list): The input tensor to l2_normalize layer.
5375
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5376 5377
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5378
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5379
            the default value is 1e-12.
5380
        name(str|None): A name for this layer(optional). If set None, the layer \
5381
            will be named automatically.
C
caoying03 已提交
5382 5383

    Returns:
5384
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5385 5386

    Examples:
5387

C
caoying03 已提交
5388 5389
        .. code-block:: python

5390
            import paddle.fluid as fluid
5391 5392 5393 5394
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5395 5396
    """

F
fengjiayi 已提交
5397 5398
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5399 5400
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5401 5402
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5403
    helper.append_op(
5404 5405 5406 5407
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5408
        attrs={
5409 5410
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5411 5412
        })
    return out
5413 5414


S
sneaxiy 已提交
5415
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5416
    """
Y
ying 已提交
5417 5418 5419 5420
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5421

C
chengduoZH 已提交
5422
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5423
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5424

5425 5426 5427 5428 5429
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5430
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5431

C
chengduoZH 已提交
5432
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5433
      performs in the following way.
G
guosheng 已提交
5434

5435
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5436
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5437
        last two dimensions and a batched matrix multiply supporting broadcast
5438
        applies on the two tensors.
G
guosheng 已提交
5439

Y
ying 已提交
5440 5441
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5442
    removed after matrix multiplication.
G
guosheng 已提交
5443 5444 5445

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5446 5447 5448
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5449
        alpha (float): The scale of output. Default 1.0.
5450
        name(str|None): A name for this layer(optional). If set None, the layer
5451
            will be named automatically.
G
guosheng 已提交
5452 5453

    Returns:
石晓伟 已提交
5454
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
5455

G
guosheng 已提交
5456 5457 5458
    Examples:
        .. code-block:: python

5459
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5460
            # x: [B, ..., M, K], y: [B, ..., K, N]
5461
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5462

5463
            # x: [B, M, K], y: [B, K, N]
5464
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5465

5466
            # x: [B, M, K], y: [K, N]
5467
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5468

5469
            # x: [M, K], y: [K, N]
5470
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5471 5472

            # x: [B, M, K], y: [K]
5473
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5474

5475
            # x: [K], y: [K]
5476
            # fluid.layers.matmul(x, y)  # out: [1]
5477

Y
ying 已提交
5478
            # x: [M], y: [N]
5479 5480
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5481
            import paddle.fluid as fluid
5482 5483 5484
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5485
    """
Y
ying 已提交
5486 5487 5488 5489 5490 5491 5492

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5493
            y_shape = y_shape + [1]
Y
ying 已提交
5494 5495 5496 5497 5498 5499 5500

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5501 5502
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5503

C
chengduo 已提交
5504
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5505
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5506 5507 5508
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5509
                if dim_x != y_shape[i]:
C
chengduo 已提交
5510 5511
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5512 5513 5514

    __check_input(x, y)

5515
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5516
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5517
    helper.append_op(
5518 5519 5520 5521
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5522 5523 5524
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5525
            'alpha': float(alpha),
S
sneaxiy 已提交
5526
        })
5527
    return out
5528 5529


5530
def topk(input, k, name=None):
Q
qingqing01 已提交
5531 5532 5533 5534
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5535
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5536 5537 5538 5539 5540 5541
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5563 5564 5565
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5566
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5567
                 of input.
5568
        name(str|None): A name for this layer(optional). If set None, the layer
5569
                       will be named automatically.
F
fengjiayi 已提交
5570
                       Default: None
Q
qingqing01 已提交
5571 5572

    Returns:
5573 5574 5575
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5576
        within the last dimension of input.
Q
qingqing01 已提交
5577

F
fengjiayi 已提交
5578 5579
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5580 5581 5582 5583

    Examples:
        .. code-block:: python

5584
            import paddle.fluid as fluid
5585 5586
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5587 5588 5589
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5590 5591
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5592 5593 5594 5595 5596 5597
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5598 5599
    helper.append_op(
        type="top_k",
W
whs 已提交
5600
        inputs=inputs,
Q
qingqing01 已提交
5601 5602
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5603
        attrs=attrs)
Q
qingqing01 已提交
5604 5605 5606 5607 5608
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5609 5610 5611 5612 5613 5614
def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
5615
    """
R
ruri 已提交
5616
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5617 5618 5619 5620 5621 5622 5623 5624
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5625

Y
ying 已提交
5626
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5627

5628
    The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
Y
ying 已提交
5629
    the total number denoted by `batch_size`, and the separation is specified
5630 5631
    by the LoD information or input_length. And the `batch_size` reference strings are arranged
    in order in the same way as `input`.
W
wanghaoshuang 已提交
5632

5633
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5634 5635
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5636

5637
    Args:
5638 5639
        input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
        label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
5640
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5641
                          the length of reference string.
5642
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5643
                                     calculating edit distance.
5644 5645
        input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
        label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
5646

W
wanghaoshuang 已提交
5647
    Returns:
5648 5649 5650
        edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
        sequence_num(Variable): sequence number in shape [].
        
W
wanghaoshuang 已提交
5651 5652 5653

    Examples:
        .. code-block:: python
5654
            
R
ruri 已提交
5655 5656
            import paddle.fluid as fluid

5657 5658 5659 5660
            # using LoDTensor
            x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
            y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
            distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
R
ruri 已提交
5661

5662 5663 5664 5665 5666 5667 5668 5669
            # using Tensor
            x_seq_len = 5
            y_seq_len = 6
            x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
            y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
            x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
            y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
            distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
R
ruri 已提交
5670

5671
    """
5672
    helper = LayerHelper("edit_distance", **locals())
5673

5674
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5675
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5676 5677
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5678 5679 5680 5681 5682

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5683
            attrs={"tokens": ignored_tokens})
5684 5685 5686 5687 5688
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5689
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5690
            attrs={"tokens": ignored_tokens})
5691 5692
        label = erased_label

5693 5694 5695 5696 5697
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length and label_length:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

5698
    # edit distance op
X
Xin Pan 已提交
5699 5700
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5701 5702
    helper.append_op(
        type="edit_distance",
5703
        inputs=this_inputs,
5704 5705
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5706 5707
        attrs={"normalized": normalized})

5708
    return edit_distance_out, sequence_num
5709 5710 5711 5712 5713


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5714

Y
ying 已提交
5715 5716 5717 5718
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5736
        input.lod = [[4, 4]]
M
minqiyang 已提交
5737

W
whs 已提交
5738
        Computation:
5739

W
whs 已提交
5740 5741 5742 5743 5744 5745
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5746 5747 5748 5749 5750

        output.data = [[2],
                       [1],
                       [3]]

5751
        output.lod = [[2, 1]]
5752

W
whs 已提交
5753

5754 5755
    Args:

Y
ying 已提交
5756 5757 5758 5759 5760 5761 5762 5763 5764
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5765
        name (str): The name of this layer. It is optional.
5766 5767

    Returns:
H
haowang101779990 已提交
5768 5769 5770
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5771
                  LoD [[]] and dims [1, 1].
5772 5773 5774 5775

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5776
            import paddle.fluid as fluid
5777 5778
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5779
    """
5780
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5781
    _, topk_indices = topk(input, k=1)
5782 5783

    # ctc align op
X
Xin Pan 已提交
5784
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5785 5786 5787
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5788
        outputs={"Output": [ctc_out]},
5789 5790
        attrs={"merge_repeated": True,
               "blank": blank})
5791
    return ctc_out
5792 5793


5794 5795 5796 5797 5798 5799
def warpctc(input,
            label,
            blank=0,
            norm_by_times=False,
            input_length=None,
            label_length=None):
W
wanghaoshuang 已提交
5800
    """
5801 5802
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5803
    to compute Connectionist Temporal Classification (CTC) loss.
5804 5805
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5806 5807 5808
    input tensor.

    Args:
5809
       input (Variable): The unscaled probabilities of variable-length sequences,
5810 5811 5812
         which is a 2-D Tensor with LoD information, or a 3-D Tensor without Lod
         information. When it is a 2-D LodTensor, it's shape is 
         [Lp, num_classes + 1], where Lp is the sum of all input
W
wanghaoshuang 已提交
5813
         sequences' length and num_classes is the true number of classes.
5814 5815 5816 5817
         (not including the blank label). When it is a 3-D Tensor, it's shape 
         is [max_logit_length, batch_size, num_classes + 1],
         where max_logit_length is the length of the longest
         input logit sequence.
5818
       label (Variable): The ground truth of variable-length sequence,
5819 5820 5821
         which is a 2-D Tensor with LoD information or a 2-D Tensor without
         LoD information. When it is a 2-D LoDTensor or 2-D Tensor, 
         it is of the shape [Lg, 1], where Lg is th sum of all labels' length.
5822
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5823 5824
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5825 5826 5827
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5828
         follewed by a mean_op.
5829 5830 5831 5832
       input_length(Variable): The length for each input sequence if it is 
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
       label_length(Variable): The length for each label sequence if it is
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
W
wanghaoshuang 已提交
5833 5834

    Returns:
5835 5836
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5837 5838 5839

    Examples:
        .. code-block:: python
5840

5841
            # using LoDTensor
B
Bai Yifan 已提交
5842
            import paddle.fluid as fluid
5843 5844 5845
            import numpy as np
            
            label = fluid.layers.data(name='label', shape=[12, 1],
B
Bai Yifan 已提交
5846
                                      dtype='float32', lod_level=1)
5847 5848 5849
            predict = fluid.layers.data(name='predict', 
                                        shape=[11, 8],
                                        dtype='float32',lod_level=1)
5850
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5851

5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869
            # using Tensor
            input_length = fluid.layers.data(name='logits_length', shape=[11],
                                         dtype='int64')
            label_length = fluid.layers.data(name='labels_length', shape=[12],
                                         dtype='int64')
            target = fluid.layers.data(name='target', shape=[12, 1],
                                       dtype='int32')
            # length of the longest logit sequence
            max_seq_length = 4
            # number of logit sequences
            batch_size = 4
            output = fluid.layers.data(name='output', 
                                       shape=[max_seq_length, batch_size, 8],
                                       dtype='float32')
            loss = fluid.layers.warpctc(input=output,label=target,
                                        input_length=input_length,
                                        label_length=label_length)

W
wanghaoshuang 已提交
5870
    """
F
fengjiayi 已提交
5871
    helper = LayerHelper('warpctc', **locals())
5872 5873 5874 5875 5876
    this_inputs = {'Logits': [input], 'Label': [label]}
    if input_length and label_length:
        this_inputs['LogitsLength'] = [input_length]
        this_inputs['LabelLength'] = [label_length]

X
Xin Pan 已提交
5877 5878
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
5879

W
wanghaoshuang 已提交
5880 5881
    helper.append_op(
        type='warpctc',
5882
        inputs=this_inputs,
W
wanghaoshuang 已提交
5883 5884
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5885 5886 5887 5888
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
        })
W
wanghaoshuang 已提交
5889
    return loss_out
5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5905 5906 5907
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5908 5909 5910 5911 5912
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5913

5914
            out.lod  = [[0, 1, 3]]
5915 5916 5917 5918

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5919 5920 5921 5922 5923 5924 5925
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5926 5927 5928

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5929 5930

    Returns:
5931

5932 5933 5934 5935 5936
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5937 5938 5939
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5940
    """
L
lujun 已提交
5941
    assert not in_dygraph_mode(), (
5942
        "sequence layer is not supported in dygraph mode yet.")
5943
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5944
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5945 5946 5947 5948 5949 5950
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5951 5952


5953 5954 5955 5956
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5957 5958 5959 5960 5961 5962
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5963
        num_neg_samples=None,
5964 5965 5966
        name=None,
        sampler="uniform",
        custom_dist=None,
5967 5968
        seed=0,
        is_sparse=False):
5969 5970 5971 5972 5973 5974 5975
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5976 5977
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5978
            sample is 1.0.
C
chengduo 已提交
5979 5980 5981 5982 5983 5984 5985 5986 5987
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5988
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5989 5990
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5991 5992 5993
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5994
        custom_dist (float[]): A float[] with size=num_total_classes.
5995 5996 5997 5998
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5999
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
6000

6001
    Returns:
Y
Yibing Liu 已提交
6002 6003 6004 6005 6006 6007
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


X
xsrobin 已提交
6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
            import paddle.fluid as fluid
            import numpy as np

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(fluid.layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
                                   param_attr='embed', is_sparse=True)
                embs.append(emb)

            embs = fluid.layers.concat(input=embs, axis=1)
            loss = fluid.layers.nce(input=embs, label=words[label_word],
                      num_total_classes=dict_size, param_attr='nce.w_0',
                      bias_attr='nce.b_0')

             #or use custom distribution
             dist = np.array([0.05,0.5,0.1,0.3,0.05])
             loss = fluid.layers.nce(input=embs, label=words[label_word],
                       num_total_classes=5, param_attr='nce.w_1',
                       bias_attr='nce.b_1',
                       num_neg_samples=3,
                       sampler="custom_dist",
                       custom_dist=dist)
6042
    """
Y
Yang Yu 已提交
6043 6044 6045
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
6046 6047

    dim = input.shape[1]
Y
Yang Yu 已提交
6048 6049 6050 6051 6052 6053
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
6054
    inputs = {}
C
chengduo 已提交
6055 6056 6057 6058 6059 6060 6061
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
6062 6063 6064
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
6065

6066 6067 6068 6069
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
6070 6071 6072 6073 6074 6075 6076

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
6077 6078
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
6079
        custom_dist_len = num_total_classes
6080 6081 6082 6083 6084 6085
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
6086
            if normal_prob - 1.0 > 0:
6087
                bigs.append((i, normal_prob))
6088
            elif 1.0 - normal_prob > 0:
6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
6104
            if big_left - 1.0 > 0:
6105
                bigs.append((big_idx, big_left))
6106
            elif 1.0 - big_left > 0:
6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
6136 6137 6138 6139
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

6140 6141 6142 6143 6144
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

6145 6146 6147 6148
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6149

Y
Yang Yu 已提交
6150 6151
    attrs = {
        'num_total_classes': int(num_total_classes),
6152 6153
        'num_neg_samples': num_neg_samples,
        'seed': seed,
6154
        'sampler': sampler,
6155 6156
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
6157
    }
Y
Yang Yu 已提交
6158 6159 6160

    helper.append_op(
        type='nce',
C
chengduo 已提交
6161
        inputs=inputs,
Y
Yang Yu 已提交
6162 6163 6164 6165 6166 6167
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
6168
    return cost / (num_neg_samples + 1)
6169 6170


C
chengduo 已提交
6171 6172
def hsigmoid(input,
             label,
6173
             num_classes,
C
chengduo 已提交
6174 6175
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
6176
             name=None,
6177 6178 6179
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
6180
             is_sparse=False):
W
weixing02 已提交
6181 6182
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
6183
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
6184
    complete binary tree, or you can use is_custom to pass your own tree to
6185
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
6186 6187 6188 6189 6190 6191
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

6192
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
6193
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
6194

6195 6196
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
6197 6198 6199 6200
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
6201
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
6202
       related to the same batch of inputs.
6203

W
weixing02 已提交
6204
    Args:
M
minqiyang 已提交
6205
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
6206 6207 6208 6209
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
6210 6211
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
6212
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
6224
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
6225
            it should be in leaf -> root order
M
minqiyang 已提交
6226 6227 6228
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
6229
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
6230
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
6231
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
6232
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
6233
             of W and input will be sparse.
W
weixing02 已提交
6234 6235

    Returns:
J
JiabinYang 已提交
6236
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
6237 6238 6239 6240 6241

    Examples:

        .. code-block:: python

6242
            import paddle.fluid as fluid
G
guosheng 已提交
6243 6244 6245
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
6246 6247 6248 6249
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6250 6251
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
6252
    dim = input.shape[1]
6253
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
6254 6255 6256
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

6257 6258 6259 6260 6261 6262 6263 6264 6265
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

6266
    if (is_custom) and (path_code is None):
6267
        raise ValueError("path_code should not be None with custom tree")
6268
    elif (is_custom) and (path_table is None):
6269
        raise ValueError("path_table should not be None with custom tree")
6270
    elif (is_custom) and (num_classes is None):
6271
        raise ValueError("num_classes should not be None with custom tree")
6272 6273 6274
    else:
        pass

J
JiabinYang 已提交
6275
    weights = None
6276 6277 6278 6279
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6280
    if not is_custom:
J
JiabinYang 已提交
6281 6282 6283 6284 6285 6286 6287 6288
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
6289
            shape=[num_classes, dim],
J
JiabinYang 已提交
6290 6291
            is_bias=False,
            dtype=input.dtype)
6292 6293 6294
    inputs = {
        "X": input,
        "W": weights,
6295
        "PathTable": path_table,
6296
        "PathCode": path_code,
6297 6298
        "Label": label
    }
W
weixing02 已提交
6299
    if helper.bias_attr:
6300
        if not is_custom:
J
JiabinYang 已提交
6301 6302
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
6303
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
6304 6305 6306 6307 6308 6309
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
6310
                shape=[num_classes, 1],
J
JiabinYang 已提交
6311 6312 6313
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6314 6315
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6316
        inputs=inputs,
W
weixing02 已提交
6317
        outputs={"Out": out,
6318 6319 6320 6321 6322 6323 6324
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6325 6326 6327
    return out


Y
fix ci.  
ying 已提交
6328
def transpose(x, perm, name=None):
Y
ying 已提交
6329 6330 6331 6332 6333 6334 6335
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6336 6337 6338
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6339 6340 6341 6342 6343 6344 6345

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6346
            # use append_batch_size=False to avoid prepending extra
6347
            # batch size in shape
6348
            import paddle.fluid as fluid
6349
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6350
                            dtype='float32', append_batch_size=False)
6351
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6352 6353
    """

Y
fix ci.  
ying 已提交
6354
    if len(perm) != len(x.shape):
Y
ying 已提交
6355 6356
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6357
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6358 6359 6360 6361 6362 6363
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6364 6365

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6366 6367
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6368
    helper.append_op(
6369
        type='transpose2',
Y
fix ci.  
ying 已提交
6370
        inputs={'X': [x]},
6371 6372
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6373 6374
        attrs={'axis': perm})
    return out
6375 6376


6377 6378 6379 6380 6381 6382 6383
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6384
    """
6385 6386 6387 6388 6389 6390 6391
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6392 6393 6394 6395 6396 6397 6398 6399 6400 6401

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6420 6421 6422 6423 6424 6425 6426 6427 6428
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6429 6430 6431
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6432 6433 6434 6435 6436
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6464 6465 6466
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6479
            output.dims = {8, 8}
6480

6481
            output.lod = [[4, 4]]
6482

T
Tink_Y 已提交
6483
    Examples:
6484 6485 6486

        .. code-block:: python

B
Bai Yifan 已提交
6487 6488 6489
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6490
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6491 6492
                input=data, stride=[1, 1], filter_size=[2, 2])

6493 6494

    """
L
lujun 已提交
6495
    assert not in_dygraph_mode(), (
6496
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6497 6498 6499 6500 6501 6502 6503 6504 6505 6506

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6507
    inputs = {"X": input}
6508
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6509 6510 6511 6512 6513
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6514
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6515
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6516
    helper.append_op(
6517
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6518
    return out
6519 6520


Y
yuyang18 已提交
6521
@templatedoc()
6522
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6523 6524
    """
    ${comment}
6525 6526

    Args:
Y
yuyang18 已提交
6527
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6528 6529
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6530 6531 6532 6533 6534
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6535
        ${out_comment}.
6536 6537

    Examples:
Y
yuyang18 已提交
6538 6539 6540 6541
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6542 6543 6544 6545 6546 6547
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6548
    out = helper.create_variable_for_type_inference(dtype)
6549 6550 6551 6552 6553
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6554
    return helper.append_activation(out)
6555 6556


Y
yuyang18 已提交
6557
@templatedoc()
6558 6559
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6560 6561
    ${comment}

L
lujun 已提交
6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6605 6606

    Args:
Y
yuyang18 已提交
6607 6608
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6609 6610

    Returns:
Y
yuyang18 已提交
6611
        ${out_comment}.
6612 6613
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6614 6615 6616 6617 6618

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6619
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6620 6621 6622 6623 6624 6625
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6626 6627


6628 6629 6630
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6631
                               ignore_index=kIgnoreIndex,
6632
                               numeric_stable_mode=True,
6633 6634
                               return_softmax=False,
                               axis=-1):
6635 6636
    """
    **Softmax With Cross Entropy Operator.**
6637

6638
    Cross entropy loss with softmax is used as the output layer extensively. This
6639 6640 6641
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6642

6643 6644 6645
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6646

6647 6648 6649 6650
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6651

6652
    The equation is as follows:
6653

6654
    1) Hard label (one-hot label, so every sample has exactly one class)
6655

6656 6657 6658 6659
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6660

6661 6662 6663
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6664

6665 6666 6667 6668
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6669 6670
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6671 6672

    .. math::
6673

H
haowang101779990 已提交
6674
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6675

H
haowang101779990 已提交
6676
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6677

H
haowang101779990 已提交
6678
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6679 6680 6681

    and then cross entropy loss is calculated by softmax and label.

6682
    Args:
6683 6684 6685 6686 6687 6688
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6689
        soft_label (bool): A flag to indicate whether to interpretate the given
6690
            labels as soft labels. Default False.
M
minqiyang 已提交
6691 6692
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6693 6694
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6695 6696
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6697 6698 6699 6700
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6701
                                    Note that the speed may be slower when use
6702
                                    stable algorithm. Default: True
6703
        return_softmax (bool): A flag indicating whether to return the softmax
6704
                               along with the cross entropy loss. Default: False
6705 6706 6707
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6708

6709
    Returns:
H
haowang101779990 已提交
6710 6711
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6712 6713 6714 6715
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6716 6717 6718 6719

    Examples:
        .. code-block:: python

6720 6721
            import paddle.fluid as fluid

6722 6723 6724
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6725 6726
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6727 6728
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6729 6730
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6731 6732 6733 6734 6735 6736
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6737 6738 6739
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6740 6741
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6742
        })
6743 6744 6745 6746

    if return_softmax:
        return loss, softmax

6747 6748 6749
    return loss


6750 6751 6752
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6753
                                       num_true=1,
6754
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6755 6756 6757
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6758
                                       seed=0):
X
xuezhong 已提交
6759 6760 6761 6762 6763
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6764
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6765 6766 6767 6768 6769 6770 6771 6772
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6773
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6774 6775 6776 6777 6778 6779 6780 6781
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6782
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6794
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6795 6796 6797 6798 6799
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6800
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6801
            logits.
X
xuezhong 已提交
6802 6803 6804 6805 6806
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6807 6808 6809
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6810 6811 6812 6813 6814 6815 6816
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6817 6818 6819
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
6820
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
6821
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6822
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6823
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6824 6825 6826 6827 6828 6829 6830 6831
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6832 6833
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6834 6835
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6836 6837 6838 6839 6840

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6841
            'Labels': label,
X
xuezhong 已提交
6842 6843
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6844 6845 6846 6847
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6848
            'SampledLabels': sampled_label,
6849 6850 6851
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6852 6853
        },
        attrs={
X
xuezhong 已提交
6854
            'use_customized_samples': use_customized_samples,
6855
            'uniq': True,
X
xuezhong 已提交
6856 6857 6858 6859
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6860 6861
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6862 6863 6864 6865 6866 6867
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6868 6869
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6870
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6871
                'Label': sampled_softlabel},
X
xuezhong 已提交
6872 6873 6874
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6875
            'soft_label': True,
X
xuezhong 已提交
6876 6877 6878
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6879
    return loss / num_true
X
xuezhong 已提交
6880 6881


6882 6883
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6884 6885
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6886
    For each instance, it computes the smooth L1 loss element by element first
6887
    and then sums all the losses. So the shape of ouput Variable is
6888
    [batch_size, 1].
6889

6890 6891
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6892
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6893
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6894
            L1 loss op with same shape as :attr:`x`.
6895
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6896 6897
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6898
            by this tensor element by element.
6899
        outside_weight (Variable|None): A tensor with rank at least 2. This
6900 6901
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6902
            element by element.
6903
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6904 6905
           scalar with default value 1.0.

6906
    Returns:
6907
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6908 6909 6910 6911

    Examples:
        .. code-block:: python

6912
            import paddle.fluid as fluid
6913
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6914 6915
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6916
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6917
            out = fluid.layers.smooth_l1(x=fc, y=label)
6918
    """
6919

6920
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6921 6922
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6923 6924 6925 6926 6927 6928 6929 6930 6931 6932
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6933
        attrs={'sigma': sigma if sigma is not None else 1.0})
6934
    return loss
6935 6936


6937
def one_hot(input, depth, allow_out_of_range=False):
6938
    """
Y
Yibing Liu 已提交
6939
    This layer creates the one-hot representations for input indices.
6940 6941

    Args:
Y
Yibing Liu 已提交
6942 6943
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6944 6945 6946 6947
        allow_out_of_range(bool): A bool value indicating whether the input
            indices could be out of range [0, depth). When input indices are
            out of range, exceptions is raised if allow_out_of_range is False,
            or zero-filling representations is created if it is set True
6948 6949

    Returns:
Y
Yibing Liu 已提交
6950
        Variable: The one-hot representations of input.
6951 6952

    Examples:
C
caoying03 已提交
6953
        .. code-block:: python
6954

6955
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
6956 6957
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6958 6959
    """
    helper = LayerHelper("one_hot", **locals())
6960

X
Xin Pan 已提交
6961
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6962 6963 6964 6965 6966 6967 6968 6969 6970 6971

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6972
            depth.stop_gradient = True
6973 6974
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6975 6976
    helper.append_op(
        type="one_hot",
6977 6978
        inputs=inputs,
        attrs=attrs,
6979 6980
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6981
    return one_hot_out
Y
Yu Yang 已提交
6982 6983


Y
Yu Yang 已提交
6984
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6985
    """
Y
yi.wu 已提交
6986 6987 6988
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6989 6990 6991 6992 6993 6994

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6995 6996
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6997 6998 6999 7000

    Examples:
        .. code-block:: python

7001
           import paddle.fluid as fluid
Y
yi.wu 已提交
7002
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
7003
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
7004 7005
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
7006 7007
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
7008 7009 7010 7011 7012
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
7013
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
7014
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
7015 7016
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
7017
            outputs={'Out': [counter]},
M
minqiyang 已提交
7018 7019
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
7020 7021 7022
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
7023 7024


7025
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
7026
    """
C
caoying03 已提交
7027 7028
    Gives a new shape to the input Tensor without changing its data.

7029
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
7030
    :attr:`shape` is a list of integer or tensor variable while :attr:`actual_shape` is a tensor
7031
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
7032
    if it is provided and it only contains integer, while :attr:`shape` still should be set correctly to
7033
    gurantee shape inference in compile-time.
C
caoying03 已提交
7034

7035
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
7036

7037 7038 7039 7040
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

7041
    2. 0 means the actual dimension value is going to be copied from the
7042 7043 7044 7045
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
7046 7047

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
7048
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
7049
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
7050

7051
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
7052 7053
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
7054 7055
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
7056
    dimensions.
C
caoying03 已提交
7057

7058
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
7059 7060 7061 7062
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
7063

7064 7065
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the future and only use :attr:`shape` instead.

C
caoying03 已提交
7066
    Args:
7067
        x(variable): The input tensor.
7068 7069 7070 7071
        shape(list|tuple|Variable): The new shape. At most one dimension of the new shape can
                     be -1. If :attr:`shape` is a list or tuple, it can contain Variable or not and
                     the shape of Variable must be [1].

7072 7073 7074 7075
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
7076 7077 7078 7079
                                than :attr:`shape(list|tuple)` but not :attr:`shape(Variable)`. \
                                This argument :attr:`actual_shape` will be removed in a future version. \
                                Instructions for updating: :attr:`actual_shape` is deprecated,
                                only use :attr:`shape` instead.
7080 7081
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
7082 7083 7084
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
7085
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
7086
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
7087

7088
    Returns:
G
guosheng 已提交
7089 7090 7091 7092
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
7093

X
Xin Pan 已提交
7094 7095 7096
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
7097 7098
    Examples:
        .. code-block:: python
G
guosheng 已提交
7099

7100
            import paddle.fluid as fluid
7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            data_1 = fluid.layers.data(
                name='data_1', shape=[2, 4, 6], dtype='float32')
            reshaped_1 = fluid.layers.reshape(
                x=data_1, shape=[-1, 0, 3, 2], inplace=True)

            # example 2:
            # attr shape is a list which contains tensor Variable.
            data_2 = fluid.layers.fill_constant([2,25], "int32", 3)
            dim = fluid.layers.fill_constant([1], "int32", 5)
            reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10])
C
caoying03 已提交
7114 7115
    """

7116 7117 7118
    if not isinstance(shape, (list, tuple, Variable)):
        raise TypeError(
            "Input shape must be an Variable or python list or tuple.")
7119

7120 7121
    if not isinstance(actual_shape, Variable) and (actual_shape is not None):
        raise TypeError("actual_shape should either be Variable or None.")
7122

7123
    helper = LayerHelper("reshape2", **locals())
7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166
    inputs = {"X": x}
    attrs = {}

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension in shape can be unknown.")
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The indice of 0s in shape can not exceed Rank(X).")
                else:
                    assert dim_size > 0, (
                        "Each dimension size given in shape must not be negtive "
                        "except one unknown dimension.")
        return attrs_shape

7167 7168 7169 7170
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["Shape"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
            if contain_var(shape):
                inputs['ShapeTensor'] = get_new_shape_tensor(shape)
            elif isinstance(actual_shape, Variable):
                actual_shape.stop_gradient = True
                inputs["Shape"] = actual_shape
7183

7184 7185
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
7186
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
7187
    helper.append_op(
7188
        type="reshape2",
X
Xin Pan 已提交
7189
        inputs=inputs,
7190
        attrs=attrs,
7191 7192
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
7193

D
dzhwinter 已提交
7194
    return helper.append_activation(out)
7195

7196

7197
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
7198
    """
M
minqiyang 已提交
7199 7200 7201
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
7202
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
7203

H
haowang101779990 已提交
7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
7225

Y
Yibing Liu 已提交
7226
    Args:
7227
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
7228
        axes (list): List of integers, indicating the dimensions to be squeezed.
7229
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7230 7231 7232 7233 7234 7235 7236

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

7237
            import paddle.fluid as fluid
7238
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
7239
            x = layers.data(name='x', shape=[5, 1, 10])
7240
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7241
    """
L
lujun 已提交
7242
    assert not in_dygraph_mode(), (
L
lujun 已提交
7243
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
7244
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
7245 7246
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7247
    helper.append_op(
7248
        type="squeeze2",
7249
        inputs={"X": input},
Y
Yibing Liu 已提交
7250
        attrs={"axes": axes},
7251 7252
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7253

7254 7255 7256
    return out


7257
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
7258
    """
M
minqiyang 已提交
7259 7260 7261
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
7262

M
minqiyang 已提交
7263
    For example:
H
haowang101779990 已提交
7264 7265 7266

    .. code-block:: text

M
minqiyang 已提交
7267
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
7268
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
7269

Y
Yibing Liu 已提交
7270
    Args:
7271
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
7272
        axes (list): List of integers, indicating the dimensions to be inserted.
7273
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7274 7275 7276 7277 7278 7279 7280

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

7281 7282 7283
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7284 7285
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
7286 7287
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7288
    helper.append_op(
7289
        type="unsqueeze2",
7290
        inputs={"X": input},
Y
Yibing Liu 已提交
7291
        attrs={"axes": axes},
7292 7293
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7294

7295 7296
    return out

7297

Y
yangyaming 已提交
7298
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
7299
    """
Y
Yibing Liu 已提交
7300
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
7301 7302 7303 7304
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
7305
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
7306 7307 7308 7309 7310 7311

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
7312
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
7313 7314 7315
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

7316
            target_lod: [4, 2]
Y
yangyaming 已提交
7317 7318

            then we get a 1-level LoDTensor:
7319
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
7320 7321 7322 7323 7324 7325
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
7326
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7327 7328 7329 7330
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
7331
                y.data = [[2, 4]]
Y
yangyaming 已提交
7332 7333 7334
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
7335
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
7336 7337 7338 7339 7340 7341
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
7342
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7343 7344 7345 7346
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
7347
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7348 7349 7350 7351
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7352
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7353 7354 7355 7356
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
7357
        x (Variable): Input variable which could be a Tensor or LoDTensor.
7358
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7359
                           from :attr:`y`.
Y
yangyaming 已提交
7360
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7361
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7362 7363

    Returns:
Y
Yibing Liu 已提交
7364
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7365 7366

    Raises:
Y
Yibing Liu 已提交
7367
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7368 7369 7370 7371

    Examples:
        .. code-block:: python

7372
            import paddle.fluid as fluid
7373 7374 7375
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7376 7377
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7378
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
7416
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
7417 7418 7419 7420 7421 7422

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
7423

7424 7425 7426 7427 7428 7429 7430 7431 7432 7433
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
7434 7435 7436
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

7437 7438
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7439 7440 7441 7442 7443 7444 7445 7446

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
7447
    helper.append_op(
7448
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
7449
    return out
D
dragonwarrior 已提交
7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7461
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7490
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7491 7492
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7505 7506 7507
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7521 7522 7523 7524


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7525
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7526
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7527

G
guosheng 已提交
7528
    Specifically, the number of values padded before the contents of :attr:`x`
7529
    in dimension :attr:`i` is indicated by :attr:`paddings[2i]`, and the number
G
guosheng 已提交
7530
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
7531
    indicated by :attr:`paddings[2i+1]`.
G
guosheng 已提交
7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7554
                         The length of :attr:paddings must be
G
guosheng 已提交
7555 7556 7557 7558 7559 7560 7561 7562 7563 7564
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7565

G
guosheng 已提交
7566
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7567 7568
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7569 7570 7571 7572 7573
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7574
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7575 7576 7577 7578 7579 7580 7581
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7582 7583


C
chengduo 已提交
7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7615 7616
		And
            pad_value = -1,
C
chengduo 已提交
7617

T
Tink_Y 已提交
7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7648 7649 7650
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7651 7652 7653 7654 7655
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7656
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7657 7658 7659 7660 7661 7662 7663 7664 7665
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7666 7667 7668 7669 7670 7671 7672
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7673 7674
    called label-smoothing regularization (LSR).

7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7698
                              be :math:`(1, class\_num)`.
7699 7700
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7701
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7702 7703 7704 7705 7706 7707 7708 7709 7710
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7711
            
7712
            import paddle.fluid as fluid
7713
            import paddle.fluid.layers as layers
7714 7715 7716 7717 7718 7719 7720 7721 7722 7723

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7724
    smooth_label = helper.create_variable_for_type_inference(dtype)
7725 7726 7727 7728 7729 7730 7731
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7732 7733


W
wopeizl 已提交
7734 7735 7736 7737 7738 7739 7740
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7741 7742 7743 7744 7745
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
W
wopeizl 已提交
7746 7747 7748 7749 7750 7751 7752 7753 7754 7755
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7786 7787


J
jerrywgz 已提交
7788 7789 7790 7791 7792 7793
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7794 7795
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7796 7797 7798 7799 7800
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7801 7802 7803 7804 7805
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates. 
J
jerrywgz 已提交
7806 7807 7808 7809 7810 7811 7812 7813 7814 7815
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7816
            import paddle.fluid as fluid
J
jerrywgz 已提交
7817 7818 7819 7820
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7821 7822 7823
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7824 7825 7826 7827 7828 7829
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7830
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7871 7872
        .. code-block:: python

S
SunGaofeng 已提交
7873 7874 7875
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7876
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7877
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7878 7879
    """
    label = one_hot(label, depth=input.shape[-1])
7880
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7881 7882 7883 7884 7885 7886
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7887 7888


7889 7890 7891 7892
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7893
                 resample='BILINEAR',
7894 7895
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7896
                 align_mode=1):
7897
    """
Q
qiaolongfei 已提交
7898
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7899

K
Kaipeng Deng 已提交
7900 7901 7902
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w)
    or (num_batches, channels, in_d, in_h, in_w), and the resizing only applies 
    on the last two/three dimensions(depth, hight and width).
7903 7904

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7905

7906
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7907

K
Kaipeng Deng 已提交
7908 7909
        'TRILINEAR' : Trilinear interpolation

7910
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7911

7912 7913 7914 7915 7916 7917 7918 7919 7920 7921
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
7922 7923 7924 7925 7926
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tink2123 已提交
7927
    Align_corners and align_mode are optinal parameters,the calculation method 
7928 7929 7930 7931
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7932
    .. code-block:: text
7933

T
Tink_Y 已提交
7934
        For scale:
7935
          
T
Tink_Y 已提交
7936
            if align_corners = True && out_size > 1 :
7937

T
Tink_Y 已提交
7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7949

T
Tink_Y 已提交
7950 7951
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7952

T
Tink_Y 已提交
7953 7954
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7955

T
Tink_Y 已提交
7956 7957
          else:
              align_corners = True
7958

T
Tink_Y 已提交
7959 7960
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7961

T
Tink_Y 已提交
7962 7963
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7964

T
Tink_Y 已提交
7965 7966 7967 7968 7969 7970 7971 7972 7973 7974
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7975

T
Tink_Y 已提交
7976 7977 7978 7979
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7980

T
Tink_Y 已提交
7981 7982
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7983

K
Kaipeng Deng 已提交
7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
8006 8007 8008 8009 8010 8011
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
8012 8013 8014
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

8015 8016


8017
    Args:
8018
        input (Variable): The input tensor of image resize layer,
8019
                          This is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
8020 8021 8022
                          (num_batches, channels, in_h, in_w) or a
                          5-D tensor of the shape
                          (num_batches, channls, in_d, in_h, in_w).
8023
        out_shape(list|tuple|Variable|None): Output shape of image resize
K
Kaipeng Deng 已提交
8024 8025 8026 8027
                                    layer, the shape is (out_h, out_w) when
                                    input is a 4-D tensor and is
                                    (out_d, out_h, out_w) when input is a
                                    5-D tensor. Default: None
D
dengkaipeng 已提交
8028
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8029
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8030
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8031
             Default: None.
8032 8033
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
8034 8035
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
8036 8037 8038
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8039
                                :attr:`out_shape` and :attr:`scale` specifying
8040 8041 8042 8043 8044 8045 8046
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8047 8048
                                constructing stage.
                                Default: None
8049 8050 8051 8052
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
8053
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
8054 8055
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
8056 8057

    Returns:
Q
update  
qiaolongfei 已提交
8058
        Variable: The output is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
8059 8060
        (num_batches, channls, out_h, out_w) or a 5-D tensor of the shape
        (num_batches, channels, out_d, out_h, out_w).
F
stash  
fengjiayi 已提交
8061

8062 8063 8064
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
8065 8066 8067 8068
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
8069
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
8070 8071
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
8072
        ValueError: scale should be greater than zero.
8073 8074
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
8075

8076 8077 8078
    Examples:
        .. code-block:: python

8079
            import paddle.fluid as fluid
R
ruri 已提交
8080
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8081
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
8082
    """
8083 8084
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
8085
        'TRILINEAR': 'trilinear',
8086 8087
        'NEAREST': 'nearest',
    }
8088 8089
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
8090 8091
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
8092
    resample_type = resample_methods[resample]
8093

K
Kaipeng Deng 已提交
8094 8095 8096 8097 8098
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

8099 8100 8101 8102 8103
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

8104
    if out_shape is None and scale is None:
8105
        raise ValueError("One of out_shape and scale must not be None.")
8106
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
8107
    dtype = helper.input_dtype()
8108 8109 8110 8111

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

8112
    inputs = {"X": input}
D
dengkaipeng 已提交
8113
    attrs = {
K
Kaipeng Deng 已提交
8114
        "out_d": 0,
D
dengkaipeng 已提交
8115 8116
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
8117 8118 8119 8120 8121
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

8122
    if out_shape is not None:
8123 8124 8125 8126
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
8127
            inputs['OutSize'] = out_shape
8128 8129
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
8130 8131
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
K
Kaipeng Deng 已提交
8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
                out_shape = list(map(int, out_shape))
                attrs['out_h'] = out_shape[0]
                attrs['out_w'] = out_shape[1]
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
                out_shape = list(map(int, out_shape))
                attrs['out_d'] = out_shape[0]
                attrs['out_h'] = out_shape[1]
                attrs['out_w'] = out_shape[2]
8147

8148
    else:
D
dengkaipeng 已提交
8149 8150
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
8151
        attrs['scale'] = float(scale)
8152

8153 8154 8155 8156 8157
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
8158
    out = helper.create_variable_for_type_inference(dtype)
8159
    helper.append_op(
8160
        type='{}_interp'.format(resample_type),
8161
        inputs=inputs,
8162
        outputs={"Out": out},
D
dengkaipeng 已提交
8163
        attrs=attrs)
8164
    return out
F
stash  
fengjiayi 已提交
8165 8166


8167
@templatedoc(op_type="bilinear_interp")
8168 8169 8170 8171
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
8172 8173
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
8174
                    align_mode=1):
8175
    """
8176 8177
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
8178 8179
    in priority order.

8180 8181 8182 8183
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
8184 8185
    again in the other direction.

8186
    For details of bilinear interpolation, please refer to Wikipedia:
8187
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
8188

T
tink2123 已提交
8189
    Align_corners and align_mode are optinal parameters,the calculation 
8190 8191 8192 8193
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
8194
    .. code-block:: text
8195

T
Tink_Y 已提交
8196
        For scale:
8197
          
T
Tink_Y 已提交
8198
            if align_corners = True && out_size > 1 :
8199

T
Tink_Y 已提交
8200 8201 8202 8203 8204
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
8205

T
Tink_Y 已提交
8206 8207 8208 8209 8210 8211 8212 8213 8214 8215
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
8216 8217


T
Tink_Y 已提交
8218
          else:
T
tink2123 已提交
8219

T
Tink_Y 已提交
8220 8221
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8222

T
Tink_Y 已提交
8223 8224
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
8225 8226 8227



Y
yuyang18 已提交
8228
    Args:
K
Kaipeng Deng 已提交
8229
        input(${x_type}): input should be a 4-D tensor.
Y
yuyang18 已提交
8230

D
dengkaipeng 已提交
8231 8232 8233
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
8234

Y
yuyang18 已提交
8235
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8236
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8237
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8238
             Default: None.
Y
yuyang18 已提交
8239 8240

        name(str|None): The output variable name.
8241 8242 8243
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8244
                                :attr:`out_shape` and :attr:`scale` specifying
8245 8246 8247 8248 8249 8250 8251
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8252 8253
                                constructing stage.
                                Default: None
8254 8255
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
8256 8257

    Returns:
K
Kaipeng Deng 已提交
8258
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8259 8260 8261 8262

    Examples:
        .. code-block:: python

8263
            import paddle.fluid as fluid
R
ruri 已提交
8264
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8265
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
8266 8267
    """

8268 8269
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
8270 8271


K
Kaipeng Deng 已提交
8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
                     align_mode=1):
    """
    Resize input by performing trilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

    Align_corners and align_mode are optinal parameters,the calculation 
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}



    Args:
        input(${x_type}): input should be a 4-D tensor.

        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_d, out_h, out_w).
                                    Default: None

        scale(float|None): The multiplier for the input depth, height or width.
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.

        name(str|None): The output variable name.
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
                                constructing stage.
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}

    Returns:
        A 5-D tensor in shape (num_batches, channels, out_d, out_h, out_w)

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            input = fluid.layers.data(name="input", shape=[3,6,9,11], dtype="float32")
            out = fluid.layers.resize_trilinear(input, out_shape=[12, 12, 12])
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
                        actual_shape, align_corners, align_mode)


8378
@templatedoc(op_type="nearest_interp")
8379 8380 8381 8382
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
8383 8384
                   actual_shape=None,
                   align_corners=True):
8385
    """
8386
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
8387 8388
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
8389 8390
    out_shape and scale in priority order.

8391 8392
    Example:

T
Tink_Y 已提交
8393 8394 8395 8396 8397
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
8398

T
Tink_Y 已提交
8399 8400 8401 8402 8403 8404 8405 8406
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
8407
          
T
Tink_Y 已提交
8408 8409
          if:
              align_corners = False
8410

T
Tink_Y 已提交
8411 8412
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8413

T
Tink_Y 已提交
8414 8415
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
8416

T
Tink_Y 已提交
8417 8418
          else:
              align_corners = True
8419

T
Tink_Y 已提交
8420 8421
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8422

T
Tink_Y 已提交
8423 8424
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8425 8426


8427
    For details of nearest neighbor interpolation, please refer to Wikipedia:
8428
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
8429 8430

    Args:
K
Kaipeng Deng 已提交
8431
        input(${x_type}): input should be a 4-D tensor.
Y
yuyang18 已提交
8432

D
dengkaipeng 已提交
8433 8434 8435
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
8436

Y
yuyang18 已提交
8437
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8438
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8439
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8440
             Default: None.
Y
yuyang18 已提交
8441 8442

        name(str|None): The output variable name.
8443 8444 8445
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8446
                                :attr:`out_shape` and :attr:`scale` specifying
8447 8448 8449 8450 8451 8452 8453
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8454 8455
                                constructing stage.
                                Default: None
8456
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
8457 8458

    Returns:
K
Kaipeng Deng 已提交
8459
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8460 8461 8462 8463

    Examples:
        .. code-block:: python

8464
            import paddle.fluid as fluid
R
ruri 已提交
8465
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8466
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
8467 8468
    """

8469 8470
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
8471 8472 8473 8474


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
8475 8476 8477
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
8478 8479 8480 8481 8482 8483 8484
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
8485
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
8486

8487
    Returns:
Q
update  
qiaolongfei 已提交
8488
        Variable: The output is a 4-D tensor of the shape
8489
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
8490 8491 8492 8493

    Examples:
        .. code-block:: python

8494
            import paddle.fluid as fluid
R
ruri 已提交
8495 8496
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
8497 8498 8499 8500 8501 8502 8503 8504 8505 8506
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
8507 8508 8509
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
8510 8511 8512
    return image_resize(input=input, out_shape=out_shape, resample=resample)


8513
def gather(input, index, overwrite=True):
W
whs 已提交
8514
    """
Q
qiaolongfei 已提交
8515 8516
    **Gather Layer**

8517
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
8518 8519 8520 8521
    of X indexed by `index` and concatenate them together.

    .. math::

8522
        Out = X[Index]
W
whs 已提交
8523 8524 8525 8526 8527 8528 8529


    .. code-block:: text


                Given:

8530 8531
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
8532 8533 8534 8535 8536 8537 8538 8539 8540 8541
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
8542
        input (Variable): The source input with rank>=1.
W
whs 已提交
8543
        index (Variable): The index input with rank=1.
8544 8545 8546 8547 8548 8549
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
8550 8551 8552 8553 8554

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
8555

W
whs 已提交
8556 8557
        .. code-block:: python

8558
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
8559 8560
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
8561 8562 8563 8564
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8565
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8566 8567 8568 8569
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
8570 8571
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
8572 8573 8574
    return out


8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
        input (Variable): The source input
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[2, 2], dtype='int32')
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


8660
def scatter(input, index, updates, name=None, overwrite=True):
8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
8678 8679 8680 8681
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
8682 8683 8684 8685 8686 8687 8688 8689

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

8690 8691 8692 8693 8694
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
8695

8696
            output = fluid.layers.scatter(input, index, updates)
8697 8698 8699
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8700
    out = helper.create_variable_for_type_inference(dtype)
8701 8702 8703 8704 8705
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
8706
        attrs={'overwrite': overwrite},
8707 8708 8709 8710
        outputs={"Out": out})
    return out


8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831
def scatter_nd_add(ref, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
    or slice in a Variable. :attr:`ref` is a Tensor with rank :math:`R` 
    and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` 
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` 
    is a Tensor with rank :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`ref` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text
        
        Given:

        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:
             
            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:
             
            output = [[67, 19], [-16, -27]]

    Args:
        ref (Variable): The ref input.
        index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter_nd_add op, and it must have the same type
                            as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:]
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape and type as ref.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            ref = fluid.layers.data(name='ref', shape=[3, 5, 9, 10], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3, 2], dtype='int32', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 9, 10], dtype='float32', append_batch_size=False)

            output = fluid.layers.scatter_nd_add(ref, index, updates)
    """
    if ref.dtype != updates.dtype:
        raise ValueError("ref and updates must have same data type.")

    helper = LayerHelper('scatter_nd_add', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="scatter_nd_add",
        inputs={"X": ref,
                "Index": index,
                "Updates": updates},
        outputs={"Out": output})
    return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according 
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the 
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` 
    is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . 
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated. 
    Because of the numerical approximation issues, the different order of repeated elements 
    in :attr:`index` may cause different results. The specific calculation method can be 
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter_nd op. 
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            index = fluid.layers.data(name='index', shape=[3, 2], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 9, 10], dtype='float32', append_batch_size=False)
            shape = [3, 5, 9, 10]

            output = fluid.layers.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)


Q
Qingsheng Li 已提交
8832 8833 8834 8835 8836 8837 8838 8839 8840
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
8841

Q
Qingsheng Li 已提交
8842
    Given the following input:
H
haowang101779990 已提交
8843

Q
Qingsheng Li 已提交
8844
    .. code-block:: text
H
haowang101779990 已提交
8845

Q
Qingsheng Li 已提交
8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
8858

Q
Qingsheng Li 已提交
8859
    .. code-block:: text
H
haowang101779990 已提交
8860

Q
Qingsheng Li 已提交
8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8876
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8877 8878 8879 8880

    Examples:

        .. code-block:: python
8881
	
8882
            import paddle.fluid as fluid
8883
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8884

8885 8886 8887
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8888 8889 8890
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8891
    assert not in_dygraph_mode(), (
8892
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8893 8894
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8895
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8896 8897 8898 8899 8900 8901 8902 8903 8904
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8918

8919
    Examples:
8920
        >>> import paddle.fluid as fluid
8921 8922
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8923
    """
F
stash  
fengjiayi 已提交
8924
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8925
    dtype = x.dtype
X
Xin Pan 已提交
8926
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8927
    if seed is None:
8928
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8929
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8930
    if isinstance(seed, int):
F
fengjiayi 已提交
8931 8932 8933 8934 8935
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8936 8937 8938 8939
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8940
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8941 8942
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8943 8944
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8945
    return out
W
whs 已提交
8946 8947


8948
def log(x, name=None):
W
wanghaoshuang 已提交
8949 8950 8951 8952 8953
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8954
        Out = \\ln(x)
W
wanghaoshuang 已提交
8955 8956

    Args:
8957
        x (Variable): Input tensor.
8958 8959
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8960 8961 8962 8963 8964 8965 8966 8967

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8968
            import paddle.fluid as fluid
8969
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8970
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8971 8972
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8973
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8974
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8975
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8976 8977 8978
    return out


8979
def relu(x, name=None):
W
wanghaoshuang 已提交
8980 8981
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8982
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8983 8984 8985 8986
    the tensor elementwise.

    .. math::

8987
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8988 8989

    Args:
8990
        x (Variable): The input tensor.
8991 8992
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8993 8994 8995 8996 8997 8998 8999 9000

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

9001
            import paddle.fluid as fluid
9002
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
9003
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
9004 9005
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
9006
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9007
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
9008 9009
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
9010
    return out
9011 9012


C
chengduo 已提交
9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
9037 9038 9039 9040 9041 9042
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
9058 9059 9060
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
9061 9062 9063 9064
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
9065
    .. math::
9066

H
haowang101779990 已提交
9067
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
9068

9069
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
9070 9071 9072 9073 9074
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
9075
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
9076
                           Its shape should be the same as input.
9077
        num_classes (int): The possible number of labels.
W
whs 已提交
9078 9079

    Returns:
M
minqiyang 已提交
9080 9081
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
9082
                     Three variables:
M
minqiyang 已提交
9083

H
haowang101779990 已提交
9084 9085 9086
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
9087 9088 9089 9090

    Examples:

        .. code-block:: python
9091

B
Bai Yifan 已提交
9092
            import paddle.fluid as fluid
9093 9094 9095 9096
            iou_shape = [32, 32]
            num_classes = 5
            predict = fluid.layers.data(name='predict', shape=iou_shape)
            label = fluid.layers.data(name='label', shape=iou_shape)
B
Bai Yifan 已提交
9097
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
9098
                                                          num_classes)
W
whs 已提交
9099 9100 9101
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
9102 9103 9104
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
9105 9106
    helper.append_op(
        type="mean_iou",
W
whs 已提交
9107 9108
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
9109
        outputs={
W
whs 已提交
9110 9111 9112
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
9113 9114 9115
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
9158
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
9159
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
9160
            of integers. If a tensor Variable, it's rank must be the same as `x`.
9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
9178
            import paddle.fluid as fluid
9179 9180 9181 9182 9183 9184
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
9185
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
9186 9187 9188 9189 9190

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
9191
            isinstance(shape, Variable)):
9192 9193 9194 9195 9196
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
9197
    out = helper.create_variable_for_type_inference(x.dtype)
9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
9215 9216


W
whs 已提交
9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
9234

W
whs 已提交
9235
              out_shape = [2, 3, 5, 5]
9236

W
whs 已提交
9237
          Step 1:
9238

W
whs 已提交
9239 9240 9241
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
9242

W
whs 已提交
9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
9288
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
9289
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
9302

S
SunGaofeng 已提交
9303
            import paddle.fluid as fluid
W
whs 已提交
9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
9315
            isinstance(out_shape, Variable)):
W
whs 已提交
9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


9337 9338
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
9339

9340 9341
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
9342
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
9343 9344 9345
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
9346

9347 9348
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
9349

H
haowang101779990 已提交
9350 9351
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
9352 9353
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
9354

H
haowang101779990 已提交
9355 9356 9357 9358 9359 9360 9361 9362
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
9363 9364 9365

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

9383
            import paddle.fluid as fluid
9384 9385 9386
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
9401
    out = helper.create_variable_for_type_inference("float32")
9402 9403 9404 9405 9406 9407 9408 9409

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
9410 9411


M
minqiyang 已提交
9412 9413
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
9414
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
9415
    which compares left score and right score passed in.
M
minqiyang 已提交
9416
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
9417 9418 9419

    .. math::

H
haowang101779990 已提交
9420
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
9421 9422

    Args:
M
minqiyang 已提交
9423
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
9424 9425
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
9426
       margin (float): Indicates the given margin.
M
minqiyang 已提交
9427 9428
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
9429

M
minqiyang 已提交
9430
    Returns:
M
minqiyang 已提交
9431
       Variable: The ranking loss.
H
haowang101779990 已提交
9432

M
minqiyang 已提交
9433
    Raises:
M
minqiyang 已提交
9434
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
9435

M
minqiyang 已提交
9436
    Examples:
H
haowang101779990 已提交
9437

M
minqiyang 已提交
9438
        .. code-block:: python
H
haowang101779990 已提交
9439

9440
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
9441 9442 9443
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
9444 9445
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
9446
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
9447 9448 9449 9450 9451 9452
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
9453 9454
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
9478
        .. code-block:: text
W
whs 已提交
9479

T
Tink_Y 已提交
9480
	      Given that X is a channel of image from input:
M
minqiyang 已提交
9481

T
Tink_Y 已提交
9482 9483
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
9484

T
Tink_Y 已提交
9485
	      Case 0:
M
minqiyang 已提交
9486

T
Tink_Y 已提交
9487 9488 9489
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
9490

T
Tink_Y 已提交
9491 9492 9493
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
9494

T
Tink_Y 已提交
9495
	      Case 1:
M
minqiyang 已提交
9496

T
Tink_Y 已提交
9497 9498
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
9499

T
Tink_Y 已提交
9500 9501 9502
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
9503

T
Tink_Y 已提交
9504
	      Case 2:
M
minqiyang 已提交
9505

T
Tink_Y 已提交
9506 9507
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
9508

T
Tink_Y 已提交
9509 9510 9511
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
9512 9513


W
whs 已提交
9514 9515
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
9516
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
9534 9535 9536 9537 9538
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
9539 9540 9541 9542
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
9543
    out = helper.create_variable_for_type_inference(dtype)
9544 9545 9546 9547 9548 9549 9550 9551 9552
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
9553
    helper.append_op(
9554
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
9555 9556 9557 9558

    return out


9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9571 9572 9573 9574 9575

    Examples:

        .. code-block:: python

9576
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9577 9578
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
9579 9580
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
9581
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9602 9603 9604 9605 9606

    Examples:

        .. code-block:: python

9607
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9608 9609
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
9610 9611
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
9612
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
9627
        factor(float|Variable|1.0): The exponential factor of Pow.
9628 9629 9630 9631 9632
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9633 9634 9635 9636 9637

    Examples:

        .. code-block:: python

9638
            import paddle.fluid as fluid
9639

Z
ZhenWang 已提交
9640
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
9641 9642 9643 9644 9645 9646 9647

            # example 1: argument factor is float
            y_1 = fluid.layers.pow(x, factor=2.0)

            # example 2: argument factor is Variable
            factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
            y_2 = fluid.layers.pow(x, factor=factor_tensor)
9648 9649
    """
    helper = LayerHelper('pow', **locals())
9650 9651 9652 9653 9654 9655 9656 9657
    inputs = {'X': x}
    attrs = {}
    if isinstance(factor, Variable):
        factor.stop_gradient = True
        inputs['FactorTensor'] = factor
    else:
        attrs['factor'] = factor

X
Xin Pan 已提交
9658
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9659
    helper.append_op(
9660
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9677 9678 9679 9680 9681

    Examples:

        .. code-block:: python

9682
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9683
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
9684
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
9685 9686
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
9687
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9710 9711 9712 9713 9714

    Examples:

        .. code-block:: python

9715
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9716 9717
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
9718 9719
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
9720
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9742 9743 9744 9745 9746

    Examples:

        .. code-block:: python

9747
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9748 9749
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
9750 9751
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
9752
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9753 9754 9755 9756 9757 9758 9759 9760
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
9761 9762 9763 9764
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
9765 9766
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
9767

J
jerrywgz 已提交
9768 9769 9770 9771 9772 9773 9774 9775
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
9776 9777
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
9778
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
9779
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
9780
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
9781
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
9782
          will be named automatically.
J
jerrywgz 已提交
9783 9784 9785 9786 9787 9788 9789 9790

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
9791 9792 9793
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
9794
            mode = 'channel'
J
jerrywgz 已提交
9795 9796 9797
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9809
        attr=helper.param_attr,
J
jerrywgz 已提交
9810 9811 9812 9813
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
9814
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9815 9816 9817 9818 9819 9820 9821 9822 9823
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9824 9825 9826 9827 9828 9829 9830 9831 9832 9833
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9834
    Returns:
9835
        output(${out_type}): ${out_comment}
9836 9837 9838

    Examples:

9839
    .. code-block:: python
9840

9841
            import paddle.fluid as fluid
H
haowang101779990 已提交
9842 9843
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
9844 9845
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9846
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9865
    Returns:
9866
        output(${out_type}): ${out_comment}
9867 9868 9869 9870 9871

    Examples:

        .. code-block:: python

9872
            import paddle.fluid as fluid
H
haowang101779990 已提交
9873 9874
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
9875 9876
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9877
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9895
    Returns:
9896
        output(${out_type}): ${out_comment}
9897 9898 9899

    Examples:

9900 9901 9902 9903 9904
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9905
            y = fluid.layers.soft_relu(x, threshold=20.0)
9906 9907
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9908
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9909 9910 9911 9912 9913 9914 9915 9916
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9917 9918 9919 9920
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9921

H
haowang101779990 已提交
9922
    For Example:
M
minqiyang 已提交
9923

H
haowang101779990 已提交
9924
    .. code-block:: text
9925

H
haowang101779990 已提交
9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9947 9948 9949

    Args:
        x (Variable): A tensor of rank >= axis.
9950 9951
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9952 9953 9954 9955 9956 9957 9958 9959
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9960 9961 9962
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9963 9964 9965 9966
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9967
        ValueError: If axis is not in range [0, rank(x)].
9968 9969 9970 9971 9972

    Examples:

        .. code-block:: python

9973
            import paddle.fluid as fluid
9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9985 9986
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9987
    helper.append_op(
9988
        type='flatten2',
9989
        inputs={"X": x},
9990 9991
        outputs={'Out': out,
                 'XShape': x_shape},
9992 9993
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9994 9995


C
chenweihang 已提交
9996
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9997
    """
C
chenweihang 已提交
9998
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9999
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
10000 10001
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
10002

H
haowang101779990 已提交
10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
10020 10021

    Args:
C
chenweihang 已提交
10022 10023 10024
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
10025 10026 10027 10028 10029 10030 10031

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

10032 10033 10034
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
10035 10036
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
10037
    assert not in_dygraph_mode(), (
10038
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
10039
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
10040 10041
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
10042 10043 10044 10045 10046 10047
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
10048
    return out
10049

10050

S
sneaxiy 已提交
10051 10052 10053 10054 10055 10056 10057 10058 10059
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
10060

S
sneaxiy 已提交
10061
    .. math::
10062

S
sneaxiy 已提交
10063 10064 10065
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
10066
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
10067 10068 10069 10070
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
10071 10072 10073
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
10074 10075
    Returns:
        Variable: The output sequence mask.
10076

10077 10078 10079
    Examples:
        .. code-block:: python
	
10080
            import paddle.fluid as fluid
10081 10082 10083 10084 10085
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
10086
    """
Q
qingqing01 已提交
10087
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
10088
    if name is None:
X
Xin Pan 已提交
10089
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
10090
    else:
X
Xin Pan 已提交
10091
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
10092

10093 10094 10095 10096 10097 10098 10099 10100
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
10101
    helper.append_op(
10102 10103 10104
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
10105
    return out
S
sneaxiy 已提交
10106 10107


X
Xin Pan 已提交
10108
def stack(x, axis=0):
S
sneaxiy 已提交
10109 10110 10111 10112
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
10113 10114 10115 10116 10117 10118 10119

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
10120
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
10121
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
10122

C
chengduozh 已提交
10123 10124
    For Example:

C
chengduozh 已提交
10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
10163
    Args:
10164
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
10165
        axis (int|None): The axis along which all inputs are stacked.
10166

S
sneaxiy 已提交
10167 10168
    Returns:
        Variable: The stacked variable.
10169

10170 10171 10172
    Examples:
        .. code-block:: python

10173
            import paddle.fluid as fluid
10174
            import paddle.fluid.layers as layers
10175 10176
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
10177 10178
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
10179 10180
    """

X
Xin Pan 已提交
10181 10182 10183 10184 10185 10186
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
10187
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
10188
    helper.append_op(
S
sneaxiy 已提交
10189 10190
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
10191

X
Xin Pan 已提交
10192
    return out
D
dzhwinter 已提交
10193 10194


J
Jiawei Wang 已提交
10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264
@templatedoc(op_type="filter_by_instag")
def filter_by_instag(ins, ins_tag, filter_tag, is_lod):
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
        attrs={'is_lod': is_lod})

    return [out, loss_weight]


D
dzhwinter 已提交
10265 10266 10267 10268 10269
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
10270

D
dzhwinter 已提交
10271 10272 10273
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
10274
    raised.
D
dzhwinter 已提交
10275 10276

    Args:
M
minqiyang 已提交
10277
        x (Variable): Input variable.
D
dzhwinter 已提交
10278 10279
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
10280

D
dzhwinter 已提交
10281 10282
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
10283

10284 10285 10286 10287 10288 10289
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
10290 10291 10292 10293 10294 10295 10296 10297 10298 10299
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
10300
    for _ in range(num):
X
Xin Pan 已提交
10301
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
10302 10303 10304 10305 10306 10307 10308 10309

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
10322

W
whs 已提交
10323 10324 10325 10326
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
10327

W
whs 已提交
10328
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
10329

W
whs 已提交
10330
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
10331

W
whs 已提交
10332 10333 10334 10335
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
10336

W
whs 已提交
10337 10338
    Args:
        x (Variable): A tensor with rank in [1, 6].
L
liym27 已提交
10339
        expand_times (list|tuple|Variable): Expand times number for each dimension.
W
whs 已提交
10340 10341 10342 10343 10344 10345 10346

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
L
liym27 已提交
10347

W
wangchaochaohu 已提交
10348
            import paddle.fluid as fluid
L
liym27 已提交
10349 10350 10351 10352 10353 10354 10355 10356 10357

            # example 1:
            data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
            expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2])

            # example 2:
            data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3)
            expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4)
            expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
W
whs 已提交
10358
    """
L
liym27 已提交
10359 10360 10361 10362 10363

    if not isinstance(expand_times, (list, tuple, Variable)):
        raise ValueError(
            "Input expand_times must be an Variable, python list or tuple.")

W
whs 已提交
10364
    helper = LayerHelper('expand', input=x, **locals())
L
liym27 已提交
10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396
    inputs = {"X": x}
    attrs = {}

    def contain_var(expand_times):
        for ele in expand_times:
            if isinstance(ele, Variable):
                return True
        return False

    def get_attr_expand_times(list_expand_times):
        attrs_expand_times = []
        for idx, times in enumerate(list_expand_times):
            if isinstance(times, Variable):
                attrs_expand_times.append(-1)
            else:
                attrs_expand_times.append(times)
                assert times > 0, (
                    "Each element given in expand_times must not be negtive.")
        return attrs_expand_times

    def get_new_expand_times_tensor(list_expand_times):
        new_expand_times_tensor = []
        for ele in list_expand_times:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                new_expand_times_tensor.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                new_expand_times_tensor.append(temp_out)
        return new_expand_times_tensor
10397 10398 10399 10400 10401

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:
L
liym27 已提交
10402 10403 10404 10405 10406 10407 10408 10409
        if isinstance(expand_times, Variable):
            expand_times.stop_gradient = True
            inputs['ExpandTimes'] = expand_times
        elif isinstance(expand_times, (list, tuple)):
            attrs['expand_times'] = get_attr_expand_times(expand_times)
            if contain_var(expand_times):
                inputs['expand_times_tensor'] = get_new_expand_times_tensor(
                    expand_times)
10410

L
liym27 已提交
10411 10412
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
10413
    helper.append_op(
10414
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
10415
    return out
S
sneaxiy 已提交
10416 10417


G
fix  
gongweibao 已提交
10418 10419 10420
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
10421
@templatedoc()
G
fix  
gongweibao 已提交
10422 10423 10424 10425 10426 10427 10428 10429 10430
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
10431
    ${comment}
G
fix  
gongweibao 已提交
10432 10433

    Args:
G
gongweibao 已提交
10434 10435 10436
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
10437
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
10438 10439 10440
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10441 10442
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
10443
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10444

10445 10446 10447
    Examples:
        .. code-block:: python

10448
            import paddle.fluid as fluid
10449 10450
            import paddle.fluid.layers as layers 

10451 10452
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
10453 10454 10455
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
10456
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
10473 10474


G
gongweibao 已提交
10475
@templatedoc()
X
Xin Pan 已提交
10476
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10477
    """
G
gongweibao 已提交
10478
    ${comment}
G
fix  
gongweibao 已提交
10479 10480

    Args:
G
gongweibao 已提交
10481 10482 10483 10484
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10485 10486 10487
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
10488
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10489

10490 10491 10492
    Examples:
        .. code-block:: python

10493
            import paddle.fluid as fluid
J
JesseyXujin 已提交
10494
            import paddle.fluid.layers as layers
10495
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
10496 10497 10498
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
10499
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10500 10501 10502 10503 10504 10505 10506 10507 10508 10509
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
10510
            'use_mkldnn': False
G
fix  
gongweibao 已提交
10511 10512 10513 10514 10515
        })

    return out


G
gongweibao 已提交
10516
@templatedoc()
G
fix  
gongweibao 已提交
10517
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10518
    """
G
gongweibao 已提交
10519
    ${comment}
G
fix  
gongweibao 已提交
10520 10521

    Args:
G
gongweibao 已提交
10522 10523 10524 10525
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
10526
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10527 10528

    Returns:
G
gongweibao 已提交
10529
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10530

10531 10532 10533
    Examples:
        .. code-block:: python

10534
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10535
            x = fluid.layers.data(
10536 10537 10538 10539 10540
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
10541
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
10542 10543 10544
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
10545
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
10557
@templatedoc()
G
fix  
gongweibao 已提交
10558 10559 10560 10561 10562 10563 10564 10565 10566
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
10567
    ${comment}
G
fix  
gongweibao 已提交
10568 10569

    Args:
G
gongweibao 已提交
10570 10571
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
10572
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
10573 10574 10575 10576
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10577
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10578 10579

    Returns:
G
gongweibao 已提交
10580
        out (Variable): ${out_comment}
10581 10582 10583 10584

    Examples:
        .. code-block:: python

10585
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10586
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
10587

Y
Yibing Liu 已提交
10588
            out = fluid.layers.gaussian_random_batch_size_like(
10589
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
10590 10591 10592
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
10593
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
10612
@templatedoc()
X
Xin Pan 已提交
10613
def sum(x):
G
fix  
gongweibao 已提交
10614
    """
G
gongweibao 已提交
10615
    ${comment}
G
fix  
gongweibao 已提交
10616 10617

    Args:
G
gongweibao 已提交
10618
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
10619 10620

    Returns:
G
gongweibao 已提交
10621
        out (Variable): ${out_comment}
10622 10623 10624 10625

    Examples:
        .. code-block:: python

10626
            import paddle.fluid as fluid
10627 10628 10629 10630
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
10631 10632 10633
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
10634 10635
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
10636 10637 10638 10639
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
10640
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
10641 10642 10643 10644

    return out


G
gongweibao 已提交
10645
@templatedoc()
G
fix  
gongweibao 已提交
10646 10647
def slice(input, axes, starts, ends):
    """
10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
10663

10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
10681
    Args:
G
gongweibao 已提交
10682 10683
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
10684 10685
        starts (List|Variable): ${starts_comment}
        ends (List|Variable): ${ends_comment}
G
fix  
gongweibao 已提交
10686 10687

    Returns:
G
gongweibao 已提交
10688
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10689

10690 10691 10692
    Examples:
        .. code-block:: python

10693
            import paddle.fluid as fluid
10694

10695
            input = fluid.layers.data(
10696 10697
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
G
fix  
gongweibao 已提交
10709 10710
    """

10711 10712 10713 10714 10715 10716 10717
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

G
fix  
gongweibao 已提交
10718
    helper = LayerHelper('slice', **locals())
10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
            infer_flags = list(-1 for i in range(len(axes)))
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if not contain_var(starts):
                attrs['starts'] = starts
            else:
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
            infer_flags = list(-1 for i in range(len(axes)))
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if not contain_var(ends):
                attrs['ends'] = ends
            else:
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
10789 10790
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
10791
    helper.append_op(
10792
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
G
fix  
gongweibao 已提交
10793 10794 10795 10796

    return out


W
wangchaochaohu 已提交
10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875
@templatedoc()
def strided_slice(input, axes, starts, ends, strides):
    """
    Strided Slice OP

    The conceptualization that really helped me understand this was 
    that this function emulates the indexing behavior of numpy arrays.
    If you're familiar with numpy arrays, you'll know that you can make 
    slices via input[start1:end1:step1, start2:end2:step2, ... startN:endN:stepN]. 
    Basically, a very succinct way of writing for loops to get certain elements of the array.
    strided_slice just allows you to do this fancy indexing without the syntactic sugar. 
    The numpy (#input[start1:end1:step1, start2:end2:step2, ... startN:endN:stepN])
    example from above just becomes fluid.strided_slice(input,[0, 1, ..., N], 
    [start1, start2, ..., startN], [end1, end2, ..., endN], [strides1, strides2, ..., stridesN]),
    the axes which controls the dimension you want to slice makes it more flexible.

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7] ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, -1]
                ends = [-1, 0]
                strides = [1, -1]
            Then:
                result = [ [4, 3, 2] ]
    Atrgs:
       input (Varibale): the input variable.
       axes(List):axis we need to slice
       starts (List): the start index in axis
       ends (List): the end index in axis
       strides (List): the stride length when we do slice operation
    Returns
       out(Variable): the result by strided_slice Op
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
 
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]
            strides= [1, 1, 1]

            input = fluid.layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides)
    """
    helper = LayerHelper('strided_slice', **locals())
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))

    helper.append_op(
        type='strided_slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'strides': strides
        })

    return out


G
fix  
gongweibao 已提交
10876 10877
def shape(input):
    """
C
chengduozh 已提交
10878 10879
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10880
    Get the shape of the input.
G
fix  
gongweibao 已提交
10881 10882

    Args:
C
chengduozh 已提交
10883
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
10884 10885

    Returns:
C
fix doc  
chengduozh 已提交
10886
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
10887

10888 10889 10890
    Examples:
        .. code-block:: python

10891 10892 10893
            import paddle.fluid as fluid

            input = fluid.layers.data(
10894
                name="input", shape=[3, 100, 100], dtype="float32")
10895
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
10896 10897 10898
    """

    helper = LayerHelper('shape', **locals())
10899
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10900
    helper.append_op(
G
fix  
gongweibao 已提交
10901
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10902 10903

    return out
G
merge  
gongweibao 已提交
10904 10905


Z
zhoukunsheng 已提交
10906 10907 10908 10909
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
10910
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10911 10912 10913 10914 10915 10916 10917 10918 10919 10920

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

10921 10922 10923 10924
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
10925 10926 10927 10928 10929 10930 10931 10932
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10962 10963 10964 10965
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
10966
    if in_dygraph_mode():
X
Xin Pan 已提交
10967 10968 10969
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
10970 10971 10972 10973
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10974 10975
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
10976
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10977 10978 10979
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10980

S
sneaxiy 已提交
10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
10992
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10993 10994 10995 10996 10997 10998 10999 11000
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
11001
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
11002
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
11003 11004 11005

    Returns:
        out(${out_type}): ${out_comment}
11006 11007 11008 11009 11010 11011 11012 11013

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
11014 11015 11016
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
11017
    if name is None:
X
Xin Pan 已提交
11018
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
11019 11020 11021
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
11022 11023 11024 11025 11026 11027 11028 11029 11030 11031

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
11032
    return helper.append_activation(out)
S
sneaxiy 已提交
11033 11034


X
Xin Pan 已提交
11035
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11036 11037 11038
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
11039
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11040 11041 11042
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
11043
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11044 11045 11046
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
11047
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11048 11049 11050
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
11051
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11052 11053 11054
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
11055
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11056 11057 11058
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
11059
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11060 11061 11062
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


11063 11064 11065 11066 11067 11068 11069 11070
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
11071
for func in [
11072 11073 11074 11075 11076 11077 11078 11079 11080
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
11081 11082 11083 11084 11085
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
11086 11087
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
11088
        ])
11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
11126 11127


11128
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
11129 11130
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
11131 11132
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
11133 11134 11135

    if out is None:
        if name is None:
X
Xin Pan 已提交
11136
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
11152
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11164 11165 11166 11167

    Examples:
        .. code-block:: python

11168
            import paddle.fluid as fluid
11169
            left = fluid.layers.data(
石晓伟 已提交
11170
                name='left', shape=[1], dtype='bool')
11171
            right = fluid.layers.data(
石晓伟 已提交
11172
                name='right', shape=[1], dtype='bool')
11173
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
11174 11175 11176 11177 11178 11179 11180
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11181
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11193 11194 11195 11196

    Examples:
        .. code-block:: python

11197
            import paddle.fluid as fluid
11198
            left = fluid.layers.data(
石晓伟 已提交
11199
                name='left', shape=[1], dtype='bool')
11200
            right = fluid.layers.data(
石晓伟 已提交
11201
                name='right', shape=[1], dtype='bool')
11202
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
11203 11204 11205 11206 11207 11208 11209
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11210
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11222 11223 11224 11225

    Examples:
        .. code-block:: python

11226
            import paddle.fluid as fluid
11227
            left = fluid.layers.data(
石晓伟 已提交
11228
                name='left', shape=[1], dtype='bool')
11229
            right = fluid.layers.data(
石晓伟 已提交
11230
                name='right', shape=[1], dtype='bool')
11231
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
11232 11233 11234 11235 11236 11237 11238
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11239
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
11240 11241 11242 11243 11244 11245 11246 11247 11248 11249
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11250 11251 11252 11253

    Examples:
        .. code-block:: python

11254
            import paddle.fluid as fluid
11255
            left = fluid.layers.data(
石晓伟 已提交
11256
                name='left', shape=[1], dtype='bool')
11257
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
11258 11259 11260 11261
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11277 11278 11279 11280

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11281
            import paddle.fluid as fluid
11282 11283 11284
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
11285 11286 11287 11288 11289
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
11290 11291
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11292 11293 11294

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11318 11319 11320 11321

    Examples:
        .. code-block:: python

11322
            import paddle.fluid as fluid
11323 11324 11325
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
11326 11327 11328 11329 11330
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
11331 11332
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11333 11334 11335

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11336 11337 11338 11339 11340 11341 11342 11343

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11357 11358 11359 11360

    Examples:
        .. code-block:: python

11361
            import paddle.fluid as fluid
11362 11363 11364
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
11365 11366 11367 11368 11369
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
11370
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11371 11372 11373 11374 11375 11376 11377 11378 11379 11380
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11392 11393 11394 11395

    Examples:
        .. code-block:: python

11396
            import paddle.fluid as fluid
11397 11398 11399 11400 11401
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
11440 11441 11442 11443 11444
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
11445
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11446 11447 11448 11449 11450 11451 11452 11453 11454
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
11455 11456
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
11457 11458 11459 11460 11461 11462
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
11463 11464 11465
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
11466 11467
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
11468 11469 11470 11471 11472 11473
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
11474
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
11475
        name(basestring|None): Name of the output.
11476 11477
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
11478 11479 11480

    Returns:
        out(${out_type}): ${out_comment}
11481 11482 11483 11484

    Examples:
        .. code-block:: python

11485
            import paddle.fluid as fluid
11486 11487 11488 11489 11490 11491 11492 11493 11494 11495
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
11496 11497 11498 11499 11500
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
11501
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11502 11503 11504 11505 11506 11507 11508 11509
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
11510 11511
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
11528 11529 11530 11531

    Examples:
        .. code-block:: python

11532
            import paddle.fluid as fluid
J
jerrywgz 已提交
11533 11534 11535 11536 11537
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
11538 11539 11540 11541
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
11542
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11543 11544 11545 11546 11547 11548 11549 11550 11551 11552
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
11553 11554


J
JiabinYang 已提交
11555
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
11556
    """
J
JiabinYang 已提交
11557
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
11558 11559 11560

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
11561
    The attr blocksize indicates the input block size.
11562 11563

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
11564
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
11565 11566

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
11567
    (but keeping all data)
J
JiabinYang 已提交
11568

J
JiabinYang 已提交
11569
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
11570
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
11571 11572 11573 11574 11575
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
11576
    Args:
J
JiabinYang 已提交
11577
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
11578
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
11579 11580

    Returns:
J
JiabinYang 已提交
11581
        Variable: The output LoDtensor.
J
JiabinYang 已提交
11582 11583

    Raises:
J
JiabinYang 已提交
11584
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
11585 11586 11587

    Examples:
        .. code-block:: python
11588 11589 11590
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
11591 11592

            data = fluid.layers.data(
11593
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
11594
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
11595
                x=data, blocksize=2)
11596

11597
            exe = fluid.Executor(fluid.CPUPlace())
11598 11599 11600 11601
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
11602

J
JiabinYang 已提交
11603 11604
    """

J
JiabinYang 已提交
11605
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
11606

J
JiabinYang 已提交
11607 11608
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
11609 11610

    if name is None:
J
JiabinYang 已提交
11611 11612
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
11613 11614 11615 11616 11617
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
11618
        type="space_to_depth",
J
JiabinYang 已提交
11619
        inputs={"X": x},
J
JiabinYang 已提交
11620
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11621
        outputs={"Out": out})
J
JiabinYang 已提交
11622 11623
    return out

J
JiabinYang 已提交
11624

S
sneaxiy 已提交
11625 11626
@templatedoc()
def sequence_reverse(x, name=None):
11627
    """
S
sneaxiy 已提交
11628 11629 11630 11631 11632 11633 11634 11635
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
11636 11637 11638 11639 11640 11641 11642

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
11643
    """
L
lujun 已提交
11644
    assert not in_dygraph_mode(), (
11645
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
11646 11647
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
11648
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
11649 11650 11651 11652 11653 11654 11655 11656 11657 11658
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
11659 11660


11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727
def sequence_topk_avg_pooling(input, row, col, topks, channel_num):
    """
    The :attr:`topks` is a list with incremental values in this function. For each topk,
    it will average the topk features as an output feature for each channel of every 
    input sequence. Both :attr:`row` and :attr:`col` are LodTensor, which provide height 
    and width information for :attr:`input` tensor. If feature size of input sequence is less 
    than topk, it will padding 0 at the back.

    .. code-block:: text

            If channel_num is 2 and given row LoDTensor and col LoDTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]

            input is a LoDTensor with input.lod[0][i] = channel_num * row.lod[0][i] * col.lod[0][i] 
                input.lod = [[60, 56]]  # where 60 = channel_num * 5 * 6
                input.dims = [116, 1]   # where 116 = 60 + 56

            If topks is [1, 3, 5], then we get a 1-level LoDTensor:
                out.lod =  [[5, 4]] 	# share Lod info with row LodTensor
                out.dims = [9, 6]   	# where 6 = len(topks) * channel_num

    Args:
        input (Variable): The input should be 2D LodTensor with dims[1] equals 1.
        row (Variable): The row shoud be 1-level LodTensor to provide the height information
                        of the input tensor data.
        col (Variable): The col shoud be 1-level LodTensor to provide the width information
                        of the input tensor data.
        topks (list): A list of incremental value to average the topk feature.
        channel_num (int): The number of input channel.

    Returns:
        Variable: output LodTensor specified by this layer.

    Examples:

        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = layers.sequence_topk_avg_pooling(input=x_lod_tensor,
                                                   row=row_lod_tensor,
                                                   col=col_lod_tensor,
                                                   topks=[1, 3, 5],
                                                   channel_num=5)
    """
    helper = LayerHelper('sequence_topk_avg_pooling', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    pos = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype(), stop_gradient=True)
    helper.append_op(
        type='sequence_topk_avg_pooling',
        inputs={'X': input,
                'ROW': row,
                'COLUMN': col},
        outputs={'Out': out,
                 'pos': pos},
        attrs={'topks': topks,
               'channel_num': channel_num})

    return out


11728 11729 11730 11731 11732 11733
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
11734 11735 11736 11737 11738
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
11739

11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
11752
        act (str, default None): Activation to be applied to the output of this layer.
11753 11754 11755

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

11770 11771 11772 11773
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
11774
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
11786
    return helper.append_activation(out)
11787 11788


B
barrierye 已提交
11789
def similarity_focus(input, axis, indexes, name=None):
11790
    """
B
barrierye 已提交
11791
    SimilarityFocus Operator
B
barrierye 已提交
11792 11793

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
11794

11795 11796 11797
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
11798
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
11799 11800 11801 11802 11803 11804 11805
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
11806
       each index.
B
barrierye 已提交
11807 11808 11809 11810
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
11860
    Args:
11861
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
11862
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
11863
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
11864
            1, 2 or 3.
B
barrierye 已提交
11865
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
11866 11867

    Returns:
H
haowang101779990 已提交
11868 11869
        Variable: A tensor variable with the same shape and same type \
                  as the input.
11870

B
barrierye 已提交
11871 11872
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
11873

11874
            import paddle.fluid as fluid
B
barrierye 已提交
11875
            data = fluid.layers.data(
Y
Yibing Liu 已提交
11876 11877
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
11890 11891 11892 11893 11894
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
11895 11896 11897 11898 11899 11900 11901
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
11902 11903


M
minqiyang 已提交
11904 11905
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
11906 11907
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
11908 11909
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
11910 11911 11912 11913 11914 11915 11916 11917

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
11918
        input.data = 
11919
            [[1, 2],
11920
             [3, 4]]
M
minqiyang 已提交
11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
11934 11935
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
11936 11937 11938 11939
        ]

    Args:
        input (Variable): The input variable which is a one-hot word. The
11940
            dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
M
minqiyang 已提交
11941 11942
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
11943
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
11944
        name (str, default None): The name of this layer.
M
minqiyang 已提交
11945 11946

    Returns:
11947
       Variable: The hash result variable, which the same variable type as `input`.
M
minqiyang 已提交
11948 11949 11950

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
11951

11952 11953
            import paddle.fluid as fluid

11954 11955 11956 11957
            # titles has shape [batch, 1]
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
            # hash_r has shape [batch, 2]
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
11958 11959


11960 11961 11962 11963
            # titles has shape [batch, 1] and lod information
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            # hash_r has shape [batch, 2] and inherits lod information from titles
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
M
minqiyang 已提交
11964 11965
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
11966 11967
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
11968 11969 11970 11971 11972 11973 11974
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
11975 11976


D
dengkaipeng 已提交
11977
@templatedoc()
11978 11979
def grid_sampler(x, grid, name=None):
    """
11980
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
11981
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
11982 11983 11984 11985
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
11986
    interpolation value of 4 nearest corner points.
11987

H
haowang101779990 已提交
11988
    .. code-block:: text
11989

H
haowang101779990 已提交
11990 11991
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
11992

H
haowang101779990 已提交
11993 11994
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
11995

H
haowang101779990 已提交
11996 11997 11998
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
11999

H
haowang101779990 已提交
12000 12001 12002 12003 12004 12005 12006 12007 12008
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
12009

H
haowang101779990 已提交
12010 12011 12012 12013
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
12014

H
haowang101779990 已提交
12015 12016 12017 12018
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
12019

H
haowang101779990 已提交
12020 12021 12022 12023
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
12024

H
haowang101779990 已提交
12025 12026
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
12027 12028

    Args:
12029 12030 12031
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
12032 12033

    Returns:
H
haowang101779990 已提交
12034
        Variable: Output of shape [N, C, H, W] data samples input X
12035 12036
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
12037 12038 12039 12040
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
12041 12042 12043 12044 12045
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
12046
            out = fluid.layers.grid_sampler(x=x, grid=grid)
12047

D
dengkaipeng 已提交
12048 12049 12050 12051 12052 12053 12054 12055 12056
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

12057
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
12058 12059
    ipts = {'X': x, 'Grid': grid}

12060
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
12061 12062 12063
    return out


G
gmcather 已提交
12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

12091
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12092 12093
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
12132
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
12133 12134 12135 12136 12137 12138 12139
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
12140 12141
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
12142

12143 12144 12145 12146 12147
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
12148
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
12149

H
heqiaozhi 已提交
12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
12163 12164 12165 12166
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
12167
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
12168 12169
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
12170
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
12171 12172

    .. math::
H
haowang101779990 已提交
12173 12174 12175
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
12176 12177

    Where:
H
haowang101779990 已提交
12178 12179
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

12193 12194 12195 12196 12197 12198 12199 12200 12201
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
12202

G
gmcather 已提交
12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
12219 12220 12221 12222 12223 12224 12225 12226 12227 12228


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
12229
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
12230

Q
Qiao Longfei 已提交
12231
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
12232 12233 12234
    For example:

    .. math::
H
haowang101779990 已提交
12235
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
12236

Q
Qiao Longfei 已提交
12237
    In this formula:
12238 12239
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
12240
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
12241
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
12242 12243 12244
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
12245 12246
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
12247 12248 12249
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
12250
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
12251
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
12252
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
12253 12254 12255 12256
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
12257
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
12258 12259 12260 12261

    Examples:
        .. code-block:: python

12262
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12263 12264 12265
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
12266 12267
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
12268
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
12269 12270 12271 12272

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
12273
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
12304 12305 12306 12307 12308 12309 12310 12311

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
12312 12313 12314 12315 12316 12317 12318 12319 12320 12321
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
12322 12323


S
shippingwang 已提交
12324
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
12325 12326
    """
    **Shuffle Channel Operator**
12327

S
shippingwang 已提交
12328 12329 12330 12331 12332 12333
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
12334
    
S
shippingwang 已提交
12335
    .. code-block:: text
12336

S
shippingwang 已提交
12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
12365
    Args: 
S
shippingwang 已提交
12366 12367
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
12368 12369

    Returns:
S
shippingwang 已提交
12370 12371
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
12372 12373

    Raises:
S
shippingwang 已提交
12374
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
12375 12376 12377

    Examples:
        .. code-block:: python
12378

12379
            import paddle.fluid as fluid
12380
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
12381
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
12382 12383 12384
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
12385
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
12386 12387 12388 12389 12390 12391 12392 12393 12394

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
12395
    return out
S
Add  
shippingwang 已提交
12396 12397


12398
@templatedoc()
D
dengkaipeng 已提交
12399
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
12400 12401 12402 12403 12404 12405 12406 12407
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
12408
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
12409
        name (str, default None): The name of this layer.
12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

12421
            import paddle.fluid as fluid
12422
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
12423
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
12436 12437
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
12438 12439 12440
    return out


S
sneaxiy 已提交
12441
class PyFuncRegistry(object):
S
sneaxiy 已提交
12442 12443 12444
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
12445
        if func is None or not callable(func):
S
sneaxiy 已提交
12446 12447 12448
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
12449
        # find named args using reflection
S
sneaxiy 已提交
12450 12451 12452 12453 12454 12455 12456
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
12457 12458 12459
        '''
        Why record self here?

M
minqiyang 已提交
12460 12461
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
12462
           to find the registered function corresponding
M
minqiyang 已提交
12463
           to :code:`idx`.
S
sneaxiy 已提交
12464

M
minqiyang 已提交
12465 12466
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
12467
           whose reference count is 1 would cause
M
minqiyang 已提交
12468
           segmentation fault error in C++ side.
S
sneaxiy 已提交
12469 12470
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
12471
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
12486 12487 12488 12489 12490 12491 12492 12493 12494
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
12495

S
sneaxiy 已提交
12496 12497
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
12498 12499

        ret = []
S
sneaxiy 已提交
12500 12501 12502
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
12503 12504
                continue

S
sneaxiy 已提交
12505 12506
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
12507

S
sneaxiy 已提交
12508 12509 12510
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
12511

S
sneaxiy 已提交
12512
        return tuple(ret)
S
sneaxiy 已提交
12513 12514


S
sneaxiy 已提交
12515 12516 12517 12518
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
12519

S
sneaxiy 已提交
12520 12521 12522 12523 12524 12525 12526 12527
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
12528
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
12529

S
sneaxiy 已提交
12530 12531
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
12532 12533 12534 12535
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
12536
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
12537
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
12538 12539
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
12540 12541 12542 12543 12544
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
12545
            should create :code:`out` beforehand.
S
sneaxiy 已提交
12546
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
12547
                                       None means no backward. Default None.
S
sneaxiy 已提交
12548
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
12549
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
12550 12551
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
12552
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
12553 12554 12555

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
12556 12557

    Examples:
M
minqiyang 已提交
12558

S
sneaxiy 已提交
12559 12560 12561 12562 12563
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
12564
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
12565 12566
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
12567
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
12568 12569 12570
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
12571
        >>>
S
sneaxiy 已提交
12572 12573 12574 12575 12576
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
12577
        >>>     print(x)
S
sneaxiy 已提交
12578 12579 12580 12581 12582 12583
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
12584
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
12585 12586
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
12587 12588
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
12589 12590 12591 12592 12593 12594 12595 12596
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
12597
    """
S
sneaxiy 已提交
12598
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
12599 12600 12601
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
12602
        x = [x]
S
sneaxiy 已提交
12603 12604
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12605

S
sneaxiy 已提交
12606 12607 12608
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
12609
        out_list = [out]
S
sneaxiy 已提交
12610
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
12611
        out_list = out
S
sneaxiy 已提交
12612 12613 12614
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12615

S
sneaxiy 已提交
12616 12617
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
12618
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
12619 12620

    for each_out in out_list:
S
sneaxiy 已提交
12621 12622
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
12623 12624
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
12625

S
sneaxiy 已提交
12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
12641 12642 12643 12644

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
12645 12646
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
12647 12648 12649
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
12650
        })
S
sneaxiy 已提交
12651
    return out
S
sneaxiy 已提交
12652 12653 12654


# For debug usage
S
sneaxiy 已提交
12655 12656 12657 12658
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
12672 12673 12674 12675 12676
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12689 12690 12691 12692
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781


@templatedoc()
def prroi_pool(input,
               rois,
               output_channels,
               spatial_scale=1.0,
               pooled_height=1,
               pooled_width=1,
               name=None):
    """
    The precise roi pooling implementation for paddle?https://arxiv.org/pdf/1807.11590.pdf

    Args:
        input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        output_channels (integer): The output's channel.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
        name (str, default None): The name of this operation.

    Returns:
        Variable(Tensor): The shape of the returned Tensor is (num_rois, output_channels, pooled_h, pooled_w), with value type float32,float16..

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.prroi_pool(x, rois, 10, 1.0, 7, 7)
    """
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='prroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12782

M
minqiyang 已提交
12783

M
minqiyang 已提交
12784
def huber_loss(input, label, delta):
12785
    """
M
minqiyang 已提交
12786 12787 12788
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
12789 12790 12791 12792

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
12793
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
12794 12795 12796 12797

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
12798
        huber\_loss = 0.5 * (label - input) * (label - input)
12799 12800 12801 12802 12803 12804 12805


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
12806
        delta (float): The parameter of huber loss, which controls
12807 12808 12809
                       the range of outliers

    Returns:
M
minqiyang 已提交
12810
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
12811 12812 12813 12814

    Examples:
        .. code-block:: python

12815 12816 12817 12818 12819 12820 12821 12822 12823
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

12824
    """
M
minqiyang 已提交
12825
    helper = LayerHelper('huber_loss', **locals())
12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
12837 12838


D
dengkaipeng 已提交
12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

12856
            import paddle.fluid as fluid
D
dengkaipeng 已提交
12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

12902
          import paddle.fluid as fluid
T
Tao Luo 已提交
12903 12904 12905
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
12906
          # edges must be directional
T
Tao Luo 已提交
12907 12908 12909 12910
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
12911
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
12912 12913
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
12914
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
12915
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
12939 12940


C
ceci3 已提交
12941
from .ops import square
C
ceci3 已提交
12942
from .control_flow import equal
C
ceci3 已提交
12943 12944


C
ceci3 已提交
12945 12946 12947
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
12948

C
ceci3 已提交
12949
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
12950 12951

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
12952
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
12953 12954 12955 12956 12957
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
12958 12959
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
12960 12961 12962 12963 12964 12965 12966

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

12967
       import paddle.fluid as fluid
C
ceci3 已提交
12968 12969 12970 12971 12972 12973 12974 12975
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
12976 12977 12978 12979 12980 12981 12982
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
12983
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
12984 12985
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
12986 12987
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
12988 12989 12990 12991
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
12992 12993 12994
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
12995 12996 12997
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
12998 12999


R
ruri 已提交
13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

13029
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
13030 13031 13032 13033 13034 13035 13036 13037 13038

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

13039
            import paddle.fluid as fluid
R
ruri 已提交
13040
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
13091 13092 13093 13094 13095 13096
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
13097 13098 13099 13100 13101 13102 13103 13104
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
13105 13106 13107 13108


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
13109

H
heqiaozhi 已提交
13110
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
13111

H
fix doc  
heqiaozhi 已提交
13112
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
13113 13114 13115
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
13116
    
H
fix doc  
heqiaozhi 已提交
13117
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
13118

H
heqiaozhi 已提交
13119
    Args:
H
fix doc  
heqiaozhi 已提交
13120 13121

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
13122 13123
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
13124
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
13125
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
13126

H
heqiaozhi 已提交
13127
    Returns:
H
fix doc  
heqiaozhi 已提交
13128 13129 13130

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
13131
    Examples:
H
fix doc  
heqiaozhi 已提交
13132

H
heqiaozhi 已提交
13133
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
13134

13135
          import paddle.fluid as fluid
H
heqiaozhi 已提交
13136 13137 13138 13139 13140 13141 13142 13143 13144 13145
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
13146

H
heqiaozhi 已提交
13147 13148 13149 13150 13151 13152 13153 13154 13155
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
13156
    return out
Z
zhoukunsheng 已提交
13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

13175
             import paddle.fluid as fluid
13176 13177 13178
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
13179
             # condition is a tensor [True, False, True]
13180 13181 13182
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
13183 13184

             # condition is a tensor [[True, False], [False, True]]
13185 13186 13187
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
13188 13189

             # condition is a tensor [False, False, False]
13190 13191 13192 13193
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
13194 13195 13196 13197 13198 13199 13200 13201 13202
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

13220 13221 13222
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
13223
          # [1, 0, -1]
13224 13225
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
13238 13239


Z
zhoukunsheng 已提交
13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330
def unique_with_counts(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index, count). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor, \
            `count` is count of unqiue element in the `x`.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
13344
                    modulated=True,
13345 13346 13347 13348 13349 13350
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
13351 13352 13353
   
    
    Deformable Convolution v2: 
13354 13355 13356 13357
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
13358 13359

    Deformable Convolution v1:
13360
    
13361 13362 13363 13364 13365 13366 13367
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, 
    which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
13393
        offset (Variable): The input coordinate offset of deformable convolution layer.
13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
13432 13433
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

13445 13446
          #deformable conv v2:
         
13447
          import paddle.fluid as fluid
13448 13449 13450 13451
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
13452 13453 13454 13455 13456 13457 13458 13459 13460
                                             num_filters=2, filter_size=3, padding=1, modulated=True)

          #deformable conv v1:

          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
                                             num_filters=2, filter_size=3, padding=1, modulated=False)
13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537
    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })
13538 13539 13540

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

13704
        import paddle.fluid as fluid
C
cjt222 已提交
13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
13766 13767


K
Kevin 已提交
13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882
def var_conv_2d(input,
                row,
                col,
                input_channel,
                output_channel,
                filter_size,
                stride=1,
                param_attr=None,
                act=None,
                dtype='float32',
                name=None):
    """
    The var_conv_2d layer calculates the output base on the :attr:`input` with variable length,
    row, col, input channel, filter size and strides. Both :attr:`input`, :attr:`row`,
    and :attr:`col` are 1-level LodTensor. The covolution operation is same as conv2d layer with 
    padding. Besides, input.dims[1] should be 1. 

    .. code-block:: text
            
            If input_channel is 2 and given row lodTensor and col lodTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]
            input is a lodTensor: 
                input.lod = [[60, 56]]	# where 60 = input_channel * 5 * 6
                input.dims = [116, 1]	# where 116 = 60 + 56
            
            If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
                output.lod = [[90, 84]] # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
                output.dims = [174, 1]  # where 174 = 90 + 84

    Args:
        input (Variable): The input shoud be 1-level LodTensor with dims[1] equals 1.
        row (Variable): The row shoud be 1-level LodTensor to provide height information.
        col (Variable): The col shoud be 1-level LodTensor to provide width information.
        input_channel (int): The number of input channel.
        output_channel (int): The number of output channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of var_conv2d. If it is set to None or one attribute of ParamAttr, var_conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        dtype ('float32'): The data type of parameter and output.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None

    Returns:
        Variable: Output variable with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = layers.var_conv_2d(input=x_lod_tensor, 
                                     row=row_lod_tensor,
                                     col=col_lod_tensor,
                                     input_channel=3,
                                     output_channel=5,
                                     filter_size=[3, 3],
                                     stride=1)
    """
    helper = LayerHelper('var_conv_2d', **locals())
    x_shape = list(input.shape)
    assert len(x_shape) == 2

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')

    filter_shape = [
        int(output_channel),
        int(input_channel) * filter_size[0] * filter_size[1]
    ]
    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype, )

    conv_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)

    helper.append_op(
        type='var_conv_2d',
        inputs={
            'X': input,
            'ROW': row,
            'COLUMN': col,
            'W': filter_param,
        },
        outputs={"Out": conv_res,
                 "Col": tmp_res},
        attrs={
            'InputChannel': input_channel,
            'OutputChannel': output_channel,
            'StrideH': stride[0],
            'StrideW': stride[1],
            'KernelH': filter_size[0],
            'KernelW': filter_size[1],
        })

    return helper.append_activation(conv_res)


A
Aurelius84 已提交
13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964
def match_matrix_tensor(x,
                        y,
                        channel_num,
                        act=None,
                        param_attr=None,
                        dtype='float32',
                        name=None):
    """
    Calculate the semantic matching matrix of two word sequences with variable length.
    Given a query A of length `n` and a title B of length `m`, the input shape are respectively
    [n, h] and [m, h], which h is hidden_size. If :attr:`channel_num` is set to 3,
    it will generate a learnable parameter matrix W with shape [h, 3, h].
    Then the semantic matching matrix of query A and title B is calculated by 
    A * W * B.T = [n, h]*[h, 3, h]*[h, m] = [n, 3, m]. The learnable parameter matrix `W` 
    is equivalent to a fully connected layer in the calculation process. If :attr:`act` is provided, 
    the corresponding activation function will be applied to output matrix.
    The :attr:`x` and :attr:`y` should be LodTensor and only one level LoD is supported.

    .. code-block:: text

            Given a 1-level LoDTensor x:
                x.lod =  [[2,                     3,                               ]]
                x.data = [[0.3, 0.1], [0.2, 0.3], [0.5, 0.6], [0.7, 0.1], [0.3, 0.4]]
                x.dims = [5, 2]
            y is a Tensor:
                y.lod =  [[3,                                 1,       ]]
                y.data = [[0.1, 0.2], [0.3, 0.7], [0.9, 0.2], [0.4, 0.1]]
                y.dims = [4, 2]
            set channel_num 2, then we get a 1-level LoDTensor:
                out.lod =  [[12, 6]]   # where 12 = channel_num * x.lod[0][0] * y.lod[0][0]
                out.dims = [18, 1]     # where 18 = 12 + 6

    Args:
        x (Variable): Input variable x which should be 1-level LodTensor.
        y (Variable): Input variable y which should be 1-level LodTensor.
        channel_num (int): The channel number of learnable parameter W.
        act (str, default None): Activation to be applied to the output of this layer.
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        dtype ('float32'): The data type of w data.
        name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None

    Returns:
        Variable: output with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[10], lod_level=1)
            y_lod_tensor = layers.data(name='y', shape=[10], lod_level=1)
            out, out_tmp = layers.match_matrix_tensor(x=x_lod_tensor, y=y_lod_tensor, channel_num=3)
    """
    helper = LayerHelper('match_matrix_tensor', **locals())

    x_shape = list(x.shape)
    y_shape = list(y.shape)
    assert len(x_shape) == 2 and len(y_shape) == 2 and x_shape[-1] == y_shape[
        -1]

    weight_shape = [x_shape[-1], channel_num, y_shape[-1]]
    w = helper.create_parameter(
        attr=helper.param_attr, shape=weight_shape, dtype=dtype, is_bias=False)
    mm_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)
    helper.append_op(
        type='match_matrix_tensor',
        inputs={
            'X': x,
            'Y': y,
            'W': w,
        },
        outputs={"Out": mm_res,
                 "Tmp": tmp_res},
        attrs={'dim_t': channel_num})

    return helper.append_activation(mm_res), tmp_res


13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    This layer creates the sharded index for input. This layers is used in
    model- and data- parallel mixed training generally, in which the index
    data (usually the label) should be recaculated in each trainer according
    to 

    .. math::
        
        assert index_num % nshards == 0

        shard_size = index_num / nshards

        y = x % shard_size if x / shard_size == shard_id else ignore_value

    We take the distributed one-hot representation to show what this layer is
    used for. The distributed one-hot representation is seperated into multiple
    shards, and each shard is filling zeros except the one with the index
    inside. In order to create these sharded representation in each trainer,
    the original index should be recalculated (i.e. sharded) before.

    Examples:
    
        X is a Tensor of integer values:
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
        
        suppose index_num = 20 and nshards = 2, then we get shard_size = 10
        
        if shard_id == 0, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
        if shard_id == 1, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
        the default `ignore_value` -1 is used in this example.
    
    Args:
        input(Variable): Input indices, last dimension must be 1.
        index_num(scalar): An interger defining the range of the index.
        nshards(scalar): The number of shards
        shard_id(scalar): The index of the current shard
        ignore_value(scalar): An ingeter value out of sharded index range

    Returns:
        Variable: The shard index of input.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if index_num % nshards != 0:
        raise ValueError(
            'The index_num(%d) cannot be evenly divided by nshards(%d)' %
            (index_num, nshards))
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
    ${comment}
    Args:
        x(Varaible): Input of HardSwish operator.
        threshold(float): The threshold parameter of HardSwish operator. Default:threshold=6.0
        scale(float): The scale parameter of HardSwish operator. Default:scale=6.0
        offset(float): The offset parameter of HardSwish operator. Default:offset=3.0
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_swish(x)
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out